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Abstract

Safe programming languages encourage the
development of dynamically extensible systems,
such as extensible Web servers and mobile agent
platforms. Although protection is of utmost
importance in these settings, current solutions do
not adequately address fault containment. This
paper advocates an approach to protection where
transactions act as protection domains. This
enables direct sharing of objects while protecting
against unauthorized accesses and failures of
authorized components. The main questions
about this approach are what transaction models
translate best into protection mechanisms suited
for extensible language-based systems and what
is the impact of transaction-based protection on
performance. A programmable isolation engine
has been integrated with the runtime of a safe
programming language in order to allow quick
experimentation with a variety of isolation
models and to answer both questions. This paper
reports on the techniques for flexible fine-
grained locking and undo devised to meet the
functional and performance requirements of
transaction-based protection. Performance
analysis of a prototype implementation shows
that (i) sophisticated concurrency controls do not
translate into higher overheads, and (ii) the
ability to memoize locking operations is crucial
to performance.
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1. Introduction

Dynamically extensible systems, such as Web
browsers, Web servers, mobile agent platforms, and
application servers, are characterized by their ability to
dynamically download programs that might interact with
locally installed trusted components and with one another.
The Java™ programming language [GJS+00] has been
the main actor in the development of such systems due to
a combination of several features. The language is
network-centric and includes programmable built-in
security mechanisms that programmers can use to control
the scope of interactions with other programs. The
runtime environment of the language consists of a virtual
machine executed by a single operating system (OS)
process; the virtual machine in turn executes applications
and their dynamic extensions. Co-locating programs
within the same address space benefits scalability and
performance. Protection between executing programs is
enforced via software mechanisms that leverage language
safety to provide a flexible and efficient alternative to
hardware-based protection mechanisms [BSP+95].

The original approach to protection [Gong99], based
on class loaders, separate name spaces, and security
managers, provides only a partial isolation of components
from one another and serves well only within the limit of
a set of rules that co-located programs must conform to.
This is insufficient to allow arbitrary extensions.
Increasing the level of component isolation in the Java
programming language and other similar settings has been
a focus of various projects [HCC+98,BR00]; the more

qPromising ones achieved isolation via re-architecting the

[BHLOO,CDO01]. These designs address many problems
n%ire usually strongly influenced by pragmatic concerns

mixed with a fair dose of conservatism inherent in large
software projects. Typically, the notion of protection



domains is introduced; references to objects cannot leajBCWO01], and with safe concurrency (the ability to
a protection domain; instead, object copies or revocablereserve a consistent state when executing arbitrary code
remote references are passed across domains. against shared data.) The combination of safe termination,
Such an approach to protection makes programmingccess control, fault containment, and safe concurrency
of extensible systems where objects may need to bmakes transaction-based protection a compelling
simultaneously accessible to multiple programsfoundation for extensible language-based systems.
cumbersome. Programming becomes particularly difficult Exactly what transaction models are well suited for
when objects shared across protection domains ateansaction-based protection, and how well such an
mutable, as copies need to be continuously transmittegpproach compares with others on performance grounds
between the interacting parties, and consistency issuese the two research issues on our agenda. In order to
may need to be dealt with. Finally, copying increases thiormulate answers to these questions, we have adopted a
latency of inter-component communication and maydesign that enables quick prototyping of various isolation
degrade performance noticeably. models. This paper reports on our efforts to build a
Alternatives to this model promote safe direct objecflexible transactional isolation engine with performance
sharing and circumvent problems due to object aliasing bgompatible with the requirements of an extensible
decoupling naming from method invocation, and bylanguage-based system, and demonstrates this goal is
introducing access control on the latter [BR0O0O, RSC92]feasible based on a detailed analysis of the performance
Thus, object references can freely cross protectioobtained with various isolation models.
domains and be stored into arbitrary locations while A number of characteristics set our work apart from
method invocations remain subject taess control. other attempts to integrate transactional features with
All these approaches neglect a crucial aspect gfrogramming languages, such as efforts related to
isolation: fault containment. Prohibiting, or restricting, persistent programming languages (PPLs) [LCJ+87,
object sharing via the means of the type system, capabilityBM93] and object-oriented database management
mechanisms, or access control, does not prevent faudystems (OODBMS). The architecture often adopted in
propagation from one component to another. Data of these settings is distributed: either client/server or peer-to-
component may have been left partially modified bypeer and each application executes in separate OS
another trusted component that has failed to complete glrocess. A substantial part of the design is driven by the
its interactions. The infected component can in turmequirement to efficiently ensure durable changes to
propagate the failure further. The only remedy to this is tpersistent data and to reduce network latencies. In
kill all infected components, but that assumes that theontrast, transactional control in our system is geared
original failure can be detected, and the infectedoward safe sharing of volatile data that are directly
components repaired. In absence of such capabilities, tlagcessible by applications, which all run in the same
only resort is to restart the entire system. address space and share the run-time system. Many of the
We advocate borrowing the notion of transactiongechniques described in this work are applicable to PPLs
from database systems and adapting it to serve awmd to database systems. In particular, the following
protection domains in order to address both access contmntributions are relevant to the database community:
and fault containment. The rationale is the observation a space-efficient, high-performance, fine-granularity
that in many advanced transaction models pioneered for flexible lock management technique suitable for
non-traditional database applications transactions can be main-memory resident systems.
organized so that access to a set of objects can ke an analysis of the space and processing overheads
completely prohibited to some transactions, while other incurred by the concurrency control of a variety
transactions are allowed to compete for them. This advanced transaction models.
suggests that the machinery underlying concurrency evidence that a more sophisticated concurrency
control can also be exploited to realize access control at control does not translate into higher overheads.
no additional cost. The paper is organized as follows. Section 2 contains an
In this approach, transactions act as protectiogyverview of our experimental architecture for transaction-
domains: every object iswnedby only one transaction, hased protection. Section 3 describes the main features of
which is responsible for authorizing access to the objecthe flexible isolation engine and examples of its usage.
and every program executes as a transaction. As in othgection 4 covers the implementation techniques used to
safe direct object sharing approaches, naming igfficiently support flexible locking, and Section 5
decoupled from method invocation. The difference is tha&na|yses their performance_ Section 6 contrasts the

invocations are subject to concurrency control, whicteontributions of this paper with related work.
simultaneously enforces isolation anccess control. A

violation of either leads to a conflict.cBess violation 2. System Overview
conflicts force the offender to undo its actions.

Transaction-based protection also deals with saf®ur prototype platform for experimenting with
termination, which is otherwise difficult to achieve transaction-based protection provides an alternative



platform for the Java programming language withmodels that we believe address well isolation and safe

automatically enforced flexible isolation mechanismssharing in language-based extensible systems. It is based

Isolation is added without changing the languagen the observation that locking protocols differ in: (i) the

definition. This allows the platform to execute existingnumber of lock ownerships required by each transactional

programs without any modifications to their source orentity, (ii) the conflict detection mechanism, (iii) the

compiled forms, regardless of the chosen isolation modelconflict resolution mechanism, and (iv) how transaction
The platform is realized by augmenting anmodels use the notion of delegati@hry90].

implementation of the Java virtual machine (JVM™) with

a programmable isolation engine. The engine supplied-1 Locking contexts

flexible locking and undo mechanisms. It provides tWorhe number of distinct lock ownerships required by each
APIs: the internal API, used mainly by the interpreter andyansactional entity to realize concurrency control differs
the dynamic compiler to automate the interaction with th¢etyween transaction models. A transaction needs only one
isolation engine, and the external API, exposed to (experfyne of lock ownership in the classic ACID transaction
programmers as a package written in the Javgggel and two in the nested transaction model (one for
programming language. The external APl enablegg|q |ocks, and one for retained locks [HR93]). The
relatively simple programming of new behaviors of theconcyrrency control of the Apotram transaction model
isolation engine. It also includes an isolation manager thagqnﬁgﬂ can be expressed using a single type of lock
mediates _aII requests to the |solat|qn engine. The 'SOlat'QS\Nnership per transaction, and three other types of lock
manager itself is a special transaction that lives as long dWnership per sub-databases. Generally, a single lock
the virtual machine. This design leverages the isolatiogynership is used to acquire the locks a transaction needs
mechanisms to protect the isolation manager's datg, perform its operations. Additional lock ownerships are
structures from misbehaving programs. used as rings of protection that prevent a specific set of

Transactions are instances of a class that encapsulaiggsaction from doing certain operations. How many lock
entry points to the isolation manager. Entry points argyynerships are used depends on the complexity of the
similar to the trap mec.hamsm of an OS: they _SWItch'tO Neyles that determine what transaction should be denied
context of the isolation manager transaction prior t0,ccess. Based on these observations, the isolation engine
executing the corresponding “kernel” service, and exitgparates lock ownership from the transactional entity and
back to the original fransaction context. _ lets programmers specify how they are associated.

In addition to entry points to begin, commit, and abort  The ™ flexible isolation engine represents lock
a transaction, two other entry points are defined. The firghynership with a locking context. Locking contexts are
one initiates a thread to execute a program in the contegfiner active or passive. Locking contexts can transfer
of the transaction. The second entry point sends an evekks to other locking context (see delegation of locks
to a programmer-defined extension that customizes tgs|ow) or release them. Locks can only be acquired on
behavior of the isolation engine. This is used to extend th§amand with an active locking contexts: transactions
default transaction interface (e.g., when augmenting thgsqign them to the threads running on their behalf; the
transaction interface with split and join methods). runtime automatically acquire locks using the locking

From the point of view of application programmers, .gntext of the current thread.
executing an arbitrary program under a particular isolation  The pehavior of a locking context with respect to
behavior is fairly simple: a ftransaction object iSconflict detection, resolution, and notification, as well as
instantiated, and its methods are invoked to successweﬂgénsferring of lock ownership can be programmed via a
begin the transaction, launch the execution of a progral§mple interface. The salient features of this interface and

in the transaction, and terminate the transaction. Amyeir effect on the locking logic are described below.
programs normally executable by the JVM can be

executed by a transaction, including multi-threaded ones.3.2 Ignore-conflict relationships
The programming interface to the isolation engine is v th f 2 lock . f f
similar to the design presented in a previous work ofronceptually, the state of a lock consists of one set o

flexible transaction management for PPLs [DAV97] and©cK owners per lock mod®wners(l,m)denotes the set
will not be further described here. of locking contexts that own lodkn modem. A function

Compatible(npm,) determines whether lock modhg, is

. . . compatible with lock modam,. Compatibility of lock

3. Flexible Isolation Engine modes is defined by the commutability of the
Frameworks for specifying transaction models such agorresponding operations. Incompatibility of modes is

ACTA [Chry90] have helped to identify new primitives considered a conflict. Conflicts are denotedm,, where

general enough to express the concurrency control &R is the requested mode, ang a mode incompatible

numerous advanced transaction models. Our flexibl@ith m,. When using readr) and write () lock modes

isolation engine builds on these results. It is not intende@nly, lock ownership is expressed with a pair

to be general; rather, it aims at a family of transactiorcOwners(l,r), Owners(l,w)>f owner sets. Three types of



conflict can occur: read/writa/{v), write/read W/r), and 3.4 Examples

write/write (w/w). . . . .

The conflict detection mechanism of a lock manageggr?cﬂ:?:r?snIi:)nnstrjc;]lsgfdizsrelz?aeld tgirszgds:: rtr? (rjez;lllz\?mtae
can be generalized by specifying ignore'Conﬂitheatures th;’t are appealing to transaction-b g ?55[ tion
relationships between locking contexts. An ignore- : ppeaiing fo trar ased protection.

The strictest form of isolation is guaranteed by conflict

conflict relationship alters the default evaluation of . .~ .. o . . '
conflicts by selectively ignoring incompatible owners Ofserlahzablllty (.CSR)' Reallz[ng CSR. IS stralghtforwa}rd.
each transactionT is associated with a single active

requested locks. For instance, a locking con@xtmay . :

. ; S : locking contextC, set up so that no conflicts can be
specify a relationship with a locking conté3, such that . . '
pecify P 9 ignored (i.e., O m/m, ICW(C,mim)=0). Upon

all conflicts ¢/w, w/r, wiw with C, are ignored when . b it all 6fs lock | d

deciding whethe€, can be granted a lock. trar]rsr?ctlon a dort or commit, & SI OCKS are rff eased.
An ignore-conflict relationship involves two locking e nested transactions model [HR93] offers a more
eneral execution model that may be better suited for a

contexts, one of which must be an active locking contexj—,J based ol Th del bl
passive locking contexts cannot generate conflicts sin nguage-based extensible system. The model resembles
e standard OS process model and provides a similar

they cannot request a lock. An active locking context ca d L1l b ith
choose to ignore conflicts with passive and active |0Ckiné5§e-structure control flow, but with stronger guarantees
ith respect to failures and concurrentess.

contexts. We us@(G -G, m/m) to denote an ignore- Lock-based implementations of the concurrency

conflict relationship that allows an active locking contextcontrol of nested transactions emplov. in th neral

G to ignore a conflict of typam/m, with a locking where both parent-child and Fs)lgﬁn ergIEI3 Iieri ciase

contextC;, wherem,/m, can be any of/w, w/r, wiw. The P g paralielism | S_
supported, two types of lock ownership per transaction:

isolation engine allows only symmetric ignore-conflict . .
relationships between two active locking contexts. Aheld and retained locks. Held locks are locks acquired by

symmetric ignore-conflict relationship for a conflict a transaction to perform its own operations. Retained

: : (o ) - locks are locks that were delegated to a transaction by its
:r;llggz;;?;géentéo r:;l/en;\)/vgn%s/\{rgmeglcr:g?ri;e ComcIICtcommitted sub-transactions. Retained locks are inherited
i = Yy i iy .

The ianore-confiict relationshi f an active locki by their retainer and by its inferiors [HR93] in the
context Cgare ucsoe d fo (fezriivce)z ;sng?e?coarlwﬂigivl\)i/ticoc N9 transaction hierarchy. When a transaction commits, it
. - lgnort . W delegates its held and retained locks to its parent. When it
sets of locking contexts with which conflicts can beaborts it releases its held and retained locks
ignored. For a given conflict type/m, the set is defined Thése locking rules translate into igﬁore-conflict
aSIgW(C’ﬂT/mZ)d: ]f.c.k:.’\(c" G ml/mZ]z}' loék mod relationships and delegation operations over locking
lven these definitions, a request for a MOGE  contexts as follows. Each transactibiis associated with
m by a Io_ckmg contexC creates a conflict if and only if locking contexts: an active locking cont€{T) and
the following co_ndltlon Is false: . a passive one&,(T), which correspond, respectively, to
L m, Compatible(m, m L (-Compatible(m, M L] the held and retained types of lock ownership. Ignore-
(Owners(l, m) I ICW(C, m/m) O{C})) conflict relationships for a top-level transactidpand a
Conflicts are resolved either by blocking the requestegyp-transactiof, are set up as follows:
or by notifying a third party so that a custom action can be 7 i/m. ICW(C/(T, m) = {C(T.
triggered (e.g., abort, negotiation of additional ignore- m/m ICW((gETt)), rr?]/ﬂ))—{ «(To) }
) s/ -

conflict relationships, etc.). In particular, conflict
e - « {G(T9)} U ICW(G(Parent(T)), m/m)
C%ﬁgﬁgg?gzlgjOl;st?;lﬁllsg’cﬁgm%\getzeprgct’ggggﬁ.on access WhereParent(T)denotesT’s parent transaction. Upc_)n
an abort of a transactioRy C,(T) andCy(T) release their
locks. Upon commit of a transactidn C.(T) and Cy(T)
delegate their locks tdC(Parent(T)) if T is a sub-
Advanced transaction models often employ some form afansaction; otherwise, they both release their locks.
lock ownership transfers, also referred to Bk Intuitively, C,(T) disallows any transaction outside of
delegation Delegation operations transfer the ownershighe hierarchy rooted by from doing operations that are
of a lock from one set of locking contexts, referred as théhcompatible with those already carried out by committed
delegators to another set of locking contexts, referred asub-transactions of, while allowing those inside the
the delegatees The sets of delegators and delegateesjerarchy, includingr itself, to do so, provided they held
involved in a delegation operation are often singletonghe appropriate locks. Note also that ignore-conflict
and the most common situation is to delegate at once g#lationships are set only between active locking contexts
the locks of the delegator(s). Other flavors includee.g.,Cy(T)), which are used to acquire the locks of their
delegating one or more specific locks. Delegations t@espective transactions, and passive locking contexts (e.g.,
multiple locking contexts are allowed only if the multiple C,(T)), which are used to retain locks of committed sub-
delegatees do not conflict with one another; otherwise, fansactions Thus, no transaction can ignore-conflict with
deadlock situation is created. a lock acquired (as opposed to just retained) by another.

3.3 Delegation of locks



The Apotram transaction model [Anfi97] also enablesuse the parameterized lock modggo}) and w({a})
behavior that is of interest to transaction-based protectiofe({}) and w({p})); the manager's transactions use
It addresses the needs of collaborative applications witf{ o B}) andw(*).
two new correctness criterinested conflict serializability The effect of parameterized lock modes is obtained by
and conditional conflict serializability(CCSR), which  associating each transaction with a single locking context
translate in practice into two mechanisms for concurrencynd setting symmetricr/'w and wir ignore-conflict
control: nested databases and parameterized lock mOdeélationships as described below. Usir{4) to acquire
They can be combined or used independently. Becausgad locks is equivalent to ignorimv conflicts with the
nested databases are reminiscent of nested transactiora,@king contexts of all transactions that use a subs@t of
we only discuss CCSR and parameterized lock modes. tg acquire their write locks. Conversely, usingB) to

CCSR weakens CSR in an application-controlledacquire write locks is equivalent to ignorimgr conflicts
manner by allowing read-write and write-read pairs ofyjth the locking context of all transactions that use a
operations to conflict Conditionally, while write-write superset oB to acquire their read locks. More forma”y,
operations always conflict. CCSR can be achieved byt pc ) and p(C,w) each denote the set of parameter
determining  the  compatibility ~of lock modes yajyes used by a transaction associated with a locking
conditionally: the condition is specified as a predicatgontextC to parameterize the read and write lock mode.
over parameters to lock modes. kgt) andw(B) denote  The following defines a conversion of a specification of
a parameterized read and write mode, respectively, whefyrameterized lock mode usage into an equivalent set of
A andB denote subsets of some parameter doiaiiA)  jgnore-conflict relationships:

and w(B) conflict unlessB [ A. Non-parameterized ¢, jcw(C, r/w) {Ci: p(CW) O p(C,1)}
modesr andw correspond to the parameterized modes ;¢ ICW(C, win= {Cic p(CiF) O p(C, W)}

r(d) andw(*), such that/ D, * J D. It follows thatr(L) An implementation of parameterized lock modes
is incompatible with all write. modes and(*) is  pased on ignore-conflict relationships consists essentially
incompatible with all read modes. of maintaining a data structure that maps sets of

Applications use parameterized lock modes Dbyyarameters to the transactions that use these sets. The map
defining domains of parameter values and assigning s&&|ps to determine ignore-conflict relationships that must
of such values to transactions. The following examplée set when a transaction is assigned a set of parameters.
illustrates a typical use of this mechanism. Two authorgyhen a transaction completes (either commits or aborts),

Alice and Bob want to collaborate on a document suck is removed from the list of transactions of the parameter
that each of them can read but not overwrite what thgets ysed by that transaction.

other is modifying. They also want to prevent anyone else
from seeing their changes or from changing anything theg.5 Technical Challenges

have read. A single parameter value suffices to cover . .
these needs. The authors must define a single-valui'a order to enforce isolation, every program must behave

domain they would keep confidential. Let us call thisds @ well-formed transaction regardless of what isolation
domainD = {a}. To achieve the behavi.or they want, the model is used. Well-formedness means that transactions

: i . ; q%ecute an operation on an object only when they own the
authors run their transactions using the parameterized Io?ock of that object in the mode corresponding to the
modes r({a}) and w({a}). The following history of ,noration. Further, if the operation updates, proper undo

operations is then allowed: information must have been recorded before applyi
- pplying the
H=<r(Tg, O, 1(Te, G2), W(Te, Ow), 1(Ta, Ou), 1(Ta, O2), updates. Automation of these tasks avoids depending on

w(k, O)> the
. programmer to always formulate well-formed
wherex(T, O)denotes an operationperformed by transactions and simplifies the programmer's work.

on an objectO, andTg (respectively,T,) denotes Bob's Automated object locking is accomplished by

(Alice’s) tr_ansact_lon. AfterTg locked O, n read modg transparently planting in programs small sequences of
parameterized withd}, no other transactions can Writé jnstrctions, calledbck barriers They issue lock requests
O, exceptTy, but any transaction can re@. After Ts 1, the |ock manager of the isolation engine, and may
locked O; in write mode, no other transactions can rea(irigger logging activity. Augmenting a high-performance

O, exceptTa. . implementation of the JVM with these mechanisms while
Now, let us assume that the manager of Bob and Alicg, ¢\ ring minimal performance impact is challenging.

wants to observe their progress as well as that of another Accessing an object consists of a main-memory access
team. Both teams require isolation from each other, angds ot implementations of the JVM avoid explicit null

the manager requires strict .'SOIat'On on h.'.S own work. Irbointer checks and instead rely on segmentation fault
orQer to achieve this behavior, the domBins extended signal handling. Array bound checks, required by the
to include another parameter val@eso thatD = {a, B}.  |anguage specification, are harder to avoid and typically
The following specification leads to the desired behavioryqq three instructions. In both cases each instruction

transactions issued by members of the first (second) teaqyged by a lock barrier to an access path has a noticeable



performance consequence. The code for lock barrierd, | ock State Sharing
should therefore be extremely lean. o
Ideally, a transaction needs to request the lock of ahock state sharing is a novel lock management method
object it accesses only once, before its first access to thi¥et makes the space overhead of locking small and
object. Identifying ahead of time the first access to afdependent of the number of locked resources [DCO1],
object by an arbitrary program is impossible in general. &nd does so without depending on any particular locking
pragmatic solution is to precede every object access witffotocol. However, the method reported in [DCO1] only
a lock barrier, and to rely on compiler analysis to identifySUPPOrts strict |solat|qn. This section presents extensions
and remove as many redundant lock barriers as possibf@. Support delegation and programmable conflict
Because compilations take place at runtime, the amount @ftection as described in Section 3. Background material
analysis that can be done must be limited in order t8n lock state sharing is covered first.
reduce the impact on performance. Dynamic class loadin
complicates analysis further as it can invalidate pas
decisions taken by the optimizer. Both issues must beock state sharing relies on the observation that, at any
considered when eliminating redundant lock barriers. time, the total number of distinct values of locks in a
Another challenge is posed by the small size obystem is very small compared to the total number of
objects, typically between 16 to 42 bytes and by a larglcked resources. In other words, one can expect many
number of individual objects accessed by program$ocks to have the same value. A lock manager
[DH99], when compared to a typical database transactioimplementation can take advantage of this situation by
This requires space-efficient lock management that scalespresenting locks of equal value with the same lock state,
well with the number of locks. instead of with a different lock state each. Then, instead
Locking is traditionally implemented by associating aof updating lock states as traditional lock management
resource with a data structure that represents the loekethods do, locking operations change the association
protecting that resource. The data structure, which wbetween a resource and its lock state.
refer to aslock state throughout this paper, typically Shared lock states representing locks of currently
specifies what transactions own the lock and in whalocked resources are recorded in an associative table of
mode, along with pending requests for the lock. Lockinghared lock states (TLS) keyed on lock values. The TLS
operations first locate the lock state that represents thdoes not hold all possible lock values: it is initially empty,
lock of a resource, and then update it as needed to reflemtd shared lock states are added to it as needed, i.e., when
the effects of the operation. no already existing shared lock state holds a lock value
This traditional approach does not scale in terms ofieeded to represent the lock of a resource. Garbage
memory consumption because it requires as many loatollection techniques determine unused shared lock states
states as locks and also because of the extra daiad remove them from the TLS.
structures required to keep track of the locks of each Figure 1 illustrates how lock state sharing works by
transaction in order to automatically locate and releaseomparison with a traditional approach to locking. It
them all upon transaction termination. Database systenshows a scenario where two obje@sandO,, have been
have over several decades engineered a well-tuned battéogked in read mode by two transactiohsandT,, and a
of locking protocols that help in circumventing the poorthird object O; has been locked in read mode by
scalability inherent to this approach. These techniquesansactiond;, T, andTs. The state of each lock and the
heavily depend on a well-identified hierarchy of dataassociation between objects and their locks is shown
containers and on the associative nature of datababefore and after the acquisition®f's read lock byTs. In
programming languages. This makes them a poor matche traditional approach, each object is associated with a
for systems that tightly couple a transaction-processingrivate lock state andly's request folO,'s lock would be
engine with a general-purpose programming language. processed by updating,'® private lock state to reflect the
lock's new value (i.e., lock owned in read modeThyT,
and T;). Using lock state

.1 Principles

Figure 1: Lock State Sharing.

sharing,0, andO, share the
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holding the new value of,'s lock, and atomically for the runtime of a programming language. Acquiring a
changes the shared lock state associated @gthith the  lock takes four steps:
one returned by the TLS. - determine the absence of conflicts, possibly using the

It is crucial to understand that in both approaches, ignore-conflict relationships of the requester,
every object is an independent unit of locking: the sharing compute the new value the locking operation
of lock states of equal value must not be mistaken with  produces from the value of the lock state currently
protecting several objects using the same lock. associated with the object protected by the lock,

Lock state sharing enables three other important retrieve from the TLS the shared lock state that
optimizations [DCO1]: (i) it makes the tracking of locked encodes the new value (if none is found, the TLS
objects (i.e., of acquired locks) unnecessary, which results automatically creates one),
in dramatic space savings and, together with the sharing atomically change the shared lock state currently
of lock state, contributes to making the space overhead of associated with the object to the retrieved one.
locking independent of the number of locked objects; (i) The first three steps are performed without
it makes the implementation of bulk locking operationssynchronization with concurrent threads. Instead, the last
independent of the number of locked objects involvedstep verifies that the value of the object’'s lock has not
and (iii), it allows the use of memoization [Mich68] for all changed before setting its new value. Each object includes
individual locking operations. As will be shown later, in its header a pointer to the shared lock state that encodes
adding delegation and programmable conflict detection dihe value of its lock. In this case, the last step consists of a

not impact these optimizations. single atomic compare-and-exchange of pointers to shared
_ _ lock states. If this exchange fails, the four steps are
4.2 Bulk Iocklng operatlons repeated again_

Bulk locking operations apply tall the locks of a given A simple form of memoization [Mich68] can be used
owner. The release of all the locks of a transaction upoff Substantially speed up lock acquisition by eliminating
its termination is an example of a bulk locking operationth€ first three steps of lock acquisition for most requests.
Delegation of all the locks of a sub-transaction to its' "€ idea is to maintain, per thread, a small cache that
parent in a nested transactions model is another exampl€members what pointers to shared lock states were
Traditional lock management methods explicitly keepgXchanged by past granted lock requests. Such caches

track of all locks acquired by each lock owner in order tgemember four-tuplesC, I;, I, m> such that; = f(C, |,
locate automatically all its locks. m), whereC is a locking contexin is a lock model; is a

Since the number of shared lock states is typicallpointer to a shared lock state, dméturns the pointer to a

very small, the lock manager can locate all the shared loghared lock state that represents the value that a lock of
states that encode the value of locks owned by a givdRitial valuel must have afte€'s request is granted.
locking context just by scanning the TLS. The effect of % 4 Elexible locking primitives
bulk locking operation is obtained by updating the value™ ap
of all the shared lock states found. When bulk-releasintn order to support the features of the flexible isolation
the locks of a locking context C, the update consists aéngine described in Section 3, lock management based on
removing C from all the owner sets of these shared loclock state sharing must be extended (i) to enable
states. This may turn some shared lock states inforogramming of the conflict detection logic of a locking
duplicates of others already recorded in the TLS. In thisontext based on ignore-conflict relationships, and (ii) to
case the modified lock state is moved to a list ofallow delegation of one, several, or all the locks of one or
duplicates. Duplicates that pre-existed the bulk lockingnore locking contexts to one or more others.
operations are scanned for lock states encoding locks of Extending the conflict detection logic with ignore-
the requester in order to update them too. Pointers tonflict relationships augments each locking context with
duplicates stored in object headers are opportunisticallyvo sets of locking contexts per type of conflict. For a
replaced with their original during garbage collection inlocking contextC and a conflict of typen/m, these sets
order to accelerate their reclamation. are denoted, respectivellfCW(C, m/m,) and UICW(C,
Because a shared lock state can potentially represemi/my,). ICW(C, m/m) records the set of locking contexts
the value of many locks, changing its value changes theith which C can ignore my/m, conflicts, whereas
values of all such locks. Updating a shared lock state IJICW(C, m/ny) records the set of locking contexts with
only used to implement the effect of a lock operation thawvhich C has ignored one or moren,/m, conflicts to
should affect all the locks represented by that lock stat@ptain a lock (hencdJICW(C, m/m,) O ICW(C,m/my)).

which is the case for bulk locking operations. This distinction helps to avoid expensive synchronization
] ) between conflict detection and updates to ignore-conflict
4.3 Memoized lock operations relationships. For a given lock request, conflicts are

Although lock state sharing adequately addresses spaédially evaluated using th&/ICW sets of the requester,
overhead, the cost of lock acquisitions remains prohibitivévithout synchronization. If conflicts remain, the monitor



protecting thdCW sets is obtained, and conflicts are re-from using fixed-size bitmaps is not a concern, and sizes
evaluated using thECW sets. If no conflicts are found, of up to several hundred bits can be easily afforded.
the members diCW not inUICW that permitted conflicts Class instances and arrays have been modified to
to be ignored are added WdCW. include a pointer to a shared lock state in their header.
The use of ignore-conflict relationships has little Upon object allocation, this pointer is set to the address of
impact on how locking operations are performed withthe shared lock state encoding the value of write locks
lock state sharing. In particular, it does not disallow thewned by the creator of the object only.
use of memoization. The caches used to memoize lock Both the interpreter and the dynamic compiler of the
acquisitions record the input and output values of locklVM have been modified to support automated locking.
requests that do not cause conflicts, including thos&he bulk of the effort went into changing the dynamic
requests that have ignored conflicts because of existingpmpiler, since interpreted code has relatively little
ignore-conflict relationships. Changing the ignore-conflictimpact on performance. The interpretation of bytecodes
relationships of a locking context does not invalidate thé¢hat read or write the mutable part of an object, or invoke
cached results of memoized operations since conflicts thahe of its methods, has been modified to execute a lock
have already been ignored before the changes will still bearrier beforehand. The dynamic compiler has been made
ignored after. adding ignore-conflict relationships onlyaware of lock barriers, and simple optimizations to avoid
increases the number of conflicts that can be ignored, argénerating unnecessary lock barriers have been
removal of ignore-conflict relationships is only allowed incorporated. These optimizations are only local to basic
for relationships that have not been used or are not usétbcks of the control flow graph. More sophisticated
anymore (i.e., all the locks acquired using them have beaptimizations (e.g., hoisting lock barriers out of loop,
either released or delegated). simple escape analysis) are still under development.
Delegation of the lock of a single resource is realized A lock barrier, both interpreted and generated by the
like all other locking operations. The value the lockdynamic compiler, consists of three successive stages.
should have as a result of delegation is first computed byhe first stage filters redundant lock requests by testing if
applying the effect of the delegation on a copy of theéhe requester already owns the lock in the mode
shared lock state currently representing the resourcerequested. Most lock requests exit the barrier at this stage.
lock. The new lock value is computed by removing theThe second stage performs an inline memoized lock
delegator(s) and adding the delegatee(s) to each of tloperation to acquire the lock. If memoization fails, control
owner sets including at least one of the delegators. The transferred to the runtime to call the lock manager to
value obtained is then used to search the TLS for a sharpdocess the lock request and to update the memoization
lock state encoding it, which is then set using an atomicache accordingly. On an UltraSPARC™ processor, the
compare-and-exchange instruction. Memoization can aldirst stage consists of 7 instructions; the second stage adds
be applied to delegation. Similarly to lock release, lockbetween 6 to 16 instructions depending on how many
delegation may take a bulk form, that is, all the lockdines of the memoization cache are used before
owned by a locking context may be delegated at oncenemoization succeedsp to 3).
Bulk lock delegations differ from bulk lock release only  Undoing of updates is based on physical logging, i.e.,

by the transformation applied to shared lock states. log records hold the value of data items before their
_ _ modification. Programs written in the Java programming
4.5 Implementation details language tend to generate a population of very small

Sets of locking contexts are central to many aspects of tifiects [DH99]. Their mutable part is often even smaller.
extension to lock state sharing described above. ThES makes the recording of the whole mutable part of an
representation of shared lock states consists mainly @Pject upon the very first update to it an interesting
owner (i.e., locking context) sets. Conflict detection Strategy: it avoids the use of an additional write barrier in
consists of one or more set inclusion tests between ownile access path to objects. Instead, the existing lock
sets and set of locking contexts representing ignorégarrler triggers Ioggln'g upon acquisition of a write lock.
conflict relationships. Each locking context is associated with an undo log made
Using fixed-size bitmaps to represent sets of lockingf ©n€ segment per thread executing with that locking
contexts has two advantages. First, performance-criticgPntext. Records generated by one thread are written to its
set operations translate into efficient  bitmapdedicated segment of the log. _
manipulations. This leads to a fast implementation of lock The above strategy would be too expensive for large
ownership test, which is the most critical operation for thé'Tays. Logging must be done sparsely in this case, which
overhead of automated locking. Second, it vastly reducd§duires an additional write barrier to detect whether the
the complexity of the lock manager, in particular withPOrtion of the array about to be updated has been logged
respect to synchronization and memory managemerﬁ‘.'ready- To this end, Iarge arrays are.allocated ina spe_C|aI
Because the total number of shared lock states maintainggCtion of the heap subject to a variant of card marking

in a system is small, the overcapacity in space resulting!BM93]. Cards are systematically tested. Unmarked
Cards are recorded to the log, then marked.



5. Experiments (compress), and are caused by redundant lock requests
) . only. Programs with overheads above 20% are array and
Good performance is a necessary condition for thgyop-intensive. This reflects the current lack of compile-

acceptance of transaction-based protection in languaggme analysis in PVM to detect and eliminate redundant
based extensible systems. Overheads should be toleralgk parriers against arrays or within loops.

when the ability to share objects directly is taken
advantage of;, when no sharing takes place, the overheagld Cost of flexible isolation
should be as low as possible.

In order to explore these issues we have extended théduré 2 and 3 reports the overhead of executing the

Jaua HoiSpor™ il machine [Sunco] version 1311155 SPnS 1 28, 01 20 delner e 007
JDK version 1.3.1, with the flexible isolation engine, . . )
versi " X! ! I g ifferent isolation models, namely ACID, NT and APT.

described in Sections 3 and 4. From now on, we will refeE h of th del ) dif ¢ set of feat
to our prototype as TPVM, and to the original Java—aC¢" Of tNESe MOCEIS exercises a diierent set of eatures

HotSpot virtual machine as HSVM of the flexible isolation engine. ACID does not use any of
Although we are still debating which transactionthe programmable features. APT only uses ignore-conflict
glationships, while  NT uses both ignore-conflict

model is best suited for transaction-based protection, &3 . . _
relationships and delegation. The operations traverse

candidate will likely . :
program | overhead incorporate features inspired exactly the same number of objects ar_1d acquire the same
jack 18% by the nested transactions nu_mber of read locks, but update different number of
javac 20% and Apotram models. To obJec'gs (_non_e for t1, 493 for t?a and 9860 for t2b),
db 16% understand their impact on resu_ltlng in different number of write I_ocks and amount of
mtrt 28% performance, we have Io_ggmg. Regardless of t_he transaction mo_del !Jsed, and
Compress 590 implemented eXtenSionS Of g|Ven a tl’avel’sal Operatlon, eVery tl’_ansactlon ISSUes the
mpeg 39%| the flexible isolation engine SaMe number of lock requests, acquires the same number

Table 1: overheads for  for the nested transactions of locks, and logs the same amount of data. Typically,
SPECjvm9s. model (NT) and for a 3x10" lock requests are issued for a single traversal
variation of the Apotram operation, 98.5% of which are redundant.

transaction model that realizes parameterized lock modes_ N Poth figures, the isolation overhead is broken down
for flat transactions (APT). into overhead due to redundant lock requests (i.e.,

TPVM supports three types of transactions by defaulteduests for a_Iock that the requester a_llready owns) and
the isolation manager’s ever-lasting transaction; single!'®¢ Overhead imposed by the mechanisms that actually

level ACID transactions; and a special type of Acipénforce isolation (namely lock acquisition, bulk release or

transaction, callechain transactions, which are capable of délegation at transaction termination, undo logging, and
initiating transactions of arbitrary type as independenff@nsaction management operations, which may include
transactions. When TPVM starts, it first initializes systemCallS 1o the flexible isolation engine to program its

classes in the context of the isolation manager’?ehav'or' such as, setting |gnore-cpnﬂ|_ct relatlon_shlps).
transaction, which then launches a main transaction thh€ overhead eliminated by memoization alone is also
execute the program specified in the command line. ThEgPOrted (topmost component of every bar).

program typically waits for incoming request to execute Figure 2 reports the overhead of isolation when share_d
other specified programs with a particular type ofdata are not access concurrently (the measured transaction
transaction (e.g., ACID, NT or APT). operates alone on the shared data). In this case, the

We ran a series of experiments to compare TPVM)verhead of locking is minimal since no conflict detectipn
against HSVM. The SPECjvm98 suite of benchmarké> per_forn"_ned,, and _the programmed part of conflict
[Spec98] was used to evaluate the overhead d}etectlon isn’t exercised. Furthermore, lock requests to
transaction-based protection in situations where data are Sactions] overheat wo memoizatlon
not shared. All other experiments use a main-memory |miocking overhead w/ memoization
implementation of the OO7 benchmark [CDN93] as an| |BRedundantlock requests 1
example of shared data. Same code is used for all 1 | [T 40%
experiments, regardless of whether HSVM or TPVM is I [ N I S I 6 APe
running it, and regardless of transaction model used. All " |
measurements were carried out on a Sun Enterprise™
420R server with 4 UltraSPARC™ |li processors clocked —H 1 0%
at 450Mhz, with 4GB of main-memory, running the
Solaris™ Operating Environment version 2.8.

Table 1 shows the overhead that TPVM adds whe
programs of the SPECjvm98 suite are executed as ACI t t2a ©2b
transactions. Overheads range from 16% (db) to 599

50%

r 20%

0%

ACID
APT
NT
ACID
APT
NT
ACID
APT
NT

Figure 2: Overhead of isolation, no concurrency.
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Figure 3: Processing overhead of isolation when shared datecassed concurrently.

unlocked objects avoid looking up the TLS. Instead, the _
pointer to the shared lock state that represents the value®f Memory footprint
a Iopk owned only by the requester is _retrleved from its Single address space approaches to multitasking seek
locking context. Thus, all the expensive steps of thg, requce the overall memory footprint of programs by
normal processing of lock requests are bypassed. sharing the runtime representation of classes, namely, the
As a result, the overheads vary little from onepyiecodes, meta-data describing fields, methods, symbolic
transaction model to another (<1% difference). In allinks etc., and the dynamically compiled code produced
cases, the overhead of isolation ranges between 23% frequently used methods [CDO1]. Transaction-based
28%. Redundant lock requests contribute to between 80%tection goes one step further by allowing application
and 98% of this overhead. Memoization, which in thisyata to be shared as well. However, the space overhead
case avoids trapping to the JVM runtime to forward 10CKpinsic to the use of transactions can dilute these gains.
requests to the lock manager, removes between 11% 10 | ock barriers, which consist of a lock ownership test,
26% of overhead with respect to HSVM. and a memoized lock acquisition, increase the size of
Figure 3 shows the overhead when various forms dfynamically compiled code. For SPECjvm98 benchmarks
concurrent sharing occur. Measurements were obtained BYis increase ranges from 28.6% (db) to 56.7% (mtrt); for
first running a number of transactions against the samgo7 the increase is 40%. This increase is penalizing
working set so as to achieve 100% overlap, suspendinghen a compiled method is not actually shared because
them just before commit, and finally running the ggqq by one program only.
measured transaction to completion. As Dbefore, Tne'|ocking and logging used to enforce isolation also
measurements are reported as overhead with respect 494 io the overall runtime footprint of a program
HSVM. Figure 3 uses tiffj (n) to denote a scenario where giihough only under certain conditions: (i) when the
transaction performs an operation ti concurrently to fhyogram updates shared data, orfand (i) when it
other transactions, each of which performs tj, where n cgfanjpulates shared data concurrently with other running
be 1, 10 or 100. ACID allows only read-only sharing,programs. In all other cases, isolation adds to the footprint
(i.e., only t1/t1 scenario can happen). APT allows readyf 54 program 1 kB per locking context its transaction uses.
on_ly, read_—wrl_te and_ _vvrlte-read sharlng. NT allows Write- \when programs access data concurrently, the space
write sharing in addition to all previous forms of sharing. gyerhead of locking may offset the benefits of sharing
We observed the same behavior as before, namely: thga | ock state sharing makes the space overhead of
overhead of isolation remains between 22% and 28%, angcking proportional to the number of distinct values of
redundant lock requests amount to more than 80% of i&cquired locks. and not a function of the number of
regardless of the transaction model used and the feat“rgéquired Iocks.,How many different lock values there are
of the flexible isolation engine that t_hey_ epr0|t_. ThIS‘fat a given time depends on the number of concurrent
result depends very much on memoization, which thigansactions and on how they overlap their working sets.
time has a more subtantial impact on performanceinhis property allows locking to scale well with the
disabling memoization results in execution times betweef,mber of locks needed regardless of the granularity of
2 to 5 times slower than with HSVM, depending on th§ocking. For instance, locking incurs exactly the same
number of transaction operating concurrently over th@pace overhead whether transactions traverse a small or a
shared data. Ar_lother important effect of memoization i$nedium OO7 database, although traversing the latter
to erase the differences that may result from differenfcquires 9 times more locks. Figure 4 shows how the lock
programming of conflict detection. manager footprint evolves with the number of concurrent



120 1{ ELocking contexts M Shared lock statesCIDuplicates undo operation. As in our system, the transactional

100 ACID APT NT mechanisms are optimized to operate on volatile state. In
contrast to VINO, our approach aims at protecting
8 arbitrary user-defined programs from one another via

transactional mechanisms automatically enforced by a
programming language’s runtime.

Our work also relates to research in designing flexible
transaction processing engines. A landmark in this area is
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o - _nm .0 0 mn |0 o0 [l ‘_D‘EJ]‘[I]‘ ACTA [Chry90], a comprehensive framework to formally
Noeogogle g N g g e gd specify and reason about the properties of extended
i altl altl ©2b/t2b transaction models. ACTA led to coining the notions of
delegation and ignore-conflict relationships, which were
Figure 4: Lock manager footprint. integrated into the design of various flexible transaction

: : : . : rocessing engines [BDG+94, BP95, DAV97]. The lock
transactions. The size of bitmaps implementing set ilanagers of these systems, as well as all lock managers

locking contexts is 512 bits. Transaction models that use. .
ignore-conflict relationships (e.g., APT and NT) ConsumeWlth support for nested transactions that we are aware of,

xtend textbook implementation of lock management
more space to store them. Overall, the space overhead L ) .
locking remains small, between 1 to 6 kB per transaction.gRgg]’ and as such are variations of the seminal design

of System R*. Section 3.5 already discusses problems
exhibited when this traditional design is incorporated into
6. Related Work the runtime of a language-based extensible system. Our

Applying transactions beyond the domain of databases solution extends our previous work on lock state sharing
a recurring research theme. OS designers in the 8¢ address these problems [DCO1]. .
embraced the transaction concept and many attempts to Some of the issues we have been facing are close to
incorporate it into prototype distributed OSes are recordeiose encountered when transactional features are applied
in the literature. Two approaches were followed: thos@Ver main-memory data, such as in main-memory resident
that use transactions internally [MMP83], and those thadlatabase systems and PPLs. Similarly to [GL92] direct
expose the transaction concept to programmers, either WRinters to lock data structures are exploited. The use of
toolkit or a programming language [SW91]. The nestecpardlware protection to eﬁ|C|entIy automate 'Iocklng a_nd
transaction model was often chosen because of its abilit999ing was rejected because (i) the granularity of locking
to cope with failures without aborting a whole distributediS t00 coarse, (i) relocation of objects in locked pages is
computation. The granularity of concurrency control wagrohibited for the duration of the lock, and (i)
typically coarse (e.g., a page). applications must either execute in separate addr'ess
Distributed programming language designers focuse@Paces or be able to restore, upon a thregd context switch,
on integrating transactions with a language and itée virtual memory protection corresponding to the state
runtime. The Argus system, whose execution model reliedf @ specific transaction. _ _
on the nested transaction model, is a prominent effort in Our support for undo differs from the noting of
this direction [LCJ+87]. However, the performanceupf_jates devised in the context of PPLs [HBM93], Whl_ch
reported hardly gives any idea of the overhead imposedpically employs remembered sets or card marking
by transactional mechanisms on the programminoﬁgme use hardware protection) to defer the generation of
|anguage runtime, and the techno|ogy gap between n I’ecor'ds at tra'nsactlon commit. In our C.ase, record!ng
and then makes comparisons with our system difficultof undo information cannot be deferred, since otherwise
[LCJ+87] reports read lock acquisitions 10 times slowethe old version of the object would be irrevocably lost.
than another 14-instruction operation and redundant lock
requests at half the costs of a lock acquisition. By’. Conclusions

mparison r tem processes the vast majorit . . . L.
comparison, our sys P jority ?Ismg transactions as protection domains in a language-

lock acquisitions with 13 RISC instructions, andbased extensible system is appealing: it combines fault

redundant lock requests with 7. . L
Recent resear?:h on extensible OSes has renewed t%%ntamment, safe terminationcaess control, and safe

interest in transactional mechanisms, this time to shiel8Oncurrency in a single construct.' To explqre thﬁ
the kernel against misbehaving extensions. The VIN pproach, we have extended a Java virtual machine with a

system [SES+96] exemplifies this approach. Its kernelex'ble isolation engine that incorporates mechanisms,

supports a limited form of nested transactions. Ever uch as ignore-conflict relationships and delegation, to
; ; . . . . rogram advanced concurrency control. These features
interaction of an extension with the kernel is subject t re supported by a lock management method that
transactional control. Each kernel function exposed & P y 9

X : . ombines low-space overhead, high-performance, and
extensions includes a corresponding  carefully Crlaﬂetg)rogrammable behavior. The resulting platform has been



used to realize three transaction models and evaluate thB¥AV97] Daynés, L., Atkinson, M., and Valduriez, P.
impact on program performance. Customizable Concurrency Control for Persistent Java. In
Our experiments show that, regardless of the Advanced Transaction Model and Architectures, Kluwer

transaction model used and of the sophistication of its

locking rules, the overhead of isolation ranges betweefPCO1] Daynes, L., and Czajkowski, G. High-Performance,

22% and 28%. The use of memoization is key to limiting ~ SPace-efficient, automated Object Locking. " 1IEEE

the processing overhead of isolation and to erasing the ICDE, Heidelberg, Germany, 2001.

differences that would otherwise exists between variou?H99] Dieckmann, S., and Hozle, U. A Study of the Allocation

programming of the flexible isolation engine. Eeckgg'g L'Ofb theP SPECH‘SSQS Java Benchmarks." 13
Finally, because at least 80% of the reported overhead ' fs on, Portugal '

is solely due to redundant lock requests, substantidfJS+00] Gosling, J., Joy, B, Steele, G. and Bracha, G. The

improvements can be expected with the addition of more %g‘é% Language Specificatiort” Edition. Addison-Wesley,

elaborate compiler optimizations (e.g., escape analysis ' _ ) _ _
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