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Abstract

In today's multitiered application architec-
tures, clients do not access data stored in the
databases directly. Instead, they use applica-
tions which in turn invoke the DBMS to gen-
erate the relevant content. Since executing
application programs may require signi�cant
time and other resources, it is more advanta-
geous to cache application results in a result
cache. Various view materialization and up-
date management techniques have been pro-
posed to deal with updates to the underly-
ing data. These techniques guarantee that the
cached results are always consistent with the
underlying data. Several applications, includ-
ing e-commerce sites, on the other hand, do
not require the caches be consistent all the
time. Instead, they require that all out-dated
pages in the caches are invalidated in a timely
fashion. In this paper, we show that invali-
dation is inherently di�erent from view main-
tenance. We develop algorithms that bene-
�t from this di�erence in reducing the cost
of update management in certain applications
and we present an invalidation framework that
bene�ts from these algorithms.

1 Introduction

Most modern application architectures are being de-
signed as multitiered distributed systems. For exam-
ple, a typical e-commerce server architecture consists
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Figure 1: A typical multitiered architecture

of three major tiers: a database management system
(DBMS) which maintains information pertaining to
the service, an application server (AS) which encodes
business logic pertaining to the organization, and a
web server (WS) which provides the Web-based inter-
face between the users and the e-commerce provider
(Figure 1). User requests in this case invoke appropri-
ate program scripts in the application server which in
turn issue queries to the underlying DBMS to dynam-
ically generate and construct pages.

Since executing application programs and access-
ing DBMSs may require signi�cant time and other
resources, it may be advantageous to cache applica-
tion results in proxy, front-end, and edge caches (Fig-
ure 1(A),(B), and (C)). Unfortunately, due to techni-
cal limitations at this moment, such caches can not
be e�ectively used. The key problem in this case
is that database driven HTML content is inherently
dynamic. The main challenge that arises in caching
such content is to ensure its freshness. In particular,
if we blindly enable dynamic content caching we run
the risk of users viewing stale data specially when the
corresponding data-elements in the underlying DBMS
are updated. Since there is no appropriate mecha-
nism to reect data changes to result caches, currently,
most dynamically generated HTML pages are tagged
as non-cacheable. This means that every user re-
quest to dynamically generated HTML page must be
served from the origin server. Several solutions are be-
ginning to emerge in both research laboratories [1, 2]
and companies, such as Persistent Software, Zembu,
and Oracle.

There are two main problems that arise in enabling
dynamic content caching: (1) Dynamically generated



HTML pages have to be mapped or associated with
the data elements in the DBMS; and (2) updates to the
data elements in the DBMS must invoke invalidation
of cached HTML pages that are a�ected by updates.

The �rst problem can be solved easily if the applica-
tion server logic maintains the mapping of data objects
to the dynamically generated HTML pages [1]. In the
absence of this explicit application logic, this mapping
can be discovered (as we presented in [3]) in a loosely-
coupled manner by employing a process called sniÆng.
This process identi�es (a) a mapping between cached
results and the corresponding queries used to generate
those results and (b) a mapping between the queries
and the data changes that a�ect these queries.

The second problem is closely related to the prob-
lem of view maintenance [4, 5, 6, 7] in the context
of materialized views in data warehouses. Since a
data warehouse consists of a large view, the main fo-
cus of the database research has been to maintain
materialized views incrementally. Numerous algo-
rithms have been proposed for incremental view main-
tenance [8, 9, 10, 11, 12]. Another related topic of
investigation is the area of query caching [13, 14, 15].
Both solutions guarantee that the stored results are
always consistent with the underlying data.

On the other hand, in most e-commerce applica-
tions, it is not always necessary that the users be able
to access all information through the cache. If a re-
sult is not in the cache, it can always be generated on-
demand using the application server and the database.
What is desirable, however, is that the users do not
access any information that is out-of-date through
the cache. Thus, in e-commerce applications, the re-
quirement is that out-dated pages are invalidated in a
timely manner. The second problem can be addressed
by developing a component referred to as the inval-
idator that monitors the database updates and sends
invalidation messages to the a�ected HTML pages that
are cached. In essence, view invalidation is determin-
ing whether a query is independent of a particular up-
date to the underlying data. There has been a body of
work [16, 17, 18, 19], which studied the dependency of
SPJ and datalog queries and updates. Most of these
addressed invalidation at the logical level, without re-
ferring to the underlying base-relations. [19] considers
base relations, or local data, when checking the e�ects
of updates on the truth values of a given set of con-
straints. Our work builds on the existing literature by
developing eÆcient invalidation techniques that use lo-
cal data, but impose minimal overhead on the DBMS.
We show that invalidation is inherently di�erent from
view maintenance. We develop algorithms that ben-
e�t from this di�erence and develop an invalidation
framework for enabling dynamic content caching.

2 View Invalidation

In this section, we describe the view invalidation
framework in the context of dynamically generated
HTML pages that are cached. Note that since we are

caching dynamic content, we assume that a mapping
from the dynamic content to appropriate database
queries is also maintained.

2.1 Invalidation versus View Maintenance

Let the information infrastructure of an e-commerce
site Auto buy.com be based on a database with two
relations, Car(maker,
model, price) and Mileage(model, EPA). Let one
of the application scripts use the query:
select maker, model, price from Car where
maker = "Toyota";
to generate a web page,
http://www.auto buy.com/modelinfo?car=Toyota,
which lists the models and prices of all Toyota cars
available in the inventory.

If, after this dynamically generated web page
is stored in the front-end cache, a new car
(Toyota;Avalon; 25000) is inserted into the relation
Car in the database, then the content of the cached
page will be impacted and a corrective action in the
front-end cache may be required. For instance, if ma-
terialized views are available for use, the system could
compute the new results of this query (preferably in-
crementally) and then it could rerun the application
to regenerate the page. If the number of cached pages
is large, however, this action may prove to be too ex-
pensive to be feasible.

Alternatively, if we can quickly identify the web
page that is a�ected by this insertion, then, we can
purge it from the cache instead of regenerating it. In-
deed, for most e-commerce applications, when a new
product is inserted, a user request to that product
can still be served by the application server by ac-
cessing the DBMS for the newly added data instead
of accessing the cache. We refer to this approach as
view invalidation. Note that we can remove a larger
part of the materialized view than strictly a�ected
by an underlying data change. For instance, in an
extreme case, we can mark the entire cache invalid,
if this is the only way to ensure (in real-time) that
users will not access old data. Although such over-
invalidation might reduce the hit rate of the cache, it
may help the system to deal with updates in real-time.

When compared to view management, invalidation
provides two advantages. Given an update
� we do not need to compute all its conse-
quences, and

� over-invalidation does not compromise cor-
rectness.

On the other hand, we have to make sure that ev-
ery a�ected cached result must be invalidated; i.e.,
such under-invalidations can compromise correctness
and must be avoided.

2.2 Collecting Queries and Updates

Since we are assuming a relational model for the un-
derlying DBMS, the query de�nitions will be available
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as SQL statements. For simplicity and clarity, we will
instead assume that these de�nitions are in the form of
SPJ expressions, an assumption that is widely made
in the view maintenance literature [5, 20, 11]. Fig-
ure 2 shows a timeline and a sequence of events that
are registered by a DBMS:
� The qis on the timeline show the query instances
processed by the database.

� The up events show the data updates.

Without loss of generality, we assume that the DBMS
uses appropriate synchronization mechanisms to en-
sure atomicity of queries and updates. Besides the
query and update events, the �gure also shows a set
of synchronization, sync, events. These events mark
the time instances when the list of updates are passed
to the invalidation module (in the order of arrival) for
processing. For example, if the invalidator is work-
ing outside of the DBMS, such information can be ex-
tracted from the update logs of the database1.

Note that if there is a sync event for each update
event, then the invalidation process will be more real-
time, however the invalidator may not bene�t from
correlations between updates that are occurring tem-
porally close to each other. On the other hand, if each
sync event covers a set of update events, then these
updates will be processed in batches, potentially ben-
e�ting from commonalities in updates, but introducing
a temporal delay in the invalidation process.

2.3 Invalidation and Polling Queries

View invalidation is performed iteratively (Figure 3);
at the beginning of each iteration, current updates are
extracted and then these updates are processed to gen-
erate appropriate invalidation messages. If the inval-
idation process is not synchronized with the DBMS,
the latency during the invalidation process may re-
sult in an interference during invalidation. Our goal is

1For example. ORACLE 8i provides the log miner interface
to extract updates incrementally from the log.

to identify such interferences and develop schemes to
avoid them.

Let us revisit the e-commerce application example
that was presented earlier. Assume there is an appli-
cation script which issues a query, Query,

select maker, model, Car.price, Mileage.EPA
from Car, Mileage
where Car.maker = "Toyota" and

Car.model = Mileage.model;
to generate the page http://www.auto buy.com/
mileageinfo.cgi?car=Toyota, which provides
mileage information about the Toyotas.

If a new tuple, say (\Mitsubishi", \Galant", 23000),
is inserted into the relation Car after this page is
cached, we may be able to check whether this tu-
ple does not satisfy the condition in Query without
any additional information. That is, if the maker at-
tribute of the new tuple is di�erent from \Toyota",
then we can conclude that the new tuple does not af-
fect any of the cached pages. However, if the new
tuple, say (\Toyota", \Avalon", 25000), satis�es the
condition then we do not know whether or not the re-
sult is impacted until we check the rest of the con-
dition, which includes the table Mileage. That is,
to see if the new tuple does satisfy the condition in
Query we need to check whether or not the condi-
tion Car:model =Mileage:model can be satis�ed. To
check this condition, we need to issue the following
polling query, PollQuery, to the DBMS:

select Mileage.model, Mileage.EPA
from Mileage
where "Avalon" = Mileage.model;

If the result set of PollQuery is non-empty, we know
that the newly inserted tuple, (\Toyota", \Avalon",
25000), a�ected Query and consequently the corre-
sponding page must be invalidated. An analogous sce-
nario occurs for deleted tuples.

Note that there is a trade-o� between the amount
of polling and processing required and the quality of
the invalidation process. If we do not have enough
time to process the required polling query, we can
choose to be cautious and, in order to avoid a possible
under-invalidation, invalidate Query without knowl-
edge about the contents of the Mileage table. In
general, it is possible to send detailed polling queries,
hence spending more time, to identify which web pages
in the cache are not a�ected by a given update.
Therefore, it is possible to use this trade-o� between
the amount of polling and the invalidation quality
to schedule polling queries within the real-time con-
straints of an e-commerce site.

2.4 Summary

Based on the discussions presented in this section,
we see that in many multitiered application systems,
(quick-and-dirty) view invalidation is a more desirable
option compared to using (costly) view maintenance.
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3 Invalidation of Queries with Two Re-
lations

In this section, we develop techniques for invalidat-
ing cached queries (equivalently, views). For simplic-
ity of the presentation, we start with view or query
de�nitions that are restricted to two relations. We
will generalize these techniques for multiple relations
in Section 4. In order to maintain the separation of
the invalidation module and the DBMS, we assume
that the invalidator module has access to the DBMS
update logs. Periodically, the invalidator can scan the
log (from the point where it read the log last time) to
extract all the updates.

3.1 �: Changes in the View

Consider a query de�nition, q = A 1 B, that involves
relations A and B used for generating a web page that
is maintained by the invalidator. In this paper we will
assume that updates are modeled as inserts and deletes
of tuples in relations A and B. Figure 4 shows the
old and new versions of A denoted as Aold and Anew ,
respectively. A+ denotes the set of inserted tuples in
relationsA and A� denotes the set of deleted tuples. In
addition, the part of the relations that did not change
is denoted as A0. Similarly, for the relation B. We can
now rewrite the sets of tuples that are in the old and
new results, Aold 1 Bold and Anew 1 Bnew, as follows:

Aold 1 Bold = (A0 [ A�) 1 (B0 [B�)
= (A0

1 B0) [ (A0
1 B�) [ (A�

1 B0) [ (A�
1 B�)

Anew 1 Bnew= (A0 [ A+) 1 (B0 [ B+)
= (A0

1 B0) [ (A0
1 B+) [ (A+

1 B0) [ (A+
1 B+).

Therefore, the set of tuples deleted from or inserted
to the join can be enumerated as

� =(A0
1 B

�)| {z }
term1

S
(A�

1 B
0)| {z }

term2

S
(A�

1 B
�)| {z }

term3

S

(A0
1 B

+)| {z }
term4

S
(A+

1 B
0)| {z }

term5

S
(A+

1 B
+)| {z }

term6

3.2 Advantages of Invalidation over View
Maintenance

In view maintenance such changes must be partitioned
into two sets: deleted set of tuples and inserted set of
tuples, and these sets have to be treated separately. In

contrast, in the context of view invalidation, a query,
q, is a�ected by the updates if � (inserted or deleted)
is non-empty. Furthermore, in order to decide whether
to invalidate the results q, we do not need to evaluate
the entire �, but, we need to determine if it contains
at least one tuple. If there is a tuple in �, we can
stop right away as evaluating additional tuples in �
is not necessary. For this purpose, we can use the
top-k retrieval algorithms proposed in [21] and others.
Therefore, at this point, we can (informally) state that

View invalidation is inherently cheaper than
view maintenance.

Intuitively, this is because identifying that a query is
a�ected by a set of updates is inherently cheaper than
�nding the exact consequences of such updates.

3.3 Challenges in Computing �

Note that evaluating the terms that constitute �
requires not only the knowledge about the changes
(A+; B+; A� and B�), but also the parts of the re-
lations that did not change (A0 and B0). The invali-
dation module can acquire knowledge about the data
changes by examining the update log. However, it has
to access the database in order to obtain the database
state A0 and B0. As we have discussed earlier, this re-
quires the evaluation of polling queries at the DBMS.

A major challenge in creating polling queries is that
A0 and B0 are not explicitly maintained by the DBMS.
Therefore, unless appropriate measures are taken, A0

and B0 will not be available for polling queries: by the
time updates are collected, relations A and B have al-
ready been modi�ed by new updates, and A0 and B0

are not available anymore. Therefore, computation
of � requires intelligent update collection and polling
scheduling mechanisms. We see that there are three
approaches to this challenge, each with its own advan-
tages and disadvantages:

� Snapshot-based approach, where a copy (or a snap-
shot) of the database is maintained for invalida-
tion purposes.

� Synchronous approach, where only a single copy
of the database is maintained, but this copy is
locked during invalidation processing, and

� Asynchronous approach, where only a single copy
of the database is maintained and no locking is
used.

3.4 Case I: Snapshot-based Approach

This approach assumes that database snapshots both
before and after the updates are available to the in-
validator. This can be achieved either by delaying the
actual updates or by maintaining external copies of the
relevant portions of the original database. The �rst op-
tion incurs additional load on the system, as it limits
when updates are applied to the relations. While the
second option does not have this overhead, it requires
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appropriate data structures and query processing ca-
pabilities embedded in the invalidator.

As formulated above, evaluating � requires that we
have access to the unchanged portion of the relations,
i.e., A0 and B0. The two snapshots, on the other hand,
actually consists of relations
� old snapshot: Aold = A0 [ A�, Bold = B0 [ B�,

� new snapshot:Anew = A0 [A+, Bnew = B0 [B+.

We can rewrite � as:

� =(A+
1 B0) [ (A+

1 B+) [ (A0
1 B+) [ (A+

1 B+)�[
(A�

1 B0) [ (A�
1 B�) [ (A0

1 B�) [ (A�
1 B�)�;

by repeating the terms marked by �. Such a repe-
tition does not give rise to any inconsistency in the
view invalidation context. We can further rewrite this
equation as

� =f(A+
1 Bnew) [ (Anew 1 B+)g

S
f(A�

1 Bold) [ (Aold 1 B�)g

Given the above formulation of � we can implement
the snapshot method as follows. The invalidator main-
tains snapshots of Aold and Bold which resulted from
the prior invalidation cycle. At the current invalida-
tion cycle, the invalidator extracts the sets of inserted
and deleted tuples. Then, (Figure 5):
� Computes if (A�

1 Bold) [ (Aold 1 B�) is non-
empty;

� Sets Anew = Aold [ A+ n A� and Bnew = Bold [
B+ nB�; and

� Computes if (A+
1 Bnew)[ (Anew 1 B+) is non-

empty.
� Discards Aold and sets Anew to Aold. Similarly for
the relation B.

The above approach requires processing four (two if
we assume that unions can be expressed as a part
of a single query) queries in order to invalidate one
query. However, when the sizes of the updates are
small, it is likely that processing these four queries
will be cheaper than regenerating the results of the

original query. Furthermore, we can stop the process
as soon as we identify one single tuple in the result,
without really waiting for the results of all four queries.
This process, however, may still be too expensive when
there are many queries to be invalidated, as it is the
case in e-commerce sites where there are many pages
in the cache that correspond to queries executed with
di�erent parameters. In Section 5 we will show that it
is possible to eÆciently extend this approach to batch
processing of similar query instances.

3.5 Case II: Synchronous Approach

An alternative option, which introduces less interven-
tion on the original database and which does not cre-
ate an external copy of the tables, is to let the original
relations to be updated freely; but to lock these rela-
tions right before the invalidation process starts. The
main consequence of this change is that Aold and Bold

are not available for polling queries anymore. The only
available source for these relations are Anew and Bnew.
Therefore, while computing

� =(A0
1 B�) [ (A�

1 B0) [ (A�
1 B�)[

(A0
1 B+) [ (A+

1 B0) [ (A+
1 B+)

we need to use Anew = A0 [ A+ and Bnew = B0 [
B+ instead of A0 and B0. If, we rewrite � using the
available relations, we get

�0 =(Anew 1 B�) [ (A�
1 Bnew) [ (A�

1 B�)[
(Anew 1 B+) [ (A+

1 Bnew) [ (A+
1 B+);

which is equal to

�0 = � [ (A�
1 B

+) [ (A+
1 B

�):

In other words, since it maintains only one copy of
the database, the synchronous approach introduces an
over-invalidation term, O = (A�

1 B+)[ (A+
1 B�).

If O is not empty, the query may be invalidated un-
necessarily. Over-invalidation may jeopardize perfor-
mance but not correctness.

3.6 Case III: Asynchronous Approach

The invalidation technique presented in the previous
section assumes that relations A and B are locked dur-
ing the invalidation process; hence Anew and Bnew are
available for polling queries. This approach induces
additional overhead on the original database due to
reduced availability of the database for updates.

An alternative option would be to let the origi-
nal database be updated freely during the invalidation
process. Figure 6 shows the old and new versions of
the relation A. In this �gure Aold represents the old
state of relation A, Anew represent its new state at the
time when updates are collected, and A0 represents the
state of A when polling queries are forwarded to the
database. In summary:

Aold = Aa [Ab [ Ac [ Ad, Anew = Ab [Ac [Ae [ Af ,
A� = Aa [Ad, A+ = Ae [Af .

Furthermore, since the relation A may freely change
during the invalidation process, we also have
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That is, during the invalidation cycle the state of re-
lation A changed from Anew to A0 during which tu-
ples corresponding to regions Ab and Ae (denoted by
ÆA0�) were deleted and tuples corresponding to re-
gions Ad and Ag (denoted by ÆA0+) were inserted,
asynchronously. The corresponding terms for B are
similar. Since at the polling query generation time we
have access to only A+, A�, A0, B+, B�, and B0, we
have to compute � using these terms:

�0 =(A0
1 B�) [ (A�

1 B0) [ (A�
1 B�)[

(A0
1 B+) [ (A+

1 B0) [ (A+
1 B+),

which can also be rewritten as

�0 =���
(Ab 1 B�) [ (A�

1 Bb) [ (Ab 1 B+) [ (A+
1 Bb)

�S

[((Ad [ Af [Ag) 1 B�) [ (A�
1 (Bd [Bf [ Bg)) [

((Ad [ Af [Ag) 1 B+) [ (A+
1 (Bd [ Bf [Bg))]:

Hence, �0 both contains additional terms and misses
some of the terms in the original �. The additional
terms cause over-invalidation, whereas the missing
terms may lead into under-invalidation. In particular,
the over-invalidation is caused by the terms

�0 �� =((Ad [Af [Ag) 1 (B� [ B+))
S

((A� [A+) 1 (Bd [Bf [Bg)).

This, however, may be acceptable since over-
invalidation jeopardizes performance but does not
compromise correctness. In order to prevent the
under-invalidation, however, we need to compute the
missing terms in �0 and adjust the invalidation deci-
sion accordingly. The missing terms in � are

���0 = (Ab 1 (B� [ B
+)) [ ((A� [A

+) 1 Bb):

Unfortunately, at the invalidation time, we do not
know what Ab or Bb are. Therefore, we can not cal-
culate this term and recover from under-invalidation

and
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Figure 7: Invalidation process when the relations are
free to be updated during invalidation

using the information available at this synchroniza-
tion point. Note, however, that Ab is a subset of the
tuples that are being deleted from the relation A dur-
ing the invalidation process. Similarly, Bb is a subset
of the tuples that are being deleted from B. These
tuples will be available to the invalidator at the next
synchronization point, say in the form of update logs
A�

2 and B�

2 . Since Ab � A�

2 and Bb � B�

2 , therefore,

���0 � (A�

2 1 (B� [B
+)) [ ((A� [A

+) 1 B
�

2 ):

Hence, we can recover from under-invalidation by
computing

(A�

2 1 (B� [B+)) [ ((A� [ A+) 1 B�

2 )

at the next synchronization point and readjusting
the invalidation decision accordingly. Although cal-
culating these terms would guarantee that there is
no under-invalidation, it may contribute toward over-
invalidations of cached results.

Figure 7 shows the overall structure of the inval-
idation process. Invalidation is performed within an
in�nite loop; at the beginning of each iteration, recent
updates are collected and these updates are processed
together with the updates in the previous iteration to
prevent any under-invalidation. Then, the new set of
updates are processed to generate invalidation mes-
sages corresponding to these updates.

4 Invalidation of Queries with More
than Two Relations

In the previous section, we introduced techniques re-
quired for invalidating queries with two relations. In
this section, we generalize this to queries with more
than two relations. Given a query q = R1 1 R2 1

: : : : : : 1 Rn, we can generalize the de�nition of � as

� = [[1n
i=1 (R

�

i [R0
i )] [ [1n

i=1 (R
+
i [ R0

i )]]� 1
n
i=1 R

0
i

which has 2(n+1) � 2 non-overlapping terms. In this
section, we will discuss techniques to evaluate � eÆ-
ciently.



4.1 Case I: Snapshot-based Approach

As it was the case in queries with two relations, � is
described in terms of R0

i s which correspond to the un-
changed portions of the input relations. If we assume
that we also have access to old (Rold;i) as well as new
(Rnew;i) snapshots of the relation Ri, we can rewrite
� using 2�n terms2, much less than 2n+1� 2 queries
required by the naive formulation of �. Note that if
R+
i and R�

i are small, then computing � will be much
cheaper than re-evaluating q. Furthermore, as we dis-
cussed earlier, computation of � can be terminated as
soon as � becomes non-empty.

4.2 Case II: Synchronous Approach

In this case, as we have seen earlier in Section 3, we can
not rewrite � without introducing over-invalidation.
Since, Rold;is are not available, while computing �,
we need to use Rnew;i whenever we need to access R0

i .
This formulation results in an over-invalidation term

Obenign = 1
n
i (R�

i [ R+
i ) � (1n

i R�

i [ 1
n
i R

+
i );

which can be recovered by additional processing dur-
ing the invalidation time, as well as other terms,
Omalicious, that can not be recovered as they contain
references to relations, R0

i , which are not available.
Note that, as we have seen in Section 3, when the
number of relations is two, Omalicious = ;.

4.3 Case III: Asynchronous Approach

In this case, neither Rold;i nor Rnew;i are available for
invalidation. Instead, polling queries must use R0

is,
which may contain new tuples and miss some of the
old tuples. Note that �0 computed using using R0

i

only, is not exactly equal to �; it both introduces new
terms (over-invalidation) and misses some of the terms
(under-invalidation) in �. When there are more than
two relations in the query, however, since some terms
are completely lost, it is not possible to recover from
under-invalidation using additional post-processing.

4.4 Summary

We can summarize the results of the last two sections
as follows:

� Queries with only two relations can be invalidated
without causing any under-invalidation. If we are
not maintaining locks on the tables, however, it is
possible to incur some over-invalidation.

� Queries with more than two relations can be
invalidated, by maintaining appropriate locks
during the invalidation process, without under-
invalidation. If we are not maintaining locks
on the tables, the process may cause under-
invalidation.

Therefore, we do not suggest to perform invalidation
on queries with more than two relations if maintaining
locks is not feasible.

2Details omitted for space considerations.

5 Invalidation of a Set of Related
Queries

An e-commerce site (our motivating application) re-
ceives and caches thousands of queries. When the
number of queries to be maintained by the invalidator
is large, however, the amount of processing that is re-
quired in order to generate the invalidation messages
may be very large. Therefore, when the number of
cached queries is large, instead of treating each query
instance individually, it may be more eÆcient to �nd
the related instances and process them as a group. In
particular, if we are given a set, Q, of query instances
that are of the same type, QT , then we can create a
new table, TQT (qid; V1; : : : ; Vo), that contains all the
stored query instances of this type.

Example 5.1 Given a query type QT (V 1; V 2)
SELECT * FROM R1,R2

WHERE R1.A = $V1 and R1.B = R2.B and R2.C = $V2;

and the following three query instances,
t1: SELECT * FROM R1,R2

WHERE R1.A = 100 and R1.B = R2.B and R2.C = 200;

t2: SELECT * FROM R1,R2

WHERE R1.A = 150 and R1.B = R2.B and R2.C = 80;

t3: SELECT * FROM R1,R2

WHERE R1.A = 80 and R1.B = R2.B and R2.C = 60;

we can collect all these query instances in a query in-
stance table

TQT

queryID V1 V2

qid1 = ht1;QT i 100 200
qid2 = ht2;QT i 150 80
qid3 = ht3;QT i 80 60

In this section, we introduce techniques for batch
invalidation of cached queries. Therefore, we can re-
state the invalidation task as follows. Given

� a database D which contains a set of relations
R = fR1; : : : ; Rng,

� a set, U(s), of updates (tuples deleted and inserted
during the sth synchronization period) on these
relations, fR+

1 ; : : : ; R
+
n ; R

�

1 ; : : : ; R
�

n g,

� a select-project-join query type QT (V1; : : : ; Vo),
and

� a set, Q, of query instances of type QT ,

we want to �nd the set, Q� of query instances that
may have been a�ected by the updates. Once we
identify them, we use the query-instance/application-
result map to invalidate those results in the application
result cache that depends on these query instances.

5.1 Consolidated Invalidation of a Set of
Query Instances

In order to reduce the overhead of the invalidation pro-
cess, we can bene�t from the similarities between the
query instances maintained by the invalidation frame-
work. In particular, if we are given T (qid; V1; : : : ; Vo),



that contains all the stored query instances of a query
type, then we can �nd the set, Q�, of queries that are
a�ected by the updates as

Q� = �qid��T (� 1 T );

where �T is a condition where any reference in � to
a parameter Vj is replaced by a reference to T:Vj and
� is the term calculated in the previous sections.

Example 5.2 Let us reconsider the query type, QT
from Example 5.1and two tables, R1 and R2:

TQT

queryID V1 V2

qid1 100 200
qid2 150 80
qid3 80 60

R1

A B

100 20
300 80
500 100

R2

B C

10 50
20 200
80 500

then, we can see that the cached result for qid1 is
fh100; 20; 200ig. The result sets for both qid2 and
qid3, on the other hand, are empty.

queryID Results in the cache
qid1 fh100; 20; 200ig
qid2 ;
qid3 ;

Next, let us assume that the �rst two rows of
R1 are deleted due to an update (i.e., R�

1 =
fh100; 20i; h300; 80ig and R+

1 = R�

2 = R+
2 = ;). As-

suming that we are using the snapshot based approach,
� can be calculated as R+

1 1 R2new, which is equal to
� = R1+ 1 R2new

A B C

100 20 200
300 80 500

Therefore, the list of query instances to be invali-
dated (only qid1 in this case) can be found by project-
ing the query instance IDs from the following table:

�A=$V 1^C=$V 2(� 1 T )

A B C queryID V1 V2

100 20 200 qid1 100 200

5.2 Cost of Consolidated Invalidation versus
Individual Invalidation of Queries

As it can be seen above, batch or consolidated pro-
cessing of query instances transforms the query pro-
cessing from an existence (i.e., top-1) query to a join
query. Performing jT j many top-1 queries would re-
quire O(jT j � t�) time, where t� is the average top-1
query execution time for the evaluation of �. De-
pending on the availability of indexes, sorted tables,
and/or pipelining, top-1 retrieval of � can be very
fast, O(1), or it can require as much time as needed
to completely evaluate � [13]. In addition, there will
be resource and communication overheads associated
with sending jT j di�erent queries to the database. The
consolidated processing would, on the other hand, use
one single polling query per query type. With ap-
propriate data structures and indexes this query can
be processed very fast. For example, assuming the
availability of hashes, the consolidated query will take
O(jT j + �) time, where � is the total size of the rela-
tions in �. Furthermore, since there is only one polling

query, the resource overhead will be minimal. There-
fore, we can conclude that it is more advantageous to
perform batch invalidation of query instances.

5.3 E�ects of Over- and Under-invalidation

The number of query instances that are over-
invalidated (under-invalidated) is a function of the cur-
rent size of the query instance table, the size of the
over-invalidation term, O, (under-invalidation term,
U), and the selectivities of the join and selection op-
erations.

Example 5.3 Let us consider the following three
(two database and one query) tables with the query
template select product, price, discount from
Products, Discounts where Product.Price =
Discounts.Price and Discounts.Discount=$V1.

Products

Product Price
TV $500

Radio $90

Discounts

Price Discount
$500 $50
$1000 $50

T

qid Discount
qi1 $50
qi2 $100

Note that the �rst query instance in the query in-
stance table has one tuple fhTV,$500,$50ig in the re-
sult, whereas the second query instance has no tuples
(no products with $100 discount).

queryID Results in the cache
qid1 fhTV,$500,$50ig
qid2 ;

Now, assume that the tuple hPC,$1000i is inserted
into Products and tuple h$1000,$50i is deleted from
Discounts. The resulting tables are as follows:

Products

Product Price
TV 500

Radio 90
PC 1000

Discounts

Price Discount
500 50

T

qid V1
qi1 50
qi2 100

Note that this update sequence has no impact on
the query instances in the result (�rst query in-
stance still has one tuple fhTV,500,50ig, whereas
the second query instance has no tuples). There-
fore, no invalidation messages should be generated.
However, as we have seen in Section 3.5, if we are
using the synchronous invalidation approach, then
the over-invalidation term is O = (Products� 1

Discounts+) [ (Products+ 1 Discounts�). There-
fore, in this case, the tuple hPC,$1000,$50i will be in
the over-invalidation term. Consequently, the query
instance, qi1, which joins with this tuple, will be (over-
)invalidated. 2

Therefore, in general, we have

QO � �qid��T (O 1 T ),
QU � �qid��T (U 1 T ).

The reason why we have inequalities instead of equal-
ities in these terms is that a query instance maybe
a�ected by multiple invalidation terms. Consequently,
some query instances that seem to be over-invalidated
(under-invalidated) due to one term may actually be
invalidated due an other one.



Figure 8: Polling times with low Join selectivity

Figure 9: Invalidation % with low Join selectivity

6 Experiments

In this section, we describe a set of experiments to eval-
uate the e�ects of using view invalidation for dynamic
content caching. One of the main questions that arises
in the proposed framework is the overhead of execut-
ing polling queries to determine if cached query results
are invalidated due to updates. In an E-commerce
application, the number of queries can be very large
and therefore we �rst determine the overhead of exe-
cuting polling queries with consolidation as the num-
ber of cached queries increases. We next evaluate the
impact of over-invalidation in the context of the syn-
chronous approach. Note that, in the following, our
experimental evaluation is based on the snapshot and
synchronous approaches for view invalidation. The re-
sults for the asynchronous approach are similar.

6.1 Polling Query Overhead

Our experimental platform consisted of a PC worksta-
tion running ORACLE 8i DBMS. In order to study
the cost of execution polling queries, we set up the fol-
lowing query type which was used as a candidate for
content caching:

� The query type we used for the experiment is

Figure 10: Polling times with high Join selectivity

select * from House, School

where House.location = School.location and

School.score>$P1;

� We assumed that the join attribute location is in-
dexed in both House and School tables.

� Sizes of the view and database tables and the rate
at which updates are processed varied as follows:

View House School Updates

1000 100 100 20
10000 100 100 20
10000 1000 1000 200
100000 1000 1000 200
100000 10000 10000 2000
1000000 10000 10000 2000
1000000 100000 100000 20000

For the �rst set of results, we have exper-
imented with databases where the join selectiv-
ity is low and hence invalidation is very rare.
For this purpose, we used the following data
distribution for the join and query attributes:

Data Distribution

House.location 1. . . 1000
School.location 1. . . 1000
School.score 1. . . 1000000

Figure 8 depicts the polling query execution times for
di�erent workloads. Note that the times reported are
actual clock times and not simulation times. In par-
ticular, the execution times of the two approaches are
comparable. The main factor governing the cost of
invalidation is the number of query instances. There
is a linear correlation between the number of queries
and the increase in the execution times. For example,
1000 queries result in the polling overhead of around
100 milliseconds whereas 1 million queries take about
60 to 75 seconds. Although this may appear to be ex-
cessive, but consider the alternative: one million trig-
ger de�nitions, and their evaluation is likely to incur
signi�cantly larger overhead. Also, our experience in-
dicates that trigger de�nitions beyond 10,000 become
infeasible in commercial DBMSs. Most of this over-
head is due to dynamic insertion and deletion of trig-
ger de�nitions which cannot be avoided for dynamic
content caching based on triggers. Figure 9 depicts
the percentage of view (cached queries) that is inval-
idated. For the case with 1 million queries and 2000



Figure 11: Polling times with low Join selectivity
(modi�ed query plan)

Figure 12: Polling times with high Join selectivity
(modi�ed query plan)

updates, the invalidation percentage is 1%. However,
as the updates are increased to 20,000 (signi�cantly
high update activity, approximately 10% of the data
is updated), the invalidation percentage reaches 10%.
As a design guideline, for a database which has an
update rate beyond 10% during a short-interval, our
recommendation is to not to allow caching of such con-
tent. Viewing it another way, we suggest that the in-
validation cycle should be run within a period when
the update activity reaches 10% of the database.

The next experiment we conducted was to in-
crease the amount of invalidation by increasing the
join selectivity of the two relations. This was
achieved by restricting the domain of House.location
and School.location to 1 : : : 100. Figure 10 depicts the
execution times in the modi�ed setup. From the �gure
it can be seen that although the absolute number of in-
validations increases slightly (not shown), the polling
query execution time is not impacted. Thus, the ma-
jor factor governing the polling query overhead is the
number of cached queries.

Figures 11 and 12 depict the results of execution
times when the polling query plan was modi�ed to
take advantage of the indexes in the database. In-
terestingly, the results indicate that with very simple

Figure 13: Polling times for varying update activity
(modi�ed query plan)

database tuning we were able to reduce the polling
query execution times when the join selectivity is low.
In particular, when compared to Figure 8, the last data
point with 1 million queries and 20,000 updates, the
execution time improved in Figure 11 by about 40%
when compared to the corresponding data point in Fig-
ure 8. However, in the cases with high update activity
and high join selectivity the times in the new set-up in-
creased by about 20%. The experiments above clearly
establish the viability of the polling query based view
invalidation and depending upon the application char-
acteristics, the query plans can be tuned to reduce the
execution times signi�cantly.

Finally, in Figure 13 we depict the amount of time
it takes to evaluate the polling queries for 1 million
cached HTML pages with varying amount of update
activity. The tables sizes was set to 100,000 tuples
with attributes values chosen for low join selectivity.
The updates were varied from 2000 updates to 40,000
updates. The total times vary from approximately 30
seconds to 60 seconds. This result indicates that the
proposed approach is robust enough to deal with oc-
casional burst of updates between invalidation cycles.

6.2 Over-Invalidation

In this set of experiments, we observe the e�ects of
various parameters on the over-invalidation behavior.
For this experiment, we again use the query type

select * from House, School

where House.location = School.location and

School.score > $P1;
In this experiment, we used the following data
distribution for the join and query attributes:

Data Distribution

House.location 1. . . 1000 (uniform)
School.location 1. . . 1000 (one school per location)
School.score 1. . . 1000 (uniform)

House+.location 1. . . 1000 (uniform)
School�.location 1. . . k (sequentially)

where k is the number of deleted schools. Therefore,
for each inserted house, the probability that it is from
a deleted school location is k

1000 .



Figure 14: Over-Invalidation vs. table and cache sizes

Figure 15: Over-Invalidations/Estimated Over-
Invalidations vs. table sizes

Figure 14 plots the term

Number of over�invalidations

CacheSize
� 1000;

as a function of table and cache sizes. The �rst thing
to notice, is that the over-invalidation is limited to less
than 1% of the cache. This ratio is independent of the
cache size. Furthermore, as the table sizes increase, the
amount of over-invalidation decreases very quickly, ap-
proaching to 0 when database contains 500 houses and
5000 schools. This drop is due to the fact that, when
tables are suÆciently large, any query which seems to
be over-invalidated due to an update is indeed invali-
dated due to another one.

Furthermore, although the expected number of
over-invalidated tuples is independent of the actual ta-
ble sizes, experiments showed that the number of ac-
tual over-invalidations were also getting smaller than
expected as tables became larger (Figure 15).

Finally, Figure 16 shows how over-invalidation is
a�ected by the number of updates. The number of
over-invalidations increases as predicted by the over-
invalidation term, roughly doubling for each 100% in-
crease in House+ or School�. But, over-invalidation
is limited to around 1% of the cache size.

In this section, we focused our observation on the
performance of polling queries with consolidation and
the impact of over-invalidation. A more detailed evalu-
ation which discusses issues related to the deployment

Figure 16: Over-Invalidation vs. updates and cache
sizes

of this technology, such as comparisons with alterna-
tive techniques, can be found in [22].

7 Related Work

As the number of Internet-based applications in-
creases, the need for systems that can quickly deliver
data-driven content becomes more apparent. Since
the main bottleneck in the delivery of such content
is the server side, existing network-based content dis-
tribution structures does not address this urgent need.
Recently, there has been an increasing number of ef-
forts aimed at preventing the database from becoming
a bottleneck in various distributed applications [23, 24]
Surveys of these applications and existing technolo-
gies can be found in [25]. One earlier solution was
to cache business data outside of the DBMS to re-
duce the database access load. Oracle and Persistence
Software developed middle-tier data caching products
along these lines. More recently, however, the caching
of dynamically generated pages at the web servers has
been shown to be more eÆcient than the caching of
the data itself [26]. Consequently, DBMS and applica-
tion server suppliers, such as Oracle, announced web
caches along with their more traditional data caches.

At the time of the writing, various commercial
caching solutions exist. Major application server ven-
dors, such as IBM WebSphere, BEA WebLogic, and
Oracle Application Server, focus on application level
caching. Xcache and Spider Cache both provide in-
validation solutions based on manually speci�ed trig-
gers and they do not support automated invalida-
tion. Javlin and Chutney provide middleware level
cache/pre-fetch solutions, which lie between applica-
tion servers and underlying DBMS or �le systems.
Again, they do not provide automated invalidation
functionalities. In [27] Qiong et al. present an exten-
sion to the existing federated features in IBM DB2,
which enables a DB2 instance to become a middle tier
database cache without any application modi�cation.
Oracle web cache addressed this challenge by provid-
ing time-based or event-based invalidation of the cache
contents. The invalidation events can be generated by
user supplied triggers or specially crafted application
scripts. Oracle web cache, however, does not provide



a framework for systematically generating invalidation
messages in the presence of data updates. Challenger
et al. proposed a solution, based on explicitly main-
tained dependencies between data and cached objects,
that addresses the update problem [1]. An alterna-
tive invalidation-based approach, where maintaining
an explicit mapping between data and cached objects
is avoided, is proposed in [3].

8 Conclusions

Fast invalidation is a key point for enabling dynamic
content caching while maintaining cached web pages
fresh. Various applications, including e-commerce
sites, on the other hand do not require the caches to re-
ect all the data in the database, yet they require that
all out-dated pages in the caches are invalidated in a
timely fashion. In this paper, we show that invalida-
tion is inherently di�erent from view maintenance. We
develop algorithms that bene�t from this di�erence in
reducing the cost of update management in certain ap-
plications and we describe an invalidation framework
that bene�ts from these algorithms. Our experimen-
tal evaluation establishes view invalidation as a viable
approach for enabling dynamic content caching.
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