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Abstract

Safe programming languages encourage the
development of dynamically extensible systems,
such as extensible Web servers and mobile agent
platforms. Although protection is of utmost
importance in these settings, current solutions do
not adequately address fault containment. This
paper advocates an approach to protection where
transactions act as protection domains. This
enables direct sharing of objects while protecting
against unauthorized accesses and failures of
authorized components. The main questions
about this approach are what transaction models
translate best into protection mechanisms suited
for extensible language-based systems and what
is the impact of transaction-based protection on
performance. A programmable isolation engine
has been integrated with the runtime of a safe
programming language in order to allow quick
experimentation with a variety of isolation
models and to answer both questions. This paper
reports on the techniques for flexible fine-
grained locking and undo devised to meet the
functional and performance requirements of
transaction-based protection. Performance
analysis of a prototype implementation shows
that (i) sophisticated concurrency controls do not
translate into higher overheads, and (ii) the
ability to memoize locking operations is crucial
to performance.

1. Introduction

Dynamically extensible systems, such as Web
browsers, Web servers, mobile agent platforms, and
application servers, are characterized by their ability to
dynamically download programs that might interact with
locally installed trusted components and with one another.
The Java™ programming language [GJS+00] has been
the main actor in the development of such systems due to
a combination of several features. The language is
network-centric and includes programmable built-in
security mechanisms that programmers can use to control
the scope of interactions with other programs. The
runtime environment of the language consists of a virtual
machine executed by a single operating system (OS)
process; the virtual machine in turn executes applications
and their dynamic extensions. Co-locating programs
within the same address space benefits scalability and
performance. Protection between executing programs is
enforced via software mechanisms that leverage language
safety to provide a flexible and efficient alternative to
hardware-based protection mechanisms [BSP+95].

The original approach to protection [Gong99], based
on class loaders, separate name spaces, and security
managers, provides only a partial isolation of components
from one another and serves well only within the limit of
a set of rules that co-located programs must conform to.
This is insufficient to allow arbitrary extensions.
Increasing the level of component isolation in the Java
programming language and other similar settings has been
a focus of various projects [HCC+98,BR00]; the more
promising ones achieved isolation via re-architecting the
virtual machine to provide safe and scalable multitasking
[BHL00,CD01]. These designs address many problems
present in currently deployed extensible middleware but
are usually strongly influenced by pragmatic concerns
mixed with a fair dose of conservatism inherent in large
software projects. Typically, the notion of protection
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domains is introduced; references to objects cannot leave
a protection domain; instead, object copies or revocable
remote references are passed across domains.

Such an approach to protection makes programming
of extensible systems where objects may need to be
simultaneously accessible to multiple programs
cumbersome. Programming becomes particularly difficult
when objects shared across protection domains are
mutable, as copies need to be continuously transmitted
between the interacting parties, and consistency issues
may need to be dealt with. Finally, copying increases the
latency of inter-component communication and may
degrade performance noticeably.

Alternatives to this model promote safe direct object
sharing and circumvent problems due to object aliasing by
decoupling naming from method invocation, and by
introducing access control on the latter [BR00, RSC92].
Thus, object references can freely cross protection
domains and be stored into arbitrary locations while
method invocations remain subject to access control.

All these approaches neglect a crucial aspect of
isolation: fault containment. Prohibiting, or restricting,
object sharing via the means of the type system, capability
mechanisms, or access control, does not prevent fault
propagation from one component to another. Data of a
component may have been left partially modified by
another trusted component that has failed to complete all
its interactions. The infected component can in turn
propagate the failure further. The only remedy to this is to
kill all infected components, but that assumes that the
original failure can be detected, and the infected
components repaired.  In absence of such capabilities, the
only resort is to restart the entire system.

We advocate borrowing the notion of transactions
from database systems and adapting it to serve as
protection domains in order to address both access control
and fault containment. The rationale is the observation
that in many advanced transaction models pioneered for
non-traditional database applications transactions can be
organized so that access to a set of objects can be
completely prohibited to some transactions, while other
transactions are allowed to compete for them. This
suggests that the machinery underlying concurrency
control can also be exploited to realize access control at
no additional cost.

In this approach, transactions act as protection
domains: every object is owned by only one transaction,
which is responsible for authorizing access to the object,
and every program executes as a transaction. As in other
safe direct object sharing approaches, naming is
decoupled from method invocation. The difference is that
invocations are subject to concurrency control, which
simultaneously enforces isolation and access control. A
violation of either leads to a conflict. Access violation
conflicts force the offender to undo its actions.

Transaction-based protection also deals with safe
termination, which is otherwise difficult to achieve

[RCW01], and with safe concurrency (the ability to
preserve a consistent state when executing arbitrary code
against shared data.) The combination of safe termination,
access control, fault containment, and safe concurrency
makes transaction-based protection a compelling
foundation for extensible language-based systems.

Exactly what transaction models are well suited for
transaction-based protection, and how well such an
approach compares with others on performance grounds
are the two research issues on our agenda. In order to
formulate answers to these questions, we have adopted a
design that enables quick prototyping of various isolation
models. This paper reports on our efforts to build a
flexible transactional isolation engine with performance
compatible with the requirements of an extensible
language-based system, and demonstrates this goal is
feasible based on a detailed analysis of the performance
obtained with various isolation models.

A number of characteristics set our work apart from
other attempts to integrate transactional features with
programming languages, such as efforts related to
persistent programming languages (PPLs) [LCJ+87,
HBM93] and object-oriented database management
systems (OODBMS). The architecture often adopted in
these settings is distributed: either client/server or peer-to-
peer and each application executes in separate OS
process. A substantial part of the design is driven by the
requirement to efficiently ensure durable changes to
persistent data and to reduce network latencies. In
contrast, transactional control in our system is geared
toward safe sharing of volatile data that are directly
accessible by applications, which all run in the same
address space and share the run-time system. Many of the
techniques described in this work are applicable to PPLs
and to database systems. In particular, the following
contributions are relevant to the database community:
• a space-efficient, high-performance, fine-granularity

flexible lock management technique suitable for
main-memory resident systems.

• an analysis of the space and processing overheads
incurred by the concurrency control of a variety
advanced transaction models.

• evidence that a more sophisticated concurrency
control does not translate into higher overheads.

The paper is organized as follows. Section 2 contains an
overview of our experimental architecture for transaction-
based protection. Section 3 describes the main features of
the flexible isolation engine and examples of its usage.
Section 4 covers the implementation techniques used to
efficiently support flexible locking, and Section 5
analyses their performance. Section 6 contrasts the
contributions of this paper with related work.

2. System Overview

Our prototype platform for experimenting with
transaction-based protection provides an alternative



platform for the Java programming language with
automatically enforced flexible isolation mechanisms.
Isolation is added without changing the language
definition. This allows the platform to execute existing
programs without any modifications to their source or
compiled forms, regardless of the chosen isolation model.

The platform is realized by augmenting an
implementation of the Java virtual machine (JVM™) with
a programmable isolation engine. The engine supplies
flexible locking and undo mechanisms. It provides two
APIs: the internal API, used mainly by the interpreter and
the dynamic compiler to automate the interaction with the
isolation engine, and the external API, exposed to (expert)
programmers as a package written in the Java
programming language. The external API enables
relatively simple programming of new behaviors of the
isolation engine. It also includes an isolation manager that
mediates all requests to the isolation engine. The isolation
manager itself is a special transaction that lives as long as
the virtual machine. This design leverages the isolation
mechanisms to protect the isolation manager’s data
structures from misbehaving programs.

Transactions are instances of a class that encapsulates
entry points to the isolation manager. Entry points are
similar to the trap mechanism of an OS: they switch to the
context of the isolation manager transaction prior to
executing the corresponding “kernel” service, and exit
back to the original transaction context.

 In addition to entry points to begin, commit, and abort
a transaction, two other entry points are defined. The first
one initiates a thread to execute a program in the context
of the transaction. The second entry point sends an event
to a programmer-defined extension that customizes the
behavior of the isolation engine. This is used to extend the
default transaction interface (e.g., when augmenting the
transaction interface with split and join methods).

From the point of view of application programmers,
executing an arbitrary program under a particular isolation
behavior is fairly simple: a transaction object is
instantiated, and its methods are invoked to successively
begin the transaction, launch the execution of a program
in the transaction, and terminate the transaction. Any
programs normally executable by the JVM can be
executed by a transaction, including multi-threaded ones.

 The programming interface to the isolation engine is
similar to the design presented in a previous work on
flexible transaction management for PPLs [DAV97] and
will not be further described here.

3. Flexible Isolation Engine

Frameworks for specifying transaction models such as
ACTA [Chry90] have helped to identify new primitives
general enough to express the concurrency control of
numerous advanced transaction models. Our flexible
isolation engine builds on these results. It is not intended
to be general; rather, it aims at a family of transaction

models that we believe address well isolation and safe
sharing in language-based extensible systems.  It is based
on the observation that locking protocols differ in: (i) the
number of lock ownerships required by each transactional
entity, (ii) the conflict detection mechanism, (iii) the
conflict resolution mechanism, and (iv) how transaction
models use the notion of delegation [Chry90].

3.1 Locking contexts

The number of distinct lock ownerships required by each
transactional entity to realize concurrency control differs
between transaction models. A transaction needs only one
type of lock ownership in the classic ACID transaction
model, and two in the nested transaction model (one for
held locks, and one for retained locks [HR93]). The
concurrency control of the Apotram transaction model
[Anfi97] can be expressed using a single type of lock
ownership per transaction, and three other types of lock
ownership per sub-databases. Generally, a single lock
ownership is used to acquire the locks a transaction needs
to perform its operations. Additional lock ownerships are
used as rings of protection that prevent a specific set of
transaction from doing certain operations. How many lock
ownerships are used depends on the complexity of the
rules that determine what transaction should be denied
access. Based on these observations, the isolation engine
separates lock ownership from the transactional entity and
lets programmers specify how they are associated.

The flexible isolation engine represents lock
ownership with a locking context. Locking contexts are
either active or passive. Locking contexts can transfer
locks to other locking context (see delegation of locks
below) or release them. Locks can only be acquired on
demand with an active locking contexts: transactions
assign them to the threads running on their behalf; the
runtime automatically acquire locks using the locking
context of the current thread.

 The behavior of a locking context with respect to
conflict detection, resolution, and notification, as well as
transferring of lock ownership can be programmed via a
simple interface. The salient features of this interface and
their effect on the locking logic are described below.

3.2 Ignore-conflict relationships

Conceptually, the state of a lock consists of one set of
lock owners per lock mode. Owners(l,m) denotes the set
of  locking contexts that own lock l in mode m. A function
Compatible(m1,m2) determines whether lock mode m1 is
compatible with lock mode m2. Compatibility of lock
modes is defined by the commutability of the
corresponding operations. Incompatibility of modes is
considered a conflict. Conflicts are denoted m1/m2, where
m1 is the requested mode, and m2 a mode incompatible
with m1. When using read (r) and write (w) lock modes
only, lock ownership is expressed with a pair
<Owners(l,r), Owners(l,w)> of owner sets. Three types of



conflict can occur: read/write (r/w), write/read (w/r), and
write/write (w/w).

The conflict detection mechanism of a lock manager
can be generalized by specifying ignore-conflict
relationships between locking contexts. An ignore-
conflict relationship alters the default evaluation of
conflicts by selectively ignoring incompatible owners of
requested locks. For instance, a locking context C1 may
specify a relationship with a locking context C2, such that
all conflicts (r/w, w/r, w/w) with C2 are ignored when
deciding whether C1 can be granted a lock.

An ignore-conflict relationship involves two locking
contexts, one of which must be an active locking context;
passive locking contexts cannot generate conflicts since
they cannot request a lock. An active locking context can
choose to ignore conflicts with passive and active locking
contexts. We use λ(Ci→Cj, m1/m2) to denote an ignore-
conflict relationship that allows an active locking context
Ci to ignore a conflict of type m1/m2 with a locking
context Cj, where m1/m2 can be any of r/w, w/r, w/w. The
isolation engine allows only symmetric ignore-conflict
relationships between two active locking contexts. A
symmetric ignore-conflict relationship for a conflict
m1/m2 is equivalent to the two asymmetric ignore-conflict
relationships λ(Ci→Cj, m1/m2) and λ(Cj→ Ci, m2/m1).

The ignore-conflict relationships of an active locking
context C are used to derive ignore-conflict-with (ICW)
sets of locking contexts with which conflicts can be
ignored. For a given conflict type m1/m2, the set is defined
as ICW(C, m1/m2) = {Ck: λ(C→ Ck, m1/m2)}.

Given these definitions, a request for a lock l in mode
m by a locking context C creates a conflict if and only if
the following condition is false:
∀ mi, Compatible(m, mi) ∨ (¬Compatible(m, mi) ∧
(Owners(l, mi) ⊆  ICW(C, m/mi) ∪ { C} ) )

Conflicts are resolved either by blocking the requester
or by notifying a third party so that a custom action can be
triggered (e.g., abort, negotiation of additional ignore-
conflict relationships, etc.). In particular, conflict
notifications are useful to achieve the “rollback on access
violation” policy of transaction-based protection.

3.3 Delegation of locks

Advanced transaction models often employ some form of
lock ownership transfers, also referred to as lock
delegation. Delegation operations transfer the ownership
of a lock from one set of locking contexts, referred as the
delegators, to another set of locking contexts, referred as
the delegatees. The sets of delegators and delegatees
involved in a delegation operation are often singletons,
and the most common situation is to delegate at once all
the locks of the delegator(s). Other flavors include
delegating one or more specific locks. Delegations to
multiple locking contexts are allowed only if the multiple
delegatees do not conflict with one another; otherwise, a
deadlock situation is created.

3.4 Examples

The mechanisms just described were used to realize the
concurrency control of several transaction models with
features that are appealing to transaction-based protection.

The strictest form of isolation is guaranteed by conflict
serializability (CSR). Realizing CSR is straightforward:
each transaction T is associated with a single active
locking context C, set up so that no conflicts can be
ignored (i.e., ∀ mi/mj, ICW(C,mi/mj)=∅). Upon
transaction abort or commit, all of C’s locks are released.

The nested transactions model [HR93] offers a more
general execution model that may be better suited for a
language-based extensible system. The model resembles
the standard OS process model and provides a similar
tree-structured control flow, but with stronger guarantees
with respect to failures and concurrent access.

Lock-based implementations of the concurrency
control of nested transactions employ, in the general case
where both parent-child and sibling parallelism is
supported, two types of lock ownership per transaction:
held and retained locks. Held locks are locks acquired by
a transaction to perform its own operations. Retained
locks are locks that were delegated to a transaction by its
committed sub-transactions. Retained locks are inherited
by their retainer and by its inferiors [HR93] in the
transaction hierarchy. When a transaction commits, it
delegates its held and retained locks to its parent. When it
aborts, it releases its held and retained locks.

These locking rules translate into ignore-conflict
relationships and delegation operations over locking
contexts as follows. Each transaction T is associated with
two locking contexts: an active locking context Ch(T)  and
a passive one Cr(T), which correspond, respectively, to
the held and retained types of lock ownership. Ignore-
conflict relationships for a top-level transaction Tt and a
sub-transaction Ts are set up as follows:

∀ mi/mj, ICW(Ch(Tt), mi/mj) = {Cr(Tt) }
∀ mi/mj, ICW(Ch(Ts), mi/mj) =
     {Cr(Ts)} ∪ ICW(Ch(Parent(Ts)), mi/mj)
where Parent(T) denotes T’s parent transaction. Upon

an abort of a transaction T, Cr(T) and Ch(T) release their
locks. Upon commit of a transaction T, Cr(T) and Ch(T)
delegate their locks to Cr(Parent(T)) if T is a sub-
transaction; otherwise, they both release their locks.

Intuitively, Cr(T) disallows any transaction outside of
the hierarchy rooted by T from doing operations that are
incompatible with those already carried out by committed
sub-transactions of T, while allowing those inside the
hierarchy, including T itself, to do so, provided they held
the appropriate locks. Note also that ignore-conflict
relationships are set only between active locking contexts
(e.g., Ch(T)), which are used to acquire the locks of their
respective transactions, and passive locking contexts (e.g.,
Cr(T)), which are used to retain locks of committed sub-
transactions Thus, no transaction can ignore-conflict with
a lock acquired (as opposed to just retained) by another.



The Apotram transaction model [Anfi97] also enables
behavior that is of interest to transaction-based protection.
It addresses the needs of collaborative applications with
two new correctness criteria: nested conflict serializability
and conditional conflict serializability (CCSR), which
translate in practice into two mechanisms for concurrency
control: nested databases and parameterized lock modes.
They can be combined or used independently. Because
nested databases are reminiscent of nested transactions,
we only discuss CCSR and parameterized lock modes.

CCSR weakens CSR in an application-controlled
manner by allowing read-write and write-read pairs of
operations to conflict conditionally, while write-write
operations always conflict. CCSR can be achieved by
determining the compatibility of lock modes
conditionally: the condition is specified as a predicate
over parameters to lock modes. Let r(A) and w(B) denote
a parameterized read and write mode, respectively, where
A and B denote subsets of some parameter domain D; r(A)
and w(B) conflict unless B ⊆ A. Non-parameterized
modes r and w correspond to the parameterized modes
r(∅) and w(*), such that∀ D, * ⊇ D.  It follows that r(∅)
is incompatible with all write modes and w(*) is
incompatible with all read modes.

Applications use parameterized lock modes by
defining domains of parameter values and assigning sets
of such values to transactions. The following example
illustrates a typical use of this mechanism. Two authors
Alice and Bob want to collaborate on a document such
that each of them can read but not overwrite what the
other is modifying. They also want to prevent anyone else
from seeing their changes or from changing anything they
have read. A single parameter value suffices to cover
these needs. The authors must define a single-valued
domain they would keep confidential. Let us call this
domain D = {α}. To achieve the behavior they want, the
authors run their transactions using the parameterized lock
modes r({ α} ) and w({ α} ). The following history of
operations is then allowed:
   H = <r(TB, O1), r(TB, O2), w(TB, O1), r(TA, O1), r(TA, O2),
             w(TA, O2)>

where x(T, O) denotes an operation x performed by T
on an object O, and TB (respectively, TA) denotes Bob’s
(Alice’s) transaction. After TB locked O1 in read mode
parameterized with {α}, no other transactions can write
O1 except TA, but any transaction can read O1. After TB

locked O1 in write mode, no other transactions can read
O1 except TA.

Now, let us assume that the manager of Bob and Alice
wants to observe their progress as well as that of another
team. Both teams require isolation from each other, and
the manager requires strict isolation on his own work. In
order to achieve this behavior, the domain D is extended
to include another parameter value, β so that D = {α, β}.
The following specification leads to the desired behavior:
transactions issued by members of the first (second) team

use the parameterized lock modes r({ α} ) and w({ α} )
(r({ β} ) and w({ β} )); the manager’s transactions use
r({ α,β} ) and w(*).

The effect of parameterized lock modes is obtained by
associating each transaction with a single locking context
and setting symmetric r/w and w/r ignore-conflict
relationships as described below. Using r(A) to acquire
read locks is equivalent to ignoring r/w conflicts with the
locking contexts of all transactions that use a subset of A
to acquire their write locks. Conversely, using w(B) to
acquire write locks is equivalent to ignoring w/r conflicts
with the locking context of all transactions that use a
superset of B to acquire their read locks. More formally,
let ρ(C,r) and ρ(C,w) each denote the set of parameter
values used by a transaction associated with a locking
context C to parameterize the read and write lock mode.
The following defines a conversion of a specification of
parameterized lock mode usage into an equivalent set of
ignore-conflict relationships:
  ∀ C, ICW(C, r/w) = {Ck: ρ(Ck,w) ⊆ ρ(C,r)}
  ∀ C, ICW(C, w/r) = {Ck: ρ(Ck,r) ⊇ ρ(C,w)}

An implementation of parameterized lock modes
based on ignore-conflict relationships consists essentially
of maintaining a data structure that maps sets of
parameters to the transactions that use these sets. The map
helps to determine ignore-conflict relationships that must
be set when a transaction is assigned a set of parameters.
When a transaction completes (either commits or aborts),
it is removed from the list of transactions of the parameter
sets used by that transaction.

3.5   Technical Challenges

In order to enforce isolation, every program must behave
as a well-formed transaction regardless of what isolation
model is used. Well-formedness means that transactions
execute an operation on an object only when they own the
lock of that object in the mode corresponding to the
operation. Further, if the operation updates, proper undo
information must have been recorded before applying the
updates. Automation of these tasks avoids depending on
the programmer to always formulate well-formed
transactions and simplifies the programmer's work.

Automated object locking is accomplished by
transparently planting in programs small sequences of
instructions, called lock barriers. They issue lock requests
to the lock manager of the isolation engine, and may
trigger logging activity. Augmenting a high-performance
implementation of the JVM with these mechanisms while
incurring minimal performance impact is challenging.

Accessing an object consists of a main-memory access
as most implementations of the JVM avoid explicit null
pointer checks and instead rely on segmentation fault
signal handling. Array bound checks, required by the
language specification, are harder to avoid and typically
add three instructions. In both cases each instruction
added by a lock barrier to an access path has a noticeable
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performance consequence. The code for lock barriers
should therefore be extremely lean.

Ideally, a transaction needs to request the lock of an
object it accesses only once, before its first access to that
object. Identifying ahead of time the first access to an
object by an arbitrary program is impossible in general. A
pragmatic solution is to precede every object access with
a lock barrier, and to rely on compiler analysis to identify
and remove as many redundant lock barriers as possible.
Because compilations take place at runtime, the amount of
analysis that can be done must be limited in order to
reduce the impact on performance. Dynamic class loading
complicates analysis further as it can invalidate past
decisions taken by the optimizer. Both issues must be
considered when eliminating redundant lock barriers.

Another challenge is posed by the small size of
objects, typically between 16 to 42 bytes and by a large
number of individual objects accessed by programs
[DH99], when compared to a typical database transaction.
This requires space-efficient lock management that scales
well with the number of locks.

Locking is traditionally implemented by associating a
resource with a data structure that represents the lock
protecting that resource. The data structure, which we
refer to as lock state throughout this paper, typically
specifies what transactions own the lock and in what
mode, along with pending requests for the lock. Locking
operations first locate the lock state that represents the
lock of a resource, and then update it as needed to reflect
the effects of the operation.

This traditional approach does not scale in terms of
memory consumption because it requires as many lock
states as locks and also because of the extra data
structures required to keep track of the locks of each
transaction in order to automatically locate and release
them all upon transaction termination. Database systems
have over several decades engineered a well-tuned battery
of locking protocols that help in circumventing the poor
scalability inherent to this approach. These techniques
heavily depend on a well-identified hierarchy of data
containers and on the associative nature of database
programming languages. This makes them a poor match
for systems that tightly couple a transaction-processing
engine with a general-purpose programming language.

4. Lock State Sharing

Lock state sharing is a novel lock management method
that makes the space overhead of locking small and
independent of the number of locked resources [DC01],
and does so without depending on any particular locking
protocol. However, the method reported in [DC01] only
supports strict isolation. This section presents extensions
to support delegation and programmable conflict
detection as described in Section 3. Background material
on lock state sharing is covered first.

4.1   Principles

Lock state sharing relies on the observation that, at any
time, the total number of distinct values of locks in a
system is very small compared to the total number of
locked resources. In other words, one can expect many
locks to have the same value. A lock manager
implementation can take advantage of this situation by
representing locks of equal value with the same lock state,
instead of with a different lock state each. Then, instead
of updating lock states as traditional lock management
methods do, locking operations change the association
between a resource and its lock state.

Shared lock states representing locks of currently
locked resources are recorded in an associative table of
shared lock states (TLS) keyed on lock values. The TLS
does not hold all possible lock values: it is initially empty,
and shared lock states are added to it as needed, i.e., when
no already existing shared lock state holds a lock value
needed to represent the lock of a resource. Garbage
collection techniques determine unused shared lock states
and remove them from the TLS.

Figure 1 illustrates how lock state sharing works by
comparison with a traditional approach to locking. It
shows a scenario where two objects, O1 and O2, have been
locked in read mode by two transactions T1 and T2, and a
third object O3 has been locked in read mode by
transactions T1, T2 and T3. The state of each lock and the
association between objects and their locks is shown
before and after the acquisition of O2‘s read lock by T3. In
the traditional approach, each object is associated with a
private lock state and T3's request for O2's lock would be
processed by updating O2's private lock state to reflect the
lock's new value (i.e., lock owned in read mode by T1, T2

and T3). Using lock state
sharing, O1 and O2 share the
same lock state, which
holds the value that the two
private lock state
representing their respective
locks would have. Instead
of updating the lock state
associated with O2 to
process T3's request, the
lock manager scans the TLS
for a shared lock state

Figure 1: Lock State Sharing.



holding the new value of O2's lock, and atomically
changes the shared lock state associated with O2 with the
one returned by the TLS.

It is crucial to understand that in both approaches,
every object is an independent unit of locking: the sharing
of lock states of equal value must not be mistaken with
protecting several objects using the same lock.

Lock state sharing enables three other important
optimizations [DC01]: (i) it makes the tracking of locked
objects (i.e., of acquired locks) unnecessary, which results
in dramatic space savings and, together with the sharing
of lock state, contributes to making the space overhead of
locking independent of the number of locked objects; (ii)
it makes the implementation of bulk locking operations
independent of the number of locked objects involved;
and (iii), it allows the use of memoization [Mich68] for all
individual locking operations. As will be shown later,
adding delegation and programmable conflict detection do
not impact these optimizations.

4.2 Bulk locking operations

Bulk locking operations apply to all the locks of a given
owner. The release of all the locks of a transaction upon
its termination is an example of a bulk locking operation.
Delegation of all the locks of a sub-transaction to its
parent in a nested transactions model is another example.
Traditional lock management methods explicitly keep
track of all locks acquired by each lock owner in order to
locate automatically all its locks.

Since the number of shared lock states is typically
very small, the lock manager can locate all the shared lock
states that encode the value of locks owned by a given
locking context just by scanning the TLS. The effect of a
bulk locking operation is obtained by updating the value
of all the shared lock states found. When bulk-releasing
the locks of a locking context C, the update consists of
removing C from all the owner sets of these shared lock
states. This may turn some shared lock states into
duplicates of others already recorded in the TLS. In this
case the modified lock state is moved to a list of
duplicates. Duplicates that pre-existed the bulk locking
operations are scanned for lock states encoding locks of
the requester in order to update them too. Pointers to
duplicates stored in object headers are opportunistically
replaced with their original during garbage collection in
order to accelerate their reclamation.

Because a shared lock state can potentially represent
the value of many locks, changing its value changes the
values of all such locks. Updating a shared lock state is
only used to implement the effect of a lock operation that
should affect all the locks represented by that lock state,
which is the case for bulk locking operations.

4.3 Memoized lock operations

Although lock state sharing adequately addresses space
overhead, the cost of lock acquisitions remains prohibitive

for the runtime of a programming language. Acquiring a
lock takes four steps:
- determine the absence of conflicts, possibly using the

ignore-conflict relationships of the requester,
- compute the new value the locking operation

produces from the value of the lock state currently
associated with the object protected by the lock,

- retrieve from the TLS the shared lock state that
encodes the new value (if none is found, the TLS
automatically creates one),

- atomically change the shared lock state currently
associated with the object to the retrieved one.

The first three steps are performed without
synchronization with concurrent threads. Instead, the last
step verifies that the value of the object’s lock has not
changed before setting its new value. Each object includes
in its header a pointer to the shared lock state that encodes
the value of its lock. In this case, the last step consists of a
single atomic compare-and-exchange of pointers to shared
lock states. If this exchange fails, the four steps are
repeated again.

A simple form of memoization [Mich68] can be used
to substantially speed up lock acquisition by eliminating
the first three steps of lock acquisition for most requests.
The idea is to maintain, per thread, a small cache that
remembers what pointers to shared lock states were
exchanged by past granted lock requests. Such caches
remember four-tuples <C, li, lf, m> such that lf = f(C, li,
m), where C is a locking context, m is a lock mode, li is a
pointer to a shared lock state, and f returns the pointer to a
shared lock state that represents the value that a lock of
initial value li must have after C's request is granted.

4.4 Flexible locking primitives

In order to support the features of the flexible isolation
engine described in Section 3, lock management based on
lock state sharing must be extended (i) to enable
programming of the conflict detection logic of a locking
context based on ignore-conflict relationships, and (ii) to
allow delegation of one, several, or all the locks of one or
more locking contexts to one or more others.

Extending the conflict detection logic with ignore-
conflict relationships augments each locking context with
two sets of locking contexts per type of conflict. For a
locking context C and a conflict of type m1/m2, these sets
are denoted, respectively, ICW(C, m1/m2) and UICW(C,
m1/m2). ICW(C, m1/m2) records the set of locking contexts
with which C can ignore m1/m2 conflicts, whereas
UICW(C, m1/m2) records the set of locking contexts with
which C has ignored one or more m1/m2 conflicts to
obtain a lock (hence, UICW(C, m1/m2) ⊆ ICW(C,m1/m2)).
This distinction helps to avoid expensive synchronization
between conflict detection and updates to ignore-conflict
relationships. For a given lock request, conflicts are
initially evaluated using the UICW sets of the requester,
without synchronization. If conflicts remain, the monitor



protecting the ICW sets is obtained, and conflicts are re-
evaluated using the ICW sets. If no conflicts are found,
the members of ICW not in UICW that permitted conflicts
to be ignored are added to UICW.

The use of ignore-conflict relationships has little
impact on how locking operations are performed with
lock state sharing. In particular, it does not disallow the
use of memoization. The caches used to memoize lock
acquisitions record the input and output values of lock
requests that do not cause conflicts, including those
requests that have ignored conflicts because of existing
ignore-conflict relationships. Changing the ignore-conflict
relationships of a locking context does not invalidate the
cached results of memoized operations since conflicts that
have already been ignored before the changes will still be
ignored after: adding ignore-conflict relationships only
increases the number of conflicts that can be ignored, and
removal of ignore-conflict relationships is only allowed
for relationships that have not been used or are not used
anymore (i.e., all the locks acquired using them have been
either released or delegated).

Delegation of the lock of a single resource is realized
like all other locking operations. The value the lock
should have as a result of delegation is first computed by
applying the effect of the delegation on a copy of the
shared lock state currently representing the resource’s
lock. The new lock value is computed by removing the
delegator(s) and adding the delegatee(s) to each of the
owner sets including at least one of the delegators. The
value obtained is then used to search the TLS for a shared
lock state encoding it, which is then set using an atomic
compare-and-exchange instruction. Memoization can also
be applied to delegation. Similarly to lock release, lock
delegation may take a bulk form, that is, all the locks
owned by a locking context may be delegated at once.
Bulk lock delegations differ from bulk lock release only
by the transformation applied to shared lock states.

4.5 Implementation details

Sets of locking contexts are central to many aspects of the
extension to lock state sharing described above. The
representation of shared lock states consists mainly of
owner (i.e., locking context) sets. Conflict detection
consists of one or more set inclusion tests between owner
sets and set of locking contexts representing ignore-
conflict relationships.

Using fixed-size bitmaps to represent sets of locking
contexts has two advantages. First, performance-critical
set operations translate into efficient bitmap
manipulations. This leads to a fast implementation of lock
ownership test, which is the most critical operation for the
overhead of automated locking. Second, it vastly reduces
the complexity of the lock manager, in particular with
respect to synchronization and memory management.
Because the total number of shared lock states maintained
in a system is small, the overcapacity in space resulting

from using fixed-size bitmaps is not a concern, and sizes
of up to several hundred bits can be easily afforded.

Class instances and arrays have been modified to
include a pointer to a shared lock state in their header.
Upon object allocation, this pointer is set to the address of
the shared lock state encoding the value of write locks
owned by the creator of the object only.

Both the interpreter and the dynamic compiler of the
JVM have been modified to support automated locking.
The bulk of the effort went into changing the dynamic
compiler, since interpreted code has relatively little
impact on performance. The interpretation of bytecodes
that read or write the mutable part of an object, or invoke
one of its methods, has been modified to execute a lock
barrier beforehand. The dynamic compiler has been made
aware of lock barriers, and simple optimizations to avoid
generating unnecessary lock barriers have been
incorporated. These optimizations are only local to basic
blocks of the control flow graph. More sophisticated
optimizations (e.g., hoisting lock barriers out of loop,
simple escape analysis) are still under development.

A lock barrier, both interpreted and generated by the
dynamic compiler, consists of three successive stages.
The first stage filters redundant lock requests by testing if
the requester already owns the lock in the mode
requested. Most lock requests exit the barrier at this stage.
The second stage performs an inline memoized lock
operation to acquire the lock. If memoization fails, control
is transferred to the runtime to call the lock manager to
process the lock request and to update the memoization
cache accordingly. On an UltraSPARC™ processor, the
first stage consists of 7 instructions; the second stage adds
between 6 to 16 instructions depending on how many
lines of the memoization cache are used before
memoization succeeds (up to 3).

Undoing of updates is based on physical logging, i.e.,
log records hold the value of data items before their
modification. Programs written in the Java programming
language tend to generate a population of very small
objects [DH99]. Their mutable part is often even smaller.
This makes the recording of the whole mutable part of an
object upon the very first update to it an interesting
strategy: it avoids the use of an additional write barrier in
the access path to objects. Instead, the existing lock
barrier triggers logging upon acquisition of a write lock.
Each locking context is associated with an undo log made
of one segment per thread executing with that locking
context. Records generated by one thread are written to its
dedicated segment of the log.

The above strategy would be too expensive for large
arrays. Logging must be done sparsely in this case, which
requires an additional write barrier to detect whether the
portion of the array about to be updated has been logged
already. To this end, large arrays are allocated in a special
section of the heap subject to a variant of card marking
[HBM93]. Cards are systematically tested. Unmarked
cards are recorded to the log, then marked.
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Figure 2: Overhead of isolation, no concurrency.

5. Experiments

Good performance is a necessary condition for the
acceptance of transaction-based protection in language-
based extensible systems. Overheads should be tolerable
when the ability to share objects directly is taken
advantage of; when no sharing takes place, the overheads
should be as low as possible.

In order to explore these issues we have extended the
Java HotSpot™ virtual machine [Sun00] version 1.3.1,
JDK version 1.3.1, with the flexible isolation engine,
described in Sections 3 and 4. From now on, we will refer
to our prototype as TPVM, and to the original Java
HotSpot virtual machine as HSVM.

Although we are still debating which transaction
model is best suited for transaction-based protection, the

candidate will likely
incorporate features inspired
by the nested transactions
and Apotram models. To
understand their impact on
performance, we have
implemented extensions of
the flexible isolation engine
for the nested transactions
model (NT) and for a
variation of the Apotram

transaction model that realizes parameterized lock modes
for flat transactions (APT).

TPVM supports three types of transactions by default:
the isolation manager’s ever-lasting transaction; single-
level ACID transactions; and a special type of ACID
transaction, called main transactions, which are capable of
initiating transactions of arbitrary type as independent
transactions. When TPVM starts, it first initializes system
classes in the context of the isolation manager’s
transaction, which then launches a main transaction to
execute the program specified in the command line. The
program typically waits for incoming request to execute
other specified programs with a particular type of
transaction (e.g., ACID, NT or APT).

We ran a series of experiments to compare TPVM
against HSVM. The SPECjvm98 suite of benchmarks
[Spec98] was used to evaluate the overhead of
transaction-based protection in situations where data are
not shared. All other experiments use a main-memory
implementation of the OO7 benchmark [CDN93] as an
example of shared data. Same code is used for all
experiments, regardless of whether HSVM or TPVM is
running it, and regardless of transaction model used. All
measurements were carried out on a Sun Enterprise™
420R server with 4 UltraSPARC™ IIi processors clocked
at 450Mhz, with 4GB of main-memory, running the
Solaris™ Operating Environment version 2.8.

Table 1 shows the overhead that TPVM adds when
programs of the SPECjvm98 suite are executed as ACID
transactions. Overheads range from 16% (db) to 59%

(compress), and are caused by redundant lock requests
only. Programs with overheads above 20% are array and
loop-intensive. This reflects the current lack of compile-
time analysis in TPVM to detect and eliminate redundant
lock barriers against arrays or within loops.

5.1 Cost of flexible isolation

Figure 2 and 3 reports the overhead of executing the
traversal operations t1, t2a, and t2b defined in the OO7
benchmark against a small database configuration with
different isolation models, namely ACID, NT and APT.
Each of these models exercises a different set of features
of the flexible isolation engine. ACID does not use any of
the programmable features. APT only uses ignore-conflict
relationships, while NT uses both ignore-conflict
relationships and delegation. The operations traverse
exactly the same number of objects and acquire the same
number of read locks, but update different number of
objects (none for t1, 493 for t2a and 9860 for t2b),
resulting in different number of write locks and amount of
logging. Regardless of the transaction model used, and
given a traversal operation, every transaction issues the
same number of lock requests, acquires the same number
of locks, and logs the same amount of data. Typically,
3×107 lock requests are issued for a single traversal
operation, 98.5% of which are redundant.

In both figures, the isolation overhead is broken down
into overhead due to redundant lock requests (i.e.,
requests for a lock that the requester already owns) and
the overhead imposed by the mechanisms that actually
enforce isolation (namely lock acquisition, bulk release or
delegation at transaction termination, undo logging, and
transaction management operations, which may include
calls to the flexible isolation engine to program its
behavior, such as, setting ignore-conflict relationships).
The overhead eliminated by memoization alone is also
reported (topmost component of every bar).

Figure 2 reports the overhead of isolation when shared
data are not access concurrently (the measured transaction
operates alone on the shared data). In this case, the
overhead of locking is minimal since no conflict detection
is performed, and the programmed part of conflict
detection isn’t exercised. Furthermore, lock requests to

program overhead
jack 18%
javac 20%
db 16%
mtrt 28%
compress 59%
mpeg 39%
Table 1: overheads for
SPECjvm98.
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Figure 3: Processing overhead of isolation when shared data are accessed concurrently.

unlocked objects avoid looking up the TLS. Instead, the
pointer to the shared lock state that represents the value of
a lock owned only by the requester is retrieved from its
locking context. Thus, all the expensive steps of the
normal processing of lock requests are bypassed.

As a result, the overheads vary little from one
transaction model to another (<1% difference). In all
cases, the overhead of isolation ranges between 23% and
28%. Redundant lock requests contribute to between 80%
and 98% of this overhead. Memoization, which in this
case avoids trapping to the JVM runtime to forward lock
requests to the lock manager, removes between 11% to
26% of overhead with respect to HSVM.

Figure 3 shows the overhead when various forms of
concurrent sharing occur. Measurements were obtained by
first running a number of transactions against the same
working set so as to achieve 100% overlap, suspending
them just before commit, and finally running the
measured transaction to completion. As before,
measurements are reported as overhead with respect to
HSVM. Figure 3 uses ti/tj (n) to denote a scenario where a
transaction performs an operation ti concurrently to n
other transactions, each of which performs tj, where n can
be 1, 10 or 100. ACID allows only read-only sharing,
(i.e., only t1/t1 scenario can happen). APT allows read-
only, read-write and write-read sharing. NT allows write-
write sharing in addition to all previous forms of sharing.

We observed the same behavior as before, namely: the
overhead of isolation remains between 22% and 28%, and
redundant lock requests amount to more than 80% of it,
regardless of the transaction model used and the features
of the flexible isolation engine that they exploit. This
result depends very much on memoization, which this
time has a more subtantial impact on performance:
disabling memoization results in execution times between
2 to 5 times slower than with HSVM, depending on the
number of transaction operating concurrently over the
shared data. Another important effect of memoization is
to erase the differences that may result from different
programming of conflict detection.

5.2 Memory footprint

Single address space approaches to multitasking seek
to reduce the overall memory footprint of programs by
sharing the runtime representation of classes, namely, the
bytecodes, meta-data describing fields, methods, symbolic
links, etc., and the dynamically compiled code produced
for frequently used methods [CD01]. Transaction-based
protection goes one step further by allowing application
data to be shared as well. However, the space overhead
intrinsic to the use of transactions can dilute these gains.

Lock barriers, which consist of a lock ownership test,
and a memoized lock acquisition, increase the size of
dynamically compiled code. For SPECjvm98 benchmarks
this increase ranges from 28.6% (db) to 56.7% (mtrt); for
OO7 the increase is 40%. This increase is penalizing
when a compiled method is not actually shared because
used by one program only.

The locking and logging used to enforce isolation also
add to the overall runtime footprint of a program,
although only under certain conditions: (i) when the
program updates shared data, or/and (ii) when it
manipulates shared data concurrently with other running
programs. In all other cases, isolation adds to the footprint
of a program 1 kB per locking context its transaction uses.

When programs access data concurrently, the space
overhead of locking may offset the benefits of sharing
data. Lock state sharing makes the space overhead of
locking proportional to the number of distinct values of
acquired locks, and not a function of the number of
acquired locks. How many different lock values there are
at a given time depends on the number of concurrent
transactions and on how they overlap their working sets.
This property allows locking to scale well with the
number of locks needed, regardless of the granularity of
locking. For instance, locking incurs exactly the same
space overhead whether transactions traverse a small or a
medium OO7 database, although traversing the latter
acquires 9 times more locks. Figure 4 shows how the lock
manager footprint evolves with the number of concurrent



transactions. The size of bitmaps implementing set of
locking contexts is 512 bits. Transaction models that use
ignore-conflict relationships (e.g., APT and NT) consume
more space to store them. Overall, the space overhead for
locking remains small, between 1 to 6 kB per transaction.

6. Related Work

Applying transactions beyond the domain of databases is
a recurring research theme. OS designers in the 80s
embraced the transaction concept and many attempts to
incorporate it into prototype distributed OSes are recorded
in the literature. Two approaches were followed: those
that use transactions internally [MMP83], and those that
expose the transaction concept to programmers, either via
toolkit or a programming language [SW91]. The nested
transaction model was often chosen because of its ability
to cope with failures without aborting a whole distributed
computation. The granularity of concurrency control was
typically coarse (e.g., a page).

Distributed programming language designers focused
on integrating transactions with a language and its
runtime. The Argus system, whose execution model relies
on the nested transaction model, is a prominent effort in
this direction [LCJ+87]. However, the performance
reported hardly gives any idea of the overhead imposed
by transactional mechanisms on the programming
language runtime, and the technology gap between now
and then makes comparisons with our system difficult.
[LCJ+87] reports read lock acquisitions 10 times slower
than another 14-instruction operation and redundant lock
requests at half the costs of a lock acquisition. By
comparison, our system processes the vast majority of
lock acquisitions with 13 RISC instructions, and
redundant lock requests with 7.

Recent research on extensible OSes has renewed the
interest in transactional mechanisms, this time to shield
the kernel against misbehaving extensions. The VINO
system [SES+96] exemplifies this approach. Its kernel
supports a limited form of nested transactions. Every
interaction of an extension with the kernel is subject to
transactional control. Each kernel function exposed to
extensions includes a corresponding carefully crafted

undo operation. As in our system, the transactional
mechanisms are optimized to operate on volatile state. In
contrast to VINO, our approach aims at protecting
arbitrary user-defined programs from one another via
transactional mechanisms automatically enforced by a
programming language’s runtime.

Our work also relates to research in designing flexible
transaction processing engines. A landmark in this area is
ACTA [Chry90], a comprehensive framework to formally
specify and reason about the properties of extended
transaction models. ACTA led to coining the notions of
delegation and ignore-conflict relationships, which were
integrated into the design of various flexible transaction
processing engines [BDG+94, BP95, DAV97]. The lock
managers of these systems, as well as all lock managers
with support for nested transactions that we are aware of,
extend textbook implementation of lock management
[GR93], and as such are variations of the seminal design
of System R*. Section 3.5 already discusses problems
exhibited when this traditional design is incorporated into
the runtime of a language-based extensible system. Our
solution extends our previous work on lock state sharing
to address these problems [DC01].

Some of the issues we have been facing are close to
those encountered when transactional features are applied
over main-memory data, such as in main-memory resident
database systems and PPLs. Similarly to [GL92] direct
pointers to lock data structures are exploited. The use of
hardware protection to efficiently automate locking and
logging was rejected because (i) the granularity of locking
is too coarse, (ii) relocation of objects in locked pages is
prohibited for the duration of the lock, and (iii)
applications must either execute in separate address
spaces or be able to restore, upon a thread context switch,
the virtual memory protection corresponding to the state
of a specific transaction.

Our support for undo differs from the noting of
updates devised in the context of PPLs [HBM93], which
typically employs remembered sets or card marking
(some use hardware protection) to defer the generation of
log records at transaction commit. In our case, recording
of undo information cannot be deferred, since otherwise
the old version of the object would be irrevocably lost.

7. Conclusions

Using transactions as protection domains in a language-
based extensible system is appealing: it combines fault
containment, safe termination, access control, and safe
concurrency in a single construct. To explore this
approach, we have extended a Java virtual machine with a
flexible isolation engine that incorporates mechanisms,
such as ignore-conflict relationships and delegation, to
program advanced concurrency control. These features
are supported by a lock management method that
combines low-space overhead, high-performance, and
programmable behavior. The resulting platform has been
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used to realize three transaction models and evaluate their
impact on program performance.

Our experiments show that, regardless of the
transaction model used and of the sophistication of its
locking rules, the overhead of isolation ranges between
22% and 28%. The use of memoization is key to limiting
the processing overhead of isolation and to erasing the
differences that would otherwise exists between various
programming of the flexible isolation engine.

Finally, because at least 80% of the reported overhead
is solely due to redundant lock requests, substantial
improvements can be expected with the addition of more
elaborate compiler optimizations (e.g., escape analysis),
thus strengthening the case for transaction-based
protection in language-based extensible system.
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