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Abstract 
The duplicate elimination problem of detecting 
multiple tuples, which describe the same real 
world entity, is an important data cleaning 
problem. Previous domain independent solutions 
to this problem relied on standard textual 
similarity functions (e.g., edit distance, cosine 
metric) between multi-attribute tuples. However, 
such approaches result in large numbers of false 
positives if we want to identify domain-specific 
abbreviations and conventions. In this paper, we 
develop an algorithm for eliminating duplicates in 
dimensional tables in a data warehouse, which are 
usually associated with hierarchies. We exploit 
hierarchies to develop a high quality, scalable 
duplicate elimination algorithm, and evaluate it on 
real datasets from an operational data warehouse. 

1. Introduction 
Decision support analysis on data warehouses influences 
important business decisions; therefore, accuracy of such 
analysis is crucial. However, data received at the data 
warehouse from external sources usually contains errors: 
spelling mistakes, inconsistent conventions, etc. Hence, 
significant amount of time and money are spent on data 
cleaning, the task of detecting and correcting errors in data. 
 
The problem of detecting and eliminating duplicated data 
is one of the major problems in the broad area of data 
cleaning and data quality [e.g., HS95, ME97, RD00]. 
Many times, the same logical real world entity may have 
multiple representations in the data warehouse. For 
example, when Lisa purchases products from SuperMart 
twice, she might be entered as two different customers—
[Lisa Simpson, Seattle, WA, USA, 98025] and [Lisa 
Simson, Seattle, WA, United States, 98025]—due to data 
entry errors. Such duplicated information can significantly 
increase direct mailing costs because several customers 

like Lisa may be sent multiple catalogs. Moreover, such 
duplicates can cause incorrect results in analysis queries 
(say, the number of SuperMart customers in Seattle), and 
erroneous data mining models to be built. We refer to this 
problem of detecting and eliminating multiple distinct 
records representing the same real world entity as the fuzzy 
duplicate elimination problem, which is sometimes also 
called merge/purge, dedup, record linkage problems [e,g., 
HS95, ME97, FS69]. This problem is different from the 
standard duplicate elimination problem, say for answering 
“select distinct” queries, in relational database systems 
which considers two tuples to be duplicates if they match 
exactly on all attributes. However, data cleaning deals with 
fuzzy duplicate elimination, which is our focus in this 
paper. Henceforth, we use duplicate elimination to mean 
fuzzy duplicate elimination.  
 
Duplicate elimination is hard because it is caused by 
several types of errors like typographical errors, and 
equivalence errors—different (non-unique and non-
standard) representations of the same logical value. For 
instance, a user may enter “WA, United States” or “Wash., 
USA” for “WA, United States of America.” Equivalence 
errors in product tables (“winxp pro” for “windows XP 
Professional”) are different from those encountered in 
bibliographic tables (“VLDB” for “very large databases”), 
etc. Also, it is important to detect and clean equivalence 
errors because an equivalence error may result in several 
duplicate tuples. 
 
The class of equivalence errors can be addressed by 
building sets of rules. For instance, most commercial 
address cleaning software packages (e.g., Trillium) use 
rules to detect errors in names and addresses. In this paper, 
we focus on domain independent duplicate elimination 
techniques. Domain-specific information when available 
complements these techniques. Previous domain-
independent methods for duplicate elimination rely on 
textual similarity functions (e.g., edit distance or cosine 
metric) predicting that two tuples whose textual similarity 
is greater than a pre-specified similarity threshold are 
duplicates [FS69, KA85, Coh98, HS95, ME96].  However, 
using these functions to detect duplicates due to 
equivalence errors (say, “US” and “United States”) 
requires that the threshold be dropped low enough, 
resulting in a large number of false positives—pairs of 
tuples incorrectly detected to be duplicates. For instance, 
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tuple pairs with values “USSR” and “United States” in the 
country attribute are also likely to be declared duplicates if 
we were to detect “US” and “United States” as duplicates 
using textual similarity.  
 
In this paper, we exploit dimensional hierarchies typically 
associated with dimensional tables in data warehouses to 
develop an efficient, scalable, duplicate elimination 
algorithm called Delphi,2 which significantly reduces the 
number of false positives without missing out on detecting 
duplicates. We rely on hierarchies to detect an important 
class of equivalence errors in each relation, and to 
significantly reduce the number of false positives.  
 
For example, Figure 1 describes the schema maintaining 
the Customer information in a typical company selling 
products or services. The dimensional hierarchy here 
consists of four relations—Organization, City, State, and 
Country relations—connected by key—foreign key 
relationships (also called referential links). We say that the 
Organization and the Country relations are the bottom and 
the top relations, respectively. Consider the tuples USA 
and United States in the Country relation in Figure 1. The 
state attribute value “MO” appears in tuples in the State 
relation joining with countries USA and United States, 
whereas most state values occur with only one Country 
tuple. That is, USA and United States co-occur through the 
state MO. In general, country tuples are associated with 
sets of state values. The degree of overlap between sets 
associated with two countries is a measure of co-
occurrence between them, and can be used to detect 
duplicates (e.g., USA and United States). 
 
The above notion of co-occurrence can also be used for 
reducing the number of false positives. Consider the two 
countries “USA” and “UK” in Figure 1. Because they are 
sufficiently closer according to the edit distance function, a 
commonly used textual similarity function, we might 
(incorrectly) deduce that they are duplicates. Such 
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problems can occur even with other textual similarity 
functions like the cosine metric. Using our notion of co-
occurrence through the State relation, we observe that the 
sets—called children sets of USA and UK—of states {MO, 
Missouri} and {Aberdeen, Aberdeen shire} joining with 
USA and UK, respectively, are disjoint. Hence, we 
conclude that USA and UK are unlikely to be duplicates.  
 
For reasons of efficiency and scalability, we want to avoid 
comparing all pairs of tuples in each relation of the 
hierarchy. Previous approaches have considered the 
windowing strategy, which sorts a relation on a key and 
compares all records within a sliding window on the sorted 
order [HS95]. However, observe that equivalence errors 
(e.g., UK and Great Britain) may not be adjacent to each 
other in standard sort orders, e.g., the lexicographical 
order. We exploit the dimensional hierarchy and propose a 
grouping strategy, which only compares tuples within 
small groups of each relation. For instance, we only 
compare two State tuples if they join with the same country 
tuple or Country tuples that are duplicates of each other. 
Since such groups are often much smaller than the entire 
relation, the grouping strategy allows us to compare pairs 
of tuples in each group, and yet be very efficient.   
 
The outline of the paper is as follows. In Section 2, we 
discuss related work. In Section 3, we discuss key concepts 
and definitions. In Section 4, we describe Delphi. In 
Section 5, we discuss a few important issues. In Section 6, 
we discuss results from a thorough experimental evaluation 
on real datasets.  

2. Related Work 
Several earlier proposals exist for the problem of duplicate 
elimination (e.g., [FS69, KA85, HS95, ME96, ME97, 
Coh98]). As mentioned earlier, all these methods rely on 
threshold-based textual similarity functions to detect 
duplicates, and hence do not detect equivalence errors 
unless we lower thresholds sufficiently; lower thresholds 
result in an explosion of the number of false positives. The 

Country  
CtryId 
 

State 
StateId 
CtryId 

City 
CityId 
State Id 

OrgId 
Name 
Address 
City Id 

Figure 1: An Example Customer Database 
     Organization (at Level 1)   City (at Level 2)     State (at Level 3)     Country (at Level 4) 

OrgId Name Address CityId
O1 Clintstone Assoc. #1, Lake View Blvd. C1
O2 Compuware #20, Main Street C2
O3 Compuwar #20, Main Street C3
O4 Clintstone Associates #1, Lake View C4
O5 Ideology Corp. #10, Vancouver Pl. C5
O6 Victoria Films #5, Victoria Av. C6
O7 Ideology Corporation #10, Vanc. Pl. C7
O8 Clark Consultants Ltd. #8, Cherry Street C8
O9 Clark Consultants #8, Cherr St. C9

CityId City StateId
C1 Joplin S1
C2 Jopin S2
C3 Joplin S4
C4 Joplin S3
C5 Victoria S5
C6 Victoria S6
C7 Vancouver S5
C8 Aberdeen S7
C9 Aberdeen S8

StateIdState CtryId
S1 MO 1
S2 MO 2
S3 MO 3
S4 Missouri 3
S5 BC 4
S6 British Columbia 4
S7 Aberdeen shire 5
S8 Aberdeen 5

CtryId Country
1 United States of America
2 United States
3 USA
4 Canada
5 UK  



 

record linkage literature also focuses on automatically 
determining appropriate thresholds [FS69, KA85], but still 
suffers from the false positive explosion while detecting 
equivalence errors. Gravano et al. proposed an algorithm 
for approximate string joins, which in principle can be 
adapted to detect duplicate records [GIJ+01]. Since they 
use the edit distance function to measure closeness 
between tuples, their technique suffers from the drawbacks 
of strategies relying only on textual similarity functions. In 
this paper, we exploit hierarchies on dimensional tables to 
detect an important class of equivalence errors (which 
exhibit significant co-occurrence through other relations) 
without increasing the number of false positives.  
 
Significant amount of work exists in other related aspects 
of data cleaning: the development of transformational 
cleaning operations [RH01, GFS+01], the detection and 
the correction of formatting errors in address data 
[BDS01], and the design of “good” business practices and 
process flows to prevent problems of deteriorating data 
quality  [Pro, NR99]. Automatic detection of integrity 
constraints (functional dependencies and key—foreign key 
relationships) [MR94, KM95, HKPT98] so that they can be 
enforced in future to improve data quality are 
complementary to techniques for cleaning existing data. 
Because of the commercial importance of the data cleaning 
problem, several domain-specific industrial tools exist. 
Galhardas provides a nice survey of many commercial 
tools [Gal].  
 
Our notion of co-occurrence between tuples is similar to 
that used for clustering categorical data [e.g., GKR98, 
GRS99, GGR99] and that for matching schema [MBR01].  

3. Concepts and Definitions 
A dimensional hierarchy consists of a chain of relations 
linked by key—foreign key dependencies. Figure 1 
illustrates an example. An entity described by the hierarchy 
also consists of a chain of tuples (one from each relation) 
each of which joins with the tuple from its parent relation. 
For example, [<o1, Walmart, c1>, <c1, Redmond, s1>, 
<s1, WA, t1>, <t1, USA>] describes an organization entity 
where o1, c1, etc. are identifiers typically generated for 
maintaining referential links. For clarity in notation, we do 
not explicitly list identifiers in tuples unless required.  
 
Consider two organization entities: [<Walmart>, 
<Redmond>, <WA>, <USA>] and [<Walmart>, <Seattle>, 
<WA>, <USA>] in the Customer information with a 
dimensional hierarchy shown in Figure 1. The 
corresponding pairs of tuples in the Name, State, or 
Country relations individually are identical. However, they 
are not duplicates on the City relation, and in fact this 
difference makes the two entities distinct. This 
phenomenon is characteristic of dimensional hierarchies. 
For example, publications with the same title may appear 

in the proceedings of a conference as well as in a journal; 
and, they are two distinct entities in the publications 
database. Motivated by these typical scenarios, we 
consider two entities in a dimensional hierarchy to be 
duplicates if corresponding pairs of tuples in each relation 
of the hierarchy either match exactly or are duplicates 
(according to duplicate detection functions at each level). 
For example, two entities in Figure 1 are duplicates if the 
respective pairs of Country, State, City, and Organization 
tuples of the two entities are duplicates. Below, we 
formally introduce dimensional hierarchies, definition of 
duplicate entities, and our duplicate detection functions. 

3.1. Dimensional Hierarchies 

Relations R1,…, Rm with keys K1, …, Km constitute a 
dimensional hierarchy if and only if there is a key—foreign 
key relationship between Ri-1 and Ri, (2 ≤  i ≤ m). Ri is the 
ith level relation in the hierarchy. R1 and Rm are the bottom 
and the top relations, respectively, and Ri the child of Ri+1.   
 
Let the unnormalized dimension table R be the join of 
R1,…, Rm through the chain of key—foreign key 
relationships. We say that a tuple vi in Ri joins with a tuple 
vj in Rj if there exists a tuple v in R such that the 
projections of v on Ri and Rj equal vi and vj, respectively. 
Specifically, we say that vi in Ri is a child of vi+1 in Ri+1 if 
vi joins with vi+1. For example, in Figure 1, [S3, MO, 3] in 
the State relation is a child of [3, USA] in the Country 
relation. We say that a tuple combination (or a row in R) 
[r1,…,rm] is an entity if each ri joins with ri+1.  
 
In typical dimensional tables of data warehouses, the 
values of key attributes K1,…, Km are artificially generated 
by the loading process before a tuple vi is inserted into Ri. 
Such generated keys are not useful for fuzzily matching 
two tuples, and can only be used for joining tuples across 
relations in the hierarchy. From now on, we overload the 
term “tuple” to also mean only the descriptive attribute 
values—the set of attribute values not including the 
generated key attributes. We clarify when it is not clear 
from the context. 

3.2. Definition of Duplicates 
We now formally define our notion of duplicate entities 
assuming duplicate detection functions at each level. Let 
f1,…,fm be binary functions called duplicate detection 
functions where each fi takes a pair of tuples in Ri, and 
returns 1 if they are duplicates, and -1 otherwise. Let r=[r1, 
…, rm] and s=[s1,…,sm] be two entities. We say that r is a 
duplicate of s if and only if fi(ri, si)=1 for all i in {1, …, 
m}. For instance, we consider the two entities 
[<Compuware, #20 Main Street>, <Jopin>, <MO>, 
<United States>] and [<Compuwar, #20 Main Street>, 
<Joplin>, <Missouri>, <USA>] in Figure 1 to be 



 

duplicates only if the following pairs are duplicates: 
“United States” and “USA” on the Country relation, “MO” 
and “Missouri” in the State relation, “Jopin” and “Joplin” 
in the City relation, and “Compuware, #20 Main Street” 
and “Compuwar, #20 Main Street” in the Organization 
relation. Observe that we can easily extend this definition 
to sub-entities [ri,…,rm] and [si,…,sm]. 

3.3. Duplicate Detection Functions 
We exploit dimensional hierarchies to measure co-
occurrence among tuples for detecting equivalence errors 
and for reducing false positives. This is in conjunction with 
the textual similarity functions (like cosine metric and edit 
distance), which have traditionally been employed for 
detecting duplicates. Our final duplicate detection function 
is a weighted voting of the predictions from using co-
occurrence and textual similarity functions. Intuitively, the 
weight of a prediction is indicative of the importance of the 
information used to arrive at the prediction. 
 
We adopt the standard thresholded similarity function 
approach to define duplicate detection functions [HS95].  
That is, if the textual (or co-occurrence) similarity between 
two tuples is greater than a threshold, then the two tuples 
are predicted to be duplicates according to textual (or co-
occurrence) similarity. In this section, we assume that 
thresholds are known. In Section 4.3, we relax this 
assumption and describe automatic threshold 
determination. First, we introduce the notion of set 
containment, which we use to define similarity functions. 
We only consider textual attributes for comparing tuples, 
and assume default conversions from other types to text, 
e.g., integer zipcodes are converted to varchar.   
 
Given a collection of sets each defined over some domain 
of objects, an intuitive notion of how similar a set S is to a 
set S’ is the fraction of S objects contained in S’. This 
notion of containment similarity has been effectively used 
to measure document similarity [BGM+97]. We extend 
this notion to take into account the importance of objects in 
distinguishing sets. For example, the set {Microsoft, 
incorporated} is more similar to {Microsoft, inc} than it is 
to {Boeing, incorporated} because the token Microsoft is 
more distinguishing than the token incorporated. The IDF 
(inverse document frequency) value of an object has been 
successfully used in the information retrieval literature to 
quantify the notion of importance [BYRN99]. We now 
formalize this intuition.  
 
Let � be a set of objects. Let G be a collection of sets of 
objects from �. Let B(G) be the bag of all objects 
contained by any set in G. The frequency fG(o) of an object 
o with respect to G is the frequency of o in B(G). The IDF 
value IDFG(o) with respect to G of o  is )

)(
||

log(
of

G

G

. Also, 

we define the IDF value IDFG(S) of a set S (subset of �) to 
be �

∈Ss
G sIDF )( .  

Containment Metric: We define the containment metric 
cmG(S1, S2) with respect to G between two sets S1 and S2 to 
be the ratio of the IDF value IDFG( 21 SS ∩ )of their 

intersection with the IDF value IDFG(S1) of the first set S1.  
 
For clarity in presentation, we drop the subscript G from 
the above notation when extending them to define textual 
and co-occurrence similarity metrics. 

3.3.1. Textual Similarity Function (tcm) 

We assume that each tuple v can be split into a set of 
tokens using a tokenization function (say, based on white 
spaces). Treating each tuple as a set of tokens, the token 
containment metric between v and v’ is the IDF-weighted 
fraction of v tokens that v’ contains.  
 
Let G={v1, …, vn} be a set of tuples from Ri. Let TS(v) 
denote the set of tokens in a tuple v. Let Bt(G) be the bag 
(multi-set) of all tokens that occur in any tuple in G. Let 
tf(t) denote the frequency of a token t in Bt(G). The token 
containment metric tcm(v, v’) with respect to G between 
tuples v and v’ in G is given by the containment metric 
cm(TS(v), TS(v’)) with respect to G between their token 
sets. For example, if all tokens have equal IDF values then 
tcm([“MO”, “United States”],  [“MO”, “United States of 
America”]) is 1.0; And, tcm([“MO”, “United States of 
America”], [“MO”, “United States”]) is 0.6. 
 
Observe that when two tokens differ slightly due to a 
typographical error, token containment metric still treats 
them as two distinct tokens. To address this shortcoming, 
we treat two very similar tokens—with edit distance3 less 
than a small value (say, 0.15)—in Bt(G) to be synonyms.   

3.3.2. Co-occurrence Similarity Function (fkcm) 

In a dimensional hierarchy, a tuple in the parent relation Ri 
joins with a set, which we call its children set, of tuples in 
the child relation. We measure the co-occurrence between 
two distinct tuples by the amount of overlap between 
children sets of the two tuples. An unusually significant co-
occurrence (more than the average overlap between pairs 
of tuples in Ri or above a certain threshold) is a cause for 
suspecting that one is a duplicate of the other. For example, 
in Figure 1, duplicate states MO and Missouri co-occur 
with the city “Joplin” whereas other distinct states do not 
co-occur with any common cities. Informally, our co-
occurrence measure—called the foreign key containment 
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metric (fkcm)—between two tuples is the containment 
metric between the children sets of the first and the second 
tuples. 
  
If i > 1, we say that two tuples v1 and v2 in Ri co-occur 
through a tuple v in Ri-1 if they both join with v. In general, 
two distinct tuples v1 and v2 in Ri join with two sets S1 and 
S2 (usually with little overlap) of tuples in Ri-1. We call S1 
the children set CS(v1) of v1, and S2 the children set CS(v2) 
of v2. Let G={v1, …, vn} be a set of tuples from Ri. Let 
Bc(G) be the bag (multi-set) of all children tuples in Ri-1 
with any tuple in G as parent.  The child frequency cf(c) of 
a child tuple c with respect to G is the number of times c 
occurs in Bc(G). The FK-containment metric fkcm(v, v’) 
with respect to G between v and v’ in G is the containment 
metric cm(CS(v), CS(v’)) with respect to Bc(G) between 
the children sets CS(v) and CS(v’). For example, the FK-
containment metric between values “Missouri” (whose 
State.Id is S4) and “MO” (whose State.Id is S3) in the 
State relation of Figure 1 is 1.0 because their children sets 
are identical ({Joplin}). 
 
Note that while measuring co-occurrence between two 
tuples in Ri, we only use Ri-1 and disregard information 
from relations further below for two reasons. First, the 
restriction improves efficiency because the number of 
distinct combinations joining with a tuple in Ri increases as 
we go further down the hierarchy. For example, the 
number of state tuples pointing to “United States” in the 
Country relation is less than the number of [city, state] 
tuple pairs that point to it. Therefore, the restriction enables 
efficient computation of our co-occurrence measure 
between tuples. Second, the co-occurrence information 
between tuples in Ri provided by relations Rj (j < i-1) is 
usually already available from Ri-1. Tuples in Rj (j < i-1) 
which join with the same tuple in Ri are also likely to join 
with the same tuples in Ri-1 if the children sets of distinct 
tuples are very different from each other. We discuss two 
exceptional cases in Section 5. 

3.3.3. Combination Function 

We use thresholded similarity metrics for detecting 
duplicates. That is, when the similarity cm(v, v’) between v 
and v’ is greater than a threshold, then the duplicate 
detection function using cm predicts that v is a duplicate of 
v’. We now discuss the combination of predictions 
obtained from both functions. We adopt a weighted voting 
of the predictions where the weight of a prediction is 
proportional to the “importance of the information” used to 
arrive at the prediction.4 As discussed earlier, IDF values 
of the token and children sets capture the concept of 
amount of information because sets containing more 
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distinguishing tokens or children tuples have higher IDF 
values.  

 
For a tuple v in Ri (i > 1) let wt=IDF(TS(v)), and 
wc=IDF(CS(v)). Let tcm_threshold and fkcm_threshold be 
the textual and co-occurrence similarity thresholds, 
respectively. Let pos: R�{1,-1} be a function defined as 
follows: pos(x) = 1, if x > 0, and -1, otherwise. Our 
weighted voting combination function is: 
pos(wt*pos(tcm(v,v’)-tcm_threshold)+wc*pos(fkcm(v,v’)-
fkcm_threshold)).  
 
Essentially, the combination function returns the 
prediction, 1 (duplicate) or -1 (not a duplicate), of the 
similarity function that has a higher weight. Suppose that 
in Figure 1, “UK” is considered a duplicate of “USA” 
according to a textual similarity function. Because they do 
not co-occur with any state tuple, fkcm contradicts this 
prediction. Since the children set of UK has a higher IDF 
value than its token set, UK is not a duplicate of USA.  

4. Delphi 
We now describe Delphi. Recall that we consider two 
entities to be duplicates if the respective pairs of tuples in 
each relation of the hierarchy are duplicates. That is, two 
entities in the customer information of Figure 1 are 
duplicates only if the Organization tuples, City tuples, 
State tuples, and Country tuples are all duplicates of each 
other. Therefore, a straightforward duplicate detection 
algorithm would be to independently determine sets of 
duplicate tuples at each level of the hierarchy and then 
determine duplicate entities over the entire hierarchy. For 
the example in Figure 1, we can process each of the 
Organization, City, State, and Country relations 
independently to determine duplicate pairs of tuples in 
these relations. We may then identify pairs of duplicate 
entities if their corresponding tuples at each level in the 
hierarchy (Organization, City, State, and Country) are 
either equal or duplicates.  
 
We can be more efficient by exploiting the knowledge 
from already processed relations. Suppose we know that 
only “United States of America” and “United States” are 
duplicates of “USA” and the rest are all unique tuples in 
the Country relation. While processing the State relation, 
we do not compare the tuple “BC” with “Missouri” 
because the former joins with Canada and the latter with 
(duplicates of) USA. Observe that this usage requires us to 
process a parent relation in the hierarchy before processing 
its child. As we move down the hierarchy, the reduction in 
the number of comparisons is significant. For instance, the 
Organization relation may have millions of tuples whereas 
the number in Seattle, WA, USA may be a few thousands. 
 
We adopt a top-down traversal of the hierarchy. After we 
process the topmost relation, we group the child relation 



 

below into relatively smaller groups (compared to the 
entire relation) and compare pairs of tuples within each 
group. Let Si be the join of Ri+1, …, Rm through key—
foreign key attribute pairs. We use the knowledge of 
duplicates in Si to group relation Ri such that we place 
tuples ri1 and ri2 which join with combinations si1 and si2 
from Si in the same group if si1 and si2 are equal or 
duplicates (i.e., corresponding pairs of tuples in si1 and si2 
either match exactly or are duplicates). We then process 
each group of Ri independently. Observe that we require Si 
to be grouped into sets of duplicates. Due to efficiency 
considerations, we further restrict that these sets be 
disjoint. Otherwise, same sets of tuples in Ri may be 
processed in multiple groups causing repeated comparisons 
between the same pairs of Ri tuples. 
 
Considering the example in Figure 1, our top-down 
traversal of the dimensional hierarchy is as follows. We 
first detect duplicates in the Country relation, then process 
the State relation grouping it with the processed Country 
relation, then process the City relation grouping it with the 
processed [State, Country] combination, and then finally 
process the Organization relation grouping it with the 
processed [City, State, Country] combination. 
 
The remainder of this section is organized as follows. In 
Section 4.1, we discuss the procedure for detecting 
duplicates within a group of tuples from a relation in the 
hierarchy. In Section 4.2, we discuss the top-down 
traversal of the hierarchy coordinating the invocation of the 
group wise duplicate detection procedure. We do not 
explicitly discuss the special case of the lowest relation 
where we cannot use fkcm. The following discussion can 
easily be extended to this special case. 

4.1. GroupWise Duplicate Detection 
We now describe a procedure to detect duplicates among a 
group G of tuples from a relation in the hierarchy. The 
output of this procedure is a partition of G into sets such 
that each set consists of variations of the same tuple. First, 
we determine pairs of duplicates and then partition G. 
 
As discussed earlier, our duplicate detection function 
requires the predictions from threshold-based decision 
functions using tcm and fkcm metrics. A straightforward 
procedure is to compare (using tcm and fkcm) all pairs of 
tuples in a group G, and then to choose pairs whose 
similarity is greater than the (tcm or fkcm) threshold. We 
reduce the number of pair wise comparisons between 
tuples by pruning out many tuples that do not have any 
duplicates (according to tcm or fkcm) in G. We describe 
each step in detail below first assuming that the tcm and 
fkcm thresholds are known. In Section 4.3, we describe a 
method to dynamically determine thresholds for each 
group. 

4.1.1. Duplicate Detection using tcm 

We want to detect all pairs (v1, v2) of tuples where v1 is a 
duplicate, according to tcm, of v2; i.e., tcm(v1, v2) > tcm-
threshold. To reduce the number of pair wise tuple 
comparisons, we use a potential duplicate identification 
filter for efficiently isolating a subset G’ consisting of all 
potential duplicates. That is, a tuple in G-G’ is not a 
duplicate of any tuple in G. Duplicate detection on G 
consists of: (i) identifying the set G’, and (ii) comparing 
each tuple in G’ with tuples in G it may be a duplicate of.  
 
Since tcm compares token sets of tuples, we abuse the 
notation and use tcm(v, S) to denote the comparison 
between the token set of a tuple v and the multi-set union 
of token sets of all tuples in the set S. We use similar 
notation for fkcm as well. 
 
Potential Duplicate Identification Filter 
The intuition behind our filtering strategy to determine the 
set G’ of all potentially duplicate tuples is that the tcm 
value between any two tuples v and v’ in G is less than that 
between v and G-{v}. Therefore, a tuple v for which 
tcm(v, G-{v}) is less than the specified threshold is not a 
duplicate of any other v’ in G.  We only perform |G| 
comparisons to identify G’, which potentially is much 
smaller than G. Therefore, comparing pairs involving 
tuples in the filtered set can be significantly more efficient 
than comparing all pairs of tuples in G.  
 
The intuition behind our filtering strategy is captured by 
the following observation for tcm (and fkcm). The 
observation follows from the fact that the multi-set union 
of token sets of all tuples in G-{v} is a superset of token 
set of any v’ in G-{v}.  
 
Observation 4.1: Let cm denote either tcm or fkcm metric, 
and v and v’ be two tuples in a set G of tuples. Then, 

cmG(v, v’) ≤  cmG(v, G-{v}) 
 
Computing tcm(v, G-{v}) using Token Tables 
We now describe a technique to efficiently compute tcm(v, 
G-{v}) for any tuple v in G. The intuition is that tokens in 
the intersection of the token set TS(v) of v and the multi-
set union of token sets of all tuples in G-{v} have a 
frequency, in the bag of tokens Bt(G) of G, of at least 2. 
Any other token is unique and has a frequency 1. 
 
We build a structure called the token table of G containing 
the following information: (i) the set of tokens whose 
frequency tf(t) w.r.t. Bt(G) is greater than one, (ii) the 
frequencies of such tokens, and (iii) the list of (pointers to) 
tuples in which such a token occurs. The difference 
between a token table and an inverted index over G is that 
the token table only contains tokens whose frequency with 
respect to G is greater than 1, and hence potentially 
smaller if a large percentage of tokens in Bt(G) are unique. 



 

We maintain lists of tuple identifiers only for tokens which 
are not very frequent. The frequency at which we start 
ignoring a token—called the stop token frequency—is set 
to be equal to 10% of the number of tuples in G. As 
mentioned earlier, we enhance tcm by treating tokens 
which are very close to each other according to edit 
distance (less than 0.15, in our implementation) to be 
synonyms. Due to space constraints, we skip the details of 
token table construction.  
 
Example 4.1.1: In Figure 1, suppose we are processing the 
State relation grouped with the Country relation, and that 
we detected the set {United States, United States of 
America, USA} to be duplicates on the Country relation. 
For the group of State tuples joining with USA and its 
duplicates, the token table consists of one entry: 
{[token=MO, frequency=3, tupleId-list=<S1, S2, S3>]}.  
 
The computation of tcm(v, G-{v}) requires frequencies 
with respect to Bt(G) of tokens in TS(v), which can be 
obtained by looking up the token table. Tokens absent from 
the token table have a frequency 1. Now, any tuple v such 
that tcm(v, G-{v}) is greater than tcm-threshold is a 
potential duplicate tuple, and is added to G’. 
 
Computing Pairs of Duplicates 
We compare each tuple v in G’ with a set Sv of tuples, 
which is the union of all tuples sharing tokens with v. Sv 
can be obtained from the token table. (For any tuple v’’ not 
in Sv, tcm(v, v’’) = 0.) For any tuple v’ in Sv such that 
tcm(v, v’) > tcm-threshold,  we add the pair (v, v’) to the 
pairs of duplicates from G.  

4.1.2. Duplicate Detection using fkcm 

We predict that a tuple v is a duplicate, according to fkcm, 
of another tuple v’ in G if fkcm(v, v’) > fkcm-threshold. 
Using Observation 4.1, we determine a set of potential 
duplicates by efficiently computing fkcm(v, G-{v}) using 
children tables. The computation of the set G’ of potential 
duplicates and then duplicates, according to fkcm, of tuples 
in G’ is the same as for tcm. Hence, we only describe the 
construction of the children table for a group G of tuples. 
 
Children Tables 
The children table of G is a hash table containing a subset 
of the union of children sets of all tuples in G.  It contains: 
(i) each child tuple c from Ri-1 joining with some tuple in 
G, and whose frequency cf(c) in Bc(G) is greater than one, 
(ii) the frequencies of such children tuples, and (iii) the list 
of (pointers to) tuples in G with which c joins. We 
maintain lists of tuples only for children that have a 
frequency less than the stop children frequency fixed at 
10% the number of tuples in G.   
 
Example 4.1.2: Consider the example in Figure 1. We 
process the State relation grouped with the Country 

relation. Suppose {United States, United States of 
America, USA} is a set of duplicates on the Country 
relation. For the group of State tuples joining with USA 
and its duplicates, the children table contains one entry: 
{child=Joplin, frequency=3, tupleId-list=<S1,S3, S4>}. 
 
Note: Recall that the frequency of a child tuple in Bc(G) is 
based only on its descriptive attribute value combinations 
and ignores the generated key attributes in Ri-1. In the 
above example, the tuple Joplin has a frequency 3 because 
we ignore the CityId attribute values.  
 
Building the Children Table: The procedure is similar to 
that of building the token table except for one difference: 
The multi-set union of all children sets Bc(G) can be large, 
e.g., all street addresses in the city [Illinois, Chicago], and 
hence may not fit in main memory. Therefore, we follow 
the steps below. We refer to tuples in Bc(G) with frequency 
greater than one as non-unique tuples.  
(i) We fetch all non-unique tuples in Bc(G) into a hash 

table.   
(ii) We fetch tuples in G and their children, one pair at a 

time, and associate non-unique tuples in Bc(G) with the 
list of G tuples they join with.  

 
Combination 
After detecting duplicates according to tcm and fkcm, we 
combine (using the combination function of Section 3.3.3) 
predictions for each pair of tuples detected to be duplicates 
using either tcm or fkcm or both.  

4.1.3. Grouping Duplicate Pairs into Sets 
Coordinating the top-down traversal of the hierarchy 
requires us to partition G into sets of duplicates, and to 
determine a representative tuple—called the canonical 
tuple—for each set to be able to exploit database systems 
for processing. (This issue will be clearer in the next 
section.) To partition G into sets of duplicates, we adapt a 
method from [HS95] to handle asymmetric similarity 
functions. The essential idea is to divide G into connected 
groups and choose a canonical tuple for each group.  
 
Following the standard approach [HS95, ME96], we 
elevate the relationship “is a duplicate of” between tuples 
to be a transitive relation. That is, if v1 is a duplicate of v2 
and v2 that of v3, we consider v1 to be a duplicate of v3. 
The intuition behind the partitioning method is to identify 
maximal connected sets of duplicates such that for any pair 
of tuples v and v’ in each set, we can either deduce using 
transitivity that v is a duplicate of v’ or vice versa. A 
connected set is maximal if we cannot add any more tuples 
to it without making it disconnected. For each connected 
set, we choose the tuple with the highest IDF value (of 
token sets for R1 and of children sets for higher level 
relations) as the canonical tuple. Because the relationship 
“is a duplicate of” is asymmetric, a tuple may end up in 
multiple connected sets. For such a tuple v, we place it in 



 

the set with the closest (computed using fkcm at higher 
levels and tcm at the lowest level) canonical tuple.  

4.2. Top-down Traversal 
We now describe the top-down traversal of the hierarchy. 
Starting from the topmost relation, we group each relation 
and invoke the duplicate detection procedure on each 
group. Therefore, the primary goal of the traversal is to 
group each relation appropriately. While grouping a 
relation Ri by a combination Si (the join of Ri+1,…, Rm) of 
processed relations, all Ri tuples which join with tuple 
combinations (equivalently, sub-entities) in Si that are 
either exactly equal or detected to be duplicates have to be 
placed in the same group.  
 
A straightforward ordering by Si of the join of Ri and Si 
does not achieve the desired grouping because duplicate 
tuple combinations in Si may not be adjacent to each other 
in the sorted order. For example, duplicates UK and Great 
Britain on the Country relation are unlikely to be adjacent 
to each other in the sorted order. Therefore, we realize the 
correct sorted order by considering a new relation Li, 
which is the join of R1,…,Rm but with the duplicate tuples 
in processed relations (Ri+1,…,Rm) replaced by their 
canonical tuples. We then group (the relevant projection 
of) Li by the canonical tuple combinations of Si. We avoid 
explicit materialization of the very large (as large as the 
database) relations Li by only recording detected duplicates 
in translation tables. Translation tables can be significantly 
smaller than the database if the number of duplicates is 
much less than the number of tuples in the database. 
 
Translation Tables  
Informally, the translation table Ti records the mapping 
between each duplicate tuple in Ri and its canonical tuple, 
as well as the ancestral combination from the join of Ri+1, 
…, Rm to which they both point to. While storing the 
ancestral combination, we assume that all duplicate tuples 
in relations Ri+1, …, Rm  have been replaced with their 
canonical tuples. For example, if USA is the canonical 
tuple of the set of duplicates {United States, United States 
of America}, and MO is that of the set {Missouri} of states 
pointing to USA (or United States or United States of 
America) the translation table at Country relation level 
maps both United States and United States of America to 
USA. And, the translation table at the State level maps 
[USA, Missouri] to [USA, MO].  

 
Let Canonical_Ri represent the relation Ri where each 
duplicate tuple has been replaced with its canonical tuple. 
The translation table Ti has the schema: [Ri, Ri AS 
Canonical_Ri, Canonical_Ri+1,...,Canonical_Rm]. Ti records 
each duplicate tuple v and its canonical tuple v’ along with 
the canonical tuple combination sv from the grouping 
combination [Canonical_Ri+1,...,Canonical_Rm] of relations 
with which v and v’ join. 
 
Coordination  
We form two SQL queries Qi and Qi’ whose results contain 
the information required for processing any group in Ri. 
We scan portions of these query results, pause and process 
a group of Ri tuples, and then continue the scans. First, we 
define the set of views used by these queries.  
 
The sequence of views Lm, …, Li are defined in Figure 2. 
Informally, Li represents the current state of the 
unnormalized relation R (the join of R1,…, Rm) after all 
duplicate tuples (in Ri+1,…,Rm) are collapsed with their 
canonical tuples. Each Lj has the same schema as the 
unnormalized dimension relation R. Considering the 
translation table on the Country relation, an outer join 
between the original unnormalized relation R and the 
translation table on the country attribute results in a new 
unnormalized relation L with a canonical_Country 
attribute. In L, United States and United States of America 
are always replaced by USA, which is their canonical 
equivalent.  
 
The queries Qi and Qi’ are defined in Figure 2 in which Ai 
denotes the set of descriptive attributes (not including 
generated keys) in Ri. For the sake of clarity, we omit the 
key—foreign key join conditions in the where clause in 
Figure 2. Both queries Qi and Qi’ order (a projection of) Li 
on S=[Li.Am,…,Li.Ai+1]. Let s be a tuple combination in S, 
and let Gs be the group of tuples in Ri joining with s. We 
invoke the duplicate detection procedure discussed in 
Section 4.1 for each group Gs as follows. We scan the 
result of Qi to fetch a group G1 of tuples joining with s, 
scan the corresponding group G2 from the result of Qi’, 
process Gs using G1 and G2, and then move on to a 
subsequent group. The group G1 consists of the 
information required for building the hash table of non-
unique children Bc(Gs), and G2 that for associating non-

View Definitions 
Lm  =  Select * From Rm, …, R1 

Li  = Select Li+1.Am, …,  (Case When Ti+1.Ai+1 is Null  
  Then Li+1.Ai+1 Else Ti+1.Ai+1), Li+1.Ai, …, Li+1.A1 
From Li+1 Left Outer Join Ti+1  

 On Li+1.Am = Ti+1.Am, …, Li+1.Ai+1 = Ti+1.Ai+1 

Qi =  
Select Li.�m, …, Li.�i+1, Li.�i-1, count(*) 
From (Select distinct Li.�m, …, Li.�i-1) 
Group By Li.�m, Li.�i+1, Li.�i-1 
Having count(*) > 1 
Order By Li.�m, …, Li.�i+1, Li.�i-1 
 

Qi’ =  
Select Li.�m, …, Li.�i+1, Li.�i, Li.�i-1 
From (Select distinct Li.�m, …, Li.�i-1) 
Order By Li.�m, …, Li.�i, Li.�i-1 

Figure 2: View definitions and Queries 



 

unique children with parent tuples as well as for building 
the token table. Note that we do not maintain all of G2 in 
memory and only require a tuple at a time.  

4.3. Dynamic Thresholding 
In many cases, it is difficult for users to set tcm and fkcm 
thresholds. Hence, we develop a technique to dynamically 
determine thresholds for each group. Moreover, treating 
each group independently allows us to set qualitatively 
better thresholds by adapting to the characteristics of that 
group. For example, the numbers of tokens may vary 
significantly across groups (names in Argentina may be 
longer than they are in USA).  
 
The intuition behind our threshold determination is that 
when the fraction of duplicates in a group is small (say, 
around 10%), a duplicate tuple v is likely to have a higher 
value for containment metric (tcm or fkcm) between v and 
G-{v} than a unique tuple. Therefore, we expect them to be 
outliers in the distribution of tcm and fkcm. We use 
standard outlier detection methods based on Normality 
assumptions to set thresholds. In Section 6, we demonstrate 
experimentally that our threshold determination procedure 
is quite effective.   

4.4. Resource Requirements  
For processing each relation Ri in the hierarchy, we send 
two queries (Qi and Qi’) to the database system where each 
query computes the join of relations Rm, …, R1. Key—
foreign key joins can be made very efficient if we create 
appropriate join indexes. We expect the number of 
duplicates and hence the translation tables to be small. 
Hence, outer joins with translation tables are efficient.  
 
Main Memory Requirements: The group level duplicate 
elimination procedure ideally requires for each group G, 
the token table, the children table, and the tuples in G to be 
in main memory. If the frequency distribution of children 
or tokens follows the Zipfian distribution, which is true for 
most real datasets [Zipf49], then less than half the tokens 
or children tuples have frequencies greater than 1, and are 
maintained in memory. In rare cases where a group being 
processed is very large, we may materialize the token and 
children tables on disk and build appropriate indexes.  

5. Discussion 
We now discuss several interesting issues starting with a 
note that we do not require the dimensional information to 

be normalized into relations Rm, …, R1. We can adapt 
Delphi to work with an unnormalized relation R (the join 
of Rm,…, R1) as long as the sets of attributes which form 
the hierarchy are known.   
 
FKCM Measurement 
Recall that the fkcm metric only uses information from one 
level below. Such a strategy is very efficient and sufficient 
for most but the following two exceptional cases. We now 
discuss these two cases.   
 
Small children sets: When the children set of a tuple v1 is 
so small that even a single erroneous tuple in CS(v1) is a 
significant fraction, we may incorrectly believe that v1 is 
unique when in fact it is a duplicate of v2. If we want to 
detect such errors, we modify the children table 
construction and processing as follows. We first add all 
children tuples in Bc(G) (even those with frequency 1) to 
the children table. We treat all pairs of duplicate (according 
to tcm) tuples as synonyms when measuring the FK-
containment metrics between their parents. Since we have 
to temporarily maintain all children tuples—even those 
with frequency 1—we require additional main memory.  
 
Correlated errors: Consider two sets of tuples in each 
relation where one uses abbreviations and the other uses 
expanded versions while reporting the country and state 
values. Then, a tuple (“United States”, “Washington”, **) 
may be a duplicate of (“USA”, “WA”, **) where ** 
represents the same set of values in both tuples. We may 
not detect that “United States” is a duplicate of USA 
through co-occurrence unless we look one level below the 
States relation. It is possible to overcome this limitation by 
measuring, with significant computational overhead, co-
occurrence through lower level relations. However, the 
number of combinations may sometimes be too high (e.g., 
all organizations in USA) to even fit in main memory.  
 
Definition of Duplicates  
We now discuss a limitation of our definition of duplicates. 
Consider the following pair of entities: [<Smith>, 
<98052>, <WA>, <USA>] and [<Smith>, <98052>, 
<Washington>, <Canada>]. If the tuples “Canada” and 
“USA” are not (and rightly so) considered duplicates of 
each other on the Country relation, then according to our 
definition, the two entities are not duplicates. Observe that 
the second tuple violates an implicit or explicit functional 
dependency or rule: “zipcode=98052 and state=WA � 
country=USA.” If we correct the violation and detect that 

MP-CM  
MP-ED 
Delphi-Global 
Delphi 
Delphi-Stripped 
 

Windowing, no hierarchy, no co-occurrence, global thresholds, Cosine metric 
Windowing, no hierarchy, no co-occurrence, global thresholds, Edit distance 
Grouping, hierarchy, co-occurrence, global thresholds  
Grouping, hierarchy, co-occurrence, dynamic thresholding 
Grouping, hierarchy, no co-occurrence, dynamic thresholding 

Table 1: Algorithms 



 

WA and Washington are duplicates (using co-occurrence 
information), then the two customer entities are duplicates. 
Thus, even though our definition of duplicates does not 
directly allow such inconsistencies, we can correct them in 
conjunction with other cleaning operations.  
  
Potential Duplicate Identification Filter 
Imagine a set G of tuples where most of the tokens in 
Bt(G) occur in at least two tuples in G. In such cases, the 
filtering strategy is not very effective because we may 
mark many tuples as potential duplicates. Our experiments 
on real data illustrate that such a case does not typically 
occur in practice. However, developing appropriate filters 
for such rare cases is still an open issue. 
 
We note that it is possible to consider similarity and 
combination functions other than the ones we used. 
However, Observation 4.1, which summarizes our filtering 
strategy, may not be valid for all similarity functions, and 
one may have to design suitable filters where possible.    

6. Experimental Evaluation 
Using real datasets, we now evaluate the quality and 
efficiency of Delphi and compare with earlier work.  

6.1. Datasets and Setup 
We consider clean Customer information from an internal 
operational data warehouse and introduce errors.5 The 
Customer dimensional hierarchy has four relations: Name 
(level 1), City (level 2), State (level 3), Country (level 4) 
with 269678, 21856, 1250, and 115 tuples, respectively. 
Because we start from real data all characteristics of real 
data—variations in the lengths of strings, numbers of 
tokens in and frequencies of attribute values, co-occurrence 
patterns, etc.—are preserved. Since we know the duplicate 
tuples and their correct counterparts in the erroneous 
dataset, we can evaluate duplicate elimination algorithms. 
   

                                                           
5 We observed similar results on the publication information of a 
bibliography database. We omit results due to space constraints. 

Error Introduction 
We introduce two types of errors common in data 
warehouses [For01]: equivalence errors, spelling & 
truncation errors. The generator has three parameters: The 
first percentage error parameter controls the error to be 
introduced in each relation. The second (equivalence 
fraction) and the third (spelling fraction) parameters 
control the fractions of equivalence errors, spelling and 
truncation errors, respectively. Suppose the percentage 
error is 10% and the equivalence fraction is 50% then we 
will introduce 10% duplicate tuples into the input table out 
of which 50% will be due to equivalence errors.  
 
Equivalence Errors: Consider the tuple combination [<Key 
Associates>, <Joplin>, <MO>, <USA>] in the customer 
table. Suppose we want to create an equivalence error for 
“MO” in the state relation. We first garble “MO” into, say, 
“xMykOz” so that the new value is undetectable by 
standard textual similarity functions. Since equivalence 
errors usually occur in multiple tuples, we choose around 
5% (5-x%, 5+x%) of all entities with R.country=“USA” 
and R.state=“MO” and modify the value of MO to 
“xMykOz.” For 10% of these modified tuples, we also 
introduce errors in the tuple from the child relation, when 
one exists. We insert these erroneous tuples into R. At the 
lowest level of the hierarchy, we garble a randomly picked 
token from the token set and insert the modified tuple in R.   
 
Spelling and Truncation Errors: We modify a token in a 
tuple by changing, deleting, adding characters or truncating 
the token. 50% of the time, we modify characters, and the 
remaining 50% we just truncate the token. The number of 
characters modified or truncated is a linearly decreasing 
function with a maximum of half the token length.  
 
Token Permutation: Consider the example where a user 
enters first name followed by the last name instead of the 
stipulated last name followed by the first name. To reflect 
such types of errors, we randomly permute tokens in about 
10% of the erroneous tuples being added to R.  
 
Algorithms 
Table 1 summarizes the algorithms we evaluate in this 
study. MP-CM and MP-Edit are derivatives of the 
windowing-based MergePurge (MP) algorithm using 
cosine metric and edit distance, respectively [HS95, ME97, 
Coh98]. Delphi-global is a variant of Delphi that uses 
global thresholds for both tcm and fkcm. Delphi-Stripped 
is a variant of Delphi which only uses tcm and completely 
ignores co-occurrence information. 
 
We run variants of MP on the unnormalized relation of 
Name, City, State, and Country relations, and sort on the 
key (name, city, state, country). In both MP-CM and MP-
Edit, we fix the window size at 20, and vary the thresholds. 
We use MP-CM(x) (MP-Edit) to denote that the threshold 
for the cosine metric (edit distance) is set to x. For Delphi-

Figure 3: False Positive Explosion 
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Global, we arrived at the global tcm-threshold and the 
fkcm-threshold of 0.80 and 0.85, respectively, after several 
trials. To compare the quality of algorithms, we do not 
group duplicate tuples for the lowest Name relation and 
output all pairs of duplicates detected by Delphi.  
 
Quality Metrics  
We now describe the quality metrics for evaluating 
algorithms. 
 
False positives: The percentage of incorrect pairs of tuples 
which an algorithm detects as duplicates relative to the 
actual number of duplicates is called the false positive (FP) 
percentage. The false positive percentage can be greater 
than 100 if the algorithm produces many incorrect pairs. 
Lower false positive percentage indicates higher 
confidence in the algorithm’s results.  
 
False negatives: The percentage of undetected duplicates 
in the input dataset relative to the number of duplicates is 
called the false negative percentage. Lower false negative 
percentages indicate good duplicate detection. 

6.2. Analysis of Results 

6.2.1. False Positive Explosion 

We now demonstrate that the use of cosine metric or edit 
distance can result in large false positive percentages. We 
consider a dataset with 8% overall error where the 
equivalence and spelling & truncation fractions at 0.5 each. 
Figure 3 shows the results of applying the windowing 
strategy on four different sort orders: [Name, City, State, 
Country], [City, State, Country, Name], [State, Country, 
Name, City], and [Country, Name, City, State]. CM(x) 
(Edit(x)) denotes the results from using cosine metric (edit 
distance) with a threshold x, and H-CM from using cosine 
metric with the restricted definition of duplicates in the 
presence of dimensional hierarchies. From Figure 3, we 
observe that lowering thresholds drastically increases false 
positive percentages for cosine metric and edit distance.  

6.2.2. Quality 

In the following two experiments, we generated erroneous 
datasets from the input dataset by introducing 4%, 8%, and 
11% errors with relative fractions of equivalence error and 
spelling & truncation errors fixed at 0.5.  
 
Reduction in False Positive Percentages 
Figure 4 shows the false positive percentages of each 
algorithm. Because Delphi and Delphi-global have 
significantly lower false positive percentages, we conclude 
that hierarchies and co-occurrence information together 
significantly reduce false positive percentages.   
 
Reduction in False Negative Percentages 
From Figure 5, which plots false negative percentages, we 
see that Delphi has the lowest false negative percentages. 
Therefore, co-occurrence information is useful in reducing 
false negatives as well. And, Delphi-Stripped is better than 
Delphi-Global. Hence, dynamic thresholding helps reduce 
false negative percentages. However, its impact on false 
positive reduction seems unpredictable.  

6.2.3. Speed and Scalability 

We ran Delphi, Delphi-Stripped, and MP-CM on datasets 
of size 3000, 30000, 300000, and 3000000.6 Table 2 shows 
that Delphi and MergePurge are both scalable over a wide 
range of dataset sizes. Running times are normalized with 
respect to that of Delphi on a 3000 tuple dataset. We also 
note that maximum amount of main memory required by 
Delphi on any of the datasets we considered here is less 
than 25 MB, thus supporting our argument that token and 
children tables fit in memory.  

#Tuples Delphi Delphi-Stripped MP-CM
3000 1 0.8 0.7

30000 5.512 4.2 3.55
300000 52.5 43.7 151.5

3000000 510.4 230.6 1500

       #(TCM; FKCM)
Name 51582; 0
City 9997; 1093
State 434; 441
Country 30; 8  

                                                           
6 Since the scalability characteristics of MP-Edit are similar to 
that of MP-CM, we do not consider it here. 

Table 2: Scalability    Table 3: Filtering 
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6.2.4. Potential Duplicate Filter 

We now evaluate our potential duplicate filtering 
technique. The dataset has 8% duplicate tuples. Table 3 
shows the total number of potential duplicates over all 
groups in each relation of the hierarchy. The entry (x; y) 
denotes that tcm and fkcm returned x and y potential 
duplicates, respectively. We observe that only 20% (as 
compared to the minimum 16%=8% duplicates + 8% 
targets) of the overall set of tuples was even considered to 
be potential duplicates. Hence, potential duplicate filtering 
enhances efficiency. Also observe that fkcm returns fewer 
potential duplicates. Hence, we conclude that co-
occurrence information is very effective at reducing false 
positives.  

7. Conclusions 
In this paper, we exploited dimensional hierarchies in data 
warehouses to develop a high quality, scalable, and 
efficient algorithm for detecting fuzzy duplicates in 
dimensional tables. In future, we intend to consider 
multiple hierarchies for detecting fuzzy duplicates. 
 
Acknowledgements 
We thank several members of the DMX group at Microsoft 
Research for their thoughtful comments. 

References 
[AEP01] A.N. Arslan, O. Egecioglu, and P.A. Pevzner. A new 
approach to sequence comparison: Normalized local alignment. 
Bioinformatics, 17(4):327--337, 2001. 
[BDS01] Vinayak Borkar, Kaustubh Deshmukh, and Sunita 
Sarawagi. Automatic segmentation of text into structured records. 
In Proceedings of ACM Sigmod Conference, Santa Barbara, CA, 
May 2001. 
[BGM+97] A. Broder, S. Glassman, M. Manasse, and G. Zweig. 
Syntactic Clustering of the Web. In Proc. Sixth Int'l. World Wide 
Web Conference, World Wide Web Consortium, Cambridge, 
pages 391--404, 1997.  
[BGRS99] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. 
Shaft. When is ''nearest neighbor'' meaningful? International   
Conference on Database Theory, pages 217--235. January 1999. 
[BL94] V. Barnett and R. Lewis. Outliers in statistical data. John 
Wiley and Sons, 1994. 
[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 
Modern Information Retrieval. Addison Wesley Longman, 1999. 
[Coh98] W. Cohen. Integration of heterogeneous databases 
without common domains using queries based in textual 
similarity. In Proceedings of ACM SIGMOD, pages 201--212, 
Seattle, WA, June 1998. 
[For01] Ronald Forino. Data e.quality: A behind the scenes 
perspective on data cleansing. http://www.dmreview.com/, March 
2001. 
[FS69] I. P. Felligi and A. B. Sunter. A theory for record linkage. 
Journal of the American Statistical Society, 64:1183--1210, 1969. 
[Gal] Helena Galhardas. Data cleaning commercial tools. 
http://caravel.inria.fr/~galharda/cleaning.html. 
[GFS+01] Helena Galhardas, Daniela Florescu, Dennis Shasha, 
Eric Simon, and Cristian Saita. Declarative data cleaning: 
Language, model, and algorithms. In Proceedings of the 27th 

International Conference on Very Large Databases, pages 371--
380, Roma, Italy, September 11-14 2001. 
[GFSS99] Helena Galhardas, Daniela Florescu, Dennis Shasha, 
and Eric Simon. An extensible framework for data cleaning. In 
ACM Sigmod, May 1999. 
[GIJ+01] L Gravano, P Ipeirotis, H V Jagadish, N Koudas, S 
Muthukrishnan and  D Srivastava. Approximate String Joins in a 
Database (Almost) for Free. In Proceedings of the VLDB 2001. 
[GGR99] Venkatesh Ganti, Johannes Gehrke, and Raghu 
Ramakrishnan. Cactus--clustering categorical data using 
summaries. In Proceedings of the ACM SIGKDD fifth 
international conference on knowledge discovery in databases, 
pages 73--83, August 15-18 1999. 
[GKR98] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. 
Clustering categorical data: An approach based on dynamical 
systems. VLDB 1998, New York City, New York, August 24-27. 
[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 
Rock: A robust clustering algorithm for categorical attributes. In 
Proceedings of the IEEE International Conference on Data 
Engineering, Sydney, March 1999. 
[HKPT98] Yka Huhtala, Juha Karkkainen, Pasi Porkka, and 
Hannu Toivonen. Efficient discovery of functional and 
approximate dependencies using  partitions. In proceedings of the 
14th international conference on data engineering (ICDE), pages 
392--401, Orlando, Florida, February 1998. 
[HS95] M. Hernandez and S. Stolfo. The merge/purge problem 
for large databases. In Proceedings of the ACM SIGMOD, pages 
127--138, San Jose, CA,  May 1995. 
[KA85] B. Kilss and W. Alvey. Record linkage techniques--1985. 
Statistics of income division. Internal revenue service publication, 
1985. Available from http://www.bts.gov/fcsm/methodology/. 
[KM95] J.Kivinen and H. Mannila. Approximate dependency 
inference from relations. Theoretical Computer Science, 
149(1):129--149, September 1995. 
[MBR01] J Madhavan, P Bernstein, E Rahm. Generic Schema 
Matching with Cupid. VLDB 2001, pages 49-58, Roma, Italy.  
[ME96] Alvaro Monge and Charles Elkan. The field matching 
problem: Algorithms and applications. In Proceedings of the 
second international conference on knowledge discovery and 
databases (KDD), 1996. 
[ME97] A. Monge and C. Elkan. An efficient domain 
independent algorithm for detecting approximately duplicate 
database records. In Proceedings of the SIGMOD Workshop on 
Data Mining and Knowledge Discovery, Tucson, Arizona, May 
1997. 
[MR94] H. Mannila and K.-J. Raiha. Algorithms for inferring 
functional dependencies. Data and Knowledge Engineering, 
12(1):83--99, February 1994. 
[NR99] Felix Naumann and Claudia Rolker. Do metadata models 
meet iq requirements? In Proceedings of the international 
conference on data quality (IQ), MIT, Cambridge, 1999. 
[Pro] MIT Total Data Quality Management Program. Information 
quality. http://web.mit.edu/tdqm/www/iqc. 
[RD00] Erhard Rahm and H. Hai Do. Data cleaning: Problems 
and current approaches. IEEE Data Engineering Bulletin, 23(4):3-
-13, December 2000. 
[RH01] Vijayshankar Raman and Joe Hellerstein. Potter's wheel: 
An interactive data cleaning system. VLDB 2001, pages 381--
390, Roma, Italy. 
[Zipf49] G.K. Zipf. Human behaviour and the principle of least 
effort. Addison-Wesley, Reading, MA, 1949.  


