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Abstract
In this paper, we considertechniquesfor disseminat-
ing dynamic data—suchas stock prices and real-time
weatherinformation—fromsourcesto a setof reposito-
ries.We focuson theproblemof maintainingcoherency
of dynamicdataitemsin anetwork of cooperatingrepos-
itories. We show thatcooperation amongrepositories—
whereeachrepositorypushesupdatesof dataitems to
otherrepositories—helpsreducesystem-widecommuni-
cationandcomputationoverheadsfor coherency main-
tenance.However, contraryto intuition, we alsoshow
that increasingthe degreeof cooperationbeyond a cer-
tainpointcan,in fact,bedetrimentalto thegoalof main-
taining coherency at low communicationandcomputa-
tional overheads. We presenttechniques(i) to derive
the“optimal” degreeof cooperationamongrepositories,
(ii) to constructanefficientdisseminationtreefor propa-
gatingchangesfrom sourcesto cooperatingrepositories,
and(iii) to determinewhento pushan updatefrom one
repositoryto anotherfor coherency maintenance.We
evaluatethe efficacy of our techniquesusingreal-world
tracesof dynamicallychangingdataitems(specifically,
stockprices)andshow thatcarefuldisseminationof up-
datesthrougha network of cooperatingrepositoriescan
substantiallylower thecostof coherency maintenance.

1 Intr oduction
On-line decision making often involves significant
amountof time-varyingdata.Examplesof suchdatain-
cludefinancialinformationsuchasstockpricesandcur-
rency exchangerates,real-timetraffic and weatherin-
formation, and data from sensorsin industrial process
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control applications. Theseoften occur in the form of
datastreams.Dueto their time-varyingnature,usersac-
cessingsuchdataitemsneedto beprovidedwith up-to-
datevaluesof theseitems. Thecoherency requirements
associatedwith a time-varyingdataitem dependon the
natureof the item andusertolerances.To illustrate, a
userinvolvedin exploiting exchangedisparitiesin differ-
ent marketsor an onlinestocktradermay imposestrin-
gentcoherency requirements(e.g.,thestockpriceshould
never be out-of-syncby more than one cent from the
actualvalue)whereasa casualobserver of currency ex-
changeratefluctuationsor stockpricesmay be content
with lessstringentcoherency requirements.

Sourcesof time-varyingdataareoften known to be-
comebottlenecksespeciallywhenservingrapidlychang-
ing data to a large numberof users(e.g., on election
nightsor whenservinghotstockvaluesin avolatilemar-
ket). If clientsrefreshvaluesof time-varyingdataitems
directly from thesource,thenthecomputationalloadat
the sourceswill be high and hence(a) delayswill oc-
cur in the disseminationof updatesto clients,resulting
in lossof datacoherency, and(b) scalabilityof the sys-
tem will suffer. One techniqueto alleviate this bottle-
neckis to replicatedataacrossmultiple repositoriesand
have clientsaccessthe repositorythat is bestpositioned
to meettheirdatacoherency requirement.Althoughsuch
replicationcanreduceloadon thesources,replicationof
time-varyingdataintroducesnew challenges.First, data
at the repositoriesneedsto becoherentwith thesource.
Second,unlessupdatesto thedataarecarefullydissem-
inatedfrom sourcesto repositories,the communication
andcomputationoverheadsinvolvedin suchdissemina-
tion canthemselvesresultin delaysaswell asscalability
problems,furthercontributing to lossof datacoherency.

In this paper, we examinetechniquesto maintainthe
coherency of time-varying dataitemsat a setof repos-
itories. Eachrepositoryis assumedto storea subsetof
the dynamicdataitems,eachof which hasa coherency
requirementassociatedwith it. A particular focus of
ourwork is to investigatehow repositoriescancooperate



with oneanotherandwith thesourceto reducetheover-
headsof coherency maintenance.To do so, we assume
that repositoriesstoringa particulardataitem are logi-
cally connectedto form anoverlaynetwork thatwerefer
to asa dynamicdatadisseminationtree(abbreviatedas
the ����� ). Thesourceof thedataitemformstherootof the
����� . Insteadof directly disseminatingchangesto a data
itemto all interestedrepositories,thesourceonly pushes
thesechangesto its childrenin the ���	� (eachchild is also
referredto asa dependentof its parent).Eachrepository
in turn pushesthesechangesto its dependentreposito-
ries. Disseminationusing the ����� incurs two kinds of
overheads:

1. Communicationdelays: This is the delay incurred
in propagatinganupdatefrom a repositoryto a de-
pendent.It includesall communicationrelatedde-
lays,includingthemessageprocessingdelaysat the
sourceanddestinationof a messageandthedelays
onall physicallinks betweenthetwo.

2. Computationaldelays: This is the delay resulting
from thecomputationsperformedby arepositoryto
determinewhetheranincomingdatachangeis to be
forwardedto oneof its dependents.

The objective is to constructa ����� that reducesthese
overheadswhile meetingthe coherency requirementsat
all repositories.We assumethateachdynamicdataitem
will have its own ����� ; the logical structureof this tree
dependson thedynamicsof thedataitem,thecoherency
needsof the repositories,nodeto nodecommunication
delays,andthecomputationaldelaysateachrepository.

Given suchan architecture,we considertwo key is-
suesin thispaper:

1. How should the repositoriesbe interconnectedso
as to minimize the overheadsof maintainingco-
herency of all dataitemsstoredin thevariousrepos-
itories?

2. Whenshoulda node(i.e., a sourceor a repository)
pushchangesof interestto otherrepositoriessoas
to meetcoherency requirementsof thedataitem at
all repositories?

In therestof this section,we first definetheproblemof
maintainingcoherency for a dataitem andthendescribe
thechallengesin addressingtheproblemin anetwork of
cooperatingrepositories.

1.1 Data CoherencySemantics

Considera user interestedin time-varying data items.
Assumethat the userobtainstheseitems from a data
repositoryinsteadof the source. Further, assumethat
the userspecifiesa coherencerequirement( 
 ) for each
item of interest. The valueof 
 denotesthe maximum
permissibledeviation from the valueat the source,and
thus, constitutesthe user-specifiedtolerance. The co-
herency requirementscan be specifiedin units of time
(e.g.,theitem shouldneverbeout-of-syncby morethan

5 minutes)or value (e.g.,a stockprice shouldnever be
out-of-syncby more than ten cents). In this paper, we
only considercoherencerequirementsspecifiedin terms
of the value of the object; maintainingcoherencere-
quirementsin unitsof time is a simplerproblemthatre-
quireslesssophisticatedtechniques(e.g.,pushevery 5
minutes). To maintaincoherence,eachdataitem in the
repositorymustberefreshedin suchaway thattheuser-
specifiedcoherency requirementsare maintained. For-
mally, let �
������� and ��������� denotethevalueof adataitem� at the sourceandthe user, respectively, at time � (see
Figure1). Then,to maintaincoherence, we shouldhave� � � ��������� � ����� ��� 
 .
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Figure1: TheProblemof Coherence

AlthoughFigure1 showsa singledatarepository, the
sourceto usercoherency requirementsarethesameeven
if therearemultiple datarepositoriesactingasinterme-
diariesbetweenthem.

Theeffectivenessof suchcooperatingrepositoriescan
be quantifiedusinga metric referredto asfidelity. The
fidelity of adataitemis thedegreeto whichits coherency
requirementsaremet. We definefidelity � observedby
a userto bethe total lengthof time for which theabove
inequality holds, normalizedby the total length of the
observations.Thegoalof a goodcoherency mechanism
is to providehigh fidelity at low overheads.

1.2 Maintaining Data Coherencyin the ���	�
Consider an architectureconsisting of one or more
sources,multiple repositoriesand several clients (see
Figure 2). Eachclient in this architectureconnectsto
oneof therepositoriesto accessdynamicdataitems;the
choiceof aparticularrepositorydependson factorssuch
asproximity, dataavailability, etc., and canbe viewed
as a separateproblem. As indicatedearlier, the client
specifiesa coherency requirement
 for eachdataitem
of interest. Sincemultiple clientsmay be interestedin
the samedataitem, the coherency requirementfor data
item � at a repository� is definedto be the moststrin-
gent coherency requirementsacrossall clients that ob-
tain � from � . Consequently, dependingon theneedsof
its clients,eachrepositorycanderive its own dataneeds
andtheassociatedcoherency requirements.Hence,from
now on, we focus on the source-repositorycoherency
maintenanceproblem,that is, our goal is to ensure that� �! � � � �����"�#� � ����� �$� 
 , where � � ����� and � � ����� denote
thevalueof data item � at repository� andthesource,
respectively, and 
 is the coherencyrequirementof � at
� .

To maintainthesecoherency requirements,reposito-
riesareassumedto cooperatewith oneanother. Suchco-
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Figure2: TheCooperativeRepositoryArchitecture

operationinvolvesreceiving updatesto dataitemsfrom
a parentandpushingtheseupdatesto dependentreposi-
toriesin the ����� . Thedesignof suchtechniquesrequires
resolutionof thefollowing interrelatedissues.

1. How muchshoulda repositorycooperate?

Giventhat repositoriescooperatewith oneanother,
a repositorymay have to hold data beyond what
its own usersmay need. Further, cooperationre-
quiresa repositoryto expendbothcomputationand
communicationresourcesto disseminateupdates.
We showthat this altruismpaysoff in reducingthe
system-wideoverheadsfor maintainingcoherency
acrossall repositories.However, contrary to intu-
ition, we also showthat increasingthe amountof
cooperation beyonda certainpoint can, in fact, be
detrimentalto theoverall goalsof achievinghighfi-
delity at low overheads.To addressthis issue,we
proposea techniqueto derive the “optimal” degree
of cooperationamongrepositories.

2. Once the level of cooperationis decided, what
should the (logical) interconnectionbetweenthe
repositoriesbe,i.e.,whoserveswhom?

Thestructureof the ���	� determinestheprecisecom-
putationalandcommunicationcostsat eachreposi-
tory. We showthat (i) the ���	� shouldbestructured
soasto balancethesecostsand(ii) solongasthese
costsare taken into account,the exact algorithm
employedto constructthe � � � hasonly a minimal
impacton theachievedfidelity.

3. Givena ���	� , whenshoulda repositorydisseminate
updates(thatit receives)to otherrepositoriesdepen-
denton it?

Sincedifferent repositoriescan have different co-
herencerequirements,arepositorywill needto take
thesedifferencesinto accountwhendisseminating
updatesto its dependents.We show thatit is neces-
saryto placerepositorieswith stringentcoherency
requirementscloserto the source. Also, a reposi-
tory may have to receive more than the updatesit
itself needssoasto meetthecoherency needsof its
dependents—evenif the coherencyneedsof its de-
pendentsare lessstringentthanits own!

In the following sections,we examineeachquestionin
turn, offer a setof solutionsto addressthesequestions,
anddemonstratetheir efficacy usingreal-world tracesof
dynamicallychangingdata.

Therestof thepaperis structuredasfollows. We dis-
cussdetailsof our architecturefor cooperatingreposi-
tories in Section2. Section3 discussestechniquesfor
determiningthe degreeof cooperation,while Section4
presentsalgorithmsfor constructingthe ���	� . Techniques
for disseminatingupdatesfrom a nodeto its dependents
arediscussesin Section5. Section6 presentstheresults
of our experimentalevaluation. Section7 presentsre-
lated work, and finally, Section8 presentsour conclu-
sionsanddirectionsfor futurework.

2 Ar chitecture for Cooperating Reposito-
ries

Considerthe cooperative repositoryarchitectureshown
in Figure 2. We assumethat the architectureusesthe
push approachfor disseminatingupdates—thesource
pushesupdatesto its dependentsin the ����� , which in
turn push thesechangesto their dependentsand the
end-clients. Not every updateneedsto be pushedto
a dependent—only those updatesnecessaryto main-
tain the coherencyrequirementsat a dependentneedto
be pushed. To understandwhen an updateshouldbe
pushed,let 
&% and 
	' denotethecoherency requirements
of dataitem � atrepositories� and ( , respectively. Sup-
pose� serves ( . To effectively disseminateupdatesto
its dependents,thecoherency requirementatarepository
shouldbeat leastasstringentasthoseof its dependents:


 % � 
 ' (1)

Giventhecoherency requirementof eachrepositoryand
assumingthattheaboveconditionholdsfor all nodesand
their dependentsin the ���	� , we now derive the condi-
tion that must be satisfiedduring the disseminationof
updates.Let �*)+  �*)+-,/.  �$)+0,21  �3	3�3 �$)+0,24 3�3	3 denotethe se-
quenceof updatesto a dataitem � at thesource� . This
is the datastream � . Let � %5  � %5 ,6.  	3�3	3 denotethe se-
quenceof updatesreceived by a dependentrepository
� . Let � %5 correspondto update � )+ at the sourceand
let � %5 ,6. correspondto update�*)+-,67 where 8:9<; . Then,�*=?> ;@ A8B�C;� � �$)+0,2D � �$)+ ��� 
&% for ; � = � 8B�C; .
Thus,aslongasthemagnitudeof thedifferencebetween
lastdisseminatedvalueandthecurrentvalueis lessthan
thecoherency requirement,thecurrentupdateis not dis-
seminated(only updatesthat exceedthe coherency tol-
erance
&% aredisseminated).In otherwords,the repos-
itory � seesonly a “projection” of the sequenceof up-
datesseenat thesource.Generalizing,givena ����� , each
downstreamrepositoryseesonly a projectionof theup-
datesequenceseenby its predecessor.

In databaseterms,sucha projectioncan be seenas
a “view” of the datastream. Maintainingthis view for



a datastream� involvesensuringthat the projectionof
the datastreamfor a repositorysatisfiesthe coherency
associatedwith � by thatrepository. Thispaper’scontri-
bution lies in developingtechniquesfor efficiently main-
tainingtheviews of datastreamsat repositoriesaccord-
ing to thecoherency specifiedby therepositories.

Efficient view maintenancetechniquesare required
because,even if the all necessaryupdatesare propa-
gatedby arepositoryto its dependentsbasedon thecon-
dition developedabove, due to the non-zerocomputa-
tionalandcommunicationdelaysin real-world networks
andsystems,dataat a dependentwill experiencelossof
coherency. Thus, it is impossibleto achieve 100% fi-
delity in practice,evenin expensivededicatednetworks.
The goal of our cooperative repositoryarchitectureis
to achieve better fidelity in real-world settingswhere
computationaland communicationoverheadsare non-
negligible.

3 How Much Shoulda RepositoryCooper-
ate?

In thissectionandthenext, weconsidertheissueof how
to constructthe ���	� . We definethe degreeof coopera-
tion offeredby a repository� for a dataitem � to bethe
maximumnumberof dependentsthatareserved � by � .
This is thefanoutof the ����� usedfor � . A highdegreeof
offeredcooperationimpliesthatarepositoryis willing to
takeon increasedresponsibilities,whichcanhelpreduce
sourceoverloadandpotentiallyimprovefidelity. On the
other hand,a repositorywith a high degreeof cooper-
ation canalsoindirectly leadto a loss in fidelity (since
this increasesthe computationaloverheadsat a reposi-
tory, which could becomea bottleneck). Essentially, a
repositorythat offers a high degreeof cooperationmay
just transferthesourceloadontoitself.

Thus, a greaterdegreeof cooperationincreasesthe
computationaldelaybut reducestheend-to-endnetwork
delay (by virtue of reducingthe path length from the
sourceto the farthestrepository). On the otherhand,a
small degreeof cooperationreducesthe computational
delayat a repositorybut increasesthe end-to-endcom-
municationdelays.In theextremecase,if thedegreeof
cooperationis reducedto one,the ����� becomesa linear
chainof repositorieswith alargenetwork delay. To max-
imizefidelity, the ����� shouldbeconstructedsuchthatthe
sumof two delayscomponentsis minimized.

As shown in Figure3, for a givensetof repositories,
the variationin (lossof) fidelity with increasingdegree
of cooperationexhibits a U-shapedcurve. The left end
of the � -axis correspondsto the ���	� beinga chainand
theright endto thecasewherea sourcedirectly dissem-
inatesupdatesto all its dependents.This curve portrays
theresultsfor differentvaluesof a parameterE —which
encodesthestringency of theoverall coherency require-
mentsof repositories.(Section6 presentsdetailsof how
thesecurveswerederived.) For now, it sufficesto know
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Figure3: Needfor Limiting Cooperation

that E > ;JI@ILK signifiesthat all repositorieshave very
stringentcoherency requirements.As we canseefrom
theplots,exceptwhenrepositoriesdo not have stringent
coherency requirements,thechoiceof thedegreeof co-
operationdoesmakeadifferenceontheachievedfidelity.

Thepoint wherethe lossin fidelity is minimizedde-
pendson theminimumtotal network andcomputational
delaysincurredby the ���	� . In the falling part of the U-
shapedcurve,thecommunicationdelaysdominateandin
the rising part, thecomputationaldelaysdominate.The
figureshows thatarbitrarily increasingthedegreeof co-
operation can, in fact, bedetrimentalto fidelity. Hence,
in a systemwherecommunicationdelaysdominate,it is
prudentto useahighdegreeof cooperation.Ontheother
hand,if computationaldelaysdominate,thenasmallde-
greeof cooperationshouldbe chosen(i.e., eachreposi-
tory shouldhaveasmallnumberof dependents).In other
words,thedegreeof cooperationshouldbedirectly pro-
portionalto thecommunicationdelaysandinverselypro-
portionalto thecomputationaldelays.This resultsin the
following heuristicto compute,
	MNMAO ��P	QLRNPSP , thedegree
of cooperationto beused:

TVU-W � ;XZY\[�] P�R [ Q�P^
�M
=_= ��PJ` [�a

[�] PJR [ Q�Pb
�M
= O ��PS` [�a

 AcB
�MSRNPNdS� (2)

where cB
�MSRNPSd denotesthe upper bound on the avail-
able number of cooperative resources(i.e., maxi-
mumvalueof 
�MNMAO ��P�Q�RNPSP ), [�] PJR [ Q�Pb
�M

=_= ��PJ` [�a and

[�] P�R [ Q�Pe
	M
= O ��PS` [�a denotethe averagecommunica-

tion delaysfrom one repositoryto anotherand the av-
eragecomputationaldelaysin disseminatingan update
from one repositoryto all its dependents,respectively.
The above formula assumesthat on average,only

X K 1

of the dependentsof a nodewould be interestedin an
update.This fraction is usedto determinethe effective
computationaldelayfor processingadataitematanode.
Thus, the above formula allows us to set the degreeof

1Westudiedthesensitivity of our resultsto theconstantf . Weran
theexperimentsondifferenttracesfor g�h!h dataitemsto determinethe
sensitivity of f to achosentrace.Ourresultsindicatedthatif thevalue
of fjilk!h , thentheresultantfidelity is high. (For ourgraphs,f:mnk!h
translatesto adegreeof cooperationaroundo�pqg�h whereasfrmsg�h!h
givesusadegreeof cooperationaroundk*put . In general,theresulting
fidelity is insensitive to thevalueof f if f is greaterthan k!h . Variation
in fidelity lossin suchcasesis only around1%.



cooperationdependingon the expectedoverheads. In
Section6 we study the effectivenessof this formula in
settingthe 
�MNMAO ��P�QLRSPSP .
4 What Should the Logical Structure of

CooperatingRepositoriesBe?

Considerarepository( thatneedsto beinsertedinto the
cooperative repositoryarchitecture. For simplicity, we
describethealgorithmassumingthefollowing scenario:
v Whena repository ( wishesto enterthe network

it specifies,the list of dataitemsof interest,their 

values,andits degreeof cooperation.

v A single source, � , can satisfy the needsof ( .
(The extension to deal with multiple sourcesis
fairly straightforward and theseextensionsalong
with their performancearediscussedin [21]).

v If a repository’s dataneedschangeor its dataco-
herency needschange,thento handlethe changed
requirements,the algorithm is reapplied. Due to
spaceconstraints,we do not go into the detailsof
thisstepin this paper.

Our algorithmconstructsa singledynamicdatadis-
seminationgraph, ����Q , during a single traversalof the
repositorynetwork startingwith the source� . For any
particulardataitem � , the ���!Q reducesto a tree(i.e., the
����� ) that consistsof the pathsalongwhich anupdateto� is disseminated.Putanotherway, the � � Q is theunion
of all ����� of dataitemsof interest.

We call our algorithm LeLA (Level by Level Algo-
rithm), becauseit looks for a positionfor ( in the cur-
rent ����Q , level by level. � is at level 0, therepositoriesto
which � disseminatesdataarein level 1, thedependents
of repositoriesat level ` areat level `�wx; , andsoon.

Theideabehindour algorithmis thatstartingat level
0, repositoriesat thecurrentlevel areexaminedfor their
suitability to serve thenew repository( , thatis, whether
( canbecomethe dependentof a setof repositoriesat
that level. This decisionis madeby a speciallydesig-
natedload controller nodeat eachlevel. � vacuously
servesasthe loadcontrollerfor level 0. Thesourceex-
aminesif it canserve ( , if not it passesit on to theload-
controllerof thenext level.

The function of the load controllerat a level ` is to
find a set of suitable O [ RNP�y
� repositories,at that level
to serve the dataandcoherency needsfor the new de-
pendentrepository, ( . For eachrepositoryin its level,
the load controller calculatesa preferencefactor. The
smallerthis factor, the morepreferreda repositoryis to
bea parentof ( . We will explain thecalculationof the
preferencefactorshortly. For now, let usassumethatthis
factorhasbeencalculatedfor eachrepositoryat level ` .
To bea candidatefor a parent,we considerall reposito-
rieswhosepreferencevaluesarewithin 5%of thesmall-
estpreferencevaluecomputedfor thecurrentlevel.

Consideringnodeswhosepreferencefactorsareclose
to the smallestpreferencefactorallows multiple repos-
itories to becomeparentsof ( , eachservinga different
subsetof dataneededby ( . A potentialparent � can
serve a data-item� to ( , if both ( and � areinterested
in � and if the coherency requirementof � for � is at
leastasstringentasthatof ( . If morethanonereposito-
riescanserveadata-item� to ( thenthemorepreferred
amongtheseis askedto serve � to ( .

It is quite likely that ( might want somedata-items,
say, � +  	30303- � 7 , which are not served by any of the po-
tentialparents.Themostpreferredrepository� is made
to serve � +  	303-30 � 7 to ( . This processof augmentinga
parent’s datarequirements—toserve theneedsof a new
child—canhave a cascadingeffect: For eachof these
data-items,� checksif any of its parentsareservingit
andif so,requeststheparentfor service,elseit randomly
selectsoneof its parentsandasksit to servicethedata-
item to � at the coherency requiredby ( . This is con-
tinuedall theway up the ���!Q till thereis a pathfrom the
sourceto ( for thosedata-items.

The number of dependentscurrently served by a
repositoryshouldbe smaller than its 
�MNMAO ��P�QLRSPSP . If
a repository already has as many dependentsas the

�MNMAO ��P�QLRNPJP thenit is not consideredasa potentialpar-
ent. As long as thereare repositorieswith lessdepen-
dentsthanthe 
�MNMAO ��P�QLRNPJP specified,theloadcontroller
will findsuitableparentsfrom its level. If all of therepos-
itories have reachedtheir limit of 
�MNMAO ��P�Q�RNPSP depen-
dents,the load controllerpassesthe requestto the load
controllerof thenext level.

Thefollowing factorsareusedto determinethepref-
erencefactorof a node:

1. DataAvailability Factor: Thenumberof dataitems
thata parentcanserve ( , with its currentdataand
coherency requirement.

2. ComputationaldelayFactor: Thelargerthecompu-
tationaldelayincurredat a parent� to disseminate
adatachangeto its dependents,thelesspreferredit
is. We approximatethis delayby thenumberof de-
pendents� has: On average,the moredependents
� has,thegreaterwill bethecomputationaldelays
encounteredby ( to getadataupdatefrom � .

3. CommunicationdelayFactor: Parentswhich have
a large communicationdelaywith ( are lesspre-
ferred.

Sincewe want to chooseparentssuchthat thedelays
arelow andthedataavailability is high,we calculatethe
preferencefactoras: z!{}|-~!�S�0��� �6��� 4@�JDb� { % { 4 z!{ 4N� ) �0�2�4��SD z!~ � ~ +-� { D ) �n��~ 4 ) {�����{6� .

Theloadcontrollerderivesapreferencevaluefor each
nodeat thecurrentlevel andtheoneswith valueswithin
5% of the minimum value are consideredas potential
parents.To this end,a loadcontroller’s view of a repos-
itory at its level is updatedwhenever a new repository
becomesits dependent.



5 When Should an Update be Dissemi-
nated?

Assumingthata ����� hasbeenconstructedfor dataitem � ,
considerasource� thatdisseminates� to arepository� ,
which in turn disseminates� to a dependentrepository
( .

Recall from Eq. (1) that to effectively disseminate
updates,we requirethat thecoherency requirementat �
shouldbeat leastasstringentasthatof ( .

Let �*)+  �$)+0,6.  �$)+0,21 3�3	3 denotea sequenceof updates
to � at thesource� . Let � %5  � %5 ,6.  � %5 ,21 3�3	3 denotethe
updatesreceivedby � and � '7  � '7!,6.  � '7!,�1 3	3�3 . denote
theupdatesreceivedby ( . Since 
&% � 
	' , thesetof up-
datesreceived by ( is a subsetof that received at � ,
which in turn is a subsetof uniquedatavaluesat the
source.Specifically, an update� %5 receivedby � is for-
wardedto ( if � � %5 � � '7 � 9 
 ' (3)

where� '7 denotesthepreviousupdatereceivedby ( . In-
tuitively, Eq. (3) indicatesthat any updatethat violates
thecoherency requirementsof ( is forwardedto ( .

Wenow show thatthisis anecessarybut notsufficient
conditionfor maintainingcoherency at ( . Suppose� )+ ,� %5 and � '7 representthe valueof � at � , � and ( , re-
spectively. Let the next updateat S be �*)+-,/. suchthat

� � )+0,6. � � %5 ��� 
 % (4)� � )+-,/. � � '7 � 9 
 ' (5)

Thus, the next updateis of interestto repositoryQ but
not to P. Since � is logically connectedonly to � , if
� doesnot disseminatethis updateto � , then ( , a de-
pendentof � , will alsomissthis update(causinga vio-
lation of its coherency requirement).Figure4 provides
anexampleof thissituation.Thus,evenunderidealcon-
ditionsof zeroprocessingandcommunicationdelays,a
disseminationtechniquethat usessolely Eq. (3) to dis-
seminateupdatesmight not provide 100%fidelity (indi-
catingEq. (3) is not a sufficient condition to maintain
coherency). Hence,disseminationalgorithmsneedto be
developedcarefully to avoid suchmissedupdateprob-
lems(i.e., shouldensurethata repositorydoesnot miss
any updatesof interestto itself or its dependents).

Next, wepresenttwo approachesto addressthis issue
andalsoexaminetheentailedoverheads.

5.1 Distrib uted (repository-based)Approach

The missedupdatesproblem describedearlier occurs
when an update �$)+0,6. , where �$)+ � �$)+0,6. � �$)+ w�
&% ,
satisfiesbothEqs.(4) and(5).

Fromtheseequations,we get,� � )+0,6. � � %5 � � � � )+0,6. � � '7 ��� 
 % ��
 ' (6)

which reduces(asshown in [21]) to
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Figure4: Needfor CarefulDisseminationof Changes

Eq. (7) representsthe additionalconditionthatmustbe
checkedby any repository � to seeif an updateshould
be disseminatedto its dependent( . Thesetwo condi-
tionscanbeprovento achieve100%fidelity atall repos-
itories (assketchedin [21]) Note that this applieseven
to the source,i.e., when � is the source.Thus,the dis-
seminationtechniquepropagatesan update� %5 received
by � to dependent( if eitherEq. (3) or (7) is satisfied.
In the exampleillustratedin Figure4, sucha technique
would propagatethe updatecorrespondingto value1.4
from � to ( (sinceit satisfiesEq. (7)). Consequently,
thesubsequentincreasein valueto 1.5doesnot resultin
aviolationat ( . Notethattheupdateof 1.4is notstrictly
requiredasperthecoherency requirementof ( (Eq. (3)),
but is essentialto preventthe“missedupdates”problem.

5.2 Centralized (source-based)Approach

In this approach,the sourcemaintainsa list of all the
uniquecoherency requirementsfor a dataitem � spec-
ified by variousrepositories.For eachsuchcoherency
requirement,the sourcealso tracksthe last updatedis-
seminatedfor that coherency requirement.Upona new
update,the sourceexamineseachuniquecoherency re-
quirement
 and the last updatesentfor that 
 . It then
determinesall 
 ’sthatareviolatedby theupdate.Theup-
dateis taggedby themaximumsuchcoherency require-
ment 
 = [

� andthetaggedupdateis thendisseminated
throughthe ���	� . Thesourcealsorecordsthis datavalue
asthelastupdatesentfor all 
 sthatarelessthenor equal
to 
 = [

� .
Eachrepositoryreceiving theupdateforwardsit to all

dependentsthat (i) are interestedin the dataitem, and
(ii) have a coherency requirementlessthanor equalto
thetaggedvalue.As sketchedin [21], thisdissemination
algorithmalsoachievesafidelity of 100%(in theabsence
of network transmissiondelays).

We now discusstheoverheadsof this approach.This
algorithmfindsthemaximumcoherency value,if any, af-
fectedby theanupdateat thesource.A largenetwork of
cooperatingrepositoriescanresultin a largeoverheadat
the source(especiallyif the numberof unique 
 values
is alsolarge). Sincethis approachdisseminatesupdates



Ticker Date TimeInterval Min Max
MSFT Feb12 22:46-01:46hrs 60.09 60.85
SUNW Feb1 21:30-01:22hrs 10.60 10.99
DELL Jan30 00:43-04:12hrs 27.16 28.26
QCOM Feb12 22:46-01:46hrs 40.38 41.23
INTC Jan30 00:43-04:12hrs 33.66 34.239
ORCL Feb1 21:30-01:22hrs 16.51 17.10

Table1: Characteristicsof someof the tracesusedfor
theexperiments

only whennecessaryandonly to repositoriesthat need
theupdate,theapproachmakesefficient useof thecom-
municationresources.Thealgorithmalsoimposesastate
spaceoverheadat thesourceto storethelist of all unique
coherency tolerancesassociatedwith eachdata-itemand
thelastupdatesentfor each
 .

In summary, dueto thecomputationalandspaceover-
heads,this approachmay affect the scalability of the
sourcecomparedto thedistributedrepositorybaseddis-
seminationapproach.We studythis issuein Section6.

6 Experimentsand Results
In this section,we demonstratetheefficacy of our tech-
niquesthroughanexperimentalevaluation.In what fol-
lows,we first presenttheexperimentalmethodologyand
thentheexperimentalresults.

6.1 Experimental Methodology

Traces – Collection procedure and characteristics:
The performancecharacteristicsof our solution are in-
vestigatedusingrealworld stockpricestreamsasexem-
plarsof dynamicdata. The presentedresultsarebased
on stock price traces(i.e., history of stock prices)ob-
tainedby continuouslypolling http://finance.yahoo.com.
Wecollected100tracesmakingsurethatthecorrespond-
ing stocksdid seesometradingduringthatday. Thede-
tailsof someof thetracesarelistedin thetablebelow to
suggestthe characteristicsof the tracesused.(Max and
Min refer to the maximumand minimum stock prices
observedin the10000valuespolledduringtheindicated
Time Interval on the given � [ ��P in Jan/Feb2002.) As
we cansee,we wereableto obtaina new datavalueap-
proximatelyoncepersecond.Sincestockpriceschange
at a slower ratethanonceper second,the tracescanbe
consideredto be”real-time” traces.

Repositories– Data, Coherency and Cooperation
characteristics: We simulatedthe situationwhere all
repositoriesaccesseddatakept at a singlesource.Each
repositoryrequestsa subsetof data items, with a par-
ticular dataitem chosenwith 50% probability. We use
differentmixesof datacoherency. Specifically, the 
 ’s
associatedwith datain arepositoryareamix of stringent
tolerances(varying from $0.01to 0.099)andlessstrin-
genttolerances(varyingfrom $0.1to 0.999). E % of the
dataitemshavestringentcoherency requirementsateach

repository(theremaining��;JI@I
��E�� %,of dataitemshave
less stringentcoherency requirements). 
�MNMAO ��P�QLRSPSP ,
thedegreeof cooperationofferedby eachrepository(i.e.,
the boundon the numberof dependents)—was varied
from 1 to 100in ourexperiments.

Physical Network – topology and delays: The
model for the physical network was randomly gener-
ated. It consistingof nodes(routersand repositories)
andlinks, with oneof the nodesselectedasthe source.
The routing tablesof all the nodesaregeneratedusing
an all-pairsshortestpathalgorithm(by Floyd andWar-
shall [7]). For our experiments,we vary the sizeof the
physicalnetwork from 700nodesto 2100nodes.Unless
specifiedotherwise,we presentresultsprimarily for the
700 nodescenario(1 source,100 repositoriesand 600
routers). In sucha network, an updatefrom onerepos-
itory (or source)to anothertraversesaround10 hopson
average,comparedto the18hopsreportedbasedonmea-
surementsdoneon the internetin [9]. Resultsfor other
network sizesarebriefly discussedin Section6.3.5.

Our experimentsusenode-nodecommunicationde-
laysderivedfrom a heavy tailedPareto[19] distribution:�_� .

�"�� w � . where� is givenby ����@� . , �
� beingthemean

and � . is theminimumdelayalink canhave. For ourex-
periments,�� was15ms(milli secs)and � . was2 ms.As
aresult,theaveragenominalnode-nodedelayin ournet-
workswasaround20-30ms. This is lower thanthe de-
lays reportedin [9]. We alsoexperimentedwith higher
network delaysin Section6.3.2andshow thatthegainin
thefidelity usingcooperativedisseminationis evenmore
significantfor higherdelays.

Unlessotherwisespecified,computationaldelay in-
curredat a repositoryto disseminatean updateto a de-
pendentis taken to be 12.5 ms. This includesthe time
to perform any checksto examine whetheran update
needsto be propagatedto a dependentand the time to
prepareanupdatefor transmissionto adependent.In the
presenceof complex queryprocessingatrepositories,the
timetakento performthecheckscanbeconsiderableand
henceour choiceof computationaldelay. We alsomea-
suredtheeffectof otherdelayvaluesonfidelity.

Simulation Procedure: After generatingthephysical
network topology, we generatethe topologyof the ���	�
usingthetechniquediscussedin Section4 andconform-
ing, asdiscussedin Section3, to the repository’s maxi-
mumdegreeof cooperationif specified.Thesimulation
of datadissemination,is thendone,usingthealgorithms
discussedin Section5. Specifically, uponeachupdateto
thestockprice,thesourcedetermineswhetherto forward
the updateto the first-level repositoriesin the ����� ; each
repositoryreceiving the updatethendecideswhetherto
forwardtheupdateto any of its dependents.

6.2 Metrics

The key metric for our experimentsis the fidelity of
the data. Recall that fidelity is the degree to which



a user’s coherency requirementsare met and is mea-
suredasthetotal lengthof time for which theinequality� �q��������� ����� ��� 
 holds(normalizedby thetotal lengthof
theobservations).Thefidelity of arepositoryis themean
fidelity overall dataitemsstoredat thatrepository, while
the overall fidelity of the systemis the meanfidelity of
all repositories.

Ratherthancomputingfidelity, ourresultsplot amore
meaningfulmetric,namelylossin fidelity. Thelossin fi-
delity is simply ��;�I�I�K¡� fidelity � . Clearly, thelower this
value,thebettertheoverallperformanceof a dissemina-
tion algorithm.

In addition to fidelity, we also measurethe number
of updates(messages)sentby eachdisseminationtech-
nique. Clearly, the smallerthe numberof messagesto
maintaina certainfidelity, the lower the costof the co-
herency maintenance.

6.3 Experimental Results
6.3.1 BaselineResults

Ourfirstexperimentexaminestheefficacy of the ����� con-
structionalgorithmLeLA. We usedthesource-basedal-
gorithmasthebaselinedatadisseminationalgorithm.

We considersevendifferent E values. For each� � �
constructionalgorithm and thesecoherency tolerances,
we vary the 
�MNMAO ��P�Q�RNPSP from 1 to 100andmeasurethe
efficacy of the resulting � � � in providing goodfidelity.
Notethatin thepresenceof thenon-zerocommunication
delays,thestructureof the ����� hasasignificantimpacton
fidelity (sincethedataat a repositoryis out-of-syncun-
til anupdatepropagatesthroughthe ���	� andreachesthe
repository).The larger theend-to-enddelay, thegreater
thelossin fidelity. As expected,theresultingrepository
layout network hada maximumdiameterof ;JI¢; when
repositoriesformed a chain (degreeof cooperation=1)
anda minimum diameterof £ whenthe sourceupdated
the repositoriesdirectly (degreeof cooperation= ;�I@I ).
The averagedepthrangedfrom ¤¢; to ; . The average
numberof dependentsvariedfrom ; to ;�I�I .

Figure 3 shows (seenpreviously in Section3) that
thereis a significantlossof fidelity at low valuesfor the
degreeof cooperation. The loss of fidelity occursbe-
causethe ���	� hasa large diameter(i.e., a large number
of hopsbetweenthe sourceandthe farthestrepository),
whichincreasesthecommunicationdelaysanddecreases
fidelity.

As thenumberof dependentsof a repository(i.e., the
degreeof cooperation)is increased,the loss in fidelity
decreasesto aminimumandthenstartsincreasingagain.
This is consistentwith our expectations,since, as ex-
plained in Section3, communicationdelaysdominate
whentherearea small numberof dependentsandcom-
putationaldelaysat a repositorydominatewhen there
area largenumberof dependents.Theminimumoccurs
whenthesumof thetwo delaysis minimized.

Thepointatwhichtheminimumoccursvariesslightly
from one E valueto anotherandlies between3 and20

dependentsper repository. (It is worth pointingout that
for thecommunicationandcomputationaldelayusedin
theseexperiments,thevalueof 
�MNMAO ��P�Q�RNPSP is ¥ ).

The performanceof the algorithmworsenswhenthe
number of dependentsallowed per repository is in-
creasedbeyondtheoptimalvalue.This is becausewhen
thenumberof permitteddependentsis large, thesource
servesmostrepositoriesdirectly andthe ����� effectively
reducesto a one-level treewith mostrepositoriesacting
asa directdependentof thesource.We explore this be-
havior furtherin Section6.3.2.

Notealsothatin Figure3, asthefractionof dataitems
with stringentcoherency tolerancesdecreases,thegradi-
entof thelossin fidelity alsodecreases.

Theseresultsclearly show that, as long as there is
somedatawith stringentcoherency requirements,it is
importantfor repositoriesto cooperatewith oneanother
to improve fidelity. Moreover, it is inappropriateto use
a very large numberof resourcestowardscooperation.
(We elaborateon this point in Section6.3.3.)Hence,we
addressthe issueof settingthe “optimal” level of coop-
erationin thenext section.

6.3.2 Effect of Cooperation on Fidelity

In this section,we thoroughlyevaluatethe effect of co-
operationon fidelity. We begin by showing that if the
sourceis entrustedwith thetaskof disseminatingupdates
directly to repositories,thenthereis a lossin fidelity, re-
gardlessof othersystemparameters.Thus,it is essential
for the sourceto usethe repositoriesto offloadsomeof
its disseminationoverheads.We thenexaminethe im-
pactof two key parameters,namelythe communication
delayandthe computationaldelayEq. (2)), on fidelity
anddemonstratethatwhenthenumberof dependentsis
adaptedto communicationandcomputationaldelays,ad-
ditionalperformancebenefitscanbeharnessed.

Performancein the Absenceof Cooperation

In theprevioussectionwehavealreadyshown thatasce-
nario wherethe sourcedirectly disseminatesupdatesto
repositories(i.e., no cooperationbetweenrepositories)
resultsin a largelossin fidelity. In this sectionwe show
that this resultholdsregardlessof othersystemparam-
eters. To demonstratethis, we vary the communication
delaysandthecomputationaldelaysandassumethatthe
sourcedirectly servicesall repositoriesin the ����� . We
measurethefidelity offeredby thesourcefor different E
values.Figures5 and6 depictour results.

Notice from Figure 5 that even when we increase
thecommunicationdelays,fidelity doesnot dropsignif-
icantly. This is because,when the sourcedisseminates
directly to its dependents,thecomputationrelateddelays
at thesourceaccumulateandtheresultinglossof fidelity
is primarily dueto thiseffect. Whenweperformedthese
experimentswith only fivedataitems,wenoticed,asex-
pected,that theeffect of communicationoverheadswas
much more apparentthan due to the relatively smaller
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ComputationDelays

computationaldelaysencounteredat thesource.In sum-
mary, when the numberof dataitems to be handledis
large,thecomputationaldelaysatthesourcewill havean
adverseaffectonthescalabilityof thesource.Thiseffect
will bepronouncedwhenall repositoriesdesiretheirdata
athigh coherency (asindicatedby theT=100%graph).

This point is corroboratedfurtherby Figure6, where
the loss in fidelity worsenswith increasingcomputa-
tional delays,especiallywhencoherency tolerancesare
stringent.

Controlled Cooperation

Whenwerepeatthescenariowhoseresultsweredepicted
in Figure3, but with thedegreeof cooperationchosenas
per Eq. (2), that is irrespective of how many coopera-
tive resourcesa nodehas,if offersonly 
	MNMAO ��P	QLRNPSP re-
sourcesfor its dependents.Theperformanceis asshown
in Figure7(a).Thebehavior becomesanL shapedcurve,
thatis, afterthechosenvalueof 
	MNMAO ��P	QLRNPSP , lossof fi-
delity stabilizes.

With controlledcooperationin effect, we studiedthe
impactof communicationandcomputationaldelayson
fidelity. Theresults(seeFigures7(b) and7(c), notethat
the ¬ axis goesonly from I to ¤ ) show that we can
counterthe effect of large delaysin the systemby ad-
justingthedegreeof cooperationasperEq. (2).

In general,theseresultsalsoshow that,usingour ap-
proach,high fidelity canbeobtainedevenif a repository
incurs large computationcosts(example, if we extend
our approachto executegeneralcontinuousqueries[6])
or whendatasizesarelarge, in which casethe commu-
nicationdelayswill belarger.

For example,with increasingcomputationaldelays,
a smallervalue of 
�MNMAO ��P�Q�RNPSP is used(seeEq. (2)),
and this reducesthe load at a repository;on the other
hand,a small valueof computationaldelayresultsin a
largervalueof 
	MNMAO ��P�Q�RNPSP . Similarly, with increasing
communicationdelays,a largervalueof 
	MNMAO ��P	QLRNPSP is
usedandthiswill reducetheloadon thenetwork; on the
otherhand,a small valueof communicationdelaywill
resultin a smallvalueof 
	MNMAO ��P	QLRNPSP . Our resultsindi-
catethatthedegreeof cooperationshouldbehigherwhen
thecommunicationdelaysarelargeandlower whenthe
computationaldelaysarelarge.

Thisclearlydemonstratesthebenefitsof choosingthe
degree of cooperationbasedon systemoverheadsfor
providing highfidelity.

In fact, once we have such controlled cooperation,
performanceis not affectedby changesto the formulae
usedto computethepreferencefactorin ����� construction
algorithm(seeSection4). We show in [21] that it is not
alsoaffectedby theexactvalueof

X
(seeSection3) used

to determinethe 
�MNMAO ��P�QLRNPJP .
6.3.3 Impr ovementin Fidelity When CoherencyRe-

quir ementsareusedto Filter Updates

We have claimedthatonly updatesof interestshouldbe
disseminatedbyarepositoryto its dependent.In thissec-
tion, we demonstratethat this filtering is, in fact,essen-
tial to achieving highfidelity. To demonstratethisaspect,
we compareour approachto a systemwhereall updates
to a dataitem aredisseminatedto repositoriesinterested
in that data item. Sucha systemis emulatedby sim-
ply usingaverystringentcoherency tolerance(T=100%)
causingall updatesto bedisseminated.We comparethis
systemto onewherethecoherency requirementsarenot
stringent(T=0%). Lessstringent 
 ’s result in filtering
andselective forwardingof updates.Thus, any differ-
encein performancebetweenthesesystemsis indicative
of the fidelity improvementresultingfrom the filtering
that occurswhen repositoriesdisseminateonly dataof
interestto their dependents.

Figure 8 depictsour results. The figure shows that
comparedto the fidelity of our approach(indicatedby
theflat “filtered” curve)theapproachthatdisseminateall
updates,in fact,resultsin worsefidelity acrossthecom-
pleterangeof 
�MNMAO ��P�QLRNPJP values. This is becausethe
latter approachdisseminatesmoremessages,which in-
creasesthenetwork overheadsaswell ascomputational
delaysat repositories,causinga lossin fidelity. In con-
trast, intelligent filtering andselective disseminationof
updatesbasedon data’s coherency requirementscanre-
duceoverheadsandimprovefidelity.

Study of Sensitivity to Parameters of the TreeCon-
struction Algorithm

At eachlevel, the load controller choosesrepositories
whosepreferencefactoris within � > ¤�K of the pref-
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erencefactor for the mostpreferredparent. We exper-
imentedwith differentvaluesof � (seeFigure9). For
� > ;NK , the lossin fidelity is high. This is dueto the
factthatveryfew of theparents(typically ; ) will beserv-
ing all therequirementsof thedependents.This addson
to theloadat theparentandhencefidelity of thesystem
is affected. If a nodehasa large numberof parents(as
will bethecasefor �<¼½;J¤�K , morepushconnectionsare
usedfrom acertainlevel (aparentusesonepushconnec-
tion per child, irrespective of the numberof dataitems
servedto thechild) for a singlechild. Becauseof this a
level canonly serve fewer childrenandthis will in turn
increasethe diameterof the ����� , againresultingin loss
of fidelity. Oncethedegreeof cooperationis chosen,the
valueof � haslittle impacton fidelity. This is shown by
thecurvesmarkedby � > ;S¾ , � > ¤�¾ , � > ;S¤@¾ ,
� > £@¤�¾ . ( ¾ indicatesthe samescenariowith con-
trolled cooperation.)As canbe seen,thesecurvesoffer
highfidelity for all � values.

Our next experiment was to determine if the
formula used for calculating the Preference Fac-
tor had an impact on fidelity. So we modi-
fied the one used so far (See Section 4) to ex-
periment with an alternative O�RNPN�*P�RNPJy2
�P¿� [ 
!��MSR

>
��PS` [�a ���b &(À� Y y
Á

= �lP�O$PJy2��PJy
��d����Â� . Thisdoesnotac-
count for data availability at a parent. As Figure 10
shows,thechoiceof thepreferencefunction( �V; vs �Â£ )
hasinsignificantimpactonresultingfidelity whenthede-
greeof cooperationsmall.

The resultsalso indicatethat oncethe degreeof co-

operationis chosenasdiscussedin Section3, theparam-
etersof LeLA have little, if any, impacton fidelity ob-
tained.As shown by curvesmarkedby �V;J¾ and �Â£@¾
for a rangeof thedegreeof cooperationvaluesthevaria-
tion of fidelity is lessthan ;NK . Thisrangedependsonthe
communicationandcomputationaloverheads.As long
aswe choosethedegreeof cooperationfrom this range,
otherparametersbecomesecondaryfor achieving high
fidelity.

6.3.4 Performance of Update Dissemination Algo-
rithms

In this section, we comparethe performanceof the
source-basedandclient-baseddisseminationalgorithms.
Figure11(a)showsthatthesourcedoesnearly50%more
checksof incomingdatavaluesto determineif the data
value needsto be disseminatedto its dependents.As
shown in Figure11(b), both approachessendthe same
numberof messagesthroughthesystemandasdiscussed
in Section5, both approachesguarantee100% fidelity.
Sothedistributedapproachis preferable.

6.3.5 Scalability of the algorithms

We have alsostudiedthe effect of increasingthe num-
ber of repositorieson fidelity. Whereaswith unlimited
cooperation,the diameterof the ���	� could grow to be
very high with increasingnumberof nodesin the net-
work, controlledcooperationlimits this growth. For ex-
ample,whenthenumberof repositoriesgrows from 100
(for thebasecase)to 300(andwith thatthetotalnumber
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Figure11: ComparingCentralizedandDistributedData
DisseminationApproaches

of nodesin the systemgrows from 700 to 2100nodes),
theincreasein thelossin fidelity with controlledcooper-
ationwasobservedto belessthan5%. This is indicative
of thescalabilityof ourapproach.

6.4 Summary of Experimental Results

Ourperformancestudyindicatesthatv Eachrepositoryshoulddisseminateonly updatesof
interestto its dependents.v Cooperationis essentialto achievehighfidelity and
highscalability.v Cooperationbeyonda certainpoint leadsto lossof
fidelity. This is becauseif a repositoryagreesto
disseminatedatato too many dependents,queueing
anddisseminationdelaysat that repositorycanre-
ducethefidelity achieved.v Whencommunicationdelaysandcomputationalde-
lays are not negligible, the degreeof cooperation
shouldbe chosentaking communicationandcom-
putationaldelaysinto accountbecauseoutsidethe
optimal value, the algorithms could lead to in-
creasedlossof fidelity.

7 RelatedWork
Recently several efforts have focusedon maintaining
consistency betweensourcesandcachedcopiesor repli-
cas.Theproblemof dynamicdatadisseminationdiffers
from both cachingandreplicationin several significant
waysasdiscussedin [21].

An early work focusedon a push-basedapproach
basedon expiration times [2]. Achieving transactional
consistency among replicas in traditional databases
has been studied in [11]. Other efforts that employ
push-basedtechniquesincludebroadcastdisks[1] pub-
lish/subscribeapplications[16], andspeculativedissem-
ination[3]. However, thenotionof coherency definedin
thispaperrequiresadifferentarchitectureandalgorithms
thanthosein theaboveefforts.

Theproblemof selectinganoptimalnumberof repli-
cashasbeenstudiedin [8]. Usingclient-observedround-
trip delaysas the metric, they show that the payoffs of

increasingthenumberof replicasbeyonda certainpoint
arenot significant. We focuson a differentproblem—
data dissemination—anduse a different metric—data
fidelity—to show a somewhat similar result: increasing
the degreeof cooperationbeyonda point is detrimental
to fidelity.

Consistency maintenancehasalsobeenstudiedin the
context of webcaching[14]. In thiscontext, hierarchical
webproxyarchitectures[5] andcooperativewebcaching
[24, 23, 25] have alsobeenstudied. The differencebe-
tween theseefforts and our work is that we focus on
rapidly-changingdynamicwebdatawhile they focuson
webdatathatchangesatslower time-scales(e.g.,tensof
minutesor hours)—animportantdifferencethat results
in verydifferentsolutions.Efforts thatfocusondynamic
webcontentinclude[13] wherepush-basedinvalidation
anddependencegraphsareemployedto determinewhere
to pushinvalidatesandwhen. Achieving scalabilityby
adjustingthe coherency requirementsof data items is
studiedin [12]. Thedifferencebetweentheseapproaches
andoursis that,in [12] repositoriesdon’t cooperatewith
oneanotherto maintaincoherency.

Mechanismsfor disseminatingfast changingdocu-
mentsusing multicast-basedpush has beenstudiedin
[20]. The differencethough is that recipientsreceive
all updatesto an object (therebyproviding strongcon-
sistency), whereasour focus is on disseminatingonly
thoseupdatesthat are necessaryto meetuser-specified
coherency tolerances. Multicast tree constructional-
gorithms in the context of application-level multicast
have beenstudiedin [10]. Whereasthesealgorithms
are generic, the ����� in our case,which is akin to an
application-level multicasttree,is specificallyoptimized
for theproblemat hand,namelymaintainingcoherency
of dynamicdata.

[18] also dealswith disseminationof time varying
data. In fact the metric usedin [18] is similar to fi-
delity. Givenafixedavailablebandwidththey determine
theachievabledatacoherency. On theotherhand,given
a coherency requirement,we determinea dissemination
structureto maximizetheachievedfidelity.

Ourwork canbeseenasprovidingsupportfor execut-
ing continuousqueriesover dynamicallychangingdata
[15, 6]. Continuousqueriesin theConquersystem[15]
aretailoredfor heterogeneousdata,ratherthanfor real
timedata,andusesadisk-baseddatabaseasits backend.
NiagraCQ[6] focuseson efficient evaluationof queries
asopposedto coherentdatadisseminationto repositories
(which in turncanexecutethecontinuousqueriesresult-
ing in betterscalability).

8 Conclusions

In this paper, we examinedthedesignof a datadissem-
ination architectureinvolving repositoriesthat cooper-
atewith oneanotherto maintaincoherency of the time-
varyingdatastoredin them.Thekey contributionsof our
work are:



v Designof a push-baseddisseminationarchitecture
for time-varyingdata.Oneof theattractionsof our
approachis that it doesnot requireall updatesto
a dataitem to be disseminatedto all repositories,
sinceeachrepository’s coherency needsareexplic-
itly taken into accountby the disseminationalgo-
rithm. This intelligent filtering and selective dis-
seminationof updatesbasedon user’s coherency
tolerancesreducesthe system-widenetwork over-
headaswell as the load on repositories.Thesein
turn improve the fidelity of datastoredat reposito-
ries.v Designof mechanismsfor maintainingcoherency
of datawithin an overlay network of repositories.
Our mechanismswere designedto take into ac-
count communicationdelays,computationalover-
heads,andthe systemload. We alsostudiedtheir
relative performanceand showed that cooperation
amongrepositoriesmustbeusedto improvefidelity
substantiallywith lower overheads,but beyond a
certainpoint, suchcooperationcanbe detrimental
to performance.

Whereasour approachusespush-baseddissemina-
tion, otherdisseminationmechanismssuchaspull [22],
adaptive combinationsof pushand pull [4], aswell as
leases[17] couldbeusedto disseminatedatathroughour
repositoryoverlaynetwork. Theuseof suchalternative
disseminationmechanismsaswell as the evaluationof
our mechanismsin a real network settingis the subject
of futureresearch.

Finally, we would like to point out how our work can
be viewed from the perspective of peer-to-peersystems
andstreamingdata. Our repositoriesfilter the datathat
is streamedto thembeforeforwardingthe datato their
dependents.Note that, in principle, a repository Ç can
be a dependentof anotherrepository ( for dataitem �
whereasÇ could obtaindataitem, a , from ( . In other
wordsthe repositoriesform peersandtheir job is to se-
lectively disseminatestreamingdata to eachother. In
otherwords,this papercouldalsohave beentitled: Se-
lectivePeer-to-PeerDisseminationof StreamingData!
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