
Contact Author: Axel Uhl

Address: Basler Str. 65, 79100 Freiburg, Germany

EMail: uhl@io-software.com

Paper Reference Number: 687

Topic Area: Infrastructure for Information Systems, Research Paper

Title: A Bandwidth Model for Internet Search

Author: Axel Uhl

Relevant Topics: Databases and database services in new context (Internet
and the WWW); Information Retrieval with Database Systems;

Interoperability, Heterogeneous and Federated Databases



A Bandwidth Model for Internet Search

Axel Uhl

Interactive Objects Software GmbH
Basler Str. 65
79100 Freiburg

Germany
axel.uhl@io-software.com

Abstract

In this paper a formal model for the domain
of Internet search is presented that makes it
possible to quantify the relations between im-
portant parameters of a distributed search ar-
chitecture. Among these are physical net-
work parameters, query frequency, required
currency of search results, change rate of the
data to be searched, logical network topology,
and total bandwidth consumption for answer-
ing one query. The model is then used to com-
pute many important relations between the
various parameters. The results can be used
to quantitatively assess, streamline, and opti-
mize distributed Internet search architectures.

The results back the general perception that
a centralized approach to Internet-scale search
will no longer be able to provide the desired
coverage and currency, especially given that
the Internet’s content keeps growing much
faster than the bandwidth available to index
it. Using a hierarchical distribution approach
and using change-based update notifications
instead of polling for changes allows to ad-
dress sets of objects that are several orders of
magnitude larger than what is possible with a
centralized approach. Yet, using such an ap-
proach does not significantly increase the total
bandwidth required for a single query per ob-
ject reached by the search.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

Internet search as being done today suffers from band-
width limitations. Major Internet search engines com-
pute and maintain a central index of hundreds of mil-
lions of documents. But since content grows much
faster than the bandwidth available for indexing it,
this approach increasingly falls behind in its effort to
index a reasonably large share of all accessible informa-
tion [1]. New approaches based on hierarchical distri-
bution of index data and smart, incremental, change-
driven updates to this data have to be implemented in
order to make Internet search scalable.

However, this perception carried several uncertain-
ties. Open questions were for example how the total
bandwidth use would increase if instead of central in-
dexing a distributed infrastructure were used. How
would the execution time of queries be affected by
such a distributed approach? How would the layout of
the logical network topology affect the ratio between
the number of reached objects and the bandwidth re-
quired to answer a single query over this number of ob-
jects? How much bandwidth could be saved if search
engines did not have to poll web pages without know-
ing whether or not they changed?

These questions show that there is a need for a for-
mal model that will provide quantitative answers. This
paper presents such a model for the domain of Inter-
net search. It captures, among others, bandwidth con-
sumption of all related network activities, query execu-
tion time, query frequency, logical network topology,
physical network parameters, search result currency,
as well as the change rate of searchable data.

Using the model, several important relations be-
tween the various model parameters can mathemat-
ically be proven, for example the dependency of the
logical network topology on the physical network pa-
rameters and the query execution time; or the depen-
dency of the query execution time on the number of
objects to be covered by the search.

This enables streamlining and optimizing the search



architecture along given user and market preferences,
while being able to quantify the effects up-front.

The model is then evaluated by using it to visualize
the impact of the various parameters of the network
topology on bandwidth efficiency, number of search-
able objects, and query execution time. It is also used
to compute the bandwidth impacts of maintaining for-
ward knowledge like keyword indices using polling in-
stead of receiving updates upon change only.

1.1 Related Work

In [2] a good overview of the parameters that influence
Internet search can be found. Bandwidth is considered
mainly in the context for optimizing updates to for-
ward knowledge. It does, though, lack a set of other
important parameters like, e.g., currency and does not
talk about bandwidth-efficient distributed storage of
forward knowledge.

A pragmatic, yet powerful model for formalizing
distributed systems regarding, among other things,
their bandwidth constraints has been provided in the
LogP-model [3]. The definition of latency is used here
as well and denotes the time between the start of send-
ing and receiving a message. The LogP model uses the
notion of a gap between network transmissions, thus
defining the speed with which data can travel over a
network connection. Here, the more intuitive concept
of bandwidth shall be used instead. Furthermore, com-
puting time, as defined in the LogP-model by the pa-
rameters o (the computational overhead for sending a
message over the network) and P (the number of pro-
cessors in a node), is not considered here because it
is deemed an insignificant constraint as compared to
bandwidth and latency limitations for the problem of
Internet search.

A good overview of different efficient communica-
tion patterns in so-called star trees can be found in
[4]. Unfortunately, network parameters like latency or
bandwidth are not considered in finding the optimal
tree structure. The article introduces the term mes-
sage complexity meaning the number of messages that
have to be sent in order to transport the original mes-
sage to all recipients. This is an important measure
when bandwidth consumption comes at a cost and is
also used in this paper.

[5] introduces arrangement graphs as a solution to
span a number of network nodes with a tree that then
allows optimal broadcasts to the set of spanned nodes.
There are two problems with this approach: It does
not allow for nodes dedicated only to forwarding mes-
sages and not acting as final receiver; and it does not
consider network parameters for the graph optimiza-
tion.

A technical infrastructure tackling the problem of
Internet search has been presented in [6, 7]. It sug-
gests a hierarchical layout, allowing for intermediate
tree nodes dedicated only to query forwarding and re-

sult merging. The formalization developed here can be
applied, e.g., to systems built with that infrastructure.

1.2 Terminology

The latency between two network nodes is the time
that passes between the start of sending a message
and the start of receiving that message. This defini-
tion resembles that in the LogP-model [3]. Latency is
independent of message length.

Bandwidth identifies the speed with which data can
be sent across network connections. It is defined as
the number of bytes that can pass through a connec-
tion per second. Note, that bandwidth is defined in-
dependently of latency. If W is the bandwidth of a
connection, L the latency of that connection, and Q
the size of a message to transfer, then the total time
between the start of sending the message and the end
of receiving the message is L + Q

W (see also figure 2).
A level in the tree are all tree nodes that have equal

distance to the tree’s root node. This distance at the
same time is used as the level’s number. Thus, the
root node is on level 0, the children of the root node
are on level 1, and so on (see figure 1).

The terms result object and response object are used
synonymously and identify the type of object that is
returned as answer to a query.

The term forward knowledge is used in the definition
given in [8]. Forward knowledge contains data about
a searchable source. It can be used to answer a query
or at least to make good query routing decisions. It
can be moved across the network and can be stored
persistently. Forward knowledge can have a lack of
currency, which is defined to be the time between the
last change in the underlying data that would have
caused a change in the forward knowledge that has not
yet been updated and the current time (see also figure
7). A possible implementation of forward knowledge
can, e.g., be an inversed keyword index.

1.3 Organization of this Paper

Section 2 introduces a tree structure as the distribu-
tion model for searching, defines the behavior of each
node in the tree, and formalizes this model with a set
of parameters. Section 3 uses this model to compute
the tree shape based on the maximum allowed query
execution time, the network parameters, the query fre-
quency, and the query and response object sizes. The
shape is defined by the number of children that each
node in the tree has.

Section 4 considers the bandwidth required for
maintaining forward knowledge about a data source.
Here, parameters like object change rate and desired
currency play an important role. The results are com-
bined with the results on the tree structure from sec-
tion 3. In section 5 the results are used to compare
today’s prevailing central-index based approach with



a distributed approach. Section 6 concludes the paper
and provides topics for further research.

2 Model for the Domain of Internet
Search

The model considered here consists of a hierarchy of
network nodes. The number of children that a node
t has is termed S(t). Each node either acts only as
a forwarder of queries (referred to as a trader), or it
contains actual searchable data from which it can in-
stantly answer a query. Nodes of the latter type are
also referred to as searchable and are the producers of
result objects for a given query. The searchable data
in the leaves of the hierarchy may represent forward
knowledge collected from various other distributed re-
sources.

Initially, the model is restricted to a directed tree.
An example is illustrated in figure 1. Later, in sub-
section 3.4, this model will be extended to allow repli-
cation of nodes in the hierarchy, turning the tree into
a more general directed acyclic graph (DAG). Thus, a
node in the extended model can have more than one
parent node.

The dynamics of a trader node are defined as fol-
lows: A query that is received is forwarded to all child
nodes, one after the other. Serializing the messages
rather than interleaving them maximizes the time each
child node has for computing its results while leaving
the time and bandwidth spent at the trader node for
forwarding the queries unchanged. The size of such
a query object is termed Q. Each child node returns
the best match for the query as a response object of
size R, and the trader selects the best match of those
returned by its children and returns it to its parent or
the client who sent a request to the root trader.

For simplicity it is for now assumed that each tree
node produces exactly one best result. When the client
asks for the second-best match the trader will retrieve
the second-best match from the child node from which
the previous best match was returned and compares
it against the already obtained results from the other
children. Again, the best match is returned to the
parent / client. Further research has to show what the
optimal number of results is that each node should
return, given the network parameters and the total
number of desired results. Using this “streaming tech-
nique” for the results it is guaranteed that for retriev-
ing the best match each node has to return exactly
one result, namely its best match regarding the query,
thus keeping the bandwidth consumption constant re-
gardless of the number of total matches found in the
whole hierarchy.

If a leaf node s maintains forward knowledge like a
keyword index of one or more searchable data sources
it will require communication with those sources in or-
der to keep its data current. It is assumed that sources
will notify the leaves upon changes that would affect

the forward knowledge1. A source in this model is con-
sidered as consisting of a number of retrievable objects
where each of those can be the basis for a result ob-
ject. An example for a retrievable object is an HTML
document residing on a web server. The total number
of retrievable objects united in s’s forward knowledge
is identified by D(s).

A leaf node may tolerate a certain lack of currency,
i.e. it may choose to save bandwidth at the cost of
decreased currency of its forward knowledge. It splits
its bandwidth use into receiving queries and sending
out responses, and updating the forward knowledge it
maintains.

It is furthermore assumed that answering a query
from forward knowledge stored in a leaf node takes
no measurable time. This assumption is backed by
two thoughts: forward knowledge lookups typically are
performed in time complexity O(1) by using indexing
and hashing techniques; and CPU power can much eas-
ier be scaled up for this particular problem compared
to network bandwidth, also regarding cost.

Note, that with this model a central-index search
engine architecture can be described as well as a
completely decentralized approach as implemented by
Gnutella (see e.g. http://www.clip2.com/gnutella.
html or http://www.tch.org/gnutella.html). The
central approach is described by only one searchable
node and no traders, with the searchable node keeping
the forward knowledge of all sources to be searched
with the system. The completely decentralized ap-
proach is modelled from the client’s perspective as one
trader with a very large set of child nodes, each being
searchable.

Both solutions, the central as well as the highly dis-
tributed, have their well-known drawbacks and bottle-
necks. The presented model will help to understand
the space in between these two extreme models better
and grasp them quantitatively regarding their query-
response-time behavior and their bandwidth require-
ments.

The described model is now formalized by defining
a set of parameters that capture the essential charac-
teristics of a particular instance of the model. Table 1
shows the parameter definitions.

Figure 1 shows a simplified example instance of the
model, omitting some parameters like the query fre-
quency, bandwidth or currency of forward knowledge.

3 Computing the Tree Shape

Based on the model defined in the previous section,
these definitions will now be used to compute the
shape of the tree of traders and searchables that max-
imizes the number of reachable searchables, based on
the bandwidth B, the size of the query and response

1Note, that this assumption is currently not fulfilled by stan-
dard web server technology. It would, however, be simple to
implement, as shown, e.g., in [6].



Figure 1: Example for a model instance. Three levels of nodes with the leaves accessing data sources in order
to maintain forward knowledge about them. S(tr) = 4, S(1) = 2, O(tr) = 8. The datasources at the bottom
contain D(s1), . . . , D(s8) retrievable objects. The total number of retrievable objects thus is

∑8
i=1 D(si).

Table 1: Model parameters
name unit description
S(t) number of children of trader t. Instead of t the hierarchy level j may also be used as

parameter in case all traders on the same level have the same S(t). The level of a node is
its distance to the root node. The root is on level 0, and the root’s children are on level 1.

q(t) sec time that trader t has after having received a query until it has to start sending back the
result for that query. Instead of t the hierarchy level j may also be used as parameter in
case all traders on the same level have the same q(t).

D(s) number of retrievable objects about which a searchable node s maintains forward knowledge.
If used without the argument s, then D identifies the average number of retrievable objects
per searchable node.

O(t) number of leaf tree nodes that have t as their direct or indirect parent
A(s) bytes bytes to transfer to update the forward knowledge for one retrievable object from a searchable

source s. Note, that through synergetic effects when concurrently updating the index for
multiple retrievable objects the average size per object will typically be lower than the size
for updating the index for only one. So A(s) can be seen as upper bound.

C(s) sec average change rate for each retrievable object of searchable source s regarding its query
response behavior (and thus its index representation). Measured as the time between query-
relevant changes. This means, every C(s)

D(s) seconds on average there will occur a query-
relevant change in Searchable s.

F sec−1 number of queries per time at a trader or searchable node
Q bytes size of a query object
R bytes size of a result object

Y (s) sec lack of currency of the forward knowledge at searchable s; measured as the maximum passed
time since the first query-relevant change of the data on which the forward knowledge is
based that occurred after last updating the forward knowledge and now (see figure 7). With
this definition a searchable s’s forward knowledge is current with Y (s) = 0 (no relevant
change in the data since last update).

W bytes
sec bandwidth available between two network nodes. Note, that this assumes that all network

nodes have the same bandwidth at their disposal and that bandwidth is identical for sending
and receiving data.

L sec Latency between two network nodes. Note, that this assumes that the network latency is
identical along all network connections, and that is it identical for sending and receiving
data.



objects Q and R, the query frequency F , and the time
q(tr) that the user allows the root trader tr to use to
answer the query. The tree shape is defined by the
function S(t) which tells the number of children for a
tree node t.

The two fundamental ideas in solving S(t) based on
the input parameters W , Q, R, F , and q(tr) are that

• there is a direct connection between q(t) and S(t)
given the input parameters. This connection is
defined by the time it takes node t to forward the
query of size Q to S(t) child nodes and receive the
results from the same number of children.

• the time q(ti) that one of t’s child nodes ti has
to answer a query follows from the number of t’s
children S(t).

With this, S(ti) for t’s child nodes ti can be defined
in terms of S(t), leading to a recurrence relation for
S. It will turn out that by assuming R ≈ Q this
recurrence will furthermore be independent of the child
index i and can then be solved with the given input
parameters.

It will then be proven that S(t) yields identical val-
ues for all t on the same tree level under the assump-
tion R ≈ Q and that S(j) with j identifying the tree
level is a monotonically decreasing function in j with
a negative limit. This implies that the tree has a finite
depth, as there is a level jmax on which the tree nodes
have no children. Intuitively, this is the level on which
the tree nodes are not given enough time to forward
the query to any other tree nodes.

Finally, this section will consider high query fre-
quencies F leading to bottlenecks in the top of the
tree, how they affect the tree shape, and how these
bottlenecks can be eliminated.

3.1 Computing S(t)

If S(t) is the number of children of trader t, then the
child at position 1 ≤ i ≤ S(t) has time

q(ti) = (S(t) − i)
Q

W
+ (i − 1)

R

W
− 2L (1)

between having received the query and sending out the
result (see also figure 2). This is the time the trader
t has to spend to send the queries to all remaining
children and receive the results from all previous chil-
dren, minus the network latency for the sending and
the receiving direction (2L).

The dynamics of the model as described in section
2 immediately imply that the runtime of a query at
node t is2

q(t) = S(t)
Q + R

W
(2)

2Note, that the number of children that is represented by S(t)
is an integer value. In actuality, the equation would have to be
put as an approximation, and the number of children results
from applying the floor-function to S(t).

Figure 2: Relations between q(t), q(ti), S(t), band-
width W , query size Q, response size R, and latency
L. The first half of the processing time is spent for-
warding the query, the second half is spent receiving
the responses.

with S(t) being the number of children that node t has
to forward the query to. This provides the mapping
between S(t) and its query execution time q(t).

Let t be an arbitrary trader node, and let
t1, . . . , tS(t) be t’s children. Applying (2) for ti and
solving for S(ti) yields S(ti) = q(ti) W

Q+R . Expanding
q(ti) according to (1) results in

S(ti) =
(

(S(t) − i)
Q

W
+ (i − 1)

R

W
− 2L

)
W

Q + R
.

(3)

The dependency on i, the position of the child in
the list of children of node t, can be eliminated by
assuming R ≈ Q. This is important because it will
make it possible to solve the resulting recurrence re-
lation. The assumption is realistic for many common
situations like queries consisting of a set of keywords
and results containing a URL. With this assumption,
(3) can be simplified into the recurrence relation

S(ti) =
(

(S(t) − 1)
Q

W
− 2L

)
W

2Q
. (4)

Thus, setting a value for S(tr) for the root node
tr of the trader tree will transitively define the values
for all other S(ti), where the resulting tree will have
identical numbers of children for all nodes on the same
tree level.

Let S(j) identify the number of children of each
node at level j, q(j) the time a trader at level j has
to answer a query. In other words, if a ti is on level j,
then S(ti) = S(j).

S(j) can now recursively be computed based on the
recurrence relation (4):

S(j + 1) =
(

(S(j) − 1)
Q

W
− 2L

)
W

2Q

=
1
2
S(j) − 1

2
− LW

Q
.



This recurrence is solved by the function

S(j) := 2−jS(tr) − 2
(

1
2

+
LW

Q

)
(1 − 2−j). (5)

This function has to be seeded with S(tr), identify-
ing the number of children the root trader has, which
is determined by the maximum query execution time
the root trader accepts according to (2), and the rest
will follow.

3.2 Computing the Tree’s Depth

Now the condition for a node that cannot have any
children due to lack of time to forward queries will
be formalized. This condition will be expressed as a
threshold value for S(j).

Then it will be proven that S(j), and with it q(j),
are monotonically decreasing in j, both with a nega-
tive limit. This implies that for a positive number of
children S(tr) for the root node tr there must be a first
level jmax on which traders are not given enough time
to forward the query to any children and thus have to
be searchables with no children instead of traders. The
level jmax will be computed based on the input param-
eters W (bandwidth), L (latency), Q (query size), and
S(tr), the number of children the root node tr has.

Once the tree depth can be computed, this result
can be used to compute the total number of leaf nodes
the tree has and the total number of network messages
that the execution of one query causes.

A trader t at level j cannot have any children if the
time it has to answer the query (q(j)) does not permit
to forward the query to another node and receive a
result, including network latencies for the sending and
the receiving direction. Formally, this can be put as

q(j) <
2Q

W
+ 2L (6)

where again the assumption R ≈ Q is made. This
enables the use of (5) in solving for jmax. Substituting
q(j) according to (1) expresses this constraint in terms
of S(j − 1), the number of t’s parent’s children:

(S(j − 1) − 1)
Q

W
− 2L <

2Q

W
+ 2L

which can be solved for S(j − 1):

S(j − 1) < 3 +
4LW

Q
. (7)

When this condition holds, then the trader at level
j cannot forward queries to any children, implying
S(j) = 0 and defining j as the level of the leaves.

L, W , and Q can assume only positive values.
With this, S(j) is monotonically decreasing in j for

all S(j) ≥ 0:

S(j) =
(

(S(j − 1) − 1)
Q

W
− 2L

)
W

2Q

=
S(j − 1) − 1)

2
− WL

Q

=
1
2
S(j − 1)︸ ︷︷ ︸
<S(j−1)

−
(

1
2

+
WL

Q

)
︸ ︷︷ ︸

>0

< S(j − 1)

Therefore, as q(j) from (9) is monotonous in S(j), q(j)
is also monotonically decreasing in j.

Furthermore, S(j) converges:

lim
j→∞

S(j) = −1 − 2LW

Q
. (8)

And so does q(j), the time a trader at level j has for
computing its result. According to (1) (again assuming
R ≈ Q):

q(j) = (S(j − 1) − 1)
Q

W
− 2L (9)

and thus together with (8):

lim
j→∞

q(j) =
(
−2 − 2LW

Q

)
Q

W
− 2L. (10)

As L, W , and Q can assume only positive values, this
results in a negative limit for S(j) and for q(j).

Due to the monotony of q(j) there is an index jmax

such that for all 0 ≤ j < jmax : q(j) ≥ 2Q
W +2L and for

all j ≥ jmax : q(j) < 2Q
W + 2L. This jmax is, as defined

by (6), the level of the leaves.
jmax can be computed from (5), (9), and (6) as fol-

lows. From (9) and (6):

q(jmax) = (S(jmax − 1) − 1)
Q

W
− 2L =

2Q

W
+ 2L.

Substituting S(jmax − 1) according to (5) yields

2−jmax+1

(
S(tr) + 2

(
1
2

+
LW

Q

))
Q

W
= 6L +

4Q

W
.

Solving for jmax brings

jmax = 1 − log2

6LW + 4Q

QS(tr) + Q + 2LW
.

As jmax can only assume integer values, the solution
has to be “ceiled” as follows, identifying the first level
that cannot forward to any children and thus contains
the leaf nodes of the tree:

jmax =
⌈
1 − log2

6LW + 4Q

QS(tr) + Q + 2LW

⌉
. (11)



100000

1e+010

1e+015

0 10 20 30 40 50 60
Query Execution Time q(tr)

Number of Reachable Objects (O(tr)D)

O(tr)D
10levels used

Figure 3: Number of searchable objects O(tr) to which
a query can be forwarded given the maximum execu-
tion time q(tr) for the query.

The solid lines in figure 4 show a graph of S(j) using
the constraint that S(j) = 0 for j ≥ jmax.

Given the solution for jmax the “cutoff point” for
the product O(tr) =

∏
j S(j), telling the total number

of leaf nodes included in the search by the root trader
tr, is known. The product can now be written as

O(tr) =
jmax−1∏

j=0

S(j). (12)

Note the upper index jmax − 1: Traders at level jmax

do not have any children, thus an S(j) < 1 and must
hence not be included in the product. Figure 3 shows
the results of using the solution for jmax from (11) in
(12).

The number of messages sent through the tree
for a single request is S(tr) + S(tr)S(1) + . . . +∏jmax−1

j S(j) =
∑jmax−1

i=0

∏i
j=0 S(j) = S(tr)(1 +

S(1)(1 + S(2) . . . (1 + S(jmax − 1)) . . . )) which at the
same time is the overhead as compared to the solution
with S(tr) = O, jmax = 0 that minimizes the total
number of messages sent per query (the centralized
model). This can be seen as the investment into an in-
creased value by either increasing the number of reach-
able objects or by increasing the currency of results,
as will be shown later, or both.

3.3 Considering Query Frequency F

Up to now it has been assumed that a trader t can
spend all its “network time” working on one query and
consume up to the given maximum query execution
time q(t) for determining the corresponding search re-
sults. But this is not a very realistic assumption. If the
time between queries 1

F is exceeded by the maximum
query execution time q(t), then the next query has al-
ready arrived before all subresults required for answer-
ing the previous query have been collected. But as it
was assumed up to now that answering a query con-
sumes all available network bandwidth, queries would
have to get queued with the queue growing infinitely.

Therefore, an additional constraint has to be intro-
duced. Each trader must not use more network time to
answer a query than the time between arriving queries.
Let n(t) identify the network time that node t uses to
answer a query. This is the time the network connec-
tion is used to forward the query to the S(t) children
and receiving as many responses. In the model as dis-
cussed so far the equation n(t) = q(t) applied. The
value for n(t) computes as:

n(t) := S(t)
Q + R

W
(13)

With this definition the constraint can be formalized
as n(t) ≤ 1

F , or rewritten as a constraint on S(t):

S(t) ≤ W

F (Q + R)
.

Note, that n(t) ≤ q(t), and that a trader can interleave
processing of several queries to make optimal use of the
available bandwidth.

Now how does this affect the shape of the trader
tree? Based on the model described in section 2, at
each trader two cases have to be distinguished:

• The trader is at a level j where by definition of
the function q(j) from (9) there is less time than
1
F to answer a query. This case is not critical and
is handled correctly by the previous calculations.

• The previous function definitions for q(j) from (9)
allows the trader to take longer than 1

F to answer
an incoming query. This case violates the addi-
tional constraint, and S(t) has to be restricted to

W
F (Q+R) .

It has been proven that q(j), the time available for a
trader at level j, decreases monotonically for growing
j. This given, there is a first level jF from which on
q(j) ≤ 1

F with j ≥ jF and q(j) > 1
F for j < jF .

Trader nodes above this level have to constrain the
number of children such that the maximum network
time n(t) for forwarding the query and receiving the
results from these children is 1

F :

S(j) =
W

F (Q + R)
for 0 ≤ j < jF (14)

Note, that the absolute time q(j) these nodes have
to answer the query is not affected by these considera-
tions, and so is the recursive original solution for S(j)
from (5). All nodes below and including level jF can
exploit all of the available absolute time for network
operations related to forwarding the query to children
and receiving the corresponding results. Thus, for
these nodes the regular function S(j) as defined by
(5) applies.



Number of Traders’ Children S(j) with and without the F Constraint

S(j) according to (16)
S(j) according to (5)

0 1 2 3 4 5 6level j in tree
200000

400000
600000

800000
1e+006

bandwidth W

0
200
400
600
800

1000
1200
1400

Figure 4: Traders’ number of children with and without the additional constraint q(j) ≤ 1
F . Other assumed

values: L = 100ms, Q = 2000bytes, F = 1/s, maximum allowed query execution time 5s.

Number of Reachable Searchables O(tr)

with F -constraint
without F -constraint

1 2 3 4 5 6 7 8 9 10

allowed query execution time q(tr)

2e+006
4e+006

6e+006
8e+006

1e+007

bandwidth W

1
100

10000
1e+006
1e+008
1e+010
1e+012
1e+014

Figure 5: Number of reachable searchable objects (leaves in the trader tree) with and without the additional
constraint q(j) ≤ 1

F . Other assumed values: L = 100ms, Q = 2000bytes, F = 10/s.



Number of Reachable Searchables O(t_r)

20 40 60 80 100query frequency F
5e+006

1e+007

bandwidth W

1
100

10000
1e+006
1e+008
1e+010

Figure 6: Number of reachable searchable objects
(leaves in the trader tree) with the additional con-
straint q(j) ≤ 1

F and plotted over the available band-
width and the query frequency (in queries per second).
Other assumed values: L = 100ms, Q = 2000bytes,
F = 10/s.

The level number jF can be computed using a simi-
lar approach as for jmax before, again assuming R ≈ Q,
only instead of searching for the j that lets q(j) be-
come 2Q

W +2L now the jF is searched that lets q(j) get
smaller than 1

F :

q(jF ) = (S(jF − 1) − 1)
Q

W
− 2L =

1
F

.

Performing the same substitution as for jmax before
yields:

2−jF +1

(
S(tr) + 2

(
1
2

+
LW

Q

))
Q

W
=

1
F

+ 4L +
2Q

W
.

Solving for jF brings

jF = 1 − log2

W
F + 4LW + 2Q

QS(tr) + Q + 2LW
. (15)

The rewritten S(j) definition considering this case
distinction looks as follows:

S(j) =

{
j < jF : W

F (Q+R)

j ≥ jF : 2−jS(tr) −
(
1 + 2LW

Q

)
(1 − 2−j)

(16)

where the value for jF can be substituted according to
(15). Figure 4 shows the difference between (16) and
(5), figure 5 illustrates the impact on the total number
of reachable leaves in the trader tree. As expected,
only levels with smaller index (closer to the root) are
affected, in this example levels 0 and 1. Section 3.4
will point at ways how a replication strategy for trader
nodes close to the tree root can mend this situation.

3.4 Introducing Load Balancing and Band-
width Increase

When a trader node has to constrain the time it uses
the network for answering a query below the time that
it has until it has to send out a result for the query
(q(t) < 1

F ) then there are two typical approaches how
this “bottleneck” can be alleviated:

• The trader’s network connection can be equipped
with more bandwidth. This may be costly,
though, and prices for additional bandwidth may
rise even more than proportional.

• The trader may be split (replicated) into two or
more with the tree connections being taken over
by the replicas. Parent nodes will forward a query
to one of the replicas using a round-robin sched-
ule. In this case the traders resulting from the
split may be positioned at completely separate
and remote parts of the underlying network, such
that affording the additional bandwidth does not
suffer from the superlinear pricing for bandwidth
when requested for one network location.

Depending mainly on the network latency there are
differences between the two sketched approaches re-
garding the extra bandwidth. Assumed, the traders
at level j have the following “query overload” x:

q(j) = x
1
F

with x > 1.

Substituting q(j) from (9):

(S(j − 1) − 1)
Q

W
− 2L =

x

F
. (17)

Then if the traders at level j are overloaded by a
factor x, by what factor b would their bandwidth W
have to be increased in order to allow full use of the
available time q(j) for network operations again? The
constraint then transforms into

(S(j − 1) − 1)
Q

bW
− 2L =

1
F

.

Multiplying both sides with x yields:(
(S(j − 1) − 1)

Q

bW
− 2L

)
x =

x

F
.

Together with (17) this can be transformed into

b = x +
2L(x − x2)

(S(j − 1) − 1) Q
W + 2L(x − 1)

. (18)

If L = 0, then (18) degenerates to b = x. Further-
more, because of x > 1 and thus x2 > x and 2Lx > 2L,
and furthermore S(j − 1) ≥ 1 for all j < jmax we have



b < x for L > 0 because the fraction on the right-hand
side of (18) is always negative.

Thus, in order to resolve an x-fold overload of a
trader node, less than the x-fold bandwidth has to
be invested when leaving the trader in place without
splitting it into multiple nodes.

On the other hand, when the trader is split into
x separate nodes, each of them requires bandwidth
W , leading to a total bandwidth requirement of xW .
When a trader node is to resolve the overload con-
dition, then the pricing structure for bandwidth will
decide whether to split or to afford more local band-
width.

4 Updating Forward Knowledge

Up to now only the communication model down to
the leaves has been discussed. This section will shed
light on the bandwidth consumption and its implica-
tions of maintaining forward knowledge like inverse
keyword indices. It will be shown how the required
bandwidth for maintaining a searchable s’s forward
knowledge depends on the permissible lack-of-currency
measure Y (s), the change frequency C(s) of the under-
lying data, the size A(s) of a message for updating the
forward knowledge for one changed retrievable object,
and the total number of retrievable objects D(s) cov-
ered by searchable s (also see again table 1).

The resulting bandwidth can then be amortized
over the query frequency F and can then be compared
with the bandwidth required for forwarding a query.
This enables quantifying the tradeoff between main-
taining forward knowledge and forwarding queries to
the source.

For simplicity it is assumed that a query can be an-
swered based on the forward knowledge, without hav-
ing to communicate further with the source on which
the forward knowledge is based. Future extensions to
this model may well consider forward knowledge types
that cannot fully answer a query but may help in mak-
ing good query routing decisions which also have a
significant impact on bandwidth consumption.

Updates for a forward knowledge instance have to
be transmitted from the source to the trader tree leaf
s where the forward knowledge is maintained3. This
has to happen every D(s)

Y (s)+C(s)−Y (s) mod C(s)
seconds

on average in order to keep the index as current as
demanded (see also figure 7). In this context, a mod b
is short for a − b

⌊
a
b

⌋
.

For simplicity it is assumed that updates are trans-
mitted for each changed object. The average size for
this update is A(s). This results in an index update
bandwidth of

A(s)D(s)
Y (s) + C(s) − Y (s) mod C(s)

. (19)

3This communication takes place “outside” the tree, as the
sources are not an integral part of the trader tree.

Figure 7: Index update frequency is based on the
permissible lack of currency Y (s) and time between
changes C(s). The parameter s has been omitted in
the figure for brevity.

When the bandwidth for this gets larger than 2FQ
then it would be more bandwidth-efficient to forward
queries to the source instead of constructing and main-
taining remote forward knowledge about the source.
There will, though, be a tradeoff regarding the query
execution time which will rise when the query has to
get forwarded to the source.

Solving for F yields the query frequency threshold
below which forwarding the query saves bandwidth as
compared to maintaining forward knowledge for the
source:

F <
A(s)D(s)

2Q(Y (s) + C(s) − Y (s) mod C(s))
.

Two general observations are confirmed and formal-
ized by the above relation. Using forward knowledge
stops saving bandwidth if the number of objects of
the source to be represented in the forward knowledge
grows too far, as the right hand side of the relation
grows with D(s); and using forward knowledge saves
more bandwidth the higher the query frequency is.

5 Comparison with Central Index Ap-
proach

The model defined in section 2 covers the central in-
dex based approach as being implemented by today’s
typical Internet search engines. This approach is char-
acterized in the model by a query execution time of 0s
and thus a root “trader” with no children. The root
in this case actually is a searchable and not a trader.

The constant Y (s) in this case describes the per-
missible lack of currency of the search engine contents,
C(s) the average time between changes of a document
indexed by the engine. F represents the number of
queries users direct at the search engine. D(s) is the
number of documents the search engine has in its in-
dex. A(s) is the average size of a document as indexed
by the engine, because the whole document will have
to get transferred in order to update the index appro-
priately.

Then the model provides the index update band-
width under the assumption that the search engine
does not have to visit documents that then will turn
out not to have changed, which does not reflect the



1000

1e+006

1e+009

0 1 2 3 4 5
allowed maximum query execution time q(tr)

Required Bandwidth for 1010 Objects

required bandwidth at each node
10jtextmax

Figure 8: Required bandwidth per node for reaching
1010 objects with a lack of currency of at most one
hour. Other assumed values: L = 100ms, C = 10days,
A = 10000bytes, Q = 2000bytes.

way today’s search engines proceed (see also subsec-
tion 5.1) and thus will provide a lower bound for the
required bandwidth.

Figure 8 shows this extreme model on the far left
where the allowed maximum query execution time is
0. The number of objects to be reached (O(tr)D)) is
left constant at 1010 in this plot. It turns out that
as soon as a second level is permitted by increasing
the query execution time to roughly 1

4s the bandwidth
required at each node goes down about two orders of
magnitude and approximately remains like that even if
the allowed query execution time is further increased.

This means that if the local bandwidth at the search
engine is the limiting factor for its currency and cov-
erage, then adding one or more levels and using the
distributed tree model from section 2 can alleviate this
bottleneck.

This suggests another question: When the band-
width over all nodes participating in answering a query
is accumulated, then how much accumulated band-
width does a query consume per object reached? In
other words this means, if bandwidth is associated
with cost and the number of reachable objects with
value then how must an instance of the model get cus-
tomized in order to optimize the cost/value ratio.

Figure 9 shows this cost per object reached by the
search (O(tr)D retrievable objects). The graph clearly
suggests a modest (less than 1%) increase for the tran-
sition from only one level (central model) to two levels
happening approximately at query execution time .4s.
Using three levels imposes a slightly higher increase in
required bandwidth per reached object of about 2.5%.
Any further increase in the number of reachable ob-
jects does not significantly increase the bandwidth to
be used per object.

Furthermore, figure 5 has visualized that a central
model (in the figure indicated by query execution time
< 1) can reach only several orders of magnitude fewer
objects than a distributed model that, however, will

Bandwidth per Reached Object (O(t_r)D)
in bytes/s with F=10/s

200000
400000

600000
800000

1e+006W per
node

1 1.5 2

Query Execution Time q(t_r)

0.01

Figure 9: Required bandwidth per each of the O(tr)D
objects reached; assumed values: Y = 100hours, C =
10days, A = 10000bytes, Q = 2000bytes, F = 10

s .

require longer query execution times than those of the
central approach. This holds even if the bandwidth for
the central approach is increased beyond the limits of
today’s typical high-speed Internet backbones.

5.1 Polling vs. Updates on Change

A standard Internet search engine s does not know
whether a document it has indexed has changed unless
it loads the document again. Thus, in order to keep its
index within the required maximum lack of currency
time Y (s) the engine has to load all documents it has
indexed after the time Y (s) has passed since the last
update.

For simplicity, the conservative assumtion may be
made that the amount of data required for smart-
updating an index for one document approximately
equals the size of the document. According to table 1
this amount is termed A(s). Further, let D(s) be the
number of documents the engine has indexed.

Then, the bandwidth required for keeping a polled
index within the lack-of-currency interval Y (s) is
A(s)D(s)

Y (s) .
When an index is updated only when a doc-

ument has really changed (which is assumed to
happen every C(s) seconds on average), accord-
ing to (19) the required bandwidth is reduced to

A(s)D(s)

Y (s)+C(s)−Y (s) mod C(s)
. For small values for C(s)

— meaning high change rates — the bandwidth ap-
proaches that for polled indices. But as C(s) grows,
particularly beyond the value of Y (s), the required
bandwidth is asymptotically inversely dominated by
C(s).

In other words, if the average time between changes
of a single document C(s) is less than the allowed lack
of currency Y (s), then index updates that are per-
formed only upon change save bandwidth. The savings
can be quantified as

D(s)A(s)
Y (s)

− A(s)D(s)
Y (s) + C(s) − Y (s) mod C(s)

.



Bandwidth waste by polling
vs. update-on-demand in bytes per second

406080100

time C(s) between document
changes in days

20406080

lack of currency
Y(s) in days

100000
1e+006
1e+007
1e+008
1e+009

Figure 10: Bandwidth waste caused by polling the
documents for maintaining the forward knowledge as
opposed to getting notified only upon a change. As-
sumed values: D = 1010 objects, L = 100ms, A =
10000bytes, Q = 2000bytes.

which for C(s) > Y (s) can be simplified into

A(s)D(s)
C(s) − Y (s)
C(s)Y (s)

.

Figure 10 provides an overview of the impact of
the savings (or, respectively, the waste). It becomes
clear that for typical Internet-scenarios (e.g. C(s) ≈
100days, Y (s) ≈ 50days) a search engine that tries to
index 1010 objects will permanently waste bandwidth
somewhere between 105 and 106 bytes per second.

6 Conclusions and Outlook

A formal model for quantitatively analyzing the do-
main of search from a bandwidth perspective in dis-
tributed information sources has been presented in this
paper. The model assumes a possibly multi-rooted hi-
erarchy of trader nodes with searchable information
sources at the leaves of the tree. The provided formal-
ism applies to a broad range of constellations and helps
in finding the right number of subtraders in the trader
tree and the maximum tree depth, making the index-
ing vs. query forwarding decision, and computing the
tradeoff between buying more bandwidth and splitting
a trader. Furthermore, the overhead of using polling
instead of using a change-based notification mecha-
nism has been quantified. The model uses a multi-
dimensional parameter space including the query fre-
quency, query and result object sizes, network band-
width and latency, change rate of the searchable infor-
mation, and the requested currency of search results.

The model formally confirms that a centralized ap-
proach does not scale. Deeper hierarchies do not sig-
nificantly increase the bandwidth required per covered
object, but they allow numbers of objects that are sev-
eral orders of magnitude larger than those reachable
with a centralized approach. The tradeoff is a slightly
increased query execution time. It has to be empha-
sized, that the key result is the formalism, not nec-
essarily some of the obvious statements that can be
retrieved when applying the formalism to a typical set
of parameters.

With the presented model it is now possible to set
up a cost model for Internet search, shaping the “econ-
omy of search” in the Internet. From user and trader
preferences a total cost or value can be assigned to a
single query up-front. Eventually, this will help to de-
cide whether a search service can be offered for free or
the service provider has to charge a fee, and it helps in
defining search architectures that meet a given busi-
ness and cost model.

An important issue for further research is to com-
pute the optimal number of result objects a searchable
source should return, depending on the model param-
eters and the total number of desired result object,
and how this number in turn affects the optimal tree
shape.

References

[1] Steve Lawrence and C. Lee Giles, “Searching the
World Wide Web,” Science, vol. 280, no. 5360, pp.
98, 1998.

[2] Anthony S. Tomasic, “Distributed queries and in-
cremental updates in information retrieval systems
(thesis),” Technical Report TR-458-94, Princeton
University, Computer Science Department, June
1994.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. Schauser, E. Santos, R. Subramonian, and
T. von Eicken, “LogP: towards a realistic model of
parallel computation,” Computer science division
report, University of California, Berkeley, 1992.

[4] Paraskevi Fragopoulou and Selim G. Akl, “Opti-
mal communication algorithms on star graphs us-
ing spanning tree constructions,” Journal of Par-
allel and Distributed Computing, vol. 1, no. 24, pp.
55–71, 1995.

[5] Leqiang Bai, Hajime Maeda, Hiroyuki Ebara,
and Hideo Nakano, “A broadcasting algorithm
with time and message optimum on arrangement
graphs,” Journal of Graph Algorithms and Appli-
cations, vol. 2, no. 2, pp. 1–17, 1998.

[6] Axel Uhl, “The future of Internet search,” in
DOA’01 International Symposium on Distributed
Objects and Applications, Short Papers, Roberto
Baldoni, Ed., Sept. 2001.

[7] Axel Uhl and Horst Lichter, “New Wave Search-
ables: Changing the paradigm of Internet scale
search,” in International Conference on Advances
in Infrastructure for Electronic Business, Science,
and Education on the Internet, L’Aquila, Italy,
Aug. 2001, SSGRR.

[8] C. Weider, J. Fullton, and S. Spero, “RFC 1913:
Architecture of the whois++ index service,” Feb.
1996.


