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Abstract

A workflow consists of a collection of coor-
dinated tasks designed to carry out a well-
defined complex process, such as catalog or-
dering, trip planning, or a business process
in an enterprise. Scheduling of workflows is
a problem of finding a correct execution se-
quence for the workflow tasks, i.e., execution
that obeys the constraints that embody the
business logic of the workflow. Research on
workflow scheduling has largely concentrated
on temporal constraints, which specify cor-
rect ordering of tasks. Another important
class of constraints — those that arise from
resource allocation — has received relatively
little attention in workflow modeling. Since
typically resources are not limitless and can-
not be shared, scheduling of a workflow exe-
cution involves decisions as to which resources
to use and when. In this work, we present
a framework for workflows whose correctness
is given by a set of resource allocation con-
straints and develop techniques for scheduling
such systems. Our framework integrates Con-
current Transaction Logic (CTR) with con-
straint logic programming (CLP), yielding a
new logical formalism, which we call Concur-
rent Constraint Transaction Logic, or CCTR.

1 Introduction

A workflow is a coordinated set of activities that act
together to achieve a well-defined goal. Typical exam-
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ples of workflows include multi-agent banking trans-
actions, trip planning, catalog ordering and fulfillment
processes, and manufacturing processes in an enter-
prise. A workflow management system (abbr, WfMS )
provides a model and tools for specification, analysis,
and execution of workflows. Surveys of the area can
be found in [21, 17, 3].

Scheduling of workflows is a problem of finding a
correct execution sequence for the workflow tasks, i.e.,
an execution that obeys the constraints that embody
the business logic of the workflow. Research on work-
flow scheduling has largely concentrated on tempo-
ral constraints, which specify correct ordering of tasks
[4, 32, 33, 36, 1, 35, 13, 6].

Another important class of constraints — those that
arise from resource allocation — has received relatively
little attention in workflow modeling. Examples of
such resources (sometimes called agents) include com-
pany personnel and physical objects, like workshop de-
vices that a task might need in order to accomplish its
goal. It is also typical to associate costs (time, budget)
with execution of a task by an agent. Since typically
agents cannot be shared and costs are not limitless,
scheduling of a workflow execution involves decisions
as to which resources to use and when. Although re-
source management has been recognized as an impor-
tant aspect of a WfMS [12, 2, 36], most of the work has
focused on modeling the various resources [39, 14, 22]
with no or little attention devoted to scheduling under
the constraints associated with such resources. In this
paper, we present a framework for workflows whose
correctness is specified in terms of a set of resource allo-
cation constraints and develop techniques for schedul-
ing such systems.

To make the distinction clear, it is useful to give
some examples of the temporal and causality con-
straints considered in [4, 32, 13] and resource alloca-
tion constraints considered here. A temporal/causality
constraint is typically of the form, tasks 1 and 2 must
both execute (with a possible variation that task 2 exe-
cutes after task 1) or if task 1 executes then tasks 2 and
3 must execute as well (with possible variations that
task 3 must come after task 2 and both must occur af-
ter task 1). A resource allocation constraint typically



takes the following forms: If task 1 is executed by some
agent, task 2 should be executed by the same agent as
well with a possible variation that the total time or
some other aggregate cost function should not exceed
certain limit. Another typical resource allocation con-
straint is that the same agents cannot be assigned to
parallel branches of the same workflow (because each
branch might require undivided attention from a hu-
man agent or a machine might not be used for dif-
ferent tasks simultaneously). We group the resource
allocation constraints into two categories: cost con-
straints are constraints on some aggregate cost func-
tions, while control constraints are constraints on how
to allocate resources. For instance, if task 1 is executed
by some agent, then task 2 should be executed by the
same agent is a control constraint, whereas total cost
should not exceed a given amount is a cost constraint.
This separation turns out to be useful for our formal
framework.

Our approach is based on Concurrent Constraint
Transaction Logic (abbr., CCTR), an extension of
Concurrent Transaction Logic (abbr., CTR) [7] that
incorporates the ideas from Constraint Logic Program-
ming [23, 24]. The contributions of this paper include
both CCTR itself and the workflow modeling frame-
work based on this logic.

In our framework, the user specifies workflows us-
ing CTR, as in [13].1 In addition, sets of possible
agents for each task and their costs are specified. We
then provide a transformation algorithm that takes the
given workflow specification (in CTR + constraints)
and returns a new workflow expressed CCTR. The
new specification incorporates resource allocation con-
straints in such a way that any valid execution of
this specification in CCTR is guaranteed to satisfy
the original constraints. Finally, we describe a sys-
tem that produces a workflow schedule for the new
workflow specification together with a solution set to
the constraints. To the best of our knowledge, this
is the first work that defines a formalism for model-
ing and scheduling workflows under resource allocation
constraints, which incorporates Operations Research
(OR) and constraint solving techniques.

A number of research areas are related to our work.
Workflow scheduling under temporal constraints and
resource management have already been mentioned.
Other related areas are job shop scheduling [10, 5, 18,
11, 38], planning in Artificial Intelligence (AI) [30, 8,
19, 9, 29, 28] and agent-based workflow systems [37,
34, 25, 26, 27, 20]. We discuss the relationship between
these works and ours in Section 9.

This paper is organized as follows. Section 2
presents a concrete example to illustrate the problem.
Section 3 briefly sketches the use of CTR for workflow

1It should be understood that nobody expects a workflow
engineer to learn logic or any other formalism, such as Petri
Nets. These formalisms are typically hidden behind graphical
user interfaces.
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Figure 1: House construction workflow

specification. Sections 4 and 5 introduce CCTR and
constraint system used in our framework. Sections 6
and 7 develop the framework for modeling resource al-
location constraints in workflows. Section 8 illustrates
the use of our framework on a concrete application.
Section 9 gives the related work and Section 10 con-
cludes the paper.

2 A Motivating Example

The following example, derived from [31], shows a sce-
nario that can be handled by our framework, and we
will be using this example throughout the paper.

Example 2.1 Company A builds a house, does gar-
dening and moves customer’s furniture into the new
house. The company subcontracts with other compa-
nies for the various subtasks. There can be several can-
didate subcontractors, or the same company may be
qualified to do several subtasks. To satisfy customer’s
requirements and to maximize its own profit, company
A wants to choose the most appropriate companies to
subcontract with. The workflow is shown in Figure 1.
In the figure, the AND-nodes represent branches of
work that can be done in parallel (but all the parallel
branches must be finished). OR-nodes represent al-
ternative courses of action. For instance, the facade
can be painted or the customer might choose to use
vinyl siding. Tasks that must be done in sequence are
connected via directed edges.

Resource allocation constraints in this workflow can
include:

1. The budget for the construction should not ex-
ceed the given amount.

2. The construction should not last longer than the
given duration.

3. Different companies must be chosen for parallel
tasks (to speed up the construction).

The first and second constraints of the example are
defined on total expenditure and total construction du-
ration. For this reason, they are cost constraints. The
third one is a control constraint, since it controls how
subcontractors are chosen, and does not involve nu-
meric costs.



Once the workflow and the constraints of this ex-
ample are defined in our framework, the specification
passes through a system, which consists of a transfor-
mation engine, CTR engine and a constraint solver.
This system produces a valid schedule (i.e., an exe-
cution order for the subtasks) and a solution set for
the constraints (subtask-to-subcontractor assignments
that obey the constraints).

3 Concurrent Transaction Logic and
Workflows

Concurrent transaction logic (CTR) was introduced
in [7] and has been shown to be a powerful model-
ing and reasoning tool. In particular, it is one of the
few formalisms that have been successfully applied to
modeling and reasoning about workflows [13, 6].

CTR extends classical logic with four new connec-
tives and modalities of which the most important are
⊗, the serial conjunction, and |, the parallel conjunc-
tion. The semantics of CTR is based on multipaths.
A path is a sequence of one or more database states
(e.g., 〈d1, ..., dn〉) and a multipath (abbr., m-path) is a
sequence of paths (i.e., 〈p1, ..., pm〉, where each pi is a
path). Informally, a database state can be a collection
of facts or even knowledge bases (that consist of facts,
rules, etc.), but for this paper we can think of states
as simply symbolic identifiers for various collections of
facts.

Formulas are viewed as transactions that execute
along m-paths and, while doing so they query and
change the underlying database state. Execution along
an m-path in CTR is tantamount to being true over
that m-path. Informally, if φ is true on an m-path
π1 (denoted π1 |= φ) and ψ is true on an m-path π2

(π2 |= ψ), then φ⊗ψ is true over the concatenated m-
path π1 • π2. Similarly, φ | ψ is true over the m-path
π1 ‖ π2, where π1 ‖ π2 is an m-path obtained from π1

and π2 by some interleaving of the sequences of paths
that comprise π1 and π2.

To see how CTR can be used to model a workflow,
we show a formula that corresponds to one part of the
house building workflow in Figure 1:

wall⊗
(( ((carpentry⊗ roof) | installations)
⊗ the-middle-piece) | ceiling)

⊗ paint⊗ move

Each proposition here represents a task and the CTR
operators show how to combine the tasks (concurrently
or serially). The proposition the-middle-piece repre-
sents the part of the workflow that did not fit and we
present it separately:

(facade-paint ∨ facade-vinyl) |
(wooden-windows ∨ metal-windows) |
gardening

As can be seen from the last formula, ∨ represents
alternative executions in a CTR formula. For instance,
to execute the above workflow we only need to execute
one of the facade-related tasks, not both.

CTR is not only a modeling tool for workflows, but
also a scheduler and a reasoner. For instance, [13]
shows that a large class of temporal and causality con-
straints can be represented in CTR and that the proof
theory of the logic can be used to perform a number of
tasks ranging from consistency checking of a workflow
to its scheduling subject to the specified constraints.

4 Concurrent Constraint Transaction
Logic (CCTR)

We now develop an extension for CTR, called Con-
current Constraint Transaction Logic (abbr., CCTR),
which integrates CTR with Constraint Logic Program-
ming. Subsequent sections show how CCTR can be
used to model and schedule workflows that must obey
a wide range of resource allocation constraints.

The syntax of CCTR formulas is the same as in
CTR, but the semantics is based on partial schedules
instead of m-paths. This change in the semantics will
later allow us to add constraints to the logic.

4.1 Semantics

While m-paths are adequate to model serial and con-
current execution in CTR, they are not sufficient to
model resource requirements necessary for those exe-
cutions to succeed. For example, in CCTR we need to
be able to distinguish that two m-paths are parts of dif-
ferent concurrent branches of the same execution. To
this end, we introduce the notion of a partial schedule,
which adds certain amount of structure to m-paths.

Partial schedules are defined in terms of two opera-
tors: •p and ‖p. The first represents concatenation and
is associative; the second does parallel combination of
schedules and is both associative and commutative.

Definition 4.1 A partial schedule is defined as fol-
lows:
• An m-path, π, is a partial schedule
• Serial composition of two partial schedules, ω1 •p

ω2, is a partial schedule
• Parallel composition of two partial schedules,

ω1 ‖p ω2, is a partial schedule

In addition, we require that a serial composition
of m-paths be an m-path: If ω = 〈p1, ..., pn〉 and ω′ =
〈p′1, ..., p′k〉 are m-paths (i.e., sequences of paths p1, p2,
etc.) then ω •p ω′ is the m-path 〈p1, ..., pn, p

′
1, ..., p

′
k〉.

4.2 Model Theory of CCTR

The semantics of CCTR is based on m-path structures
of CTR, which are described in [7]. An m-path struc-
ture, M , is a mapping that assigns a regular first-order
semantic structure (sometimes called interpretation)



to every m-path, ω (i.e., M(ω) is a first-order seman-
tic structure). For an in-depth exposition of the se-
mantics of CTR and how it is related to execution and
transactions we refer the reader to [7]. However, this
semantics has a very simple intuitive interpretation:
In CTR, a formula is true along an m-path if, in a
well-defined sense, it is capable of executing along this
path. Similarly, in CCTR, a formula that is true along
a partial schedule can be interpreted as being able to
execute according to that schedule.

A CTR goal is a formula composed of the usual
atomic formulas of first-order logic and the connectives
⊗, |, and ∨. We saw an example of such a goal in
Section 2. Following [13, 6], CTR goals are used to
represent workflows.

Let ω be a partial schedule, M be an m-path struc-
ture, and α be a CTR goal. M,ω |= α (read: α is true
in M along the schedule ω) is defined as follows:
• If α is a variable-free atomic formula, then M,ω |=

α, if and only if ω is an m-path and M(ω) |=classic α,
where |=classic stands for entailment in classic first-
order logic (recall that M(ω) is a first-order semantic
structure).
•M,ω |= α⊗β, if and only if ω = ω1•pω2, M,ω1 |=

α, and M,ω2 |= β.
• M,ω |= α | β, if and only if ω = ω1 ‖p ω2,

M,ω1 |= α, and M,ω2 |= β.
• M,ω |= α ∨ β, if and only if either M,ω |= α or

M,ω |= β.
• Universal and existential quantification is defined

as usual in first-order logic.
The first item in the above definition states that a

transaction named α is true along the m-path ω (re-
call that m-paths form the base of the definition of a
schedule) if the m-path structure M says that α is true
along ω in the classical sense. The intuitive meaning
of this statement is that α is the name of a transac-
tion that can “execute” along ω. The second item says
that the transaction α⊗ β can execute along a sched-
ule ω if and only if this schedule is a concatenation
of two schedules and α can execute along the prefix-
schedule while β can execute along the suffix-schedule.
The third item states that a parallel combination of
transactions, α | β, can execute along a schedule ω if
and only if it is a parallel combination of schedules,
ω1 •p ω2, and α can execute along ω1 and β along ω2.
The fourth item says that in order to execute α ∨ β
along a schedule it is enough to be able to execute α
or β separately.

In addition to the above, a CTR rule has the form
head : −body, where head is an atomic formula and
body is a CTR goal. The semantics of such a rule
is analogous to first-order logic: It is satisfied in an
m-path structure M if, for every partial schedule ω,
whenever M,ω |= body is true then so is M,ω |= head.

5 Constraint Systems

So far we have not strayed far from the original CTR.
Our next step is to define a constraint system, which
allows us to talk about resources required for executing
workflow activities and constraints on these resources.
First, we need to introduce the notion of a resource and
associate resources to CTR formulas (i.e., subwork-
flows). Then we introduce two types of constraints:
cost constraints, which involve aggregate functions de-
fined on execution schedules, and control constraints,
which restrict the way resources can be allocated to
different formulas (subworkflows).

5.1 Basic Definitions

Definition 5.1 A resource is an object with the at-
tributes token and cost.

In workflow modeling, a resource typically represents
an execution agent. The attribute token then repre-
sents this agent’s name and the attribute cost rep-
resents the cost (or multiple costs, if more than one
cost factor is used) of using that agent. For notational
convenience, we assume that the function cost of ( ) re-
turns the value of the cost attribute of the resource and
token of ( ) returns the value of the token attribute.

Definition 5.2 A resource assignment is a partial
mapping from partial schedules to sets of resources. A
resource assignment asg(ω) must satisfy the following
conditions:

asg(ω1 ‖p ω2) = asg(ω1) ∪ asg(ω2),
if both asg(ω1) and asg(ω2) are defined

asg(ω1 •p ω2) = asg(ω1) ∪ asg(ω2),
if both asg(ω1) and asg(ω2) are defined

asg(ω) = S, where S is some set of resources,
if ω is an m-path

Definition 5.3 A constraint universe D is a set of
domains together with predicates associated with each
domain. The domains in the constraint universe are

1. Elementary Domains: Scalar domain (e.g. inte-
ger), goal domain (i.e., the set of all CTR goals,
i.e., formulas that represent workflows — see the
previous section), the domain of partial schedules,
the domain of resource assignments, the domain
of resources.

2. Complex Domains: Domains that are com-
posed out of elementary domains using various
set constructors (e.g., goal × partial schedule,
2resources).

Each domain in D has a set of predicates associated
with that domain.

Example 5.4 Here are some examples of constraints
in D:



Definition Commutative Dist. over Union

disjoint(V1, V2) = (token of(V1) ∩ token of(V2) ≡ ∅) Yes Yes
subset(V1, V2) = (token of(V1) ⊂ token of(V2)) No Yes
subsumes c(V1, V2) = ((token of(V1) ∩ token of(V2)) ⊂ token of(c)) Yes Yes

Figure 2: Examples of set constraints and their properties

1. disjoint(R1, R2) ≡ (token of(R1) ∩ token of(R2)
= ∅) is a predicate on the domain (2resources ×
2resources) where R1, R2 ∈ resource domain and
token of(R) = {ti | ti ∈ token of(i)}

2. less than c(I) ≡ (I < c) is a predicate on the
integer domain, where I ∈ integer domain and c
is an integer constant.

3. cost constraint(ω, ρ) ≡ less than c(f(ω, ρ)) is a
predicate on the domain (partial schedule domain
× resource assignment domain), where ω is a
schedule, ρ is a resource assignment, less than c is
defined above, and f is a function with the signa-
ture (schedule × resource assignment → integer.)

5.2 Definition of Constraint Systems

Definition 5.5 A constraint system ζ is a set of con-
straint definitions. It consists of two subsystems ζcost
and ζctrl.

The ζcost subsystem is used to specify cost constraints
(e.g., this task must execute in less than 1 day); the
ζctrl subsystem is used to specify control constraints
(e.g., the copier on the second floor cannot be used by
two concurrent tasks).

Definition 5.6 The constraint subsystem ζcost con-
sists of predicates of the form cost constraint(ω, asg),
where ω is a partial schedule and asg is a resource as-
signment. More specifically, cost constraint(ω, asg)
has the form value constraint(cost(ω, asg)), where
value constraint is a predicate over a scalar domain
(e.g., integer) and cost is a function with the follow-
ing properties: Let ω1 and ω2 be partial schedules such
that both cost(ω1, asg) and cost(ω2, asg) are defined.
Then:

cost(ω1 ‖p ω2, asg) ≡ op|(cost(ω1, asg), cost(ω2, asg))
cost(ω1 •p ω2, asg) ≡ op⊗(cost(ω1, asg), cost(ω2, asg))
cost(ω, asg) ≡ cost of(asg(ω)), where ω is an m-path

and cost of is defined right after Definition 5.1

Here op⊗ and op| are functions with the signature
scalar domain× scalar domain→ scalar domain.

Definition 5.7 The constraint subsystem ζctrl con-
sists of predicates of the form ctrl constraint(ω, asg),
which satisfy the following conditions. Let ω, ω1, ω2 be
partial schedules and asg be an assignment such that
asg(ω), asg(ω1) and asg(ω2) are defined. Then

ctrl constraint(ω1 •p ω2, asg) ≡
set constraint⊗(asg(ω1), asg(ω2))∧
ctrl constraint(ω1, asg) ∧ ctrl constraint(ω2, asg)

ctrl constraint(ω1 ‖p ω2, asg) ≡
set constraint|(asg(ω1), asg(ω2))∧
ctrl constraint(ω1, asg) ∧ ctrl constraint(ω2, asg)

ctrl constraint(ω, asg) ≡ leaf constraint(asg(ω)),
where ω is an m-path

Here set constraint⊗ and set constraint| are predi-
cates over the domain 2resources × 2resources; they ex-
press conditions on sets of resources, such as disjoint-
ness. The predicate leaf constraint is defined over
the domain 2resources; it constrains executions of indi-
vidual tasks and can be used to say that, for example,
task t1 cannot be executed by agent A.

To ensure that cost constraint is well-defined, we
impose the following restrictions on op| and op⊗:

• Commutativity: op|(X,Y ) = op|(Y,X).

• Associativity:
op|(op|(X,Y ), Z)) = op|(X, op|(Y,Z))
op⊗(op⊗(X,Y ), Z)) = op⊗(X, op⊗(Y,Z)).

Lemma 5.8 The function “cost” in Definition 5.6 is
well-defined.

Similarly, to ensure that ctrl constraint is well-
defined, we impose the following restrictions on
set constraint⊗ and set constraint|.

• Commutativity:

set constraint|(V1, V2) = set constraint|(V2, V1).

• Distribution over Union:

set constraint⊗(V1 ∪ V2, V3) =
set constraint⊗(V1, V3) ∧ set constraint⊗(V2, V3)

set constraint|(V1 ∪ V2, V3) =
set constraint|(V1, V3) ∧ set constraint|(V2, V3).

Lemma 5.9 ctrl constraint in Definition 5.7 is well-
defined.

Although there are no restrictions on the use of
the attributes cost and token in resource objects,
cost is typically used in cost constraint and token in
ctrl constraint. The functions op⊗ and op| are usually
aggregates, such as sum or max, and set constraint|
and set constraint⊗ are various set constraints, such
as those in Figure 2.



Example 5.10 Let V1, V2, c denote sets of re-
sources. Figure 2 lists some Boolean set functions
along with their distributivity and commutativity
properties. Those that have both properties can be
used as set constraint| and those that have only dis-
tributivity can be used as set constraint⊗ only.

Example 5.11 Example 2.1 has two cost constraints
that would be defined in ζcost and one control con-
straint that would be defined in ζctrl. Due to space
limitation, we give only some of the definitions. For
ζcost, the function cost( ) of Definition 5.6 should re-
turn the costs of the assignment — the construction
time and the dollar amount. We can represent this as
a list where first element is the time and second is the
amount: cost(ω, asg) = cost of(asg(ω)) = [V1, V2]

The following constraint can be used
to state that total time should not ex-
ceed c1 and budget should not exceed c2:
value constraint([V1, V2]) ≡ V1 < c1, V2 < c2

The functions op| and op⊗ define how the cost
of assignment is aggregated. For instance, for par-
allel executions, maximum of the execution time is
used, whereas for dollar costs, payments are added up:
op|([V1, V2], [V ′1 , V

′
2 ]) ≡ [V1 + V ′1 ,max(V2, V

′
2)]

The following set constraint, which specifies that
the agent sets allocated to parallel branches of a sched-
ule must be disjoint, could be part of ζctrl:

set constraint|(R1, R2) ≡
(token of(R1) ∩ token of(R2)) = ∅)

5.3 Logical Entailment with Constraints

Satisfaction in a constraint system is defined as fol-
lows. Let ζ be a constraint system, D be a constraint
universe, ω be a partial schedule, asg be a resource as-
signment, and M be an m-path structure. Then, given
a CTR goal φ, we write (M, ζ, ω, asg) |= φ if and only
if

1. M,ω |= φ,

2. D |= cost constraint(ω, asg), and

3. D |= ctrl constraint(ω, asg).

In other words, ω is a good schedule, i.e., the workflow
represented by φ can execute along ω and both the cost
constraints and control constraints are satisfied by the
constraint system.

6 CCTR as a Workflow Scheduler

We now have all the machinery needed for specifying
workflows with constraints. In this section, we define a
transformation that takes any workflow specification,
φ, in CTR, a constraint system, ζ, and a constraint
universe, D, and returns a new workflow specification,
φ′, and a resource assignment, asg, such that for any
m-path structure M :

TRANSFORMATION RULES

B(G1 ∨G2) ≡ B(G1) ∨B(G2)

B(G) ≡
R(G,T )⊗ cost constraint(T )⊗ ctrl constraint(T )
if the main connective in G is ⊗ or |

R(A, T ) ≡ A⊗ (T = resource asg(A,Agents))
where A is an atomic task, resource asg is a
resource assignment term for task A and
Agents is a new variable or a list of variables

R(G1|G2, T ) ≡
(T = ′|′(T1, T2))⊗ (R(G1, T1)|R(G2, T2))
′|′(T1, T2) is just a function term; the function
symbol ′|′ is chosen for its resemblance to the
parallel composition connective |

R(G1 ⊗G2, T ) ≡
(T = ′ ⊗′ (T1, T2))⊗ (R(G1, T1)⊗R(G2, T2))
′ ⊗′ (T1, T2) is just a function term; the function
symbol ′⊗′ is chosen for its resemblance to the
sequential composition connective ⊗

R(G1 ∨G2, T ) ≡ R(G1, T ) ∨R(G2, T )

Figure 3: Transformation Rules for a Workflow
Prescheduler

1. for any partial schedule ω that satis-
fies the constraints (i.e., such that D |=
cost constraint(ω, asg)∧ ctrl constraint(ω, asg))
we have that M,ω |= φ′ if and only if M,ω |= φ;
and

2. for any schedule ω, (M, ζ, ω, asg) |= φ′.

In other words, φ and φ′ are equivalent on sched-
ules that satisfy the constraints, but φ′ satisfies the
constraints “automatically,” i.e., all of its executions
are schedules that satisfy the constraints. Thus, any
CCTR interpreter, such as the one described in Sec-
tion 7, becomes a workflow scheduler.

The aforesaid transformation is the main step in
constructing a workflow scheduler. It and the formal
CCTR framework presented earlier are two main con-
tributions of our approach.

Transformations that satisfy properties 1 and 2
above are called correct pre-schedulers.

6.1 Building a Workflows Prescheduler

We now begin to develop a correct pre-scheduler for
constraint workflows. The transformation itself is de-
fined in Figure 3 by induction on the structure of
the workflow. The operator B transforms the original
workflow into a new workflow, which preserves the se-
mantics, but also includes cost and control constraints.
In addition, we introduce rule templates, which the
user can instantiate in order to describe the constraint



step1 B((c⊗ r)|(i|g))
step2 R((c⊗ r)|(i|g), T )⊗

cost constraint(T )⊗ ctrl constraint(T )
step3 T = ′|′(T1, T2) ⊗ ( R(c⊗ r, T1)|R(i|g, T2)) )⊗

cost constraint(T )⊗ ctrl constraint(T )
step4 T = ′|′(T1, T2)⊗

( (T1 = ′⊗′(T3, T4) ⊗ (R(c, T3)⊗R(r, T4))) |
(T2 = ′|′(T5, T6) ⊗ (R(i, T5)|R(g, T6))) )⊗

cost constraint(T ) ⊗ ctrl constraint(T )
step5 T = ′|′(T1, T2)⊗

( (T1 = ′⊗′(T3, T4) ⊗
(((c ⊗ T3 = rsrc(c,W )) ⊗

(r ⊗ T4 = rsrc(r,X)))) |
(T2 = ′|′(T5, T6) ⊗
(((i ⊗ T5 = rsrc(i, Y )) |

(g ⊗ T6 = rsrc(g, Z)))) ) ⊗
cost constraint(T ) ⊗ ctrl constraint(T )

Figure 4: Prescheduling Transformation for House
Construction Workflow

system appropriate for the application at hand. The-
orem 7.2 states that B is a correct pre-scheduler.

The operator B invokes another operator, R, which
takes a workflow, G, and creates a workflow resource
allocation term. The latter looks exactly like the
parse tree of G, but the leaves, which are propo-
sitions that represent tasks, are replaced with task
resource assignments. In our representation, a re-
source assignment can be any term of the form
resource asg(task,Agents), where task is a constant
that represents the task to which resources are as-
signed and Agents is a new variable or a list of new
variables.

The purpose of the workflow resource allocation
term is that it encodes the workflow structure, and
this structure is used in defining the constraint sys-
tem.2 Task resource assignments, which are sitting at
the leaves of the workflow resource allocation term,
have variables that (when instantiated by a constraint
solver) represent concrete resource assignments to the
workflow tasks. Two kinds of resource allocation con-
straints are added to the workflow specification by the
prescheduler B:

• cost constraint: This is a constraint on the ag-
gregate cost of the workflow.

• ctrl constraint: This constraint controls resource
allocation to workflow tasks.

Example 6.1 Consider a subset of Example 2.1:

(carpentry⊗ roof) | (installations | gardening)

2Recall that the constraint system defined in Section 5.2 has
a number of requirements that have to do with the structure of
partial schedules. It can be shown that the structure of such a
schedule depends on the workflow parse tree. Thus, to be able
to construct the constraints properly we must know the parse
tree of the corresponding workflow.

The prescheduling transformation of this subwork-
flow is shown in Figure 4, where the long task names
are abbreviated to c, r, i, and g, respectively. The
transformed workflow is given in step5.

1.ctrl constraint(|(T1, T2)) : −
set constraint|(T1, T2), ctrl constraint(T1),
ctrl constraint(T2)

2.ctrl constraint(⊗(T1, T2)) : −
set constraint⊗(T1, T2), ctrl constraint(T1),
ctrl constraint(T2)

3.ctrl constraint(T ) : − leaf(T ), leaf constraint(T )
4.cost constraint(T ) : −

cost(T, V ),value constraint(V )
5.cost(⊗(T1, T2), V ) : −

cost(T1, V1), cost(T2, V2),op⊗(V1, V2, V )
6.cost(|(T1, T2), V ) : −

cost(T1, V1), cost(T2, V2),op|(V1, V2, V )
7.cost(resource asg(T,Agents), V ) : −

cost of(resource asg(T,Agents), V )

Figure 5: Template Rules for Constraint Systems

Resource Assignment:
resource asg(T,Agents) – placeholder for a user-
specified term, which associates resources to a tasks.
T denotes an atomic task that can be represented by a
single variable, and Agents denotes the resource that
can be represented by a single variable or a list of vari-
ables (in case of multiple resources).

User Predicates (typically defined via user-supplied
rules):
cost of(resource asg(T,Agents), V ) – placeholder for
predicate that tells the costs associated with the re-
sources. V has the data type of the costs attribute of
the resource. It can be a single variable or a list of
variables.
set constraint|(T1, T2) – placeholder for a control con-
straint for parallel composition of tasks; T1 and T2 must
have the same user-defined data type.
set constraint⊗(T1, T2) – placeholder for a control
constraint for sequential composition of tasks; T1 and
T2 have the same user-defined data type.
leaf constraint(T ) – placeholder for a constraint on
individual tasks; T has a user-defined data type.
value constraint(V ) – placeholder for a predicate
used to define cost constraints. V has a user-defined
data type.
op|(V1, V2, V ) – placeholder for aggregate operator that
tells how to compute the cost (V ) of a parallel com-
position of subworkflows from the costs (V1, V2) of
those subworkflows. Used in the definition of cost con-
straints. V, V1, and V2 must have the same user-defined
data type.

op⊗(V1, V2, V ) – similar to op|, but used for serial com-

positions of subworkflows.

Figure 6: Placeholders for Problem-Specific Predicates
and Resource Assignments



6.2 Specifying Constraint Systems

Details of the constraint systems of CCTR introduced
in Section 5.2 can vary greatly, but their general prop-
erties can be realized as a single set of Prolog rule
templates shown in Figure 5. In the figure, the bold-
face predicates are placeholders for functions and con-
straints that the user can specify to adapt the template
to a particular application domain. These placeholders
are explained in Figure 6. Later we illustrate the use
of these templates on a number of nontrivial examples.

Rules 1 to 3 in Figure 5 define ctrl constraint —
the control constraint for |-nodes, ⊗-nodes, and leaves
of the workflow parse tree, respectively. Rules 4 to 7
define cost constraint — the cost constraint. Again,
this is done separately for each type of node in the
parse tree.

Lemma 6.2 The constraint template in Figure 5 de-
fines a constraint system in the sense of Section 5.2,
provided that the actual predicates that replace the
boldface placeholders have the appropriate associativity
and commutativity properties stated in that section.

Example 6.3 The placeholder definitions for the con-
straints of Example 2.1 are shown in Figure 7.

Let the placeholder resource asg(T,Agents) be of the
form rsrc(T,A), where T represents task and A the
agent

cost of(rsrc(T,A), [V,U ]) : −
duration(T,A, V ), price(T,A,U)

value constraint([V,U ]) : − V < c1, U < c2
set constraint|(T1, T2) : − disjoint(T1, T2)
set constraint⊗(T1, T2) : − true
leaf constraint(T ) : − true
op|([V1, U1], [V2, U2], [V,U ]) : −

V is max(V1, V2), U is U1 + U2

op⊗([V1, U1], [V2, U2], [V,U ]) : −
V is V1 + V2, U is U1 + U2

Figure 7: Placeholders for House Construction Exam-
ple

7 The Big Picture

The scheduling process under resource allocation con-
straints is depicted in Figure 8. The process has three
main components:

• the transformation rules and the templates de-
fined in Figures 3 and 5

• the inference system of CCTR (not presented here
due to space limitation)

• an off-the-shelf constraint solver

The steps in this process are as follows:

Step 1. A given workflow definition, G, is
transformed into a new workflow definition
G′ := B(G) using the prescheduler B defined in
Section 6.

Step 2. A partial schedule is found for the workflow.
In this step, resource allocation constraints are
collected as a set of atomic constraints.

Step 3. Under the partial schedule of the previous
step, solutions to the resource allocation con-
straints are found using the off-the-shelf con-
straint solver.

The systems returns all schedules and solutions to
the workflow constraints. Any constraint solver that
can handle all of our constraints can be used. A
prototype of this architecture has been implemented
with the help of the CTR interpreter available at
www.cs.toronto.edu/∼bonner/ctr/index.html.

The prototype has a graphical interface for the user
to define the workflow control and the placeholders
for the constraint system. The template rules are al-
ready defined in the system and basic guidelines on
how to fill in the bodies of the user-specified predi-
cates are provided to the user, as well. Pressing the
transform button feeds the workflow specification to
the prescheduler B, which is realized as a Prolog pro-
gram. The prescheduler returns a transformed work-
flow, which is ready to be run and scheduled by the
CTR interpreter.

The CTR interpreter, together with the presched-
uler, simulates the behavior of CCTR inference sys-
tem. It takes the transformed workflow (the output of
B) together with constraint definitions and produces
a schedule that obeys the specified control flow and a
set of constraints that must be satisfied in order for
the schedule to be valid.

The constraint set is then sent to the constraint
solver, which returns a solution to the resource allo-
cation constraints. Through backtracking, the system
can return all valid schedules and resource allocations.
Our implementation uses the constraint solver pro-
vided by XSB,3 since the CTR interpreter is realized
as an XSB application.

Example 7.1 The pre-scheduled House construction
workflow specification of Example 6.1, the associated
constraints of Example 6.3, and the template rules are
fed to the CTR interpreter as shown in Figure 8. The
interpreter returns a schedule and a set of constraints
as shown in Figure 9. Next, the constraint set is sent
to the constraint solver, which yields a set of valid
resource allocations. If the solution set is empty, it
means that there is no valid schedule satisfying the
constraints.

3XSB is a high-performance deductive database and Prolog
system available at http://xsb.sourceforge.net/
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base duration(c,W, V1), price(c,W,U1),
predicates duration(r,X, V2), price(r,X,U2)

duration(i, Y, V4), price(i, Y, U4),
duration(g, Z, V5), price(g, Z, U5)

cost V3 is V1 + V2, U3 is U1 + U2,
constraints V6 is max(V4, V5), U6 is U4 + U5,

V is max(V3, V6), U is U3 + U6,
V < c1, U < c2

ctrl Y 6= Z, W 6= Y, W 6= Z,
constraints X 6= Y, X 6= Z

Figure 9: Constraints Computed for House Construc-
tion Workflow

Theorem 7.2 Let ζ be a constraint system and D be a
constraint domain, which can be represented using the
template rules in Figure 5 (plus the additional defini-
tions for the boldface placeholders). Then, the trans-
formation B in Figure 3 is a correct prescheduler, i.e.,
it satisfies conditions 1 and 2 given at the beginning of
Section 6.

8 Applications

The framework presented in this paper fits a large
number of applications. We were able to apply it
successfully to job shop scheduling, travel planning,
scheduling of conference presentations, and others.

In this section we present two applications of work-
flow scheduling under resource allocation constraints.

8.1 Job Shop Scheduling

We illustrate how a simple job shop scheduling prob-
lem can be represented as a workflow with resource
allocation constraints. There are four jobs: a, b, c and
d, and two precedence relations: job a must be com-
pleted before job b starts, and job c must be completed

resource asg(T,Agents) : rsrc(T,A)
cost of(rsrc(T,A), V ) : − duration(T,A, V )
value constraint(T ) : − T < c.
set constraint|(T1, T2) : − disjoint(T1, T2).
set constraint⊗(T1, T2) : − true.
op|(V1, V2, V ) : − V is max(V1, V2).
op⊗(V1, V2, V ) : − V is V1 + V2.

leaf constraint(T ) : − true.

Figure 10: Placeholders for Job Shop Scheduling with
One Cost Constraint

step1 B((a⊗ b)|(c⊗ d))
step2 R((a⊗ b)|(c⊗ d), T )⊗

cost constraint(T )⊗ ctrl constraint(T ).
step3 ((T = ′|′(T1, T2))⊗

(R((a⊗ b), T1)|(R(c⊗ d), T2)))
⊗cost constraint(T )⊗ ctrl constraint(T ).

step4 ((T = ′|′(T1, T2))⊗
(((T1 = ′ ⊗′ (T3, T4))⊗ (R(a, T3)⊗R(b, T4)))|
((T2 = ′ ⊗′ (T5, T6))⊗ (R(c, T5)⊗R(d, T6))))⊗
cost constraint(T )⊗ ctrl constraint(T ).

step5 ((T = ′|′(T1, T2))⊗
((T1 = ′ ⊗′ (T3, T4))⊗
((a⊗ T3 = rsrc(a,W ))⊗ (b⊗ (T4 = rsrc(b,X)))))|
((T2 = ′ ⊗′ (T5, T6))⊗
(c⊗ T5 = rsrc(c, Y ))⊗ (d⊗ T6 = rsrc(d, Z))))⊗
cost constraint(T )⊗ ctrl constraint(T )

Figure 11: Prescheduling Transformation for Job Shop
Scheduling Problem

base duration(a,W, V1), duration(b,X, V2),
predicates duration(c, Y, V3), duration(d, Z, V4)
cost V5 is V1 + V2, V6 is V3 + V4,
constraints V is max(V5, V6), V < c
ctrl const. W 6= Y, W 6= Z, X 6= Y, X 6= Z

Figure 12: Constraints Computed for Job Shop
Scheduling with One Constraint

before job d starts. The ordering relations among tasks
can be captured by a workflow G with the definition
((a ⊗ b) | (c ⊗ d)). Suppose that there are three ma-
chines, each capable of doing each of the four jobs, but
they take different time to complete these jobs. The
resource allocation constraints are as follows:

1. The total duration of the workflow should be less
than a given value.

2. The set of agents assigned to concurrent branches
should be disjoint.

The problem-specific placeholders to be used in the
constraint template (Figure 5) for this example are
given in Figure 10. Here duration is a base predi-
cate that specifies the duration of various tasks and
the disjoint constraint is defined as in the house con-
struction example.

The transformation B yields a workflow definition
G′ shown in Figure 11 and constraints used in G′ are
in Figure 12.



resource asg(T,Agents) : rsrc(T,A)
cost of(rsrc(T,A), [V,U ]) : −

duration(T,A, V ), quality(T,A,U)
value constraint([V,U ]) : − V < c1, U > c2
set constraint|(T1, T2) : − disjoint(T1, T2)
set constraint⊗(T1, T2) : − true
leaf constraint(T ) : − true
op|([V1, U1], [V2, U2], [V,U ]) : − V is max(V1, V2),

U is U1 + U2

op⊗([V1, U1], [V2, U2], [V,U ]) : − V is V1 + V2,

U is U1 + U2

Figure 13: Placeholders for Job Shop Scheduling with
Two Cost Constraints

base duration(a,W, V1), quality(a,W,U1),
predicates duration(b,X, V2), quality(b,X,U2),

duration(c, Y, V4), quality(c, Y, U4),
duration(d, Z, V5), quality(d, Z, U5)

cost V3 is V1 + V2, U3 is U1 + U2,
constraints V6 is V4 + V5, U6 is U4 + U5,

V is max(V3, V6), U is U3 + U6,
V < c1, U > c2

ctrl W 6= Y, W 6= Z,
constraints X 6= Y, X 6= Z

Figure 14: Constraint Computed for Job Shop
Scheduling with Two Cost Constraints

8.2 Job Shop Scheduling with Multiple Cost
Constraints

We now modify the above example to allow more
constraints. Let, for example, the additional con-
straint be the quality measure must exceed certain
given value. To handle this, the placeholders are modi-
fied by adding an extra variable for the quality measure
(see Figure 13). The transformation B in this case is
similar to the case of one constraint, but the result-
ing set of constraints is slightly different, as shown in
Figure 14.

9 Related Work

A number of works have dealt with workflow schedul-
ing, resource management in workflows, and schedul-
ing using constraint satisfaction techniques. However,
to the best of our knowledge, none combines these dis-
parate techniques to provide a framework for workflow
scheduling under resource allocation constraints. In
the following, we discuss these related works.
Workflow scheduling: Research on workflow
scheduling has largely concentrated on temporal con-
straints. In [4, 32, 33], temporal logic and special-
ized algebras are used for scheduling. [13, 6] are based
on CTR and [35] presents a scheduling method based
on an action description logic. Besides these logic-
based approaches, Petri nets are also used for workflow
scheduling [1, 36]. In all of mentioned works, temporal
and causality constraints determine the correctness of

the schedule. In contrast, we deal with resource al-
location constraints — a problem that requires sub-
stantially different machinery. In [15, 16], deadline
constraints and how to avoid deadline violations are
discussed. However, it does not provide any formal
framework for solving these problems.
Resource management in workflows: Resource
management has been recognized as an important is-
sue in a WfMS [12, 2]. However, most of the work in
this area have focused on modeling of resources with
little attention devoted to scheduling. In [39], a frame-
work for the representation of resources and an orga-
nizational model for workflow system is given. [14] de-
scribes an architecture of a workflow resource manager
that can integrate external resources. [22] proposes a
method to handle policies (i.e., general guidelines for
resource allocation) in a workflow resource manager.
These policies are defined independently of the work-
flow schedule. While such policies can serve as guide-
lines on how resources can be allocated during execu-
tion, they do not constitute a scheduling algorithm.
Our approach differs from this prior work in that it
deals with resource allocation and scheduling together.
Job-shop scheduling: Operations research (OR)
has developed a number of successful algorithms for
solving many scheduling problems [10, 5]. Among
them, job-shop scheduling is most relevant to work-
flow scheduling. Constraint logic programming (CLP),
which integrates logic-based and OR techniques, has
also been successfully used to deal with job-shop
scheduling problems. The following works is just a
tip of an iceberg of the vast research on the subject
[18, 11, 38]. Both of the job-shop scheduling and work-
flow scheduling problems incorporate resource alloca-
tion constraints. However, a workflow can be much
more complex than a job-shop. Furthermore, the focus
of our work is orthogonal to the works on constraint
solving — we use constraint solvers in Stage 3 of our
scheduling process.
Planning in AI: As in the scheduling problem in
OR, constraint programming is used for planning in
AI [8, 30], and there also are works on planning un-
der resource constraints [19, 9]. However, only a small
number of works in this area propose planning as a
workflow scheduling technique [28, 29]. However, those
that do deal with scheduling do not address this prob-
lem under resource allocation constraints. Instead,
planning techniques are used to schedule dynamically
changing workflows.
Agent-based workflow systems: Using agent tech-
nology for workflow systems is another related research
area [37, 34, 25, 26, 27, 20]. In agent-based workflow
systems, execution decisions are based on the commu-
nication events that occur when one agent requests
services of another. Research on this area has largely
concentrated on intelligent agent modeling and com-
munication issues. Only a few [26] briefly mention



the issue of scheduling under resource allocation con-
straints, which they propose to do through negotia-
tions among the agents. However, to the best of our
knowledge, details of such techniques have not been
worked out.

10 Conclusion and Future Work

We presented a logical framework for scheduling work-
flows under resource allocation constraints. The
framework is based on Concurrent Constraint Transac-
tion Logic (CCTR) and integrates Concurrent Trans-
action Logic [7] with Constraint Logic Programming
[23, 24]. We presented an algorithm that takes
the initial workflow specification and a set of re-
source allocation constraints and returns a new work-
flow and a resource assignment, such that every
execution of that workflow is guaranteed to sat-
isfy the constraints. The system was prototyped
with the help of the CTR interpreter available at
www.cs.toronto.edu/∼bonner/ctr/index.html.

Although not discussed here, the proposed frame-
work can be extended with temporal and causality con-
straints of the kind that is discussed in [13].

As a future work, our framework can be extended
with special-purpose constraint solvers that are opti-
mized for our framework. In addition, scheduling un-
der resource allocation constraints for dynamic work-
flows and scheduling concurrent workflow instances
under resource allocation constraints are also interest-
ing topics for future work.
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