Efficient Exploration of Large Scientific Databases

Etzard Stolte, Gustavo Alonso

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)
ETH Zentrum, CH-8092 Zurich, Switzerland
{stolte, alonso}@inf.ethz.ch

Abstract

One of the most challenging aspects of scientific data
repositoriesis how to efficiently explore the catalogues
that describe the data. We have encountered such a
problem while developing HEDC, HESSI Experimen-
tal Data Center, a multi-terabyte repository built for
the recently launched HESSI satellite. In HEDC, sci-
entific users will soon be confronted with a catalogue
of many million tuples. In this paper we present a
novel technique that allows users to efficiently explore
such a large data space in an interactive manner. Our
approach is to store a copy of relevant fields in seg-
mented and wavelet encoded views that are streamed
to specialized clients. These clients use approximated
data and adaptive decoding techniques to allow users
to quickly visualize the search space. In the paper
we describe how this approach reduces from hours to
seconds the time needed to generate meaningful visu-
alizations of millions of tuples.

1 Introduction

Scientific databases storing continuous observations of
natural phenomena will soon store petabytes of data
[26, 11]. Finding relevant data points is a major chal-
lenge in these systems. We have faced this problem
during the development of HEDC (the HESSI Experi-
mental Data Center), a data repository that will store
the observations of the recently launched HESSI satel-
lite (High Energy Solar Spectroscopic Imager). Sim-
ply stated, HESSI observes the sun at different en-
ergy ranges and stores a count of the number of elec-
trons detected as a function of time. HEDC stores this
data stream (raw data) and builds catalogues indexing
events of interest (derived data) such as solar flares or
gamma ray bursts. The catalogues will also serve to
record user analyses so as to facilitate sharing of sci-
entific results. It is expected that these catalogues will
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soon contain several million tuples. Although HEDC is
not an exceptional case, existing systems provide little
or no support for browsing such catalogues, expecting
users to explore them by posing queries. Given the
data volume involved, this is simply not realistic and
often leads to valuable data being lost in the system.

Several approaches have been proposed to tackle
this problem [15]. Unfortunately, we are not aware of
any system capable of coping with the volume of data
involved in HEDC. For instance, [16, 24] mention a
scalability of up to one million tuples, but provide no
indication of the time necessary to compute the visu-
alizations. In comparison, HEDC requires a solution
scalable to 10 million tuples per user request, unlim-
ited size of the entire catalogue, and response time
below a few seconds for many simultaneous users.

In this paper we present such a solution. The ba-
sic idea 1s to reorganize the catalogues as a number
of multi-dimensional arrays and allow users to specify
ranges in any of the dimensions. Based on these ranges
the information is then presented in a compact and ef-
ficient manner using density (number of tuples per bin)
and extent (location and extent of each tuple or cluster
of tuples) plots. To achieve the necessary performance
for interactive use, we also implement several impor-
tant optimizations. First, the arrays are pre-processed
and sorted according to the most relevant attributes.
Then they are partitioned across the dimensions to
form the equivalent of materialized views. Since the
partitioned views tend to be large, we encode them
using a wavelet transformation. Decoding takes place
at the client side to minimize the load at the server
(otherwise interactive exploration would require a very
powerful server). To further speed up the generation
of the plots, the client works on approximated and ag-
gregated versions of the original data.

Using this approach, we have been able to reduce
the time it takes to create a 2-dimensional (2D) den-
sity plot for 1 million tuples from 22 minutes (using
conventional tools) to 1.6 seconds. We have also tested
the scalability of the system to up to 8.4 million tuples
per plot, taking only 5 seconds to dynamically generate
such plots. Such a performance improvement is par-



ticularly relevant because the techniques we propose
are not specific to HEDC or astrophysics data. They
can be used with a wide variety of data and coupled
with many different visualization tools. Therefore, we
believe the paper makes crucial contributions both to-
wards more efficient scientific databases and a better
understanding of how to explore large data spaces us-
ing approximated and wavelet transformed data.

In what follows, we first introduce the context and
our goals and discuss related work (Section 2). We
then describe the solution in detail (Section 3) and
provide an extensive experimental evaluation (Section
4). The paper concludes with a discussion of the main
ideas (Section 5), a brief description of how these ideas
have been implemented (Section 6), and the conclusion

(Section 7).

2 Motivation and Goals
2.1 HESSI and HEDC

The HESSI, High Energy Solar Spectroscopic Imager,
satellite! was launched on the 5th of February, 2002.
Its goal is to provide the data necessary to improve
our understanding of solar flare physics. Its only sci-
entific instrument is an array of detectors that contin-
uously record the energy and time of impact for each
photon reaching the detectors. Data is produced at a
rate of 2.0 GB per day and the duration of the mis-
sion is planned to be 2 to 3 years. The observations
are first buffered at the satellite and then forwarded
to a ground station at pre-established intervals. Be-
fore publication in the form of a collection of files, this
raw-data stream is calibrated, analyzed for possibly
relevant events, segmented along the time axis, and
packaged into units of roughly 40MB. For each relevant
event detected, some summary data and a number of
data products are generated which are then attached
to the corresponding raw-data unit. This extra infor-
mation constitutes the basic catalogue of events. In
about 24 hours, the raw-data is sent to HEDC? and
two other repositories at the Space Science Lab (UC
Berkeley) and at NASA’s Goddard Space and Flight
Center (GSFC).

HEDC, the HESSI Experimental Data Center, has
been built to optimize the scientific return of the
HESSI mission by providing better exploration tools
and a more sophisticated data repository. Thus, when
the raw-data units reach HEDC, they are once more
searched for relevant events. This time with algo-
rithms that detect a wider range of events such as solar
flares, gamma ray bursts or quiet periods. The result
of this new search 1s the standard catalogue, which 1s
also used to record any analyses later performed by
users. Each entry in the catalogue is a tuple indicat-
ing the type of analysis performed, its parameters, and
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additional information used to classify the entry.

Towards the end of the HESSI mission, the raw-
data volume will be about 1.2 TB with at least 2 TB of
user generated data products. The basic and standard
catalogue are expected to contain several million tu-
ples. Currently, more than 210 GB of HESSI data and
around 25 GB of measurements taken by the Phoenix-
2 Broadband spectrometer (Bleien, Switzerland) are
available at HEDC.

2.2 Exploring Large Tuple Catalogues

Searching for relevant events in large scientific
databases poses two basic problems. The first one
is the transformation of raw data into scientifically
meaningful information (in [25] we show how to speed
up such procedure). The second problem is how to
navigate the catalogues summarizing the scientifically
useful information (i.e., analyses already performed).
Since working with the raw data is a time consuming,
manual process, many users rely instead on the cat-
alogues as the starting point for data exploration. A
good approach to visualize large catalogues, suggested
to us by HEDC users, is to provide a graphical repre-
sentation of how the existing analyses are distributed
over the parameter space. The idea is based on the
experience that although not all scientists share an
identical notion of what is relevant, a general consen-
sus exists. As a result, analyses tend to cluster around
well defined regions of the data. Being able to quickly
locate such regions and ascertain their characteristics
would be a great help when exploring the available
data. Following this idea, HEDC supports two forms
of visual representation: density and extent plots.

2.3 Density Plots

HEDC currently supports density plots with up to 3
dimensions. Each dimension can be used to represent
either a single attribute (e.g., peak rate) or two cor-
related attributes specifying a range (e.g., start and
end time of an observation). In a density plot, the
range assoclated with each dimension is divided into
intervals of the same size. These intervals define one-,
two-, or three-dimensional bins depending on the num-
ber of dimensions involved. For each bin, we count
the number of tuples that correspond to the intervals
defining the bin. In this regard, density plots are not
unlike histograms except that both the ranges and in-
tervals in each dimension are not known in advance.
For presentation purposes, density plots can be post-
processed by arendering algorithm (e.g., to interpolate
boundaries, introduce transparencies, etc). Figure 1
shows a contour rendered 2D density plot for 128 bins
and 4 attributes (2 attributes per dimension). The
plot shows the number of tuples available in each bin
(darker color indicating more tuples), thereby allowing
users to quickly identify areas where relevant data is
located (hot-spots).
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Fig. 1: Density plot (128*128 bins, 524103 tuples).

Excluding the (optional) rendering step, the run-
time behavior of density plots is independent of the
number of hot-spots, produces little network traffic,
and requires only minimal processing capacity on the
client side. The challenge with density plots is how to
generate them fast enough for the exploration proce-
dure to be interactive even if they involve millions of
tuples.

2.4 Extent Plots

Density plots aggregate information on a per bin ba-
sis. Extent plots also work with the same type of bins
but do not aggregate the information. Every tuple
falling into a bin is represented (a tuple can cover sev-
eral bins). For efficiency purposes, if the number of
elements exceeds a given threshold, the extent plot
might group tuples and display them as a single ob-
ject (see section 3.6). Figure 2 shows such a 2D extent
plot based on 2 attributes per dimension, rendering ev-
ery tuple as a transparent square. The intensity of the
square indicates the number of tuples it represents. As
a result of this rendering approach, areas with many
overlapping tuple ranges appear as brighter patches.

Fig. 2: Extent plot over energy and time

In contrast to density plots, extent plots require the
actual tuple data. Their runtime behavior (for simple
algorithms) is thus roughly proportional to the num-
ber of tuples to be processed. As a result, extent plots
tend to put a high load on server and network. As
with density plots, the problem then arises how to dy-
namically construct extent plots so that they can be
used interactively.

2.5 Related Work

Using graphical representations to navigate data is not
a new idea. In our case, the challenge comes from the
volume of data involved and the requirement to pro-
vide an interactive solution. In this regard, tools for
exploratory data visualization already exist. Projects
such as VQE [7], DEVise [18], VisDB [16], Tioga [27] or
Polaris [24] support interactive database exploration,
often through visual queries. Systems like Spotfire [23]
and XGobi [6] also allow brushing and zooming, which
can be used to refine the search. Most tools also pro-
vide some form of dimension reduction to speed up
processing (e.g. [16, 23]). Unfortunately, neither these
systems, nor any of the techniques for which published
experimental results exists can cope with the require-
ments of HEDC. The largest data-sets used for visual-
ization we could find were in [15, 16], where a theoret-
ical limit of 1 million tuples is mentioned and experi-
mental results are shown only for up to 65-10% tuples.
In [24] a test with 6 million tuples is mentioned, but
no performance measures are given.

Materialized views are a well know technique to
speed up data access [1, 4, 5, 17]. To provide dif-
ferent quality and resolution levels on views we use
wavelets. Alternatively, one could use methods such
as sampling [9, 10], histograms [13], or techniques such
as quadtrees or octrees [8]. However, the quality of
wavelet encoded views is generally higher for range-
sum queries over dense [29] and sparse data cubes [28].
Further work has shown that view updates are possible
when wavelets are being used[19]. [3] generalized this
work to include aggregated and non-aggregated views.
Wavelet encoding of multi-dimensional arrays has al-
ready been implemented [22], but without considering
the overall costs, especially the time spent for decod-
ing. There is also some work on data encoding [2] as a
means to find and analyze the data but only applied to
individual data-sets. Other work has focused on query
processing inside wavelet space [3] or through some
density function [21]. However, and to our knowledge,
there has been no work done in the area of interactive
database visualization equivalent to the one reported
in this paper.

Histograms capture distribution statistics in a space
efficient fashion. They have been found to work well
for numeric value domains, and have long been used
to support cost-based query optimization [12], approx-
imate query answering [3, 21] and data mining [14].



In principle, density plots are histograms but unlike
other approaches, such as [19, 28], our technique is
suitable for any quality up to lossless reconstruction
of the original attribute vector, with flexible bin size
and a dynamic selection of attributes.

3 Our Methodology

This section describes how to visualize large tuple
collections. The starting point is to combine se-
lected attributes (3.1) of pre-processed tuples into low-
dimensional views (3.2), partition and encode these
views (3.3), and upload them to the DBMS (3.4). Dur-
ing query processing, the DBMS matches the query
attributes with the appropriate view segments, which
the clients download (in part or full), decode (3.5) and
process for visualization (3.6).

3.1 Select Fields for Exploration

HEDC supports interactive exploration based on cer-
tain attributes of the tuples in the catalogues. The cat-
alogues reference astro-physical analyses, meta-data
describing these analyses, and collections thereof. The
actual information is distributed across 21 tables and
encompasses several hundred fields. For simplicity in
handling, exploration of multiple attributes (2D and
3D plots) is restricted to attributes on the same table.
This is not really a limitation since different tables
contain different types of events that are typically in-
dependent of each other. The decision to include an
attribute into a view is based on user requirements
and attribute type. For instance, in the context of
HEDC, exploration is not performed based on ordinal
or textual attributes and, therefore, these can be ig-
nored for this purpose. We currently use 8 attributes
for exploration purposes (peak rates at two different
energy levels, start and end time of the observation,
minimum and maximum energy levels observed, and
x/y position of the satellite with respect to the sun).
Depending on future user feedback, this number might
rise to a maximum of 20 to 30 attributes. Except for
the peak rates, these attributes are pair-wise related
and each pair can be used to define an interval over
the corresponding dimension.

3.2 Construct Views

Instead of using the tuples directly, we reorganize them
into views. A view is a two dimensional array of size
T x A, where 7 is the number of tuples included in
the view, and A the number of attributes included in
the view. In a view, each cell i, 5 corresponds to the
value of the j** attribute in the 7*” tuple. As we will
later discuss, the view is sorted according to one of
the attributes to improve compressed storage size and
speed up visualization. Thus, a view is a selection
over the relevant part of the catalogue eliminating all
attributes that will not be used for exploration.

Our wavelet encoder expects all attribute values
to be representable as positive valued 27-bit integers
without overflow. This means that negative values
need to be shifted into the positive range. Larger in-
teger values need to be encoded into two cells of the
view, with the corresponding increase in storage and
processing time. The same technique is needed to re-
tain precision in floating point numbers. In HEDC,
this problem is greatly simplified by the nature of the
data. Negative integers can be simply shifted within
the [0..2%27] range without creating overflow. Similarly,
the two floating point attributes used (the two peak
rates) can be scaled into a single cell without any
measurable loss of precision. In all cases, the values
are scaled back into their original domain before cre-
ating the corresponding plot. Overall, the increase in
storage space due to view construction is expected to
remain below 30% of the total RDBMS size.

3.3 Partition and Encode Views

To improve performance and facilitate handling, the
views are partitioned along the primary sort key, re-
sulting in view segments. Optimal segment size de-
pends on a multitude of system parameters. For our
system setup, we have found segments containing at-
tributes of around 1 million tuples to be appropriate.
This yields an average encoded segment size of, e.g.,

2.2 MBs for a view with 6 attributes.
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To further optimize segment handling, we com-
press them. Compression takes place by encoding the
segments using a wavelet transformation. A wavelet
transformation was chosen as the best option given our
requirements: lossless compression, high compression
ratio, progressive transfer and fast and robust decod-
ing. Even though the compression ratio depends on
the actual attribute values being encoded, the other
requirements hold true for any numeric data source.
In this, we follow many others who use wavelet decom-
position in signal processing [2], clustering [22], query
processing [21, 3, 20] or indexing [30]. To implement
the transformation, we licensed the source code of a
commercial wavelet package®. It supports variable bit
size representations for all data processing operations
(quantization, line-based DWT, transformations), file
seeking (to extract the coefficients of selected param-
eter sub spaces) and arbitrary segment sizes of up to
232 bytes in size. It does not require explicit signal
extension at boundaries and is thus memory efficient.
The C++ source code is a platform independent imple-
mentation (gce greater or equal to version 3.0). For the

3http:/ /maestro.ee.unsw.edu.au/~taubman /kakadu/



integration we made minor adjustments and wrapped
the library in JNT (Java Native Interface) calls.

3.4 Upload View Segments

Views are created by batch jobs and stored in external
files. Each file contains a view segment. For each
one of these files, context and summary information
is extracted and stored in reference tuples (indexed
according to the summary information). During query
processing, these indexes are used to find the proper
files. We mark segments as outdated when 1% of its
tuples have changed. To determine when to update a
view, a daily batch job counts all insertions, deletions
and edits for each segment. View update is done off-
line, as part of the periodic updates performed on the
system (mainly, when new data is delivered from the
satellite).

3.5 Decode View Segments

The visualization step occurs at the client. Thus, the
encoded view segments need to be shipped to the client
and decoded there before the corresponding plot can
be constructed (Figure 4). During the decoding pro-
cess (before building the plot) we adapt the quality
and also the resolution of the view. Both adaptations
are intrinsic to wavelet decoders and greatly influence
resource requirements as well as performance.
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Fig. 4: Resolution adaptation during decoding.

Quality adaptation takes place by varying the num-
ber of coefficients used to reconstruct the view during
decoding. The resulting array size is the same as the
original but the contents of each cell are an approxi-
mation of the real value. A view reconstructed using
100% of the coefficients is a full-quality view, other-
wise it 1s a low-quality view. The advantage of quality
adaptation is that decoding and transfer times are sig-
nificantly smaller if only a fraction of the coefficients
are used.

Resolution adaptation takes place by varying the
size of the decoded view. The decoded view can be
made as large as the original (full-resolution, i.e., the
resulting array has the same number of cells as the
original) or it can be made smaller by multiples of
2 (low-resolution). The reduction for a plot over T
tuples for B bins is controlled by the resolution factor
r = [0..log,(%)], with » = 0 implying full-resolution.
In a low-resolution view the original size of 7 x A is
reduced to er * A. The reduction occurs through an
averaging of groups of 2" tuples.

Resolution adaptation is only possible if the visual-
ization routine allows inputs of variable size. If that is
the case, low-resolution views typically result in con-
siderable faster processing times both for decoding and
for constructing the plots. In addition, the result-
ing view is much smaller. For example, uncompressed
2D extent plots with 2 attributes per dimension over
8.4-10% tuples require 174 MBs of RAM, whereas the
approximated plot at 1/32th the resolution needs only
5.5 MBs of RAM.

3.6 Calculate Plots

Once the view has arrived at the clients and has been
decoded, the corresponding plot can be calculated. For
reasons of space, we discuss only how this 1s done for
density plots; extent plots use a similar algorithm.
Our algorithm for producing a density plot com-
putes the values for equi-distant bins directly from the
decoded view segment. The process is straightforward
and the only complication is due to having to take res-
olution adaptation into account. Given below is the
simplified pseudo code for computing 3D density plot
(measure: count) with bin size b1 * b2 % b3 over 3 at-
tributes (al, a2, a3) with resolution r calculated over
view v. The 3D array count contains the data to plot.

for (int i=0; i<number of tuples; i++)
pl = v[i,a1]l / bi;
p2 = v[i,a2] / b2;
p3 = v[i,a3] / b3;
count [p1,p2,p3] += 2°r;

The algorithm proceeds as follows. For every row
in the view, the bin position is calculated and the bin
value updated. The bin position (pl, p2,p3) is deter-
mined by dividing the 3 attribute values by their re-
spective bin sizes. The count is determined by the
resolution factor, so that at full-resolution the count is
incremented by 2Y, and by 27 for low-resolution views
since every entry represents 2" actual tuples.

The runtime behavior of this algorithm is linear
with respect to the number of array elements. The
effect of low-resolution views is obvious in this case as
it reduces the number of rows in the views by a fac-
tor of 21—r In theory, the resolution could be reduced
until the number of rows in the decoded view equals
the number of bins in the plot. This would yield the
fastest possible way to calculate a plot from the en-
coded view, although the approximation error would
be very high. This can be done with 1D plots. For
2D and 3D plots it does not work because the non-
sorted attributes are less correlated and the averaging
becomes random.

As we use the same technique for density as well
as for extent plots, their runtime behavior is identical.
Resolution adaptation applied to extent plots deter-
mines the maximum number of objects to be plotted.



With 8.4-10° tuples and a resolution of 1/32th, for ex-
ample, a maximum number of 262-103 data points can
be drawn. In practice though, the plotting algorithm
will further condense these to around 1024 data points,
which in the unlikely case of an even distribution of the
tuples across the parameter space, would each repre-
sent 8192 tuples. For instance, a 2D plot over time and
energy, size and width of the square would represent
the average time and energy values of the 8192 tuples
included in the data point.

4 Experiments

In this section we evaluate the i1deas proposed above.
We first describe the experimental setup (4.1). We
then motivate our choice of error-measures (4.2). As
a first step in the evaluation, we consider different al-
ternatives to our approach (4.3) before describing in
detail the effect of using views (4.4), encoding these
views with wavelets (4.5), and performing a quality
adaptation (4.6) and a resolution adaptation (4.7). We
also provide the adaptation parameters used in HEDC
that allow visualization of any number of tuples up to
8 million in less than 5 seconds (4.8).

4.1 Setup

HEDC has been implemented using a 3-tier architec-
ture on top of an Oracle 8.1.7 RDBMS and a number
of analysis servers. HEDC can be accessed through ei-
ther a Web based client using a conventional browser
or a Java-based client, the StreamCorder. All the ex-
periments described below have been performed with
the StreamCorder, running on a Java 1.2.2 JVM on a
dual Pentium IT 450 MHz PC with 512 MB RAM, a
FireGL graphics card, and a 100Mb/s Ethernet net-
work connection to the server. Unless otherwise men-
tioned, all measurements represent the average for 100
test runs.

HEDC contained at the time of writing roughly
300-103 tuples created through processing data from
other solar observatories. For the tests, additional
data-sets with up to 8.4-10° tuples were generated and
evaluated. Each generated data-set represents a real-
istic tuple distributions in attribute space. All tests
access every tuple stored in the database (selectivity =
100%). The tuples in all data-sets are contained within
the boundaries of the same attribute value ranges, and
show the same three hot-spots. Around 10% of the
tuples are not associated with one of the three hot-
spots, and represent systematic background scans and
investigations independent of the major events. Client
side decoding and visualization processing was done
on a dedicated computer. Visualization times do not
include the optional post-processing, such as contour
rendering (which adds a constant factor of about 1
minute to each plot).

4.2 Error Measures

The goal of the experiments is to determine the im-
provement in overall response time, and to measure
the visualization error introduced. We measure the
error of the approximated views and of the resulting
plots as the quadratic norm over all n view cells or all
n plot bins. Both absolute error (F,)

B0 = o I (1

and the relative error (FE,)

n 1 7

no= max(

are calculated, with f' a full-resolution and I* the
corresponding low-resolution attribute or plot vector.
The absolute error is useful to document a trend, for
example, to measure the impact of progressive quality-
and resolution-adaptation on plot accuracy. Yet, to
evaluate the actual impact of the approximation inde-
pendent of the value range, the relative error is more
helpful. In the case of approximated views and extent
plots, the errors capture the difference with the full-
quality and full-resolution views. In the case of the
density plots, the error reflects the difference of a plot
bin value to the actual bin value.

4.3 Standard JDBC Approach

As a baseline for the measurements, we use the ap-
proach followed by most existing systems. This is
based on direct connections from the clients to the
server through, e.g., a JDBC interface. As an alterna-
tive, we also consider a direct connection to the server
from the client but using an export utility instead of
the JDBC interface. In both cases, the data is located
through the same type of queries. In the case of density
plots, typically aggregation functions (such as count,
avg, min or maz) are requested for equi-distant bins
along continuous attributes. A 1D density plot will
then execute B range queries (one for every bin), a 2D
plot will execute B? queries, and so forth.

Let us consider the example of a density plot based
on pairs of attributes over b bins, with the 4 queried
fields being start and end of the observation time
and maximum and minimum energy. Our first naive
attempt using standard count(*) queries on indexed
fields in combination with set operations took hours
to finish a 128*128 plot over a million tuples. To
optimize, we eliminated the full table access in ex-
change for creating and dropping temporary materi-
alized views and subsequent index range scans. For
our Oracle 8.1.7 installation, the following code frag-
ment was the fastest SQL code we could devise:



DROP MATERIALIZED VIEW;
COMMIT;

CREATE MATERIALIZED VIEW temp AS
SELECT maxEng, minEng FROM hle_ana
WHERE ( start >= ’2002-01-01 00:16:40’)
AND  start < ’2002-01-01 02:20:557))
UNION
SELECT maxEng, minEng FROM hle_ana
WHERE ( end >= ’2002-01-01 00:16:40°)
AND  end < ’2002-01-01 02:20:55°)
)

SELECT count (*) FROM (

SELECT rownum FROM temp

WHERE (maxEng >= 2709) AND (maxEng < 3000 )
UNION

SELECT rownum FROM temp

WHERE (minEng >= 2709) AND (minEng < 3000 )
)

Figure 5 displays the time necessary to compute
plots with 128 bins for 2 (1D) and 4 (2D) attributes us-
ing this SQL statement as a function of the selectivity
of the query. Even the performance of this optimized
SQL/JDBC code is short of interactive database visu-
alization by several orders of magnitude. In the case
of 2 attributes, a plot of only 65 - 103 tuples needs
1.4 seconds and 174 seconds for 8.4 - 10° tuples. Due
to the quadratic runtime behavior of the underlying
algorithm, processing time explodes in the case of 4
attributes from 2 minutes to 13.46 hours as the num-
ber of tuples increases. Extent plots are even more
expensive to compute since, in addition to the query
processing, the attribute data has to be downloaded
to the client.
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Fig. 5: 1D/2D density plot time vs. data-set size.

Given the amount of data involved, using the JDBC
interface is certainly not the best option. An alterna-
tive often used is to export the data rather than ex-
tracting it through a query. For this purpose, we have
used the Oracle Export Utility which, given a query,
returns a file compressed in a proprietary format. For
comparison purposes, we have used a 2D plot over 10°
tuples with 128%128 bins and 4 attributes. The results
are shown in tables 1 and 2. Using the export utility,

the overall time to compute a density plot is about
half the time needed when using a JDBC interface,
yet nowhere near the response time needed for an in-
teractive exploration. The additional plot time for the
export case is due to the need to extract the data from
the file sent.

4.4 Server-Side Optimization: Views

An obvious optimization over these approaches is to
use materialized views rather than computing them
every time. Moreover, these views do not really need
to be extracted using queries or an export utility. Since
they need to be shipped to the client anyway, they can
as well be stored in files. This adds a small penalty
when several files need to be combined to produce the
requested range but this penalty turns out to be neg-
ligible compared with other costs.

In a first approximation, we simply store the seg-
mented views as gnu-zipped files. Using the same test
data as for the JDBC and export utility cases, the
advantages of using views materialized in files can be
seen in tables 1 and 2. The use of a view increases
plotting performance by a factor of 70 (6 seconds), as
it involves merely locating the relevant view segment,
downloading it to the visualization client, decoding it
and then processing it. In the case of HEDC| locating
the view segment and returning an URL to download
requires 2 to 4 indexed queries, so that performance is
very good (in our experience, much better than having
the view stored in the database)

Time[s] | sql/jdbc  export view.gz
query 440.45 264.02 0.25
download - - 2.30
decode - - 2.13
plot - 1.31 1.31
440.45 265.32 5.98

Tab. 1: Times [s] to generate density plots (10° tuples).

For extent plots, the procedure is very similar ex-
cept that the actual tuple data must also be sent to
the client. This is extremely slow using the JDBC in-
terface (22 minutes) (Table 2). In all cases, once the
data is on the client side, the simple extent plot algo-
rithm chosen for this example completes in less than
6 seconds. The same applies to the export tool except
that the data is much more compressed and, therefore,
the costs for downloading are smaller.

Time[s] | sql/jdbc  export view.gz
query 440.45 263.85 0.25
download 820.9 - 2.30
decode - - 2.13
plot 5.56 5.56 5.56
1266.91 269.41 10.24

Tab. 2: Times [s] to generate extent plots (10° tuples).

With these results, it is clear that interactive ex-
ploration can only be done when using view segments



materialized outside the database. Still, the approach
used so far requires over 10 seconds for a extent plot
with one million tuples. To obtain real interactivity,
further optimizations are necessary.

4.5 Wavelet Encoded Views

Using wavelets allows to implement the quality and
resolution adaptation necessary for interactive explo-
ration. However, the fact that the view may contain
several un-correlated attributes introduces some limi-
tations on the level of adaptation that is feasible.

The compression ratio for wavelet encoded views
is influenced by the correlation among the attributes.
Figure 6 displays the relative error for 4 attributes
combined into a view and sorted along attribute 1
(start time of an observation). Attribute 1 and 2 (end
time of an observation) are highly correlated, whereas
attributes 3 (minimum energy) and 4 (maximum en-
ergy) are not correlated with the time based attributes,
so that they represent a random signal. As a result,
a large number of wavelet coefficients 1s needed to en-
code attributes 3 and 4, and (compared to attributes
1 and 2) also a higher percentage is needed to decode
to a reasonable quality level. In figure 6 the error re-
mains very small (0.01) for all 4 attributes up until
around 20% of the coefficients. While the error for the
first 2 attributes continues at very low levels beyond
that threshold, the error for the attributes 3 and 4
increases dramatically. Thus, to achieve plots of rea-
sonable quality over this data-set, more than 20% of
the encoded view segment file should be used. A 1D
plot of the first 2 attributes, on the other hand, would
yield very good approximation quality using only 1%
of the coefficients.

Relative View Error vs. Number of Coefficients
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Fig. 6: Relative view error vs. view quality.

Figure 7 displays the storage requirements for views
composed of attributes correlated and not correlated
with the sorting attribute. Shown is the size of a single
view segment versus increasing number of tuples with
2,4 and 6 attributes. For 2 correlated attributes (1 and
2), a data-set encompassing 8.4 - 10° tuples requires 6
MBs of storage. A view with an additional two, non-
correlated attributes of equal type increases storage
requirements by more than a factor of four to 27 MBs.

Adding more correlated or un-correlated attributes (of
identical or equal type) will increases segment size by
6 or 27 MBs respectively.
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Fig. 7: Encoded view segment size vs. tuple count.

Even accounting for this factor, wavelet encoding
yields a high compression ratio. Table 3 displays the
amount of disk space required to hold increasing num-
ber of tuples for various storage methods. All methods
allow a lossless reproduction of the tuples and show a
more or less linear increase in storage size. The sizes
do not scale evenly, as the tuple distributions for dif-
ferent sizes were statistically similar, but not identical.
With 27 MB for 8.4 - 10 tuples, wavelet encoded view
segments require less than 20% of the storage used
by an Oracle RDBMS (just the table space, without
indexes). The byte file generated the Oracle Export
utility yields the highest compression ratio (16 MB).
An ASCII view file will require 174 MB, which is still
less than half of the DBMS size. The simple gnuzip
compression of these ASCII segments reduces the size
for 8.4 -10°% tuples to less than 40 MBs.

Tuples[10°] | dbs export  view view.gz  view.wav

65 6 0.13 1.55 0.47 0.30

13 11 0.26 3.10 0.89 0.60

262 22 0.51 5.58 1.37 0.95

524 45 1.00 9.74 1.89 1.33

1048 90 2.00 16.11 2.88 2.09

2097 | 179 4.00 41.61 8.77 6.13

4194 | 359 8.00 91.77 21.24 15.20

8389 | 718 16.00 174.63 37.05 26.68

Tab. 3: View Size in MB for various storage methods.

4.6 Network Optimization: Quality

Figure 6 demonstrated the high quality of approxi-
mated views at small percentages of coefficients used
when the attributes are sorted and correlated. Figure
9 displays the absolute error of density plots based on
such approximated views. Shown is the absolute error
of a 128*128 bin density plot versus decreasing quality
for a data-set of 524-103 tuples. For this data-set first
the error for the 4-attribute plot and then the one for
the 2 attribute plot increases at 50% from near zero

up to 630/945 at 5% of the coefficients.
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Density Plot Error vs. View Quality (128*128 bins, 52410° tuples)
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Fig. 9: Abs. density plot error vs. view quality.

What is the impact of such an absolute error of
700 on the visual accuracy of the plot? In the case
of density plots the difference between the full-quality
plot (Figure 1) and a plot based on 10% (Figure 10)
is quite small and the 3 hot-spots are still easily dis-
cernible. For extend plots (2 attributes, 512 objects)
the result is similarly good, with usable plots even at
10% of the coefficients. Clearly visible is the reduced
accuracy of the time attribute, as the view was sorted
along energy. This shows, that quality adaption can be
applied to wavelet encoded views holding any numeric
data, even random values.
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Fig. 10: Density plot (128*128 bins, 524-103 tuples,
10% view quality).

Yet, on a fast Ethernet connection quality reduction
is not a big advantage, mostly because download time
1s small compared to decoding time. Figure 11 displays
the times spent querying, downloading, decoding and
then calculating the density plot with decreasing view
quality for 4.2-10° tuples. Although the overall time is
reduced by half, if view segments with 10% coefficients



Density Plot Time vs. View Quality (128128 bins, 4.2:10° tuples)
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Fig. 11: Overall plot time vs. view quality.

are utilized, the dominant factor in all cases is the
decoding time. It is this decoding time that needs to
be reduced to achieve interactive exploration.

4.7 Client-Side Optimization: Resolution

The decoding time can be reduced through resolution
adaptation. Figure 12 displays the absolute error of
density plots versus decreasing decoding output size
(resolution). Measurements were done for 8 data-sets
ranging from 65-10% to 8.4-10° tuples. As the num-
ber of coefficients (quality) used was 10%, the error
is greater than zero for the original resolution (1/1).
Logically, the absolute error increases with the size.
At lower resolutions the absolute error increases from
original to 1/1024th of the original resolution by a fac-
tor of 2 to 3.

Density Plot Error vs. View Resolution (128128 bins, 10% quality)
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Fig. 12: Abs. plot error vs. view resolution.

Even at those resolutions the error is quite low com-
pared to low quality approximations, which showed a
much steeper decrease in accuracy. This is due to the
fact that the number of data points generated after
decoding still greatly exceeds the number of plot bins.
Thus, a plot based on a data-set with 65-103 tuples
in size still over-samples at a resolution of 1/1024th
each bin with 65 values. Figure 13 shows the same
density plot seen at 10% quality in figure 10, but this
time at 1/16th of the resolution. The three hot-spots
are still clearly visibly, but the value ranges are more
condensed. At 10% quality the un-correlated energy
attributes (min-/max-energy) are more distorted than
the much better approximated time attributes (start-/
end-time).

Figure 14 displays the overall visualization speedup
for a 128%128 density plot for 106 tuples with decreas-
ing resolution. As wavelet decoding speed is roughly
linear with the number of view cells [29], especially
higher dimensional views profit from resolution adap-
tation. At lower resolutions, network speed becomes
proportionally more relevant. Extent plots show a sim-
ilar behavior with longer visualization times.
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Fig. 13: Density plot (128*128 bins, 524-103 tuples,

10% view quality, 1/16th the resolution).

Density Plot Time vs. View Resolution (128*128 bins, 10° tuples, 10% quality)
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Fig. 14: Overall plot time vs. view resolution.

4.8 Interactive Database Exploration

Besides simple query processing, our method reduces
the DBMS to a mere file server. The users adapt qual-
ity and resolution to their needs and the resources at
hand. Thus server load is low, and even with large
data-sets the clients determine the performance and
accuracy of their visualizations. Table 4 and Figure
15 display the overall time to visualize data-sets of in-
creasing size. For each data-set size, we have selected
the quality- and resolution-setting so that the overall
visualization for density plots remains below 5 and the
time for extent plots below 10 seconds. These are the
limits we have set for interactive exploration within
HEDC. Given our Ethernet connection, users tend to
keep quality high, but adjust resolution more strongly.
Modem users might choose the opposite strategy. Be-
yond 20% quality and 1/2 the resolution, the relative



error 18 low and the choice therefore not important.

64 256 512 1MT  2MT 4MT 8MT
Q. [%] 100 100 100 50 20 10 10
Res. 1/1 1/2 1/2 1/2 1/2 1/16 1/32
Den. [s] 1.6 4.6 4.2 4.9 5.0 3.7 4.5
Ext. [s] 2.2 5.1 5.19 6.5 8.7 4.58 5.3
Tab. 4: Examples of interactive adaptation.
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Fig. 15: Overall times with interactive quality and
resolution adaptation vs. number of tuples.

5 Discussion

The main contribution of the ideas presented is the
fact that interactive visualizations can be produced in
a dynamic manner. To do so requires several optimiza-
tions. The first one is not to base visualizations on di-
rect queries over the data. As the experiments show,
this approach simply does not scale and explains the
limitations of many database visualization tools. In-
stead, materialized views are needed. Again, our ex-
periments show that these views need to be kept out-
side the database to get the necessary performance.
However, the views we use are different from what
has been proposed before. QOur views are simple se-
lections over the original data, we neither summarize
this information nor pre-process it in any manner (his-
tograms, for instance). The reason to perform such
pre-processing steps is to speed up response time. In
our case, we have the necessary response time while
keeping complete flexibility about ranges, bin sizes,
and aggregation parameters. This is a significant ad-
vantage over existing proposals that fix these param-
eters at the time the view is generated. While this
is acceptable and even advantageous in other applica-
tions, it can be quite limiting in scientific databases
where there is no way to determine an aggregation
unit that will work for all cases. This is particularly
important in terms of quality and resolution adapta-
tions, which are fully controlled by the user and not
by the system (e.g., through pre-computed views that
already determine the quality or the resolution).
With this, the solution we propose not only allows
interactive exploration but it also provides the basis
for much needed improvements in this type of reposi-

tories. For instance, Quality of Service (QoS) guaran-
tees can be readily implemented. The user can choose
an error level, a response time, or a number of plots
to produce (the overall load) and the client can au-
tomatically adapt resolution and quality accordingly.
Similarly, the server may limit the quality when it is
overloaded or the client may automatically juggle the
two parameters to obtain the best possible plot given
the time it takes to download data from the server.

Finally, interactivity also depends on the server be-
ing able to provide the data fast enough. One of the
advantages of our approach is that the quality adap-
tation also benefits the server side. In preliminary
stress tests over HEDC, we measured client visual-
ization time and server load for up to 32 simultane-
ous clients doing continuous visualizations over large
sets. Given the low load in the server caused by these
clients, we are confident the system can support up
to 100 concurrent clients all using acceptable levels of
quality adaptation.

6 Implementation: StreamCorder

The 1deas presented in the paper have been imple-
mented in HEDC and are already in use. The imple-
mentation has been done as part of a specialized Java
client: the StreamCorder (see screen shot in Figure 2),
which is available for download from the HEDC page®.
A local DBMS mirrors exactly the schema of the cen-
tral HEDC repository including global tuple identi-
fiers. During visualization, the StreamCorder coordi-
nates the asynchronous download, caching, decoding
and processing of the data. The local database trans-
parently caches query results and manages downloaded
view segments. The StreamCorder also contains spe-
cialized processing software developed for HESSI data
and all the visualization tools discussed in the pa-
per. The idea is for the StreamCorder to support
both connected and disconnected operations. Users
can download data, process it, and upload the results
into HEDC (if they have the proper access rights).

For visualization, users may request a density or
extent plot and then select relevant parameter ranges,
zoom 1n, scroll along some parameter range to produce
new plots. Users can also switch from the plots to a
simple list view to browse the attributes of all tuples
that are inside the current attribute selection. By se-
lecting one of these tuples, all the available information
(e.g., images) is automatically produced (either from
the local database or downloaded from the server, in
which case a copy is made in the local cache).

7 Conclusions

As the size of databases containing continuous observa-
tions of natural phenomena increases, finding relevant
portions of the data becomes more difficult and time

4http:/ /www.hedc.ethz.ch/release/



consuming. Conventional databases typically do not
provide support for exploring large tables except stan-
dard query interfaces. Visualization tools that provide
graphical representations of the contents of databases
are a step in the right direction. Unfortunately, the
amount of data in today’s systems is much larger than
what existing visualization tools can handle. In this
paper we have shown how to increase the performance
of visual database exploration tools to an interactive
level. The techniques used to accomplish this (exter-
nally materialized views, partition, wavelet encoding,
quality and resolution adaptation) are generic and,
therefore, can be used in a wide range of applications.
With this, the work presented in the paper is a signifi-
cant contribution towards a more efficient use of large
data repositories.
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