
Eliminating Fuzzy Duplicates in Data Warehouses
Rohit Ananthakrishna1 Surajit Chaudhuri Venkatesh Ganti
 Cornell University Microsoft Research

 rohit@cs.cornell.edu {surajitc, vganti}@microsoft.com

1 Work done while visiting Microsoft Research

Abstract
The duplicate elimination problem of detecting
multiple tuples, which describe the same real
world entity, is an important data cleaning
problem. Previous domain independent solutions
to this problem relied on standard textual
similarity functions (e.g., edit distance, cosine
metric) between multi-attribute tuples. However,
such approaches result in large numbers of false
positives if we want to identify domain-specific
abbreviations and conventions. In this paper, we
develop an algorithm for eliminating duplicates in
dimensional tables in a data warehouse, which are
usually associated with hierarchies. We exploit
hierarchies to develop a high quality, scalable
duplicate elimination algorithm, and evaluate it on
real datasets from an operational data warehouse.

1. Introduction
Decision support analysis on data warehouses influences
important business decisions; therefore, accuracy of such
analysis is crucial. However, data received at the data
warehouse from external sources usually contains errors:
spelling mistakes, inconsistent conventions, etc. Hence,
significant amount of time and money are spent on data
cleaning, the task of detecting and correcting errors in data.

The problem of detecting and eliminating duplicated data
is one of the major problems in the broad area of data
cleaning and data quality [e.g., HS95, ME97, RD00].
Many times, the same logical real world entity may have
multiple representations in the data warehouse. For
example, when Lisa purchases products from SuperMart
twice, she might be entered as two different customers—
[Lisa Simpson, Seattle, WA, USA, 98025] and [Lisa
Simson, Seattle, WA, United States, 98025]—due to data
entry errors. Such duplicated information can significantly
increase direct mailing costs because several customers

like Lisa may be sent multiple catalogs. Moreover, such
duplicates can cause incorrect results in analysis queries
(say, the number of SuperMart customers in Seattle), and
erroneous data mining models to be built. We refer to this
problem of detecting and eliminating multiple distinct
records representing the same real world entity as the fuzzy
duplicate elimination problem, which is sometimes also
called merge/purge, dedup, record linkage problems [e,g.,
HS95, ME97, FS69]. This problem is different from the
standard duplicate elimination problem, say for answering
“select distinct” queries, in relational database systems
which considers two tuples to be duplicates if they match
exactly on all attributes. However, data cleaning deals with
fuzzy duplicate elimination, which is our focus in this
paper. Henceforth, we use duplicate elimination to mean
fuzzy duplicate elimination.

Duplicate elimination is hard because it is caused by
several types of errors like typographical errors, and
equivalence errors—different (non-unique and non-
standard) representations of the same logical value. For
instance, a user may enter “WA, United States” or “Wash.,
USA” for “WA, United States of America.” Equivalence
errors in product tables (“winxp pro” for “windows XP
Professional”) are different from those encountered in
bibliographic tables (“VLDB” for “very large databases”),
etc. Also, it is important to detect and clean equivalence
errors because an equivalence error may result in several
duplicate tuples.

The class of equivalence errors can be addressed by
building sets of rules. For instance, most commercial
address cleaning software packages (e.g., Trillium) use
rules to detect errors in names and addresses. In this paper,
we focus on domain independent duplicate elimination
techniques. Domain-specific information when available
complements these techniques. Previous domain-
independent methods for duplicate elimination rely on
textual similarity functions (e.g., edit distance or cosine
metric) predicting that two tuples whose textual similarity
is greater than a pre-specified similarity threshold are
duplicates [FS69, KA85, Coh98, HS95, ME96]. However,
using these functions to detect duplicates due to
equivalence errors (say, “US” and “United States”)
requires that the threshold be dropped low enough,
resulting in a large number of false positives—pairs of
tuples incorrectly detected to be duplicates. For instance,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

tuple pairs with values “USSR” and “United States” in the
country attribute are also likely to be declared duplicates if
we were to detect “US” and “United States” as duplicates
using textual similarity.

In this paper, we exploit dimensional hierarchies typically
associated with dimensional tables in data warehouses to
develop an efficient, scalable, duplicate elimination
algorithm called Delphi,2 which significantly reduces the
number of false positives without missing out on detecting
duplicates. We rely on hierarchies to detect an important
class of equivalence errors in each relation, and to
significantly reduce the number of false positives.

For example, Figure 1 describes the schema maintaining
the Customer information in a typical company selling
products or services. The dimensional hierarchy here
consists of four relations—Organization, City, State, and
Country relations—connected by key—foreign key
relationships (also called referential links). We say that the
Organization and the Country relations are the bottom and
the top relations, respectively. Consider the tuples USA
and United States in the Country relation in Figure 1. The
state attribute value “MO” appears in tuples in the State
relation joining with countries USA and United States,
whereas most state values occur with only one Country
tuple. That is, USA and United States co-occur through the
state MO. In general, country tuples are associated with
sets of state values. The degree of overlap between sets
associated with two countries is a measure of co-
occurrence between them, and can be used to detect
duplicates (e.g., USA and United States).

The above notion of co-occurrence can also be used for
reducing the number of false positives. Consider the two
countries “USA” and “UK” in Figure 1. Because they are
sufficiently closer according to the edit distance function, a
commonly used textual similarity function, we might
(incorrectly) deduce that they are duplicates. Such

2DELPHI: Duplicate ELimination in the Presence of HIerarchies

problems can occur even with other textual similarity
functions like the cosine metric. Using our notion of co-
occurrence through the State relation, we observe that the
sets—called children sets of USA and UK—of states {MO,
Missouri} and {Aberdeen, Aberdeen shire} joining with
USA and UK, respectively, are disjoint. Hence, we
conclude that USA and UK are unlikely to be duplicates.

For reasons of efficiency and scalability, we want to avoid
comparing all pairs of tuples in each relation of the
hierarchy. Previous approaches have considered the
windowing strategy, which sorts a relation on a key and
compares all records within a sliding window on the sorted
order [HS95]. However, observe that equivalence errors
(e.g., UK and Great Britain) may not be adjacent to each
other in standard sort orders, e.g., the lexicographical
order. We exploit the dimensional hierarchy and propose a
grouping strategy, which only compares tuples within
small groups of each relation. For instance, we only
compare two State tuples if they join with the same country
tuple or Country tuples that are duplicates of each other.
Since such groups are often much smaller than the entire
relation, the grouping strategy allows us to compare pairs
of tuples in each group, and yet be very efficient.

The outline of the paper is as follows. In Section 2, we
discuss related work. In Section 3, we discuss key concepts
and definitions. In Section 4, we describe Delphi. In
Section 5, we discuss a few important issues. In Section 6,
we discuss results from a thorough experimental evaluation
on real datasets.

2. Related Work
Several earlier proposals exist for the problem of duplicate
elimination (e.g., [FS69, KA85, HS95, ME96, ME97,
Coh98]). As mentioned earlier, all these methods rely on
threshold-based textual similarity functions to detect
duplicates, and hence do not detect equivalence errors
unless we lower thresholds sufficiently; lower thresholds
result in an explosion of the number of false positives. The

Country
CtryId

State
StateId
CtryId

City
CityId
State Id

OrgId
Name
Address
City Id

Figure 1: An Example Customer Database
 Organization (at Level 1) City (at Level 2) State (at Level 3) Country (at Level 4)

OrgId Name Address CityId
O1 Clintstone Assoc. #1, Lake View Blvd. C1
O2 Compuware #20, Main Street C2
O3 Compuwar #20, Main Street C3
O4 Clintstone Associates #1, Lake View C4
O5 Ideology Corp. #10, Vancouver Pl. C5
O6 Victoria Films #5, Victoria Av. C6
O7 Ideology Corporation #10, Vanc. Pl. C7
O8 Clark Consultants Ltd. #8, Cherry Street C8
O9 Clark Consultants #8, Cherr St. C9

CityId City StateId
C1 Joplin S1
C2 Jopin S2
C3 Joplin S4
C4 Joplin S3
C5 Victoria S5
C6 Victoria S6
C7 Vancouver S5
C8 Aberdeen S7
C9 Aberdeen S8

StateIdState CtryId
S1 MO 1
S2 MO 2
S3 MO 3
S4 Missouri 3
S5 BC 4
S6 British Columbia 4
S7 Aberdeen shire 5
S8 Aberdeen 5

CtryId Country
1 United States of America
2 United States
3 USA
4 Canada
5 UK

record linkage literature also focuses on automatically
determining appropriate thresholds [FS69, KA85], but still
suffers from the false positive explosion while detecting
equivalence errors. Gravano et al. proposed an algorithm
for approximate string joins, which in principle can be
adapted to detect duplicate records [GIJ+01]. Since they
use the edit distance function to measure closeness
between tuples, their technique suffers from the drawbacks
of strategies relying only on textual similarity functions. In
this paper, we exploit hierarchies on dimensional tables to
detect an important class of equivalence errors (which
exhibit significant co-occurrence through other relations)
without increasing the number of false positives.

Significant amount of work exists in other related aspects
of data cleaning: the development of transformational
cleaning operations [RH01, GFS+01], the detection and
the correction of formatting errors in address data
[BDS01], and the design of “good” business practices and
process flows to prevent problems of deteriorating data
quality [Pro, NR99]. Automatic detection of integrity
constraints (functional dependencies and key—foreign key
relationships) [MR94, KM95, HKPT98] so that they can be
enforced in future to improve data quality are
complementary to techniques for cleaning existing data.
Because of the commercial importance of the data cleaning
problem, several domain-specific industrial tools exist.
Galhardas provides a nice survey of many commercial
tools [Gal].

Our notion of co-occurrence between tuples is similar to
that used for clustering categorical data [e.g., GKR98,
GRS99, GGR99] and that for matching schema [MBR01].

3. Concepts and Definitions
A dimensional hierarchy consists of a chain of relations
linked by key—foreign key dependencies. Figure 1
illustrates an example. An entity described by the hierarchy
also consists of a chain of tuples (one from each relation)
each of which joins with the tuple from its parent relation.
For example, [<o1, Walmart, c1>, <c1, Redmond, s1>,
<s1, WA, t1>, <t1, USA>] describes an organization entity
where o1, c1, etc. are identifiers typically generated for
maintaining referential links. For clarity in notation, we do
not explicitly list identifiers in tuples unless required.

Consider two organization entities: [<Walmart>,
<Redmond>, <WA>, <USA>] and [<Walmart>, <Seattle>,
<WA>, <USA>] in the Customer information with a
dimensional hierarchy shown in Figure 1. The
corresponding pairs of tuples in the Name, State, or
Country relations individually are identical. However, they
are not duplicates on the City relation, and in fact this
difference makes the two entities distinct. This
phenomenon is characteristic of dimensional hierarchies.
For example, publications with the same title may appear

in the proceedings of a conference as well as in a journal;
and, they are two distinct entities in the publications
database. Motivated by these typical scenarios, we
consider two entities in a dimensional hierarchy to be
duplicates if corresponding pairs of tuples in each relation
of the hierarchy either match exactly or are duplicates
(according to duplicate detection functions at each level).
For example, two entities in Figure 1 are duplicates if the
respective pairs of Country, State, City, and Organization
tuples of the two entities are duplicates. Below, we
formally introduce dimensional hierarchies, definition of
duplicate entities, and our duplicate detection functions.

3.1. Dimensional Hierarchies

Relations R1,…, Rm with keys K1, …, Km constitute a
dimensional hierarchy if and only if there is a key—foreign
key relationship between Ri-1 and Ri, (2 ≤ i ≤ m). Ri is the
ith level relation in the hierarchy. R1 and Rm are the bottom
and the top relations, respectively, and Ri the child of Ri+1.

Let the unnormalized dimension table R be the join of
R1,…, Rm through the chain of key—foreign key
relationships. We say that a tuple vi in Ri joins with a tuple
vj in Rj if there exists a tuple v in R such that the
projections of v on Ri and Rj equal vi and vj, respectively.
Specifically, we say that vi in Ri is a child of vi+1 in Ri+1 if
vi joins with vi+1. For example, in Figure 1, [S3, MO, 3] in
the State relation is a child of [3, USA] in the Country
relation. We say that a tuple combination (or a row in R)
[r1,…,rm] is an entity if each ri joins with ri+1.

In typical dimensional tables of data warehouses, the
values of key attributes K1,…, Km are artificially generated
by the loading process before a tuple vi is inserted into Ri.
Such generated keys are not useful for fuzzily matching
two tuples, and can only be used for joining tuples across
relations in the hierarchy. From now on, we overload the
term “tuple” to also mean only the descriptive attribute
values—the set of attribute values not including the
generated key attributes. We clarify when it is not clear
from the context.

3.2. Definition of Duplicates
We now formally define our notion of duplicate entities
assuming duplicate detection functions at each level. Let
f1,…,fm be binary functions called duplicate detection
functions where each fi takes a pair of tuples in Ri, and
returns 1 if they are duplicates, and -1 otherwise. Let r=[r1,
…, rm] and s=[s1,…,sm] be two entities. We say that r is a
duplicate of s if and only if fi(ri, si)=1 for all i in {1, …,
m}. For instance, we consider the two entities
[<Compuware, #20 Main Street>, <Jopin>, <MO>,
<United States>] and [<Compuwar, #20 Main Street>,
<Joplin>, <Missouri>, <USA>] in Figure 1 to be

duplicates only if the following pairs are duplicates:
“United States” and “USA” on the Country relation, “MO”
and “Missouri” in the State relation, “Jopin” and “Joplin”
in the City relation, and “Compuware, #20 Main Street”
and “Compuwar, #20 Main Street” in the Organization
relation. Observe that we can easily extend this definition
to sub-entities [ri,…,rm] and [si,…,sm].

3.3. Duplicate Detection Functions
We exploit dimensional hierarchies to measure co-
occurrence among tuples for detecting equivalence errors
and for reducing false positives. This is in conjunction with
the textual similarity functions (like cosine metric and edit
distance), which have traditionally been employed for
detecting duplicates. Our final duplicate detection function
is a weighted voting of the predictions from using co-
occurrence and textual similarity functions. Intuitively, the
weight of a prediction is indicative of the importance of the
information used to arrive at the prediction.

We adopt the standard thresholded similarity function
approach to define duplicate detection functions [HS95].
That is, if the textual (or co-occurrence) similarity between
two tuples is greater than a threshold, then the two tuples
are predicted to be duplicates according to textual (or co-
occurrence) similarity. In this section, we assume that
thresholds are known. In Section 4.3, we relax this
assumption and describe automatic threshold
determination. First, we introduce the notion of set
containment, which we use to define similarity functions.
We only consider textual attributes for comparing tuples,
and assume default conversions from other types to text,
e.g., integer zipcodes are converted to varchar.

Given a collection of sets each defined over some domain
of objects, an intuitive notion of how similar a set S is to a
set S’ is the fraction of S objects contained in S’. This
notion of containment similarity has been effectively used
to measure document similarity [BGM+97]. We extend
this notion to take into account the importance of objects in
distinguishing sets. For example, the set {Microsoft,
incorporated} is more similar to {Microsoft, inc} than it is
to {Boeing, incorporated} because the token Microsoft is
more distinguishing than the token incorporated. The IDF
(inverse document frequency) value of an object has been
successfully used in the information retrieval literature to
quantify the notion of importance [BYRN99]. We now
formalize this intuition.

Let � be a set of objects. Let G be a collection of sets of
objects from �. Let B(G) be the bag of all objects
contained by any set in G. The frequency fG(o) of an object
o with respect to G is the frequency of o in B(G). The IDF
value IDFG(o) with respect to G of o is)

)(
||

log(
of

G

G

. Also,

we define the IDF value IDFG(S) of a set S (subset of �) to
be �

∈Ss
G sIDF)(.

Containment Metric: We define the containment metric
cmG(S1, S2) with respect to G between two sets S1 and S2 to
be the ratio of the IDF value IDFG(21 SS ∩)of their

intersection with the IDF value IDFG(S1) of the first set S1.

For clarity in presentation, we drop the subscript G from
the above notation when extending them to define textual
and co-occurrence similarity metrics.

3.3.1. Textual Similarity Function (tcm)

We assume that each tuple v can be split into a set of
tokens using a tokenization function (say, based on white
spaces). Treating each tuple as a set of tokens, the token
containment metric between v and v’ is the IDF-weighted
fraction of v tokens that v’ contains.

Let G={v1, …, vn} be a set of tuples from Ri. Let TS(v)
denote the set of tokens in a tuple v. Let Bt(G) be the bag
(multi-set) of all tokens that occur in any tuple in G. Let
tf(t) denote the frequency of a token t in Bt(G). The token
containment metric tcm(v, v’) with respect to G between
tuples v and v’ in G is given by the containment metric
cm(TS(v), TS(v’)) with respect to G between their token
sets. For example, if all tokens have equal IDF values then
tcm([“MO”, “United States”], [“MO”, “United States of
America”]) is 1.0; And, tcm([“MO”, “United States of
America”], [“MO”, “United States”]) is 0.6.

Observe that when two tokens differ slightly due to a
typographical error, token containment metric still treats
them as two distinct tokens. To address this shortcoming,
we treat two very similar tokens—with edit distance3 less
than a small value (say, 0.15)—in Bt(G) to be synonyms.

3.3.2. Co-occurrence Similarity Function (fkcm)

In a dimensional hierarchy, a tuple in the parent relation Ri
joins with a set, which we call its children set, of tuples in
the child relation. We measure the co-occurrence between
two distinct tuples by the amount of overlap between
children sets of the two tuples. An unusually significant co-
occurrence (more than the average overlap between pairs
of tuples in Ri or above a certain threshold) is a cause for
suspecting that one is a duplicate of the other. For example,
in Figure 1, duplicate states MO and Missouri co-occur
with the city “Joplin” whereas other distinct states do not
co-occur with any common cities. Informally, our co-
occurrence measure—called the foreign key containment

3The edit distance between tokens t1 and t2 is the minimum
number of edit operations (delete, insert, transpose, and replace)
required to change t1 to t2; we normalize this value with the sum
of their lengths [AEP01].

metric (fkcm)—between two tuples is the containment
metric between the children sets of the first and the second
tuples.

If i > 1, we say that two tuples v1 and v2 in Ri co-occur
through a tuple v in Ri-1 if they both join with v. In general,
two distinct tuples v1 and v2 in Ri join with two sets S1 and
S2 (usually with little overlap) of tuples in Ri-1. We call S1
the children set CS(v1) of v1, and S2 the children set CS(v2)
of v2. Let G={v1, …, vn} be a set of tuples from Ri. Let
Bc(G) be the bag (multi-set) of all children tuples in Ri-1
with any tuple in G as parent. The child frequency cf(c) of
a child tuple c with respect to G is the number of times c
occurs in Bc(G). The FK-containment metric fkcm(v, v’)
with respect to G between v and v’ in G is the containment
metric cm(CS(v), CS(v’)) with respect to Bc(G) between
the children sets CS(v) and CS(v’). For example, the FK-
containment metric between values “Missouri” (whose
State.Id is S4) and “MO” (whose State.Id is S3) in the
State relation of Figure 1 is 1.0 because their children sets
are identical ({Joplin}).

Note that while measuring co-occurrence between two
tuples in Ri, we only use Ri-1 and disregard information
from relations further below for two reasons. First, the
restriction improves efficiency because the number of
distinct combinations joining with a tuple in Ri increases as
we go further down the hierarchy. For example, the
number of state tuples pointing to “United States” in the
Country relation is less than the number of [city, state]
tuple pairs that point to it. Therefore, the restriction enables
efficient computation of our co-occurrence measure
between tuples. Second, the co-occurrence information
between tuples in Ri provided by relations Rj (j < i-1) is
usually already available from Ri-1. Tuples in Rj (j < i-1)
which join with the same tuple in Ri are also likely to join
with the same tuples in Ri-1 if the children sets of distinct
tuples are very different from each other. We discuss two
exceptional cases in Section 5.

3.3.3. Combination Function

We use thresholded similarity metrics for detecting
duplicates. That is, when the similarity cm(v, v’) between v
and v’ is greater than a threshold, then the duplicate
detection function using cm predicts that v is a duplicate of
v’. We now discuss the combination of predictions
obtained from both functions. We adopt a weighted voting
of the predictions where the weight of a prediction is
proportional to the “importance of the information” used to
arrive at the prediction.4 As discussed earlier, IDF values
of the token and children sets capture the concept of
amount of information because sets containing more

4 For the lowest relation R1 in the hierarchy, we return the
prediction of tcm.

distinguishing tokens or children tuples have higher IDF
values.

For a tuple v in Ri (i > 1) let wt=IDF(TS(v)), and
wc=IDF(CS(v)). Let tcm_threshold and fkcm_threshold be
the textual and co-occurrence similarity thresholds,
respectively. Let pos: R�{1,-1} be a function defined as
follows: pos(x) = 1, if x > 0, and -1, otherwise. Our
weighted voting combination function is:
pos(wt*pos(tcm(v,v’)-tcm_threshold)+wc*pos(fkcm(v,v’)-
fkcm_threshold)).

Essentially, the combination function returns the
prediction, 1 (duplicate) or -1 (not a duplicate), of the
similarity function that has a higher weight. Suppose that
in Figure 1, “UK” is considered a duplicate of “USA”
according to a textual similarity function. Because they do
not co-occur with any state tuple, fkcm contradicts this
prediction. Since the children set of UK has a higher IDF
value than its token set, UK is not a duplicate of USA.

4. Delphi
We now describe Delphi. Recall that we consider two
entities to be duplicates if the respective pairs of tuples in
each relation of the hierarchy are duplicates. That is, two
entities in the customer information of Figure 1 are
duplicates only if the Organization tuples, City tuples,
State tuples, and Country tuples are all duplicates of each
other. Therefore, a straightforward duplicate detection
algorithm would be to independently determine sets of
duplicate tuples at each level of the hierarchy and then
determine duplicate entities over the entire hierarchy. For
the example in Figure 1, we can process each of the
Organization, City, State, and Country relations
independently to determine duplicate pairs of tuples in
these relations. We may then identify pairs of duplicate
entities if their corresponding tuples at each level in the
hierarchy (Organization, City, State, and Country) are
either equal or duplicates.

We can be more efficient by exploiting the knowledge
from already processed relations. Suppose we know that
only “United States of America” and “United States” are
duplicates of “USA” and the rest are all unique tuples in
the Country relation. While processing the State relation,
we do not compare the tuple “BC” with “Missouri”
because the former joins with Canada and the latter with
(duplicates of) USA. Observe that this usage requires us to
process a parent relation in the hierarchy before processing
its child. As we move down the hierarchy, the reduction in
the number of comparisons is significant. For instance, the
Organization relation may have millions of tuples whereas
the number in Seattle, WA, USA may be a few thousands.

We adopt a top-down traversal of the hierarchy. After we
process the topmost relation, we group the child relation

below into relatively smaller groups (compared to the
entire relation) and compare pairs of tuples within each
group. Let Si be the join of Ri+1, …, Rm through key—
foreign key attribute pairs. We use the knowledge of
duplicates in Si to group relation Ri such that we place
tuples ri1 and ri2 which join with combinations si1 and si2
from Si in the same group if si1 and si2 are equal or
duplicates (i.e., corresponding pairs of tuples in si1 and si2
either match exactly or are duplicates). We then process
each group of Ri independently. Observe that we require Si
to be grouped into sets of duplicates. Due to efficiency
considerations, we further restrict that these sets be
disjoint. Otherwise, same sets of tuples in Ri may be
processed in multiple groups causing repeated comparisons
between the same pairs of Ri tuples.

Considering the example in Figure 1, our top-down
traversal of the dimensional hierarchy is as follows. We
first detect duplicates in the Country relation, then process
the State relation grouping it with the processed Country
relation, then process the City relation grouping it with the
processed [State, Country] combination, and then finally
process the Organization relation grouping it with the
processed [City, State, Country] combination.

The remainder of this section is organized as follows. In
Section 4.1, we discuss the procedure for detecting
duplicates within a group of tuples from a relation in the
hierarchy. In Section 4.2, we discuss the top-down
traversal of the hierarchy coordinating the invocation of the
group wise duplicate detection procedure. We do not
explicitly discuss the special case of the lowest relation
where we cannot use fkcm. The following discussion can
easily be extended to this special case.

4.1. GroupWise Duplicate Detection
We now describe a procedure to detect duplicates among a
group G of tuples from a relation in the hierarchy. The
output of this procedure is a partition of G into sets such
that each set consists of variations of the same tuple. First,
we determine pairs of duplicates and then partition G.

As discussed earlier, our duplicate detection function
requires the predictions from threshold-based decision
functions using tcm and fkcm metrics. A straightforward
procedure is to compare (using tcm and fkcm) all pairs of
tuples in a group G, and then to choose pairs whose
similarity is greater than the (tcm or fkcm) threshold. We
reduce the number of pair wise comparisons between
tuples by pruning out many tuples that do not have any
duplicates (according to tcm or fkcm) in G. We describe
each step in detail below first assuming that the tcm and
fkcm thresholds are known. In Section 4.3, we describe a
method to dynamically determine thresholds for each
group.

4.1.1. Duplicate Detection using tcm

We want to detect all pairs (v1, v2) of tuples where v1 is a
duplicate, according to tcm, of v2; i.e., tcm(v1, v2) > tcm-
threshold. To reduce the number of pair wise tuple
comparisons, we use a potential duplicate identification
filter for efficiently isolating a subset G’ consisting of all
potential duplicates. That is, a tuple in G-G’ is not a
duplicate of any tuple in G. Duplicate detection on G
consists of: (i) identifying the set G’, and (ii) comparing
each tuple in G’ with tuples in G it may be a duplicate of.

Since tcm compares token sets of tuples, we abuse the
notation and use tcm(v, S) to denote the comparison
between the token set of a tuple v and the multi-set union
of token sets of all tuples in the set S. We use similar
notation for fkcm as well.

Potential Duplicate Identification Filter
The intuition behind our filtering strategy to determine the
set G’ of all potentially duplicate tuples is that the tcm
value between any two tuples v and v’ in G is less than that
between v and G-{v}. Therefore, a tuple v for which
tcm(v, G-{v}) is less than the specified threshold is not a
duplicate of any other v’ in G. We only perform |G|
comparisons to identify G’, which potentially is much
smaller than G. Therefore, comparing pairs involving
tuples in the filtered set can be significantly more efficient
than comparing all pairs of tuples in G.

The intuition behind our filtering strategy is captured by
the following observation for tcm (and fkcm). The
observation follows from the fact that the multi-set union
of token sets of all tuples in G-{v} is a superset of token
set of any v’ in G-{v}.

Observation 4.1: Let cm denote either tcm or fkcm metric,
and v and v’ be two tuples in a set G of tuples. Then,

cmG(v, v’) ≤ cmG(v, G-{v})

Computing tcm(v, G-{v}) using Token Tables
We now describe a technique to efficiently compute tcm(v,
G-{v}) for any tuple v in G. The intuition is that tokens in
the intersection of the token set TS(v) of v and the multi-
set union of token sets of all tuples in G-{v} have a
frequency, in the bag of tokens Bt(G) of G, of at least 2.
Any other token is unique and has a frequency 1.

We build a structure called the token table of G containing
the following information: (i) the set of tokens whose
frequency tf(t) w.r.t. Bt(G) is greater than one, (ii) the
frequencies of such tokens, and (iii) the list of (pointers to)
tuples in which such a token occurs. The difference
between a token table and an inverted index over G is that
the token table only contains tokens whose frequency with
respect to G is greater than 1, and hence potentially
smaller if a large percentage of tokens in Bt(G) are unique.

We maintain lists of tuple identifiers only for tokens which
are not very frequent. The frequency at which we start
ignoring a token—called the stop token frequency—is set
to be equal to 10% of the number of tuples in G. As
mentioned earlier, we enhance tcm by treating tokens
which are very close to each other according to edit
distance (less than 0.15, in our implementation) to be
synonyms. Due to space constraints, we skip the details of
token table construction.

Example 4.1.1: In Figure 1, suppose we are processing the
State relation grouped with the Country relation, and that
we detected the set {United States, United States of
America, USA} to be duplicates on the Country relation.
For the group of State tuples joining with USA and its
duplicates, the token table consists of one entry:
{[token=MO, frequency=3, tupleId-list=<S1, S2, S3>]}.

The computation of tcm(v, G-{v}) requires frequencies
with respect to Bt(G) of tokens in TS(v), which can be
obtained by looking up the token table. Tokens absent from
the token table have a frequency 1. Now, any tuple v such
that tcm(v, G-{v}) is greater than tcm-threshold is a
potential duplicate tuple, and is added to G’.

Computing Pairs of Duplicates
We compare each tuple v in G’ with a set Sv of tuples,
which is the union of all tuples sharing tokens with v. Sv
can be obtained from the token table. (For any tuple v’’ not
in Sv, tcm(v, v’’) = 0.) For any tuple v’ in Sv such that
tcm(v, v’) > tcm-threshold, we add the pair (v, v’) to the
pairs of duplicates from G.

4.1.2. Duplicate Detection using fkcm

We predict that a tuple v is a duplicate, according to fkcm,
of another tuple v’ in G if fkcm(v, v’) > fkcm-threshold.
Using Observation 4.1, we determine a set of potential
duplicates by efficiently computing fkcm(v, G-{v}) using
children tables. The computation of the set G’ of potential
duplicates and then duplicates, according to fkcm, of tuples
in G’ is the same as for tcm. Hence, we only describe the
construction of the children table for a group G of tuples.

Children Tables
The children table of G is a hash table containing a subset
of the union of children sets of all tuples in G. It contains:
(i) each child tuple c from Ri-1 joining with some tuple in
G, and whose frequency cf(c) in Bc(G) is greater than one,
(ii) the frequencies of such children tuples, and (iii) the list
of (pointers to) tuples in G with which c joins. We
maintain lists of tuples only for children that have a
frequency less than the stop children frequency fixed at
10% the number of tuples in G.

Example 4.1.2: Consider the example in Figure 1. We
process the State relation grouped with the Country

relation. Suppose {United States, United States of
America, USA} is a set of duplicates on the Country
relation. For the group of State tuples joining with USA
and its duplicates, the children table contains one entry:
{child=Joplin, frequency=3, tupleId-list=<S1,S3, S4>}.

Note: Recall that the frequency of a child tuple in Bc(G) is
based only on its descriptive attribute value combinations
and ignores the generated key attributes in Ri-1. In the
above example, the tuple Joplin has a frequency 3 because
we ignore the CityId attribute values.

Building the Children Table: The procedure is similar to
that of building the token table except for one difference:
The multi-set union of all children sets Bc(G) can be large,
e.g., all street addresses in the city [Illinois, Chicago], and
hence may not fit in main memory. Therefore, we follow
the steps below. We refer to tuples in Bc(G) with frequency
greater than one as non-unique tuples.
(i) We fetch all non-unique tuples in Bc(G) into a hash

table.
(ii) We fetch tuples in G and their children, one pair at a

time, and associate non-unique tuples in Bc(G) with the
list of G tuples they join with.

Combination
After detecting duplicates according to tcm and fkcm, we
combine (using the combination function of Section 3.3.3)
predictions for each pair of tuples detected to be duplicates
using either tcm or fkcm or both.

4.1.3. Grouping Duplicate Pairs into Sets
Coordinating the top-down traversal of the hierarchy
requires us to partition G into sets of duplicates, and to
determine a representative tuple—called the canonical
tuple—for each set to be able to exploit database systems
for processing. (This issue will be clearer in the next
section.) To partition G into sets of duplicates, we adapt a
method from [HS95] to handle asymmetric similarity
functions. The essential idea is to divide G into connected
groups and choose a canonical tuple for each group.

Following the standard approach [HS95, ME96], we
elevate the relationship “is a duplicate of” between tuples
to be a transitive relation. That is, if v1 is a duplicate of v2
and v2 that of v3, we consider v1 to be a duplicate of v3.
The intuition behind the partitioning method is to identify
maximal connected sets of duplicates such that for any pair
of tuples v and v’ in each set, we can either deduce using
transitivity that v is a duplicate of v’ or vice versa. A
connected set is maximal if we cannot add any more tuples
to it without making it disconnected. For each connected
set, we choose the tuple with the highest IDF value (of
token sets for R1 and of children sets for higher level
relations) as the canonical tuple. Because the relationship
“is a duplicate of” is asymmetric, a tuple may end up in
multiple connected sets. For such a tuple v, we place it in

the set with the closest (computed using fkcm at higher
levels and tcm at the lowest level) canonical tuple.

4.2. Top-down Traversal
We now describe the top-down traversal of the hierarchy.
Starting from the topmost relation, we group each relation
and invoke the duplicate detection procedure on each
group. Therefore, the primary goal of the traversal is to
group each relation appropriately. While grouping a
relation Ri by a combination Si (the join of Ri+1,…, Rm) of
processed relations, all Ri tuples which join with tuple
combinations (equivalently, sub-entities) in Si that are
either exactly equal or detected to be duplicates have to be
placed in the same group.

A straightforward ordering by Si of the join of Ri and Si
does not achieve the desired grouping because duplicate
tuple combinations in Si may not be adjacent to each other
in the sorted order. For example, duplicates UK and Great
Britain on the Country relation are unlikely to be adjacent
to each other in the sorted order. Therefore, we realize the
correct sorted order by considering a new relation Li,
which is the join of R1,…,Rm but with the duplicate tuples
in processed relations (Ri+1,…,Rm) replaced by their
canonical tuples. We then group (the relevant projection
of) Li by the canonical tuple combinations of Si. We avoid
explicit materialization of the very large (as large as the
database) relations Li by only recording detected duplicates
in translation tables. Translation tables can be significantly
smaller than the database if the number of duplicates is
much less than the number of tuples in the database.

Translation Tables
Informally, the translation table Ti records the mapping
between each duplicate tuple in Ri and its canonical tuple,
as well as the ancestral combination from the join of Ri+1,
…, Rm to which they both point to. While storing the
ancestral combination, we assume that all duplicate tuples
in relations Ri+1, …, Rm have been replaced with their
canonical tuples. For example, if USA is the canonical
tuple of the set of duplicates {United States, United States
of America}, and MO is that of the set {Missouri} of states
pointing to USA (or United States or United States of
America) the translation table at Country relation level
maps both United States and United States of America to
USA. And, the translation table at the State level maps
[USA, Missouri] to [USA, MO].

Let Canonical_Ri represent the relation Ri where each
duplicate tuple has been replaced with its canonical tuple.
The translation table Ti has the schema: [Ri, Ri AS
Canonical_Ri, Canonical_Ri+1,...,Canonical_Rm]. Ti records
each duplicate tuple v and its canonical tuple v’ along with
the canonical tuple combination sv from the grouping
combination [Canonical_Ri+1,...,Canonical_Rm] of relations
with which v and v’ join.

Coordination
We form two SQL queries Qi and Qi’ whose results contain
the information required for processing any group in Ri.
We scan portions of these query results, pause and process
a group of Ri tuples, and then continue the scans. First, we
define the set of views used by these queries.

The sequence of views Lm, …, Li are defined in Figure 2.
Informally, Li represents the current state of the
unnormalized relation R (the join of R1,…, Rm) after all
duplicate tuples (in Ri+1,…,Rm) are collapsed with their
canonical tuples. Each Lj has the same schema as the
unnormalized dimension relation R. Considering the
translation table on the Country relation, an outer join
between the original unnormalized relation R and the
translation table on the country attribute results in a new
unnormalized relation L with a canonical_Country
attribute. In L, United States and United States of America
are always replaced by USA, which is their canonical
equivalent.

The queries Qi and Qi’ are defined in Figure 2 in which Ai
denotes the set of descriptive attributes (not including
generated keys) in Ri. For the sake of clarity, we omit the
key—foreign key join conditions in the where clause in
Figure 2. Both queries Qi and Qi’ order (a projection of) Li
on S=[Li.Am,…,Li.Ai+1]. Let s be a tuple combination in S,
and let Gs be the group of tuples in Ri joining with s. We
invoke the duplicate detection procedure discussed in
Section 4.1 for each group Gs as follows. We scan the
result of Qi to fetch a group G1 of tuples joining with s,
scan the corresponding group G2 from the result of Qi’,
process Gs using G1 and G2, and then move on to a
subsequent group. The group G1 consists of the
information required for building the hash table of non-
unique children Bc(Gs), and G2 that for associating non-

View Definitions
Lm = Select * From Rm, …, R1

Li = Select Li+1.Am, …, (Case When Ti+1.Ai+1 is Null
 Then Li+1.Ai+1 Else Ti+1.Ai+1), Li+1.Ai, …, Li+1.A1
From Li+1 Left Outer Join Ti+1

 On Li+1.Am = Ti+1.Am, …, Li+1.Ai+1 = Ti+1.Ai+1

Qi =
Select Li.�m, …, Li.�i+1, Li.�i-1, count(*)
From (Select distinct Li.�m, …, Li.�i-1)
Group By Li.�m, Li.�i+1, Li.�i-1
Having count(*) > 1
Order By Li.�m, …, Li.�i+1, Li.�i-1

Qi’ =
Select Li.�m, …, Li.�i+1, Li.�i, Li.�i-1
From (Select distinct Li.�m, …, Li.�i-1)
Order By Li.�m, …, Li.�i, Li.�i-1

Figure 2: View definitions and Queries

unique children with parent tuples as well as for building
the token table. Note that we do not maintain all of G2 in
memory and only require a tuple at a time.

4.3. Dynamic Thresholding
In many cases, it is difficult for users to set tcm and fkcm
thresholds. Hence, we develop a technique to dynamically
determine thresholds for each group. Moreover, treating
each group independently allows us to set qualitatively
better thresholds by adapting to the characteristics of that
group. For example, the numbers of tokens may vary
significantly across groups (names in Argentina may be
longer than they are in USA).

The intuition behind our threshold determination is that
when the fraction of duplicates in a group is small (say,
around 10%), a duplicate tuple v is likely to have a higher
value for containment metric (tcm or fkcm) between v and
G-{v} than a unique tuple. Therefore, we expect them to be
outliers in the distribution of tcm and fkcm. We use
standard outlier detection methods based on Normality
assumptions to set thresholds. In Section 6, we demonstrate
experimentally that our threshold determination procedure
is quite effective.

4.4. Resource Requirements
For processing each relation Ri in the hierarchy, we send
two queries (Qi and Qi’) to the database system where each
query computes the join of relations Rm, …, R1. Key—
foreign key joins can be made very efficient if we create
appropriate join indexes. We expect the number of
duplicates and hence the translation tables to be small.
Hence, outer joins with translation tables are efficient.

Main Memory Requirements: The group level duplicate
elimination procedure ideally requires for each group G,
the token table, the children table, and the tuples in G to be
in main memory. If the frequency distribution of children
or tokens follows the Zipfian distribution, which is true for
most real datasets [Zipf49], then less than half the tokens
or children tuples have frequencies greater than 1, and are
maintained in memory. In rare cases where a group being
processed is very large, we may materialize the token and
children tables on disk and build appropriate indexes.

5. Discussion
We now discuss several interesting issues starting with a
note that we do not require the dimensional information to

be normalized into relations Rm, …, R1. We can adapt
Delphi to work with an unnormalized relation R (the join
of Rm,…, R1) as long as the sets of attributes which form
the hierarchy are known.

FKCM Measurement
Recall that the fkcm metric only uses information from one
level below. Such a strategy is very efficient and sufficient
for most but the following two exceptional cases. We now
discuss these two cases.

Small children sets: When the children set of a tuple v1 is
so small that even a single erroneous tuple in CS(v1) is a
significant fraction, we may incorrectly believe that v1 is
unique when in fact it is a duplicate of v2. If we want to
detect such errors, we modify the children table
construction and processing as follows. We first add all
children tuples in Bc(G) (even those with frequency 1) to
the children table. We treat all pairs of duplicate (according
to tcm) tuples as synonyms when measuring the FK-
containment metrics between their parents. Since we have
to temporarily maintain all children tuples—even those
with frequency 1—we require additional main memory.

Correlated errors: Consider two sets of tuples in each
relation where one uses abbreviations and the other uses
expanded versions while reporting the country and state
values. Then, a tuple (“United States”, “Washington”, **)
may be a duplicate of (“USA”, “WA”, **) where **
represents the same set of values in both tuples. We may
not detect that “United States” is a duplicate of USA
through co-occurrence unless we look one level below the
States relation. It is possible to overcome this limitation by
measuring, with significant computational overhead, co-
occurrence through lower level relations. However, the
number of combinations may sometimes be too high (e.g.,
all organizations in USA) to even fit in main memory.

Definition of Duplicates
We now discuss a limitation of our definition of duplicates.
Consider the following pair of entities: [<Smith>,
<98052>, <WA>, <USA>] and [<Smith>, <98052>,
<Washington>, <Canada>]. If the tuples “Canada” and
“USA” are not (and rightly so) considered duplicates of
each other on the Country relation, then according to our
definition, the two entities are not duplicates. Observe that
the second tuple violates an implicit or explicit functional
dependency or rule: “zipcode=98052 and state=WA �
country=USA.” If we correct the violation and detect that

MP-CM
MP-ED
Delphi-Global
Delphi
Delphi-Stripped

Windowing, no hierarchy, no co-occurrence, global thresholds, Cosine metric
Windowing, no hierarchy, no co-occurrence, global thresholds, Edit distance
Grouping, hierarchy, co-occurrence, global thresholds
Grouping, hierarchy, co-occurrence, dynamic thresholding
Grouping, hierarchy, no co-occurrence, dynamic thresholding

Table 1: Algorithms

WA and Washington are duplicates (using co-occurrence
information), then the two customer entities are duplicates.
Thus, even though our definition of duplicates does not
directly allow such inconsistencies, we can correct them in
conjunction with other cleaning operations.

Potential Duplicate Identification Filter
Imagine a set G of tuples where most of the tokens in
Bt(G) occur in at least two tuples in G. In such cases, the
filtering strategy is not very effective because we may
mark many tuples as potential duplicates. Our experiments
on real data illustrate that such a case does not typically
occur in practice. However, developing appropriate filters
for such rare cases is still an open issue.

We note that it is possible to consider similarity and
combination functions other than the ones we used.
However, Observation 4.1, which summarizes our filtering
strategy, may not be valid for all similarity functions, and
one may have to design suitable filters where possible.

6. Experimental Evaluation
Using real datasets, we now evaluate the quality and
efficiency of Delphi and compare with earlier work.

6.1. Datasets and Setup
We consider clean Customer information from an internal
operational data warehouse and introduce errors.5 The
Customer dimensional hierarchy has four relations: Name
(level 1), City (level 2), State (level 3), Country (level 4)
with 269678, 21856, 1250, and 115 tuples, respectively.
Because we start from real data all characteristics of real
data—variations in the lengths of strings, numbers of
tokens in and frequencies of attribute values, co-occurrence
patterns, etc.—are preserved. Since we know the duplicate
tuples and their correct counterparts in the erroneous
dataset, we can evaluate duplicate elimination algorithms.

5 We observed similar results on the publication information of a
bibliography database. We omit results due to space constraints.

Error Introduction
We introduce two types of errors common in data
warehouses [For01]: equivalence errors, spelling &
truncation errors. The generator has three parameters: The
first percentage error parameter controls the error to be
introduced in each relation. The second (equivalence
fraction) and the third (spelling fraction) parameters
control the fractions of equivalence errors, spelling and
truncation errors, respectively. Suppose the percentage
error is 10% and the equivalence fraction is 50% then we
will introduce 10% duplicate tuples into the input table out
of which 50% will be due to equivalence errors.

Equivalence Errors: Consider the tuple combination [<Key
Associates>, <Joplin>, <MO>, <USA>] in the customer
table. Suppose we want to create an equivalence error for
“MO” in the state relation. We first garble “MO” into, say,
“xMykOz” so that the new value is undetectable by
standard textual similarity functions. Since equivalence
errors usually occur in multiple tuples, we choose around
5% (5-x%, 5+x%) of all entities with R.country=“USA”
and R.state=“MO” and modify the value of MO to
“xMykOz.” For 10% of these modified tuples, we also
introduce errors in the tuple from the child relation, when
one exists. We insert these erroneous tuples into R. At the
lowest level of the hierarchy, we garble a randomly picked
token from the token set and insert the modified tuple in R.

Spelling and Truncation Errors: We modify a token in a
tuple by changing, deleting, adding characters or truncating
the token. 50% of the time, we modify characters, and the
remaining 50% we just truncate the token. The number of
characters modified or truncated is a linearly decreasing
function with a maximum of half the token length.

Token Permutation: Consider the example where a user
enters first name followed by the last name instead of the
stipulated last name followed by the first name. To reflect
such types of errors, we randomly permute tokens in about
10% of the erroneous tuples being added to R.

Algorithms
Table 1 summarizes the algorithms we evaluate in this
study. MP-CM and MP-Edit are derivatives of the
windowing-based MergePurge (MP) algorithm using
cosine metric and edit distance, respectively [HS95, ME97,
Coh98]. Delphi-global is a variant of Delphi that uses
global thresholds for both tcm and fkcm. Delphi-Stripped
is a variant of Delphi which only uses tcm and completely
ignores co-occurrence information.

We run variants of MP on the unnormalized relation of
Name, City, State, and Country relations, and sort on the
key (name, city, state, country). In both MP-CM and MP-
Edit, we fix the window size at 20, and vary the thresholds.
We use MP-CM(x) (MP-Edit) to denote that the threshold
for the cosine metric (edit distance) is set to x. For Delphi-

Figure 3: False Positive Explosion

FP% of Cosine metric and Edit distance

0

100

200

300

400

500

FP% FN%

P
er

ce
nt

ag
e

CM (0.9)

CM (0.85)

CM (0.8)

Edit (0.05)

Edit (0.1)

Edit (0.15)

H-CM (0.9)

H-CM (0.8)

Global, we arrived at the global tcm-threshold and the
fkcm-threshold of 0.80 and 0.85, respectively, after several
trials. To compare the quality of algorithms, we do not
group duplicate tuples for the lowest Name relation and
output all pairs of duplicates detected by Delphi.

Quality Metrics
We now describe the quality metrics for evaluating
algorithms.

False positives: The percentage of incorrect pairs of tuples
which an algorithm detects as duplicates relative to the
actual number of duplicates is called the false positive (FP)
percentage. The false positive percentage can be greater
than 100 if the algorithm produces many incorrect pairs.
Lower false positive percentage indicates higher
confidence in the algorithm’s results.

False negatives: The percentage of undetected duplicates
in the input dataset relative to the number of duplicates is
called the false negative percentage. Lower false negative
percentages indicate good duplicate detection.

6.2. Analysis of Results

6.2.1. False Positive Explosion

We now demonstrate that the use of cosine metric or edit
distance can result in large false positive percentages. We
consider a dataset with 8% overall error where the
equivalence and spelling & truncation fractions at 0.5 each.
Figure 3 shows the results of applying the windowing
strategy on four different sort orders: [Name, City, State,
Country], [City, State, Country, Name], [State, Country,
Name, City], and [Country, Name, City, State]. CM(x)
(Edit(x)) denotes the results from using cosine metric (edit
distance) with a threshold x, and H-CM from using cosine
metric with the restricted definition of duplicates in the
presence of dimensional hierarchies. From Figure 3, we
observe that lowering thresholds drastically increases false
positive percentages for cosine metric and edit distance.

6.2.2. Quality

In the following two experiments, we generated erroneous
datasets from the input dataset by introducing 4%, 8%, and
11% errors with relative fractions of equivalence error and
spelling & truncation errors fixed at 0.5.

Reduction in False Positive Percentages
Figure 4 shows the false positive percentages of each
algorithm. Because Delphi and Delphi-global have
significantly lower false positive percentages, we conclude
that hierarchies and co-occurrence information together
significantly reduce false positive percentages.

Reduction in False Negative Percentages
From Figure 5, which plots false negative percentages, we
see that Delphi has the lowest false negative percentages.
Therefore, co-occurrence information is useful in reducing
false negatives as well. And, Delphi-Stripped is better than
Delphi-Global. Hence, dynamic thresholding helps reduce
false negative percentages. However, its impact on false
positive reduction seems unpredictable.

6.2.3. Speed and Scalability

We ran Delphi, Delphi-Stripped, and MP-CM on datasets
of size 3000, 30000, 300000, and 3000000.6 Table 2 shows
that Delphi and MergePurge are both scalable over a wide
range of dataset sizes. Running times are normalized with
respect to that of Delphi on a 3000 tuple dataset. We also
note that maximum amount of main memory required by
Delphi on any of the datasets we considered here is less
than 25 MB, thus supporting our argument that token and
children tables fit in memory.

#Tuples Delphi Delphi-Stripped MP-CM
3000 1 0.8 0.7

30000 5.512 4.2 3.55
300000 52.5 43.7 151.5

3000000 510.4 230.6 1500

 #(TCM; FKCM)
Name 51582; 0
City 9997; 1093
State 434; 441
Country 30; 8

6 Since the scalability characteristics of MP-Edit are similar to
that of MP-CM, we do not consider it here.

Table 2: Scalability Table 3: Filtering

Figure 5: False Negative Percentages

0

20

40

60

80

100

120

4 8 11

Overall Error Percentage

FN
 %

Delphi Delphi-Stripped
Delphi-Global MP-CM (0.8)
MP-Edit (0.1)

0

50

100

150

200

250

4 8 11

Overall Error Percentages

FP
 %

Delphi Delphi-Stripped
Delphi-Global MP-CM (0.8)
MP-Edit (0.1)

Figure 4: False Positive Percentages

6.2.4. Potential Duplicate Filter

We now evaluate our potential duplicate filtering
technique. The dataset has 8% duplicate tuples. Table 3
shows the total number of potential duplicates over all
groups in each relation of the hierarchy. The entry (x; y)
denotes that tcm and fkcm returned x and y potential
duplicates, respectively. We observe that only 20% (as
compared to the minimum 16%=8% duplicates + 8%
targets) of the overall set of tuples was even considered to
be potential duplicates. Hence, potential duplicate filtering
enhances efficiency. Also observe that fkcm returns fewer
potential duplicates. Hence, we conclude that co-
occurrence information is very effective at reducing false
positives.

7. Conclusions
In this paper, we exploited dimensional hierarchies in data
warehouses to develop a high quality, scalable, and
efficient algorithm for detecting fuzzy duplicates in
dimensional tables. In future, we intend to consider
multiple hierarchies for detecting fuzzy duplicates.

Acknowledgements
We thank several members of the DMX group at Microsoft
Research for their thoughtful comments.

References
[AEP01] A.N. Arslan, O. Egecioglu, and P.A. Pevzner. A new
approach to sequence comparison: Normalized local alignment.
Bioinformatics, 17(4):327--337, 2001.
[BDS01] Vinayak Borkar, Kaustubh Deshmukh, and Sunita
Sarawagi. Automatic segmentation of text into structured records.
In Proceedings of ACM Sigmod Conference, Santa Barbara, CA,
May 2001.
[BGM+97] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic Clustering of the Web. In Proc. Sixth Int'l. World Wide
Web Conference, World Wide Web Consortium, Cambridge,
pages 391--404, 1997.
[BGRS99] K. Beyer, J. Goldstein, R. Ramakrishnan, and U.
Shaft. When is ''nearest neighbor'' meaningful? International
Conference on Database Theory, pages 217--235. January 1999.
[BL94] V. Barnett and R. Lewis. Outliers in statistical data. John
Wiley and Sons, 1994.
[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison Wesley Longman, 1999.
[Coh98] W. Cohen. Integration of heterogeneous databases
without common domains using queries based in textual
similarity. In Proceedings of ACM SIGMOD, pages 201--212,
Seattle, WA, June 1998.
[For01] Ronald Forino. Data e.quality: A behind the scenes
perspective on data cleansing. http://www.dmreview.com/, March
2001.
[FS69] I. P. Felligi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society, 64:1183--1210, 1969.
[Gal] Helena Galhardas. Data cleaning commercial tools.
http://caravel.inria.fr/~galharda/cleaning.html.
[GFS+01] Helena Galhardas, Daniela Florescu, Dennis Shasha,
Eric Simon, and Cristian Saita. Declarative data cleaning:
Language, model, and algorithms. In Proceedings of the 27th

International Conference on Very Large Databases, pages 371--
380, Roma, Italy, September 11-14 2001.
[GFSS99] Helena Galhardas, Daniela Florescu, Dennis Shasha,
and Eric Simon. An extensible framework for data cleaning. In
ACM Sigmod, May 1999.
[GIJ+01] L Gravano, P Ipeirotis, H V Jagadish, N Koudas, S
Muthukrishnan and D Srivastava. Approximate String Joins in a
Database (Almost) for Free. In Proceedings of the VLDB 2001.
[GGR99] Venkatesh Ganti, Johannes Gehrke, and Raghu
Ramakrishnan. Cactus--clustering categorical data using
summaries. In Proceedings of the ACM SIGKDD fifth
international conference on knowledge discovery in databases,
pages 73--83, August 15-18 1999.
[GKR98] David Gibson, Jon Kleinberg, and Prabhakar Raghavan.
Clustering categorical data: An approach based on dynamical
systems. VLDB 1998, New York City, New York, August 24-27.
[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim.
Rock: A robust clustering algorithm for categorical attributes. In
Proceedings of the IEEE International Conference on Data
Engineering, Sydney, March 1999.
[HKPT98] Yka Huhtala, Juha Karkkainen, Pasi Porkka, and
Hannu Toivonen. Efficient discovery of functional and
approximate dependencies using partitions. In proceedings of the
14th international conference on data engineering (ICDE), pages
392--401, Orlando, Florida, February 1998.
[HS95] M. Hernandez and S. Stolfo. The merge/purge problem
for large databases. In Proceedings of the ACM SIGMOD, pages
127--138, San Jose, CA, May 1995.
[KA85] B. Kilss and W. Alvey. Record linkage techniques--1985.
Statistics of income division. Internal revenue service publication,
1985. Available from http://www.bts.gov/fcsm/methodology/.
[KM95] J.Kivinen and H. Mannila. Approximate dependency
inference from relations. Theoretical Computer Science,
149(1):129--149, September 1995.
[MBR01] J Madhavan, P Bernstein, E Rahm. Generic Schema
Matching with Cupid. VLDB 2001, pages 49-58, Roma, Italy.
[ME96] Alvaro Monge and Charles Elkan. The field matching
problem: Algorithms and applications. In Proceedings of the
second international conference on knowledge discovery and
databases (KDD), 1996.
[ME97] A. Monge and C. Elkan. An efficient domain
independent algorithm for detecting approximately duplicate
database records. In Proceedings of the SIGMOD Workshop on
Data Mining and Knowledge Discovery, Tucson, Arizona, May
1997.
[MR94] H. Mannila and K.-J. Raiha. Algorithms for inferring
functional dependencies. Data and Knowledge Engineering,
12(1):83--99, February 1994.
[NR99] Felix Naumann and Claudia Rolker. Do metadata models
meet iq requirements? In Proceedings of the international
conference on data quality (IQ), MIT, Cambridge, 1999.
[Pro] MIT Total Data Quality Management Program. Information
quality. http://web.mit.edu/tdqm/www/iqc.
[RD00] Erhard Rahm and H. Hai Do. Data cleaning: Problems
and current approaches. IEEE Data Engineering Bulletin, 23(4):3-
-13, December 2000.
[RH01] Vijayshankar Raman and Joe Hellerstein. Potter's wheel:
An interactive data cleaning system. VLDB 2001, pages 381--
390, Roma, Italy.
[Zipf49] G.K. Zipf. Human behaviour and the principle of least
effort. Addison-Wesley, Reading, MA, 1949.

