

Searching on the Secondary Structure of Protein Sequences

Laurie Hammel Jignesh M. Patel
Department of Electrical Engineering and Computer Science

University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109, USA

{lhammel, jignesh}@eecs.umich.edu

Abstract
In spite of the many decades of progress in
database research, surprisingly scientists in the
life sciences community still struggle with
inefficient and awkward tools for querying
biological data sets. This work highlights a
specific problem involving searching large
volumes of protein data sets based on their
secondary structure. In this paper we define an
intuitive query language that can be used to
express queries on secondary structure and
develop several algorithms for evaluating these
queries. We implement these algorithms both in
Periscope, a native system that we have built,
and in a commercial ORDBMS. We show that
the choice of algorithms can have a significant
impact on query performance. As part of the
Periscope implementation we have also
developed a framework for optimizing these
queries and for accurately estimating the costs of
the various query evaluation plans. Our
performance studies show that the proposed
techniques are very efficient in the Periscope
system and can provide scientists with
interactive secondary structure querying options
even on large protein data sets.

1. Introduction
The recent conclusion of the Human Genome Project has
served to fuel an already explosive area of research in
bioinformatics that is involved in deriving meaningful
knowledge from proteins and DNA sequences. Even with
the full human genome sequence now in hand, scientists
still face the challenges of determining exact gene

locations and functions, observing interactions between
proteins in complex molecular machines, and learning the
structure and function of proteins through protein
conservation, just to name a few. The progress of this
scientific research in the increasingly vital fields of
functional genomics and proteomics is closely connected
to the research in the database community in that
analyzing large volumes of biological data sets involves
being able to maintain and query large genetic and protein
databases [19, 27]. If efficient methods are not available
for retrieving these biological data sets, then
unfortunately the progress of scientific analysis is
encumbered by the limitations of the database system.

This work looks at a specific problem of this nature
that involves methods for searching protein databases
based on secondary structure properties. We will define a
problem that the scientific community faces regarding
current protein search techniques and provide a query
language and a system to efficiently answer these queries.

1.1 Biological Background
Proteins have four levels of structural organization,
primary, secondary, tertiary, and quaternary; the latter
two are not considered in this work. The primary
structure is the linear sequence of amino acids that makes
up the protein; this is the structure most commonly
associated with protein identification [24]. The secondary
structure describes how the linear sequence of amino
acids folds into a series of three-dimensional structures.
There are three basic types of folds: alpha helices (h),
beta sheets (e), and turns or loops (l). Because these
three-dimensional structures determine a protein’s
function, knowledge of their patterns and alignments can
provide important insights into evolutionary relationships
that may not be recognizable through primary structure
comparisons [22]. Therefore, examining the types,
lengths, and start positions of its secondary structure folds
can aid scientists in determining a protein’s function [2].

1.2 Scientific Motivation
The discovery of new proteins or new behaviors of
existing proteins necessitates complex analysis in order to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

determine their function and classification. The main
technique that scientists use in determining this
information has two phases. The first phase involves
searching known protein databases for proteins that
“match” the unknown protein. The second phase involves
analyzing the functions and classifications of the similar
proteins in an attempt to infer commonalities with the
new protein [2]. These phases may be intertwined as the
analysis of matches may provide interesting results that
could be further explored using more refined searches.

The above simplification of the search process glosses
over the actual definition of protein similarity. The
reason for this is that no real definition of protein
similarity exists; each scientist has a different idea of
similarity depending on the protein structure and search
outcome goal. For example, one scientist may feel that
matching on primary structure is beneficial, while another
may be interested in finding secondary structure
similarities in order to predict biomolecular interactions
[16]. In addition to these complications, there is a
plethora of differing opinions even within same-structure
searches. One scientist may want results that exactly
match a small, specific portion of the new protein, while
another may feel that a more relaxed match over the
entire sequence is more informative.

What is urgently needed is a set of tools that are both
flexible with regards to posing queries and efficient with
regards to evaluating queries on protein structures.
Whereas there are a number of public domain tools, such
as BLAST, for querying genetic data and the primary
structure of proteins [1, 3, 4, 27, 28], to the best of our
knowledge there are no tools available for querying on the
secondary structure of proteins. This work addresses this
void and focuses on developing a declarative and efficient
search tool based on secondary structure that will enable
scientists to encode their own definition of secondary
structure similarity.

Another motivation for this work stems from the
desire for more efficient search tools. For example, the
BLAST [1, 3, 4, 28] queries submitted to their web site
can take hours or days to return. This is a combination of
two factors: high server loads caused by multiple
concurrent users, and the efficiency of the query
evaluation algorithm. The server load bottleneck can be
alleviated by downloading the BLAST code and running
it on a local server. This solution is inadequate, however,
as most of the query evaluation algorithms employ
sequential scans to answer a query [13]. This translates
into long response times, which are unacceptable
considering that often scientists want to pose queries
interactively to systematically validate or invalidate a
number of hypotheses. As the set of hypotheses is
typically altered based on previous query answers, long
query response times may dramatically slow down the
rate of progress of their research. Therefore a major goal
of our secondary structure search tool is to employ very
efficient query evaluation techniques.

1.3 Contributions and Paper Organization
This paper makes the following contributions. We define
a simple and intuitive query language for posing
secondary structure queries based on segmentation. We
identify various algorithms for efficiently evaluating these
queries and show that depending on the query and
segment selectivities, the choice of the algorithm can have
a dramatic impact on the performance of the query.

We develop a query optimization framework to allow
an optimizer to choose the optimal query plan based on
the incoming query and data characteristics. As the
accuracy of any query optimizer is dependent on the
accuracy of its statistics, for this application we need to
accurately estimate both the segment and overall result
selectivities. We develop histograms for estimating these
selectivities and demonstrate that these histograms are
very accurate and take only a small amount of space to
represent.

Finally, we implement our techniques in Periscope, a
native DBMS that we have developed for querying
biological data sets, as well as a commercial object-
relational database management system (ORDBMS).
Periscope allows us to test algorithms that we cannot test
using the commercial system; and using actual data sets,
we are able to experimentally demonstrate Periscope’s
effectiveness. We believe that Periscope is extremely
efficient and will be a valuable addition to the arsenal of
search tools that are needed for life sciences research.

The remainder of the paper is organized as follows: in
Section 2 we describe the protein format that we use.
Section 3 describes our query language. Our methods for
evaluating queries are discussed in Section 4, while
Section 5 describes the framework for a query optimizer
and our estimation techniques. Section 6 contains
experimental results, and Section 7 discusses future work
and concludes the paper.

2. Protein Format
The first task to accomplish is to establish the protein
format we will use in our system. This format is largely
dependent on the prediction tool that is used to generate
the secondary structure of proteins in our database. For
the majority of known proteins, their secondary structure
is a predicated measure; only a few hundred proteins
actually have known secondary structures. In order to
obtain the secondary structure for a given protein,
therefore, it is necessary to enter its primary structure into
a prediction tool that will return the protein’s predicted
secondary structure. Most available prediction tools are
between 60% and 70% accurate.

The tool used to predict the secondary structure
information for the proteins in our database is Predator
[10]. Predator is a secondary structure prediction tool
based on recognition of potentially hydrogen-bonded
residues in a single amino acid sequence; it is 65%
accurate. We chose this particular tool because we were

able to download the code and run it locally on our own
machine rather than submitting the database proteins one-
by-one to their site. However, our techniques will work
with other protein prediction tools as well.

Predator returns the protein name, its length in amino
acids, its primary structure, and its predicated secondary
structure along a number in the range 0-9 for each
position. This number indicates the probability that the
prediction is accurate for the given position. We add a
unique id to each protein for internal purposes. Figure 1
contains a portion of a sample protein in our database.

3. Query Language and Sample Queries
Next we determine the types of queries that are useful to
scientists in order to examine secondary structure
properties and design a query language to express these
queries. Based on interviews with scientists who perform
secondary structure protein analysis on a regular basis, we
are able to formulate three initial classes of queries. As
these queries are defined, an intuitive query language
begins to emerge. Due to the fact that only three types of
secondary structure can occur in a protein sequence, ‘h’,
‘e’, and ‘l’, and as these types normally occur in groups as
opposed to changing at each position, it is natural to
characterize a portion of a secondary structure sequence
by its type and length. For example, because the
sequence ‘hhhheeeelll’ is more likely to occur than
‘helhelehle,’ it is intuitive to identify the first sequence as
three different segments: 4 h’s, 4 e’s, and 3 l’s.

The formal process for posing a query is to express the
query as a sequence of segment predicates, each of which
must be matched to satisfy the query. Each segment
predicate in the query is described by the type and the
length of the segment. It is often necessary to express
both the upper and lower bounds on the length of the
segment instead of the exact length. Finally, in addition
to the three type possibilities, ‘h’, ‘e’, and ‘l’, we also use
a fourth type option, ‘?’, which stands for a gap segment
and allows scientists to represent regions of unimportance
in a query. The formal query language is defined in
Figure 2. A quick note on terminology: throughout this
paper we will refer to segment predicates as either query
predicates or simply predicates.

We will now look at three important classes of queries
that can be expressed using the language described above.
In the simplest situations, scientists would like to find
proteins that contain an exact query sequence, such as {<h
3 3><e 4 4>}. Our algorithms take the exactness of these

predicates literally in that matches that are part of a larger
sequence are not returned. For example, the sequence
‘hhhheeee’ would not match the above query because it
contains four ‘h’s, not the specified three. While exact
matching is important, in some cases it may be sufficient
to find matches of approximate length. This can be
expressed using range queries such as {<h 3 5><l 2 8>},
which finds all proteins that contain a helix of length 3 to
5 followed by a loop of length 2 to 8. Another feature
scientists would like to be able to express in their queries
is the existence of gaps between regions of importance. A
gap query can be expressed as {<h 4 6><? 0 ∞><l 5 5>},
which finds all proteins that contain a helix of length 4 to
6 followed at some point by a loop of length 5. These
three classes of queries provide an initial functionality for
our system to solve; we will look at more complex
queries in our future work. A more formal definition of
the three query classes may be found in the full-length
version of this paper [12].

4. Query Evaluation Techniques
This section describes four methods for evaluating the
types of queries defined above. The first approach uses a
protein scan while the last three utilize a segmentation
technique similar to that described in Section 3 that
represents proteins as sequences of segments.

4.1 Complex Scan of Protein Table (CSP)
The first approach performs a scan of the protein table
itself. One by one, each protein in the database is
retrieved, its secondary structure is scanned, and its
information is returned if the secondary structure matches
the query sequence. The matching check is performed
using a non-deterministic finite state machine (FSM)
technique similar to that used in regular expression
matching [26]. Each secondary structure is input to the
FSM one character at a time until either the machine
enters a final (matching) state or it is determined that the
input sequence does not match the query sequence. The
FSM itself is constructed once for each query.

As protein sequences can be long, sometimes
consisting of thousands of amino acids, it is common for a
query sequence to match more than once in a given
protein. Scientists are interested in each match, not just
each matching protein. In other words, if a sequence
matches a given protein in two distinct places, each of

name: t2_1296
id: 1
length: 554
primary structure: |GQISDSIEEKRGFFSTKR..
secondary structure:|HLLLLLLLLLLHHHEEEE..
probability: |855577763445449476..

Figure 1: Sample Protein

Query -> {Segments}
Segments -> Segment*
Segment -> <type lb ub>
type -> e | h | l | ?
lb -> any integer >= 0
ub -> any integer >= 0 | ∞
Segment Constraint: lb <= ub

Figure 2: Query Language Definition

these places must be reported separately. To achieve this
result our algorithm checks for all possible occurrences in
a protein by running the FSM matching test once for each
position in the protein’s secondary structure.

4.2 General Segmentation Technique
The last three approaches are based on a segmentation
scheme that represents proteins as a sequence of
segments. This segmentation technique is similar to the
one described in [23] in which they are interested in
retrieving sequences of integers. The idea is to break the
secondary structure of a protein into segments of like
types. These segments are stored in a separate segment
table. Along with the type and length of each segment,
the protein id of the segment’s originating protein and the
start position of the segment in that protein are also
stored. A multi-attribute B+-tree index is built on the
segment table’s type and length attributes. A clustered
B+-tree index is also built on the protein id of the protein
table to facilitate protein retrieval. Table 1 and Table 2
show an example of several small protein entries with
their corresponding segment tuples. The protein table
fields are the same as described in Figure 1.

name id len primary secondary prob.
A 1 5 mtgpi lleee 99401
B 2 6 liffki hhheee 983121

Table 1: Sample Protein Table

seg id id type length start position
1 1 l 2 1
2 1 e 3 3
3 2 h 3 1
4 2 e 3 4

Table 2: Sample Segment Table

The remaining three segmentation techniques all
incorporate some variation on the following plan
description to produce proteins that satisfy a given query.
In general, each non-gap predicate of a query can be
evaluated using either a scan of the segment table or an
index probe. Once individual matching segments of the
query have been retrieved, they can be merged based on
protein id; the start position information can then be used
to satisfy the ordering constraints between segments to
produce final matching results.

In all three techniques, once the matching protein ids
have been found, they must still be joined with the protein
table in order to obtain the actual proteins. This is
accomplished by an index-nested loops join (INLJ) of the
protein ids with the B+-tree index built on the protein id
attribute of the protein table. These protein ids (obtained
from the segment predicate matches) are first sorted in
order to improve the performance of the INLJ. This join
provides quick retrieval of the actual proteins stored in the

protein table, especially as the B+-tree index is clustered
on the protein id attribute.

This segmentation query plan can be conveyed in
standard database terminology through SQL queries using
the segment and protein tables. For example, in SQL the
query {<e 3 9><? 3 5><h 2 2>} is expressed as:

 “select * from proteinTbl p, segTbl s1, segTbl s2
where s1.type = ‘e’ and s2.type = ‘h’ and s1.id = s2.id
and s1.id = p.id and s1.length >= 3
and s1.length <= 9 and s2.length = 2
and s2.start_pos – (s1.start_pos + s1.length) <= 5
and s2.start_pos – (s1.start_pos + s1.length) >= 3;”

4.2.1 Simple Scan of Segment Table (SSS)
In this technique the entire segment table is scanned for
segments that match the most highly selective predicate
of the query. All of the segments returned by the scan
then participate in the aforementioned INLJ to retrieve
their actual proteins. If there are additional predicates in
the query, each retrieved protein is then scanned using the
FSM technique described in Section 4.1 to determine the
final matching verdict.

4.2.2 Index Scan of Segment Index (ISS)
The index scan query plan is essentially identical to the
SSS method with one exception. Instead of scanning the
segment table, the ISS method probes the segment index
with the most selective segment predicate.

4.2.3 Multiple Index Scans of Segment Index
(MISS(n))

The final method described in this paper, the multiple
index scan technique, is a generalization of the ISS plan.
The basic change is that instead of only performing one
index probe, the B+-tree index is now probed n times with
the n most highly selective query predicates, where n can
range from two to the total number of predicates in the
query. The segment results of each individual index
probe are sorted, first by protein id and then by start
position, and written to separate files.

The newly written files then participate in an n-way
sort-merge join to find query segments with the same
protein id. At this point the start position information is
used to determine whether the segments occur in the
correct order within the protein and if the proper gap
constraints between them are met. If the segments match
the query constraints, then the corresponding protein id is
returned. As with the previous two plans, the protein id
then participates in an INLJ with the protein id index
followed by a possible complex scan to test for any
remaining query predicates.

5. Query Optimizer and Estimation
When a query is posed to Periscope, the system must
decide which of the four plans should be used to evaluate

the given query. In this section we present the framework
of a query optimizer that is used to make this decision.
As in the classic System R paper, our query optimizer
utilizes cost functions that model the CPU and I/O
resources of each plan [5, 25]. These cost functions take
as input the estimations of the selectivity of each of the
query predicates and the selectivity of the result.
Traditional database management systems utilize
histograms to provide such estimations [14, 15, 17, 20,
25]. The unique, restricted nature of the segment query
language and the composition of protein secondary
structure allows the Periscope query optimizer to
incorporate these standard techniques and expand the
estimation capabilities of histograms beyond their typical
capacity. We utilize two histograms in our current
implementation: a basic one that determines the
selectivities of the query predicates and a more complex
one to estimate the result protein selectivity.

5.1 Basic Histogram
The basic histogram contains information about the
number of segments in the segment table for a given type
and length pair. As there are only three possible types,
‘e’, ‘h’, and ‘l’, and as the segments are usually relatively
small in length, it is neither space nor time consuming to
maintain exact counts for the majority of protein
segments. The basic histogram is stored in the form of a k
x 3 matrix, where k is the number of length buckets in the
histogram and the second dimension has one value for
each of the three possible types, ‘e’, ‘h’, and ‘l’. For
example, position [7][2] holds the number of <h 7 7>
segments. The last bucket is used to represent all
segments with length greater than or equal to k. For range
predicates, an estimate is computed by summing the
counts in the appropriate range of buckets. This estimate
is exact for all segment predicates that are less than k in
length.

In our current implementation, the number of buckets
is set to one hundred, since segments rarely have a length
of longer than one hundred positions. This size is also
small enough to ensure a compact storage representation
for the histogram. Segments over a length of one hundred
are considered to have a default low selectivity.

This histogram may be populated during or
immediately following the loading of the segment table.
Updates can be performed upon each new protein
addition without significant time penalty. With the
protein data set that we use for our experimentation,
which contains 248,375 proteins and their associated
10,288,769 segments, this histogram requires only 13
seconds to build and is created immediately after the
loading of the segment table. The time spent by the query
optimizer in estimating query predicate selectivities using
this histogram is minimal, less than a millisecond per
predicate on average. In terms of space requirements, the
histogram contains information about greater than 99% of
all segments and occupies only 1.2 KB of disk space.

5.2 Complex Histogram
The second histogram, which has a more complex
structure, is used to estimate the selectivity of the entire
query result, not just of a given query predicate. This
calculation procedure surpasses traditional histogram
estimation techniques in that it finds the probability of
multiple attributes occurring in a specific order in the
same string, possibly separated by gap positions. This
estimation technique is in contrast to traditional
histograms that are used to estimate the occurrence of a
single attribute [14, 15, 25] or multiple unordered
substrings [17].

5.2.1 Description
The complex histogram is stored as a four-dimensional
matrix; the first dimension corresponds to the protein id
attribute, the second dimension to the start position
attribute, and the third and fourth dimensions represent
the same length and type attributes as in the basic
histogram. Due to the large number of proteins found in
protein databases and their long sequence lengths, the first
two dimensions are divided into equi-width buckets to
reduce space requirements. For example, in our
experimental data set with 248,375 proteins and
10,288,769 segments, we use one hundred buckets each
for the first, second and third dimensions and three
buckets for the fourth dimension (corresponding to the
three types ‘e’, ‘h’, and ‘l’). Position [3][4][7][2], for
example, holds the number of <h 7 7> segments whose
starting position is in the range of the 4th bucket and
whose protein id lies within the 3th bucket.

5.2.2 Result Cardinality Estimation
In the interest of space, we explain our cardinality
estimation algorithm using an example; a more detailed
explanation of the algorithm is provided in the full-length
version of this paper [12]. Consider the query:
{<P1><P2>}, which has two predicates P1 and P2. Table 3
shows all possible arrangements for the two predicates in
a histogram with three buckets for the start position
ranges 0-49, 50-99 and 100-149, respectively. For
simplicity we assume here that these three start position
buckets correspond to the same protein id bucket. Note
that the type and length attributes of the buckets shown in
the table are implicitly defined based on the definition of
the predicates P1 and P2.

The arrangements of these two predicates fall into two
configurations. In the first configuration, the predicates
match segments in distinct start position buckets. For the
two-predicate example, cases 1-3 show all possible
arrangements in this configuration. In the second
configuration, corresponding to cases 4-6 in Table 3, both
predicates match segments in the same bucket.

We now need formulas to estimate the number of
matches in each of these cases. Once we have these
formulas, the result cardinality is the sum of the estimates
from each of the cases. The result selectivity follows by

dividing the cardinality by the total number of proteins in
the database. We next present the estimations for cases in
both these configurations. In the proceeding discussions
we will refer to these configurations as distinct bucket and
same bucket configurations.

 B1 (0-49) B2 (50-99) B3 (100-149)
1 P1 P2
2 P1 P2
3 P1 P2
4 P1 & P2
5 P1 & P2
6 P1 & P2

Table 3: Arrangement Possibilities for Two Query
Predicates in Three Start Position Buckets

The calculations for both types of configurations are
performed with the assumption that the segments are
uniformly distributed throughout the protein id and start
position buckets. The distinct bucket configuration
estimate is calculated by multiplying the number of
matching first-predicate segments found in the first start
position bucket by the number of second-predicate
matches found in the second bucket divided by the
number of proteins ids in each protein id bucket. The
division operation is necessary because of the uniform
distribution assumption. This formula can be generalized
to estimate the number of results from n predicates in n
distinct start position buckets and can also incorporate
gap information to automatically disregard start position
buckets that do not satisfy the gap requirements. For
brevity, exact details of the algorithm are omitted here but
are presented in [12].

The calculations for the same bucket configuration are
more complex. When P1 and P2 are in the same bucket,
P1’s start position could be anywhere within the range of
that bucket. We assume a uniform distribution of the start
positions of the two predicates. For each possible first-
predicate start position, we calculate the chances of the
second predicate being in the proceeding start positions
and in the same protein. For example, in case 4, the
number of proteins that match P1 at position 9 is np1 =
(1/50) * (number of P1 in B1). Similarly, the number of
proteins that match P2 in positions 10 to 49 is np2 = (4/5)
* (number of P2 in B1). Now, assuming that there are one
hundred proteins in each protein id bucket, the estimated
number of proteins that match the query in start position 9
for the given protein id bucket is: (np1 * np2)/100. To get
the total estimate for the bucket B1 we integrate over all
the possible start positions. In our actual estimates we
also factor the lengths of the predicates into the analysis.
In the interest of space the exact details of this calculation
are omitted here; see the full-length version [12].

5.2.3 Histogram Analysis
Next we examine the accuracy of the complex histogram
as well as its space and time efficiency. Figure 3 tests the

accuracy of these complex histogram estimates by
comparing the actual number of proteins that match a
given query with the estimated number. The query tested
is a three-predicate query in which the gap, or middle
predicate, is varied to produce different result
selectivities. The results from the data set of 248,375
proteins show that the histogram estimates are accurate to
within approximately 80% of the actual result size. This
degree of accuracy is sufficient for the optimizer’s needs,
as only a general idea of the result selectivity is required
by the cost functions.

Another consideration to take into account is the time
required to compute these estimates. The number of
calculations performed is factorial in the number of
predicates and start position buckets, and the estimation
time should reflect that. We tested the estimation times of
various queries with different numbers of predicates and
discovered that indeed, the estimation time requirements
dramatically increased with the number of query
predicates. We also noticed that adding more predicates
does not significantly improve the accuracy found by only
using two of a query’s predicates. Thus, based on this
empirical evidence, in our implementation we only look
at the two or three most highly selective query predicates
for estimation purposes. We choose these predicates
because they have the greatest impact on the reduction of
the query result space. In the experiment shown in Figure
3, the estimation time is around 20 milliseconds.

In the current implementation we create the complex
histogram immediately following the loading of the
segment table. The complex histogram takes 22 seconds
to build and requires 5.8 MB of disk space, which is only
1% of the size of the segment table.

5.3 Cost Formulas
We use cost formulas to model the I/O time and CPU
resources needed for each evaluation method for a given
query. The underlying functionalities of each of the
methods are similar and use a number of “basic blocks”
including index scans, table retrievals, and finite state

0

5

10

15

20

25

1 50 100 500 1000 4000
Length of Gap Predicate (X)

R
es

ul
t P

ro
te

in
 C

ar
di

na
lit

y
in

 T
ho

us
an

ds

Estimate

Actual

Figure 3: Complex Histogram Accuracy, Three-
Predicate Query: {<l 15 15><? 0 X><h 24 24>},

Varied Gap Predicate

machine matchings. We developed cost models, which
are along the lines of the cost models in [25], for each of
these basic blocks. These models are then incorporated
into the individual cost models for the various algorithms.
Histograms are used to estimate the query segment
selectivities and the result protein selectivity. Standard
statistics such as table cardinalities and tuple sizes are
maintained and used in the cost model. In addition, a
number of system-dependent “fixed” constants such as
page size, maximum index fanout, and weighted I/O and
CPU costs are used. A more thorough examination of the
query plan cost functions may be found in the full-length
version of this paper [12].

The actual query optimization process happens as
follows. First, the simple histogram is used to determine
the segment selectivities of all the non-gap predicates in
the query and the complex histogram is used to calculate
the result protein selectivity. These results are input into
the different cost formulas along with the table and index
information. Then, the optimizer evaluates these cost
formulas for the CSP, SSS, and ISS plans, as well as for
each of the MISS(n) plans. Finally, the plan with the
lowest cost formula is returned as the optimal plan and
the system uses this method to evaluate the query.

6. Experimental Evaluation
In this section we evaluate the algorithms presented in
Section 4 using both a commercial ORDBMS and our
native system, Periscope. The experiments presented
compare the performance of these algorithms and also
show the different effects that the segment and result
selectivities have on these algorithms. We also used
many of these same experiments to tune the cost models
in Periscope’s optimizer. Consequently, for all the
experiments presented in this section, the Periscope
optimizer always picks the cheapest plan. A detailed
validation of the optimizer cost models is beyond the
scope of this paper and will be addressed in the future.

6.1 Experimental Setup
We implemented our query evaluation techniques in two
different database systems, a commercial ORDBMS and
Periscope, our own system built on top of the SHORE
storage manager from the University of Wisconsin [6].
SHORE provides various storage manager facilities
including file and index management, buffer pool
management, concurrency control, and transaction
management. The commercial system runs on Windows;
Periscope can run on either Linux or Windows. To
compare the performance of the ORDBMS with
Periscope we used a machine with an 850 MHz Intel
Pentium III processor running Microsoft Windows 2000
Professional and configured with 128 MB of memory and
a 10 GB IBM DJSA-210 IDE disk. For all other tests we
used a Linux 2.4.13 machine with 896 MB of memory, a
1.70 GHz Intel Xeon processor, and a Fujitsu

MAN3367MP hard drive with a SCSI interface and a 40
GB capacity. In both configurations SHORE is compiled
for a 16 KB page size, and the buffer pool size is set to 64
MB. The numbers presented in this study are cold
numbers, i.e. the queries do not have any pages cached in
the buffer pool from a previous run of the system. Each
of the experimental queries is run five times and the
average of the middle three execution times is presented
in the following graphs.

6.1.1 System Implementations
In this section we describe the specifics of both the
Periscope and the ORDBMS implementations. Both
systems contain the same tables, indices, and schema
information: a protein table, a B+-tree index on the
protein id attribute, a segment table, and a B+-tree index
on the type and length segment table attributes.

For the commercial ORDBMS we utilized its type-
extensibility mechanism to create an array-like user
defined type to support the primary structure, secondary
structure, and probability protein table fields. In addition,
we created a user-defined function labelled as Comm-CSP
to implement the protein table scan technique.

The segmentation approach is implemented in the
ORDBMS using the composite B+-tree index on the type
and length attributes of the segment table. Translation
from our queries to SQL is accomplished by using a
number of selection predicates in the SQL query to ensure
that the ordering constraints are satisfied and that the
resulting segments are from the same protein (see Section
4.2 for an example). After loading the tables we update
all the catalog statistics so that the ORDBMS’s query
optimizer has the most up-to-date statistical information.
We let the built-in query optimizer pick the best plan and
in the following graph label this approach as Comm-Seg.

As the Periscope system is a native system, it gives us
the flexibility of writing our own operators. We
implemented the four query evaluation techniques that are
described in Section 4. In the following experimental
sections, the abbreviations CSP, SSS, ISS, and MISS are
all implicitly understood to be implementations of these
algorithms in the Periscope system. When appropriate,
the MISS plan will be shown for all possible numbers of
query predicates, from two to the total number of
predicates in the query. This will be denoted by MISS(n),
and the number of predicates used in the individual MISS
plans will be referred to as the MISS number.

6.1.2 Data Set
To produce a data set for our experiments, we first
downloaded the entire PIR-International Protein Sequence
Database. This database is a comprehensive, non-
redundant protein database in the public domain and is
extensively cross-referenced [11]. Since the PIR data set
only contains primary protein structures, we then used the
Predator tool [10] to obtain predicted secondary
structures. The final data set consists of 248,375 proteins.

Each protein has approximately 41 segments, which
results in 10,288,769 segments. The Periscope protein
and segment tables are 259 and 355 MB in size,
respectively, while in the commercial system the protein
table is 390 MB and the segment table is 425 MB.

6.1.3 Queries
At this time we would like to discuss the intuition behind
the queries that we use in our experimental evaluation.
We found it surprisingly hard to find actual queries, as
queries from past studies are usually not well documented
and queries in current experiments are considered to be
confidential because they could reveal a great deal about
the actual experiment.

Looking back, we do not consider the lack of
scientific queries a drawback. Our goal is to build a
system that is efficient for any type of query, and the
ability to design our own queries allows us systematically
explore the entire search space. Hence we pick queries
based on the actual data set, i.e. we do not try random
queries that may have zero matches. This coarsely
models reality as scientific query proteins are generally
similar to actual proteins and will usually find at least a
few matches.

In our exploration of the search space we will look at
queries with both single and multiple predicates, with
varying query segment selectivities, and with varying
result protein selectivities. The complexity of our queries
makes it difficult to arbitrarily change the result
selectivity; we accomplish this in our system by widening
or lessening the gap predicates between actual query
predicates to return greater or fewer results.

6.2 Comparison with Commercial ORDBMS
The first experiment tests the simplest type of query, a
single-predicate exact match query1. In this test the
segment selectivity of the single predicate varies from
0.03% to 7%. Results are shown in Figure 4 for the
Periscope CSP, SSS, and ISS methods as well as for the
commercial system’s Comm-CSP and Comm-Seg
methods. Note that the MISS method is absent in this test
simply because it reduces to the ISS plan for single-
predicate queries.

This test shows that the Periscope methods outperform
both the commercial methods. The execution time for the
CSP consistently requires one-third of the time of the
Comm-CSP, while the Comm-Seg method performs
increasingly worse as the segment selectivity increases.
With the large execution time scale it is hard to
distinguish between the Periscope methods; the following
experiments will provide more conclusive results.

1 In the Comm-CSP method for this commercial ORDBMS,
only one match is returned per protein; therefore, for this
experiment only we modified the CSP method to also return
only one match per protein.

Additional experiments with the Comm-Seg and
Comm-CSP methods involving more complex multiple-
predicate range and gap queries exhibit the same result
trends witnessed in Figure 4 and are more expensive
relative to Periscope query execution times. In addition,
in the commercial ORDBMS the choice between the Seg
and the CSP plans has to be made explicitly by the user,
using different SQL queries. Furthermore, to investigate
the performance differences across the different query
evaluation algorithms and to use the query optimizer, we
need control over the choice of the query plan that is used
by the database system. This control is easily available to
us in Periscope, and for the rest of this study we only
concentrate on the Periscope methods. Note, however,
that our results are applicable to commercial ORDBMSs
with appropriate modifications to the query optimizer and
operator algorithms, which could be implemented by
ORDBMS vendors.

6.3 Single-Predicate Queries
The next experiment tests the performance of single-
predicate queries involving both exact match and range
predicates. In this test the segment selectivity of the
single predicate varies from 0.04% to 17%. Results for
this experiment are shown in Figure 5 for the SSS, ISS,
and CSP methods (MISS reduces to ISS as above).

This test shows that both the SSS and ISS methods
outperform the CSP method regardless of the segment
selectivity. This is because the CSP has to retrieve and
perform a complex scan on each protein to find matches,
whereas the other two methods only have to scan the
segment table or probe the segment index to retrieve
matching segments. The final protein id INLJ that is
necessary in the SSS and ISS methods does not contribute
significantly to the overall execution time because the
number of proteins to retrieve has been drastically
reduced. The ISS plan outperforms the SSS plan for
predicates with selectivity less than 10%. For less
selective predicates (those with higher predicate
selectivity values), however, the SSS plan becomes more

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7
Single Segment Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
Comm-CSP
Comm-Seg

Figure 4: Single-Predicate Exact Match Queries,
Commercial ORDBMS & Periscope Results

efficient than the ISS method. This goes along with the
rule of thumb commonly used in standard DBMSs that
predicates with selectivity greater than 10% should no
longer utilize B+-tree indices, but instead should be
evaluated with simple table scans [7].

6.4 Multiple-Predicate Range and Gap Queries
This set of experiments test more complex queries
involving multiple predicates with ranges and gaps. We
tested the algorithms with a variety of complex queries,
however in the interest of space we only present a few
representative experimental results here.

6.4.1 A Complex Query
In this experiment we use a query with nine predicates, in
which both the result protein selectivity and the various
segment selectivities stay constant. The variable in this
experiment is the ordering of the nine query predicates.
There are five non-gap predicates, four of which have a
segment selectivity of less than .03% (S) and one of
which has a segment selectivity of 7% (L). The result
protein selectivity is fixed at less than .1% by varying the
four gap predicates, which are inserted between every two
non-gap predicates. Figure 6 shows the results of this
experiment in which the position of the larger query
predicate varies from last in the query to first.

The results show that the CSP method is the only
method that varies widely depending on the position of
the large predicate. This implies that the execution time
of the CSP method is very sensitive to the selectivity of
the first predicate. Due to the nature of the FSM
matching algorithm, queries in which the first predicate
matches a large number of segments (like the L predicate)
require the FSM to do more work. Because the leading
predicate matches often, the number of times that the
FSM tries to match the subsequent predicates increases,
which in turn leads to longer CSP execution times.

This test also highlights the importance of the MISS
number on the performance of the MISS method. For
MISS(2-4) the index is scanned for various subsets of the
four most highly selective predicates, which in this test

are all very selective. In MISS(5), however, the index is
also scanned for the larger (less selective) predicate. This
adds considerable length to the execution time (recall that
the MISS algorithm picks predicates based on their
selectivities and not their physical order in the query).

The MISS number, in general, is dependent on the
segment selectivities and the final protein selectivity. The
MISS plan performs a number of index probes, which
reduces the number of proteins to be retrieved and
scanned. There is a balance between the costs incurred
from performing these probes and the costs saved by the
reduced number of proteins that must be retrieved. This
balance is also influenced by the result protein selectivity
in that the time required to perform a FSM scan of each
protein is affected by the result selectivity (we explore
this effect in the next set of experiments). The cost of
adding another query predicate to the MISS(k) plan is the
sum of the time to scan the segment index for the k+1th
predicate, the time to sort the results by protein id and
start position, and the time to add these results to the
segment merge join. Evaluating the k+1th predicate,
however, will further cut down on the number of protein
ids that emerge from the merge join, which in turn
reduces the number of protein tuples that have to be
retrieved. The reduction factor is roughly inversely
proportional to the selectivity value of the added
predicate. The time saved is the sum of the times to probe
the id index for the eliminated proteins, retrieve them, and
perform their complex scans. When this time saved is
greater than the time incurred by adding the k+1th
predicate, the MISS number should increase to k+1;
otherwise it is more efficient to remain at k.

Another important point to notice in Figure 6 is that in
many cases the optimal MISS method is an order of
magnitude faster than the CSP method! This experiment
demonstrates that having flexible query plans that adapt

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18
Single Segment Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
. CSP

SSS

ISS/MISS(1)

Figure 5: Single-Predicate Queries,
Varied Segment Selectivity 0

10

20

30

40

50

60

SSSSL SSLSS LSSSS
 Non-gap Query Predicate Arrangement

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
MISS(2)
MISS(3)
MISS(4)
MISS(5)

Figure 6: Nine-Predicate Queries, S Seg. Sel. = ~.03%,
L Seg. Sel. = 7%, Fixed Result Sel. < .1%

to query characteristics can significantly improve query
response times.

6.4.2 Effects of Segment and Protein Selectivities
In this experiment we use four three-predicate queries to
demonstrate the effects of segment and protein result
selectivities on the performance of the four algorithms.
The same results hold for queries with greater than three
predicates; examples of more experiments of this nature
can be found in the full-length version of this paper [12].

The three-predicate queries we investigate here have
fixed segment selectivities and varying result selectivities.
The result selectivity is varied by modifying the middle,
or gap, predicate. We increase the range of this gap
predicate until the upper bound reaches ∞. In the first test
the two non-gap query predicates have relatively high
segment selectivities; in the second they have low
segment selectivity values. The third tests a predicate
with a high selectivity followed by a predicate with a low
selectivity; the fourth reverses the order of these two
predicates. The results of this experiment are shown in
Figures 7, 8, 9, and 10, respectively.

Figure 7 contains the results of the query with two
non-selective predicates separated by a gap predicate.
Note that in this figure the result protein selectivity
increases beyond 100% as some proteins match in
multiple positions. It is interesting to note that the CSP
plan outperforms the other methods when the result
protein selectivity is less than 50% even though the
selectivity of the first predicate is relatively high. This is
because neither of the query predicate selectivity values
are low enough to justify doing a table or index scan to
reduce the number of proteins that have to be examined; it
is faster to simply perform the complex scan of the entire
protein table. When the result selectivity increases
beyond 50%, however, the situation changes. The cost of
performing a complex scan on a protein rises due to the
increased number of matches, which causes the FSM to
perform more comparisons. Consequently, it is more
time-effective to probe the segment index for both the

query predicates and merge the results. Only a subset of
the proteins then needs to be retrieved and none need to
be scanned; therefore, MISS(2) becomes the most
efficient method. The SSS and ISS methods still require
complex scans of the resulting proteins, and the subset of
proteins retrieved is not sufficiently reduced due to the
high selectivity of the most highly selective predicate.
These factors, along with the time required to perform the
segment table scan or index probe, account for the poor
performance of the SSS and ISS methods.

The results of this experiment performed with two
highly selective predicates are shown in Figure 8. Even
though the result protein selectivity is small for these
query predicates, the MISS(2) method still outperforms
the other three. The two index probes are fast and do not
return many results; consequently the merging phase and
protein retrieval are very efficient. The ISS method is the
next best query plan for this query. The single index
probe is performed quickly with only a few results. The
main time factor in this method is that the resulting
proteins must be scanned with the FSM. The SSS plan
shows the same trends as the ISS method; the difference
in execution time is based solely on the time required for
the segment table scan versus the segment index probe.

Figure 9 gives the results of a query with a non-
selective predicate followed by a more selective predicate
(lower selectivity value). The most noticeable result is
that of the CSP method, whose performance degrades
rapidly due to the high selectivity value of the first
predicate. On the other end of the spectrum, the ISS
method is initially the most efficient plan for this query.
This is because the most highly selective predicate has a
small selectivity value. Therefore the index probe takes a
short amount of time and drastically reduces the number
of proteins that must be scanned. The SSS method again
exhibits the same characteristics as the ISS method, with
the only difference being the longer time needed to scan
the segment table than to probe the segment index. The
MISS(2) plan remains consistent throughout and as the
result protein selectivity increases, replaces ISS as the

0

20

40

60

80

100

0 50 100 150 200
Result Protein Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
MISS(2)

Figure 7: Three-Predicate Query, P1 Sel. = 3.73%,

P2 Sel. = 3.33%, Varied Result Selectivity

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5
Result Protein Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
MISS(2)

Figure 8: Three-Predicate Query, P1 Sel. = .384%,
P2 Sel. = .385%, Varied Result Selectivity

most efficient method. Again, this is due to the fact that
as the protein selectivity increases, the cost of scanning a
protein also increases. Because the MISS(2) plan does
not have to perform complex scans, it becomes more
efficient. Initially, however, MISS(2) performs worse
than ISS because it performs index scans not only for the
highly selective third predicate but also for the less
selective first predicate, which takes longer than its
potential savings.

The final experiment reverses the order of the query
predicates so that the most highly selective predicate
occurs first, followed by the less selective predicate;
results are found in Figure 10. The different query
evaluation methods perform the same as in the previous
experiment with respect to each other with ISS being the
clear initial winner. The difference in these results is the
scale of the execution time. The CSP method performs
much faster than in the previous experiment due to the
fact that the first predicate’s selectivity is small; this also
reduces the time for SSS and ISS as their performance is
partially dependent on the time to scan a protein. The
MISS(2) plan’s execution time remains the same because
it performs the same index probes in both tests. As the
protein selectivity increases past the data points shown in
Figure 10, it appears that the MISS(2) method will again
outperform the ISS method by the same argument as in
the previous experiment.

As a final note we observe that our Periscope
implementation is extremely efficient and returns results
in a few tens of seconds for the 600 MB data set that we
have used! This fast query response time is very
desirable especially when scientists want to analyze data
by posing a number of successive queries and refining
these queries as they learn from the results of the
previous query.

7. Conclusions and Future Work
The secondary structure of proteins plays an important
role in determining their function. Consequently, tools

for querying the secondary structure of proteins are
invaluable in the study of proteomics. This paper
addresses the problem of efficient and declarative
querying of the secondary structure of protein data sets.

Our contributions include defining an expressive and
intuitive query language for secondary structure querying
and identifying various algorithms for query evaluation.
To help a query optimizer pick amongst the various
algorithms, we have also developed novel histogram
techniques to determine segment and result selectivites.

We have implemented and evaluated the proposed
techniques in a native DBMS we have developed called
Periscope. We have compared the performance of
Periscope with a commercial ORDBMS and have shown
that for the class of queries that we are considering,
Periscope provides an extremely efficient
implementation. As the experimental results show, the
system that we have developed can query large protein
databases efficiently, allowing scientists to interactively
pose queries even on large data sets.

There are a number of directions for our future work,
including developing algorithms to produce results in
some ranked order. We would like to design a framework
such that the ranking metric can be easily customized by
the user, as the model for ranking proteins is usually not
fixed but instead varies across scientists and may also
change frequently during the course of an experiment.
The ranking metric may take into account additional
information that is present in the protein, such as the
positional probability in the secondary structure, which is
currently one of the fields produced as output by protein
structure predication tools. Techniques that have been
developed for ranking results in other contexts may be
applicable here [8, 9, 18, 21].

Search engines for querying biological data sets often
employ a query-by-example interface. In BLAST, one of
the most popular tools for searching genes and the
primary structure of proteins, the system is presented with
a query sequence and the search engine finds the best
matches to this sequence [1, 3, 4]. The input sequence is

0

10

20

30

40

50

60

0 5 10 15 20 25 30
Result Protein Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
MISS(2)

Figure 9: Three-Predicate Query, P1 Sel. = 4.25%,
P2 Sel. = .385%, Varied Result Selectivity

0

8

16

24

32

0 8 16 24 32
Result Protein Selectivity in %

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
.

CSP
SSS
ISS/MISS(1)
MISS(2)

Figure 10: Three-Predicate Query, P1 Sel. = .385%,

P2 Sel. = 4.25%, Varied Result Selectivity

converted into a set of segments, and segment-matching
techniques are employed to evaluate the query. While our
work presented in this paper focuses on such segment-
matching techniques for querying on the secondary
structure of proteins, we would also like to explore the
use of a query-by-example interface for our current
system. Query-by-example interfaces require additional
input that allows the user to influence the mapping of the
query into segments to be matched. This additional input
can be fairly complex; as an example the user may be
allowed to specify a scoring matrix to assign weights to
different portions of the input query. The “right”
interface for specifying this mapping model can vary
between users, and designing an interface that is both
intuitive and easily-specified is a challenge that we hope
to undertake as part of our future work.

Experiments in the life sciences often involve
querying a number of biological data sets in a variety of
different ways. Ideally, a combination of both primary
sequence and secondary structure searches will lead to
more accurate protein function discovery [22]. This paper
only addresses the issue of efficient query processing
techniques for secondary structure. Hence the tool that
we have built would be an addition to the suite of
biological querying tools that exist today. Managing data
that is related to the entire experiment, including queries
using a number of different tools on a number of different
data sets, is in itself an interesting database problem and
is part of the long-term goal of the Periscope project.

Acknowledgements
This research has been supported by a fellowship from the
University of Michigan and by a gift donation from Eli
Lilly. We would like to thank Jack Dixon, Don Huddler,
and Jeanne Stuckey at the Univ. of Michigan’s Dept. of
Biological Chemistry, and Ernst Dow of Eli Lilly, for
their helpful discussions about the data analysis needs of
the scientific community. Much of our work presented in
this paper stems from our discussions with these groups.

References

 [1] www.ncbi.nlm.nih.gov/BLAST/.
 [2] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.

D. Watson. Molecular Biology of the Cell, 3rd ed. Garland
Publishing, Inc., 1994.

 [3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic Local Alignment Search Tool. J. Molecular
Biology, 215: 403-410, 1990.

 [4] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z.
Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and
PSI-BLAST: A New Generation of Protein Database
Search Programs. Nucleic Acids Research, 25(17), 1997.

 [5] M. M. Astrahan, et al. System R: A Relational Approach
to Database Management. In ACM Transactions on
Database Systems, 1(3): 97-137, 1976.

 [6] M. J. Carey, et. al. Shoring up persistent applications. In
SIGMOD, 383-394, 1994.

 [7] D. DeWitt, The Wisconsin Benchmark: Past, Present and
Future. The Benchmark Handbook for Database and
Transaction Processing Systems, J. Gray, ed., Morgan
Kaufman Pub., 1991.

 [8] R. Fagin. Combining Fuzzy Information from Multiple
Systems. In PODS, 216-226, 1996.

 [9] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In PODS, 102-113, 2001.

[10] D. Frishman, P. Argos. Incorporation of Non-local
Interactions in Protein Secondary Structure Prediction from
the Amino Acid Sequence. In Protein Engineering., 9(2):
133-142, 1996.

[11] D. George, W. Barker, H. Mewes, F. Pfeiffer, and A.
Tsugita. The PIR-International Protein Sequence Database.
Nucleic Acids Research, 24: 17-20, 1996.

[12] L. Hammel, J. M. Patel. Searching on the Secondary
Structure of Protein Sequences. Technical Report,
University of Michigan, 2002.

[13] E. Hunt, M. P. Atkinson, and R. W. Irving. A Database
Index to Large Biological Sequences. In VLDB, 2001.

[14] Y. E. Ioannidis. Universality of Serial Histograms. In
VLDB, 256-267, 1993.

[15] Y. E. Ioannidis, V. Poosala. Balancing Histogram
Optimality and Practicality for Query Result Size
Estimation. In SIGMOD, 233-244, 1995.

[16] R. M. Jackson, R. B. Russell. The Serine Protease Inhibitor
Canonical Loop Conformation: Examples Found in
Extracellular Hydrolases, Toxins, Cytokines, and Viral
Proteins. J. Molecular Biology, 296(2): 325-334, 2000.

[17] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava.
Multi-dimensional Substring Selectivity Estimation. In
VLDB, 1999.

[18] T. Kahveci, A. K. Singh. An Efficient Index Structure for
String Databases. In VLDB, 2001.

[19] F. Moussouni, N. W. Paton, A. Hayes, S. Oliver, C. A.
Goble, and A. Brass. Database Challenges for Genome
Information in the Post Sequencing Phase. In DEXA, 1999.

[20] M. Muralikrishna, D. J. DeWitt. Equi-Depth Histograms
For Estimating Selectivity Factors For Multi-Dimensional
Queries. In SIGMOD, 28-36, 1988.

[21] A. Natsev, Y. Chang, J. R. Smith, C. Li, and J. S. Vitter.
Supporting Incremental Join Queries on Ranked Inputs. In
VLDB, 2001.

[22] C. A. Orengo, A. E. Todd, and J. M. Thornton. From
Protein Structure To Function. In Current Opinion in
Structural Biology, 9: 374-382, 1999.

[23] S. Park, D. Lee, and W. W. Chu. Fast Retrieval of Similar
Subsequences in Long Sequence Databases. In KDEX,
1999.

[24] W. K. Purves, G. H. Orians, and H. C. Heller. Life, the
Science of Biology, 4th ed. Sinauer Associates, Inc., 1995.

[25] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.
Price. Access Path Selection in a Relational Database
Management System. In SIGMOD, 23-34, 1979.

[26] M. Sipser. Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

[27] H. E. Williams, J. Zobel. Indexing and Retrieval for
Genomic Databases. In IEEE Transactions on Knowledge
and Data Engineering, 14(1): 63-78, 2002.

[28] Z. Zhang, A. A. Schaffer, W. Miller, T. L. Madden, D. J.
Lipman, E. V. Koonin, and S. F. Altschul. Protein
Sequence Similarity Searches Using Patterns As Seeds.
Nucleic Acids Research, 26(17): 3986-3990, 1998.

