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Abstract

In this paper we considertechniquesfor disseminat-
ing dynamic data—suchas stock prices and real-time
weatherinformation—fromsourcego a setof reposito-
ries. We focuson the problemof maintainingcohereng
of dynamicdataitemsin anetwork of cooperatingepos-
itories. We shaw thatcoopertion amongrepositories—
where eachrepositorypushesupdatesof dataitemsto
otherrepositories—helpreducesystem-widecommuni-
cationand computationoverheaddor cohereng main-
tenance. However, contraryto intuition, we also show
thatincreasingthe degreeof cooperatiorbeyond a cer
tain pointcan,in fact,bedetrimentalo thegoalof main-
taining coherenyg at low communicatiorand computa-
tional overheads. We presenttechniques(i) to derive
the“optimal” degreeof cooperatioramongrepositories,
(ii) to constructanefficientdisseminatiorreefor propa-
gatingchangesrom sourcego cooperatingepositories,
and (i) to determinewhento pushanupdatefrom one
repositoryto anotherfor cohereng maintenance. We
evaluatethe efficacy of our techniqueausingreal-world
tracesof dynamicallychangingdataitems (specifically
stockprices)andshow thatcarefuldisseminatiorof up-
datesthrougha network of cooperatingepositoriesan
substantialljower the costof cohereng maintenance.

1 Intr oduction

On-line decision making often involves significant
amountof time-varying data. Examplesof suchdatain-
cludefinancialinformationsuchasstockpricesandcur-
reng/ exchangerates,real-timetraffic and weatherin-
formation, and datafrom sensorsin industrial process
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control applications. Theseoften occurin the form of
datastreamsDueto theirtime-varyingnature usersac-
cessingsuchdataitemsneedto be providedwith up-to-
datevaluesof theseitems. The coherenyg requirements
associateavith a time-varying dataitem dependon the
natureof the item and usertolerances.To illustrate, a
userinvolvedin exploiting exchangedisparitiesn differ-
entmarketsor an online stocktradermay imposestrin-
gentcoherenyg requirementge.g.,thestockpriceshould
never be out-of-syncby more than one cent from the
actualvalue)whereasa casualobsener of curreny ex-
changerate fluctuationsor stock pricesmay be content
with lessstringentcohereng requirements.

Sourcesof time-varying dataare often known to be-
comebottleneckespeciallywhenservingrapidly chang-
ing datato a large numberof users(e.g., on election
nightsor whenservinghot stockvaluesin avolatile mar
ket). If clientsrefreshvaluesof time-varying dataitems
directly from the source thenthe computationaload at
the sourceswill be high and hence(a) delayswill oc-
cur in the disseminatiorof updateso clients, resulting
in lossof datacohereng, and(b) scalability of the sys-
temwill suffer. Onetechniqueto alleviate this bottle-
neckis to replicatedataacrosamultiple repositoriesand
have clientsaccesghe repositorythatis bestpositioned
to meettheirdatacohereng requirementAlthoughsuch
replicationcanreducdoadonthe sourcesreplicationof
time-varying dataintroducesnew challengesFirst, data
at therepositoriemeedso be coherentwith the source.
Secondunlessupdatedo the dataarecarefully dissem-
inatedfrom sourcegto repositoriesthe communication
andcomputationoverheadsnvolvedin suchdissemina-
tion canthemselesresultin delaysaswell asscalability
problemsfurthercontributing to lossof datacohereng.

In this paper we examinetechniquego maintainthe
cohereng of time-varying dataitems at a setof repos-
itories. Eachrepositoryis assumedo storea subsetof
the dynamicdataitems, eachof which hasa cohereng
requirementassociatedwith it. A particular focus of
ourwork is to investigatehow repositoriecancooperate



with oneanotherandwith the sourceto reducethe over
headsof cohereng maintenanceTo do so, we assume
that repositoriesstoring a particulardataitem are logi-
cally connectedo form anoverlaynetwork thatwe refer
to asa dynamicdata disseminatioriree (abbreviatedas
thed?t). Thesourceof thedataitemformstherootof the
d3t. Insteadof directly disseminatingchangego a data
itemto all interestedepositoriesthe sourceonly pushes
thesechangeso its childrenin thed?t (eachchild is also
referredto asa dependentf its parent).Eachrepository
in turn pusheghesechangedo its dependenteposito-
ries. Disseminationusing the d®t incurstwo kinds of
overheads:

1. Communicatiordelays: This is the delayincurred
in propagatingan updatefrom a repositoryto a de-
pendent.lt includesall communicatiorrelatedde-
lays,includingthe messag@rocessinglelaysatthe
sourceanddestinatiorof a messagandthedelays
onall physicallinks betweerthetwo.

2. Computationaldelays: This is the delay resulting
from thecomputationgperformedby arepositoryto
determinavhetheranincomingdatachangés to be
forwardedto oneof its dependents.

The objective is to constructa d®¢ that reducesthese
overheadsvhile meetingthe cohereng requirementst
all repositoriesWe assumehateachdynamicdataitem
will have its own d°¢; the logical structureof this tree
depend®nthedynamicsof the dataitem, the cohereng
needsof the repositoriespodeto nodecommunication
delays,andthecomputationatielaysat eachrepository

Given suchan architecturewe considertwo key is-
suesin this paper:

1. How shouldthe repositoriesbe interconnectedso
as to minimize the overheadsof maintaining co-
hereng of all dataitemsstoredin thevariousrepos-
itories?

2. Whenshoulda node(i.e., a sourceor a repository)
pushchangef interestto otherrepositoriesso as
to meetcohereng requirement®f the dataitem at
all repositories?

In therestof this section,we first definethe problemof
maintainingcohereng for a dataitem andthendescribe
thechallengesn addressinghe problemin a network of
cooperatingepositories.

1.1 Data CoherencySemantics

Considera userinterestedin time-varying dataitems.
Assumethat the user obtainstheseitems from a data
repositoryinsteadof the source. Furthey assumethat
the userspecifiesa coherenceaequirement(c) for each
item of interest. The value of ¢ denoteghe maximum
permissibledeviation from the value at the source,and
thus, constitutesthe userspecifiedtolerance. The co-
hereng requirementsan be specifiedin units of time
(e.g.,theitem shouldnever be out-of-syncby morethan

5 minutes)or value (e.g.,a stockprice shouldnever be
out-of-syncby morethanten cents). In this paper we
only considercoherenceequirementspecifiedin terms
of the value of the object; maintaining coherencere-
quirementsn units of time is a simplerproblemthatre-
quireslesssophisticatedechniqueqe.g., pushevery 5
minutes). To maintaincoherenceeachdataitem in the
repositorymustberefreshedn suchaway thattheuser
specifiedcohereng requirementsare maintained. For-
mally, let S, (¢) andU, (t) denotethevalueof adataitem
z atthe sourceandthe user respectiely, attime ¢ (see
Figurel). Then,to maintaincoherence we shouldhave
|Um(t) - Sw(t)l S C.

User
Uy(t)

Source
Sx(t)

Repository,
Pyt)

Figurel: TheProblemof Coherence

AlthoughFigurel shows a singledatarepositorythe
sourceto usercohereng requirementsirethe sameeven
if therearemultiple datarepositoriesactingasinterme-
diariesbetweerthem.

Theeffectivenes®f suchcooperatingepositoriexan
be quantifiedusinga metric referredto asfidelity. The
fidelity of adataitemis thedegreeto whichits cohereng
requirementare met. We definefidelity f obsened by
a userto bethetotal lengthof time for which the above
inequality holds, normalizedby the total length of the
obsenations. The goal of a goodcohereng mechanism
is to provide high fidelity atlow overheads.

1.2 Maintaining Data Coherencyin the d3t

Consider an architectureconsisting of one or more
sources,multiple repositoriesand several clients (see
Figure 2). Eachclient in this architectureconnectsto
oneof therepositoriedo accesgslynamicdataitems;the
choiceof aparticularrepositorydepend®n factorssuch
as proximity, dataavailability, etc., and canbe viewed
as a separategroblem. As indicatedearlier, the client
specifiesa cohereng requirementc for eachdataitem
of interest. Sincemultiple clients may be interestedn
the samedataitem, the cohereng requiremenfor data
item x at arepositoryP is definedto be the moststrin-
gentcohereny requirementsacrossall clients that ob-
tainz from P. Consequentlydependingon the needsof
its clients,eachrepositorycanderive its own dataneeds
andtheassociatedohereng requirementsHence from
now on, we focus on the source-repositorgcoherenyg
maintenanceroblem,thatis, our goalis to ensue that
Vt, |Pp(t) — Sz (t)| < ¢, wher P,(t) and S, (t) denote
thevalueof dataitem z at repositoryP andthe souice,
respectivelyand ¢ is the coheencyrequirementof = at
P.

To maintainthesecohereng requirementsreposito-
riesareassumedo cooperatavith oneanother Suchco-
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Figure2: The Cooperatie RepositoryArchitecture

operationinvolvesreceving updatego dataitemsfrom

a parentandpushingtheseupdatego dependenteposi-
toriesin the dt. Thedesignof suchtechniquesequires
resolutionof thefollowing interrelatedssues.

1. How muchshouldarepositorycooperate?

Giventhatrepositorieooperatavith oneanothey
a repositorymay have to hold data beyond what
its own usersmay need. Further cooperationre-

quiresarepositoryto expendboth computatiorand
communicationresourcego disseminateupdates.
We showthat this altruism paysoff in reducingthe

system-wideverheadsfor maintaining coheency
acrossall repositories.However, contrary to intu-

ition, we also showthat increasingthe amountof

coopeation beyonda certain point can, in fact, be

detrimentato theoverall goalsof achieving high fi-

delity at low overheads.To addresghis issue,we

proposea techniqueto derive the “optimal” degree
of cooperatioramongrepositories.

2. Once the level of cooperationis decided, what
should the (logical) interconnectionbetweenthe
repositoriede,i.e.,who seneswhom?

Thestructureof thed®t determinesheprecisecom-
putationalandcommunicatiorcostsat eachreposi-
tory. We showthat (i) the d®t shouldbe structuied
soasto balancethesecostsand(ii) solongasthese
costsare taken into account,the exact algorithm
employedo constructthe d*t has only a minimal
impacton theachievedfidelity.

3. Givena d?t, whenshoulda repositorydisseminate
updategthatit receves)to otherrepositorieslepen-
dentonit?

Since different repositoriescan have different co-
herenceequirementsarepositorywill needto take
thesedifferencesnto accountwhen disseminating
updatego its dependentsWe shaw thatit is neces-
saryto placerepositorieswith stringentcohereng
requirementsloserto the source. Also, a reposi-
tory may have to receive more thanthe updatest
itself needssoasto meetthe cohereng needof its
dependents-evenif the coheencyneedsof its de-
pendentsre lessstringentthanits own!

In the following sectionswe examineeachquestionin
turn, offer a setof solutionsto addresghesequestions,
anddemonstratéheir efficacy usingreal-world tracesof
dynamicallychangingdata.

Therestof the paperis structuredasfollows. We dis-
cussdetailsof our architecturefor cooperatingreposi-
toriesin Section2. Section3 discussesechniquesor
determiningthe degreeof cooperationwhile Section4
presentsalgorithmsfor constructinghed?t. Techniques
for disseminatingipdatedrom a nodeto its dependents
arediscusse@ Section5. Section6 presentsheresults
of our experimentalevaluation. Section7 presentge-
lated work, andfinally, Section8 presentsour conclu-
sionsanddirectionsfor future work.

2 Architecture for Cooperating Reposito-
ries

Considerthe cooperatie repositoryarchitectureshavn
in Figure 2. We assumethat the architectureusesthe
push approachfor disseminatingupdates—thesource
pushesupdatesto its dependentsn the d3t, which in
turn push thesechangesto their dependentsand the
end-clients. Not every updateneedsto be pushedto
a dependent-enly those updatesnecessaryto main-
tain the coheencyrequirementsat a dependenheedto
be pushed To understandvhen an updateshouldbe
pushed]et ¢? andc¢? denotethe cohereng requirements
of dataitem x atrepositories? and@, respectiely. Sup-
poseP senes(@. To effectively disseminataipdatego
its dependentghecohereng requiremenatarepository
shouldbeat leastasstringentasthoseof its dependents

& < (1)

Giventhe coherenyg requirementf eachrepositoryand
assuminghattheabove conditionholdsfor all nodesand
their dependentsn the d*t, we now derive the condi-
tion that must be satisfiedduring the disseminatiorof
updates.Let xf, 7, , %], 5,... 75, ... denotethe se-
guenceof updatego a dataitem z atthesourceS. This
is the datastreamz. Let z%,2% ,,... denotethe se-
guenceof updatesreceved E)y a dependentepository
P. Let 2% correspondo updatez? at the sourceand
letz¥, , correspondo updater;, , wherek > 1. Then,
Vm=1,k—1,|z, —zf|<cPforl<m < k-1,
Thus,aslong asthemagnitudeof thedifferencebetween
lastdisseminatedalueandthe currentvalueis lessthan
the coherenyg requirementthe currentupdateis not dis-
seminatedonly updateshat exceedthe cohereny tol-
erancec? aredisseminated)In otherwords,the repos-
itory P seesonly a “projection” of the sequencef up-
datesseenat the source.Generalizinggivena d®t, each
downstreanrepositoryseesonly a projectionof the up-
datesequenceseerby its predecessor

In databasderms,sucha projectioncan be seenas
a “view” of the datastream. Maintainingthis view for



a datastreamz involvesensuringthat the projectionof
the datastreamfor a repositorysatisfiesthe cohereng
associateavith z by thatrepository This papers contri-
butionliesin developingtechniquesor efficiently main-
taining the views of datastreamsat repositoriesaccord-
ing to the coherenyg specifiedby therepositories.

Efficient view maintenancdechniquesare required
becausegeven if the all necessaryupdatesare propa-
gatedby arepositoryto its dependentbasedn the con-
dition developedabove, due to the non-zerocomputa-
tionalandcommunicatiordelaysin real-world networks
andsystemsdataat a dependentvill experiencdossof
cohereng. Thus, it is impossibleto achieve 100% fi-
delity in practiceevenin expensve dedicatechetworks.
The goal of our cooperatie repository architectureis
to achieve better fidelity in real-world settingswhere
computationaland communicationoverheadsare non-
negligible.

3 How Much Should a Repository Cooper
ate?

In this sectionandthenext, we considertheissueof how
to constructthe d®t. We definethe degreeof coopera-
tion offeredby arepositoryP for a dataitem z to bethe
maximumnumberof dependentthataresenedzx by P.
Thisis thefanoutof thed3t usedfor z. A highdegreeof
offeredcooperatioimpliesthatarepositoryis willing to
take onincreasedesponsibilitiesyhich canhelpreduce
sourceoverloadandpotentiallyimprove fidelity. Onthe
otherhand,a repositorywith a high degreeof cooper
ation canalsoindirectly leadto a lossin fidelity (since
this increaseghe computationabverheadsat a reposi-
tory, which could becomea bottleneck). Essentially a
repositorythat offers a high degreeof cooperatiormay
justtransferthe sourceoadontoitself.

Thus, a greaterdegree of cooperationincreaseshe
computationatlelaybut reduceghe end-to-enchetwork
delay (by virtue of reducingthe path length from the
sourceto the farthestrepository). On the otherhand,a
small degreeof cooperatiorreducesthe computational
delayat a repositorybut increaseghe end-to-endcom-
municationdelays.In the extremecase,if the degreeof
cooperatioris reducedo one,the d*t becomes linear
chainof repositoriewith alargenetwork delay To max-
imize fidelity, thed®t shouldbeconstructedguchthatthe
sumof two delayscomponentss minimized

As shown in Figure3, for a givensetof repositories,
the variationin (lossof) fidelity with increasingdegree
of cooperatiorexhibits a U-shapedcurve. The left end
of the z-axis correspondso the d*t beinga chainand
theright endto the casewherea sourcedirectly dissem-
inatesupdatedo all its dependentsThis curve portrays
theresultsfor differentvaluesof a paramete’—which
encodeghe stringeny of the overall coherenyg require-
mentsof repositories(Section6 presentsletailsof how
thesecurveswerederived.) For now, it sufficesto know
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Figure3: Needfor Limiting Cooperation

thatT = 100% signifiesthatall repositorieshave very
stringentcohereng requirements.As we canseefrom
theplots, exceptwhenrepositorieslo not have stringent
coherenyg requirementsthe choiceof the degreeof co-
operatiordoesmake adifferenceontheachievedfidelity.

The point wherethe lossin fidelity is minimized de-
pendson the minimumtotal network andcomputational
delaysincurredby the d3t. In thefalling part of the U-
shapedurve,thecommunicatiordelaysdominateandin
therising part, the computationallelaysdominate.The
figureshawvsthatarbitrarily increasingthe degreeof co-
opeftion can,in fact, be detrimentalto fidelity. Hence,
in asystemwherecommunicatiordelaysdominatejt is
prudento useahigh degreeof cooperationOntheother
hand,if computationatielaysdominatethenasmallde-
greeof cooperatiorshouldbe chosen(i.e., eachreposi-
tory shouldhave asmallnumberof dependents)n other
words,the degreeof cooperatiorshouldbedirectly pro-
portionalto thecommunicatiordelaysandinverselypro-
portionalto the computationatlelays.This resultsin the
following heuristicto compute coop_degree, the degree
of cooperatiorto be used:

. .1 average comm_delay
min(—= X
C  average comp_delay

, #cores) (2)

where #cores denotesthe upperbound on the avail-
able number of cooperatie resources(i.e., maxi-
mumvalueof coop_degree), average comm_delay and
average comp_delay denotethe averagecommunica-
tion delaysfrom one repositoryto anotherand the av-
eragecomputationaldelaysin disseminatingan update
from one repositoryto all its dependentstespectiely.
The above formula assumeshat on average,only C%*
of the dependent®f a nodewould be interestedin an
update. This fractionis usedto determinethe effective
computationatlelayfor processingrdataitematanode.
Thus, the above formula allows us to setthe degreeof

1We studiedthe sensitvity of our resultsto the constanC.. Weran
the experimenton differenttracesfor 100 dataitemsto determinethe
sensitvity of C' to achosertrace.Ourresultsindicatedthatif thevalue
of C' > 30, thentheresultanfidelity is high. (For ourgraphsC' = 30
translateso adegreeof cooperatioraroundd — 10 whereasC' = 100
givesusadegreeof cooperatioraround3 — 4. In generaltheresulting
fidelity is insensitve to thevalueof C if C'is greateithan30. Variation
in fidelity lossin suchcasess only around1%.



cooperationdependingon the expectedoverheads. In
Section6 we study the effectivenessof this formulain
settingthe coop_degree.

4 What Should the Logical Structure of
Cooperating RepositoriesBe?

Considerarepository@ thatneedgo beinsertednto the
cooperatye repositoryarchitecture. For simplicity, we
describehealgorithmassuminghefollowing scenario:

¢ Whena repository@ wishesto enterthe network
it specifiesthelist of dataitemsof interest,their ¢
values,andits degreeof cooperation.

e A single source, S, can satisfy the needsof Q.
(The extensionto deal with multiple sourcesis
fairly straightforvard and these extensionsalong
with their performancearediscussedn [21]).

o If arepositorys dataneedschangeor its dataco-
hereny needschange thento handlethe changed
requirementsthe algorithmis reapplied. Due to
spaceconstraintsye do not go into the detailsof
this stepin this paper

Our algorithm constructsa single dynamicdatadis-
seminationgraph, d®g, during a single traversalof the
repositorynetwork startingwith the sourceS. For ary
particulardataitem z, the d®g reducedo atree(i.e., the
d3t) that consistsof the pathsalongwhich an updateto
z is disseminatedPutanothemway, the d® g is the union
of all d®t of dataitemsof interest.

We call our algorithmLeLA (Level by Level Algo-
rithm), becauset looks for a positionfor @ in the cur-
rentd®g, level by level. S is atlevel 0, therepositoriego
which S disseminatedataarein level 1, thedependents
of repositoriesatlevel [ areatlevel [ + 1, andsoon.

Theideabehindour algorithmis that startingat level
0, repositoriesat the currentlevel areexaminedfor their
suitability to sene thenew repository@, thatis, whether
) canbecomethe dependentf a setof repositoriesat
thatlevel. This decisionis madeby a speciallydesig-
natedload controller nodeat eachlevel. S vacuously
senesasthe load controllerfor level 0. The sourceex-
aminedf it cansene @, if notit passed onto theload-
controllerof thenext level.

The function of the load controllerat a level [ is to
find a setof suitableparent repositories,at that level
to sene the dataand cohereng needsfor the new de-
pendentrepository ). For eachrepositoryin its level,
the load controller calculatesa prefeencefactor. The
smallerthis factor the more preferreda repositoryis to
be a parentof (. We will explain the calculationof the
preferencdactorshortly. For now, let usassumehatthis
factorhasbeencalculatedfor eachrepositoryat level .
To bea candidatdor a parent,we considerall reposito-
rieswhosepreferencevaluesarewithin 5% of the small-
estpreferencevaluecomputedor the currentlevel.

Consideringnodeswvhosepreferencdactorsareclose
to the smallestpreferenceactor allows multiple repos-
itories to becomeparentsof (), eachservinga different
subsetof dataneededby ). A potentialparentP can
sene adata-itemz to @, if both@ and P areinterested
in z andif the cohereng requirementof P for z is at
leastasstringentasthatof (). If morethanonereposito-
riescansene adata-iteme to @ thenthemorepreferred
amongtheseis asledto sene z to Q.

It is quite likely that @ might wantsomedata-items,
say z;, ..., 2, Which are not sened by ary of the po-
tential parents.The mostpreferredrepositoryP is made
to sene z;, ..., xx to Q. This processof augmentinga
parents datarequirements—t@ene the needsof a new
child—canhave a cascadingeffect: For eachof these
data-items,P checksif ary of its parentsare servingit
andif so,requestshe parentfor service elseit randomly
selectsoneof its parentsandasksit to servicethe data-
itemto P atthe cohereng requiredby @). This is con-
tinuedall theway up the d®g till thereis a pathfrom the
sourceto () for thosedata-items.

The number of dependentscurrently sened by a
repositoryshould be smallerthan its coop_degree. If
a repository already has as mary dependentsas the
coop_degree thenit is not consideredsa potentialpar
ent. As long asthereare repositorieswith lessdepen-
dentsthanthe coop_degree specifiedtheloadcontroller
will find suitableparentdsromitslevel. If all of therepos-
itories have reachedtheir limit of coop_degree depen-
dents,the load controller passeghe requestto the load
controllerof thenext level.

The following factorsareusedto determinethe pref-
erenceactorof anode:

1. DataAvailability Factor: Thenumberof dataitems
thata parentcansene @, with its currentdataand
cohereng requirement.

2. ComputationatlelayFactor: Thelargerthecompu-
tationaldelayincurredat a parentP to disseminate
adatachangeo its dependentghelesspreferredt
is. We approximatethis delayby the numberof de-
pendentsP has: On average the moredependents
P has,thegreatemwill bethe computationatielays
encounteretby () to geta dataupdatefrom P.

3. Communicatiordelay Factor: Parentswhich have
a large communicationdelay with ) arelesspre-
ferred.

Sincewe wantto chooseparentssuchthatthe delays
arelow andthe dataavailability is high, we calculatethe

preferenCéaCtoras: delay(P,Q) xnumDependents(P)

num data items P can serve Q °

Theloadcontrollerderivesapreferencevaluefor each
nodeatthe currentlevel andthe oneswith valueswithin
5% of the minimum value are consideredas potential
parents.To this end,aload controller’s view of arepos-
itory at its level is updatedwheneer a new repository
becomests dependent.




5 When Should an Update be Dissemi-
nated?

Assumingthatad?t hasbeenconstructedor dataitemz,
considerasourceS thatdisseminates to arepositoryP,
which in turn disseminates to a dependentepository

Recallfrom Eq. (1) thatto effectively disseminate
updateswe requirethatthe cohereng requirementt P
shouldbe atleastasstringentasthatof ).

Letz?, 7, ,, =}, , ... denotea sequencef updates
toz atthesourceS. Leta?, =%, 2% , ... denotethe
updategecevedby P andzj, =, =}, .... denote
theupdategecevedby ). Sincec? < ¢?, thesetof up-
datesreceved by @ is a subsetof that receved at P,
which in turn is a subsetof unique datavaluesat the
source.Specifically an updatexé-’ recevedby P is for-
wardedto @ if

o —al] > o ©)

wherez{ denoteshepreviousupdaterecevedby Q. In-
tuitively, Eq. (3) indicatesthatary updatethatviolates
thecoherenyg requirement®f @ is forwardedto Q.

We now shaw thatthisis anecessarput notsufficient
conditionfor maintainingcohereng at (). Supposex;,
=% andzj representhevalueof z at S, P and@, re-
spectvely. Let the next updateat S be z7,, suchthat

| 21 — 7

i< & (4)
|2i — 2 | = ()

Thus, the next updateis of interestto repositoryQ but
notto P. SinceS is logically connectedbnly to P, if
S doesnot disseminatehis updateto P, then@, a de-
pendenif P, will alsomissthis update(causinga vio-
lation of its cohereng requirement).Figure4 provides
anexampleof this situation. Thus,evenunderidealcon-
ditions of zeroprocessingandcommunicatiordelays,a
disseminatiortechniquethat usessolely Eq. (3) to dis-
seminataipdatesmight not provide 100%fidelity (indi-
catingEq. (3) is not a sufiicient conditionto maintain
cohereng). Hence disseminatioralgorithmsneedto be
developedcarefully to avoid suchmissedupdateprob-
lems(i.e., shouldensurethat a repositorydoesnot miss
ary updatesf interestto itself or its dependents).
Next, we presentwo approacheso addresshis issue
andalsoexaminethe entailedoverheads.

5.1 Distributed (repository-based)Approach
The missed updatesproblem describedearlier occurs
whenan updatez?, ,, wherez! < =z, , < z} + c?,
satisfiesboth Egs. (4) and(5).

Fromtheseequationswe get,

|zig — 28 | =2l —23 | < =t (6)

whichreducegasshavnin [21]) to

= el —af| < (7)

P =03 c9=o0.5
Source Repository Repository
S P Q
Changes at Data Values Data Values
the server at P at Q
Time 1 1 1
1.2 1 1
1.4 ——= 1.4 1
(3 .
1.7 1.7 1.7
20 —= 2.0 1.7

This change has not been sent to Q

Figure4: Needfor CarefulDisseminatiorof Changes

Eq. (7) representshe additionalconditionthat mustbe
checledby ary repositoryP to seeif anupdateshould
be disseminatedo its dependent). Thesetwo condi-
tionscanbe provento achieze 100%fidelity atall repos-
itories (as sketchedin [21]) Note that this applieseven
to the source,i.e., when P is the source. Thus, the dis-
seminationtechniquepropagatesn updatea:g.’ received
by P to dependeng) if eitherEq. (3) or (7) is satisfied.
In the exampleillustratedin Figure4, suchatechnique
would propagatehe updatecorrespondingo value 1.4
from P to @ (sinceit satisfiesEq. (7)). Consequently
thesubsequerincreasan valueto 1.5doesnot resultin
aviolationat (. Notethattheupdateof 1.4is notstrictly
requiredasperthecohereng requirementf @) (Eq. (3)),
but is essentiato preventthe “missedupdates’problem.

5.2 Centralized (source-based)Approach

In this approach the sourcemaintainsa list of all the
unique cohereng requirementgor a dataitem x spec-
ified by variousrepositories. For eachsuchcoherenyg
requirementthe sourcealsotracksthe last updatedis-
seminatedor that coherenyg requirement.Upona new
update the sourceexamineseachuniquecohereng re-
quirementec andthe last updatesentfor thatc. It then
determinesll ¢'sthatareviolatedby theupdate. Theup-
dateis taggedby the maximumsuchcohereng require-
mentc.max andthetaggedupdateis thendisseminated
throughthe dt. The sourcealsorecordsthis datavalue
asthelastupdatesentfor all csthatarelessthenor equal
to comax.

Eachrepositoryreceving theupdateforwardsit to all
dependentshat (i) areinterestedn the dataitem, and
(il) have a coherenyg requirementessthanor equalto
thetaggedvalue.As sketchedn [21], thisdissemination
algorithmalsoachieresafidelity of 100%(in theabsence
of network transmissiordelays).

We now discusgthe overhead®f this approach.This
algorithmfindsthemaximumcohereng value,if ary, af-
fectedby theanupdateatthe source A largenetwork of
cooperatingepositoriecanresultin alarge overheadat
the source(especiallyif the numberof uniquec values
is alsolarge). Sincethis approachdisseminatesipdates



Ticker Date Time Interval Min Max

MSFT | Febl12 | 22:46-01:46nrs | 60.09| 60.85
SUNW | Febl | 21:30-01:22hrs | 10.60| 10.99
DELL Jan30 | 00:43-04:1%hrs | 27.16| 28.26
QCOM | Febl2 | 22:46-01:4enrs | 40.38| 41.23
INTC Jan30 | 00:43-04:12hrs | 33.66 | 34.239
ORCL | Febl | 21:30-01:2%hrs | 16.51| 17.10

Table1l: Characteristic®f someof the tracesusedfor
theexperiments

only whennecessarandonly to repositoriesghat need
theupdate the approachmakesefficient useof the com-
municatiorresourcesThealgorithmalsoimposesastate
spaceoverheadatthe sourceto storethelist of all unique
cohereny tolerancesssociateavith eachdata-itemand
thelastupdatesentfor eache.

In summarydueto thecomputationabndspaceover-
heads,this approachmay affect the scalability of the
sourcecomparedo the distributedrepositorybaseddis-
seminatiompproachWe studythisissuein Section6.

6 Experimentsand Results

In this section,we demonstrate¢he efficacy of our tech-
niguesthroughan experimentalevaluation. In whatfol-
lows, we first presenthe experimentaimethodologyand
thenthe experimentaresults.

6.1 Experimental Methodology

Traces — Collection procedure and characteristics:
The performancecharacteristic®f our solutionarein-
vestigatedisingrealworld stockprice streamsasexem-
plarsof dynamicdata. The presentedesultsare based
on stock price traces(i.e., history of stock prices)ob-
tainedby continuouslypolling http://financeyahoo.om
We collectedl00tracesmakingsurethatthecorrespond-
ing stocksdid seesometradingduringthatday. Thede-
tails of someof thetracesarelistedin thetablebelow to
suggesthe characteristicef the tracesused. (Max and
Min refer to the maximum and minimum stock prices
obsenredin the 10000valuespolledduringtheindicated
Time Interval on the given Date in Jan/Fet2002.) As
we cansee,we wereableto obtaina new datavalueap-
proximatelyoncepersecond.Sincestockpriceschange
at a slower ratethanonceper secondthe tracescanbe
consideredo be"real-time” traces.

Repositories— Data, Coherency and Cooperation
characteristics: We simulatedthe situationwhere all
repositoriesaccessedatakept at a single source.Each
repositoryrequestsa subsetof dataitems, with a par
ticular dataitem chosenwith 50% probability. We use
differentmixesof datacohereng. Specifically the ¢'s
associateavith datain arepositoryareamix of stringent
toleranceqvarying from $0.01to 0.099)andlessstrin-
genttolerancegvaryingfrom $0.1to 0.999).7'% of the
dataitemshave stringentcoherenyg requirementateach

repository(theremaining(100—T1")%, of dataitemshave
less stringentcohereng requirements). coop_degree,
thedegreeof cooperatiorofferedby eachrepository(i.e.,
the bound on the numberof dependents)—as varied
from 1 to 100in our experiments.

Physical Network — topology and delays: The
model for the physical network was randomly gener
ated. It consistingof nodes(routersand repositories)
andlinks, with one of the nodesselectedasthe source.
The routing tablesof all the nodesare generatedising
an all-pairs shortestpathalgorithm (by Floyd and War-
shall[7]). For our experimentswe vary the size of the
physicalnetwork from 700nodesto 2100nodes.Unless
specifiedotherwise we presentresultsprimarily for the
700 nodescenario(1 source,100 repositoriesand 600
routers). In sucha network, an updatefrom onerepos-
itory (or source)to anothertraversesaround10 hopson
averagecomparedo the18hopsreportecbasecbnmea-
surementsioneon theinternetin [9]. Resultsfor other
network sizesarebriefly discussedn Section6.3.5.

Our experimentsuse node-nodecommunicationde-
laysderivedfrom a heavy tailed Pareto[19] distribution:
& — -+, wherea is givenby -%-, Z beingthemean
andmf is theminimumdelayalink canhave. For our ex-
perimentsz was15ms(milli secslandz; was2 ms. As
aresult,theaveragenominalnode-nodelelayin our net-
workswasaround20-30ms. This is lower thanthe de-
lays reportedin [9]. We alsoexperimentedwith higher
network delaysin Section6.3.2andshaw thatthegainin
thefidelity usingcooperatve disseminatioris evenmore
significantfor higherdelays.

Unlessotherwisespecified,computationaldelay in-
curredat a repositoryto disseminatean updateto a de-
pendents takento be 12.5ms. This includesthe time
to performary checksto examine whetheran update
needsto be propagatedo a dependentindthe time to
prepareanupdatefor transmissiornio adependentln the
presencef complex queryprocessin@trepositoriesthe
timetakento performthecheckscanbeconsiderablend
henceour choiceof computationabtlelay We alsomea-
suredthe effect of otherdelayvaluesonfidelity.

Simulation Procedure: After generatinghephysical
network topology we generatethe topology of the d3t
usingthetechniquediscussedn Section4 andconform-
ing, asdiscussedn Section3, to the repositorys maxi-
mum degreeof cooperatiorif specified.The simulation
of datadisseminationis thendone,usingthealgorithms
discussedn Section5. Specifically uponeachupdateto
thestockprice,thesourcedeterminesvhetherto forward
the updateto the first-level repositoriesn the d*t; each
repositoryreceving the updatethendecideswhetherto
forwardtheupdateto ary of its dependents.

6.2 Metrics

The key metric for our experimentsis the fidelity of
the data. Recall that fidelity is the degree to which



a users cohereng requirementsare met and is mea-
suredasthetotal lengthof time for which the inequality
|P(t)—S(t)| < cholds(normalizedby thetotallengthof
theobsenations).Thefidelity of arepositoryis themean
fidelity overall dataitemsstoredat thatrepositorywhile
the overall fidelity of the systemis the meanfidelity of
all repositories.

Ratherthancomputingfidelity, ourresultsplotamore
meaningfulmetric,namelylossin fidelity. Thelossin fi-
delity is simply (100% — fidelity). Clearly, thelower this
value,thebetterthe overall performanceof a dissemina-
tion algorithm.

In additionto fidelity, we also measurethe number
of updategymessagesyentby eachdisseminatiortech-
nique. Clearly, the smallerthe numberof messageso
maintaina certainfidelity, the lower the costof the co-
hereng maintenance.

6.3 Experimental Results
6.3.1 BaselineResults

Ourfirst experimentexaminesheefficagy of thed®t con-
structionalgorithmLeLA. We usedthe source-basedl-
gorithmasthe baselinedatadisseminatioralgorithm.

We considersevendifferentT values. For eachd®t
constructionalgorithm and thesecohereng tolerances,
we vary the coop_degree from 1 to 100andmeasurehe
efficagy of the resultingd?®t in providing good fidelity.
Notethatin thepresencef thenon-zeracommunication
delaysthestructureof thed®t hasasignificantimpacton
fidelity (sincethe dataat a repositoryis out-of-syncun-
til anupdatepropagateshroughthe d®t andreacheghe
repository). The largerthe end-to-enddelay the greater
thelossin fidelity. As expectedtheresultingrepository
layout network had a maximumdiameterof 101 when
repositoriesformed a chain (degree of cooperation=1)
anda minimum diameterof 2 whenthe sourceupdated
the repositoriedirectly (degreeof cooperatior= 100).
The averagedepthrangedfrom 51 to 1. The average
numberof dependentsariedfrom 1 to 100.

Figure 3 shaws (seenpreviously in Section3) that
thereis a significantlossof fidelity atlow valuesfor the
degreeof cooperation. The loss of fidelity occursbe-
causethe d3t hasa large diameter(i.e., a large number
of hopsbetweerthe sourceandthe farthestrepository),
whichincreaseshecommunicatiordelaysanddecreases
fidelity.

As thenumberof dependentsf arepository(i.e., the
degreeof cooperation)is increasedthe lossin fidelity
decreaset aminimumandthenstartsincreasingagain.
This is consistentwith our expectations,since, as ex-
plainedin Section3, communicationdelaysdominate
whentherearea small numberof dependentandcom-
putationaldelaysat a repositorydominatewhen there
arealarge numberof dependentsThe minimumoccurs
whenthe sumof thetwo delaysis minimized.

Thepointatwhichtheminimumoccursvariesslightly
from oneT valueto anotherandlies between3 and20

dependentperrepository (It is worth pointing out that
for the communicatiorandcomputationablelayusedin
theseexperimentsthevalueof coop_degree is 6).

The performanceof the algorithmworsenswhenthe
number of dependentsallowed per repository is in-
creasedeyondtheoptimalvalue. This is becausavhen
the numberof permitteddependentss large, the source
senesmostrepositoriegdirectly andthe d3t effectively
reduceso a one-level treewith mostrepositoriesacting
asadirectdependenof the source.We explore this be-
havior furtherin Section6.3.2.

Notealsothatin Figure3, asthefractionof dataitems
with stringentcohereng toleranceslecreaseghegradi-
entof thelossin fidelity alsodecreases.

Theseresultsclearly shav that, as long as thereis
somedatawith stringentcoherenyg requirementsit is
importantfor repositoriedo cooperatevith oneanother
to improve fidelity. Moreover, it is inappropriateto use
a very large numberof resourcedowardscooperation.
(We elaborateon this pointin Section6.3.3.)Hencewe
addresghe issueof settingthe “optimal” level of coop-
erationin the next section.

6.3.2 Effect of Cooperationon Fidelity

In this section,we thoroughlyevaluatethe effect of co-
operationon fidelity. We begin by shawing thatif the
sourcds entrustedvith thetaskof disseminatingipdates
directly to repositoriesthenthereis alossin fidelity, re-
gardlesof othersystemparametersThus,it is essential
for the sourceto usethe repositoriedo offload someof
its disseminatioroverheads.We then examinethe im-
pactof two key parameterspamelythe communication
delayandthe computationaddelay Eq. (2)), on fidelity
anddemonstratéhatwhenthe numberof dependentss
adaptedo communicatiorandcomputationatielays ad-
ditional performancéenefitscanbe harnessed.

Performancein the Absenceof Cooperation

In theprevioussectionwe have alreadyshovn thatasce-
nario wherethe sourcedirectly disseminatesipdatego
repositories(i.e., no cooperationbetweenrepositories)
resultsin alargelossin fidelity. In this sectionwe shav
that this resultholdsregardlessof othersystemparam-
eters. To demonstratehis, we vary the communication
delaysandthe computationatielaysandassumehatthe
sourcedirectly servicesall repositoriesin the d3t. We
measurehefidelity offeredby the sourcefor differentT
values.Figures5 and6 depictour results.

Notice from Figure 5 that even when we increase
the communicatiordelays fidelity doesnot drop signif-
icantly. This is becausewhenthe sourcedisseminates
directlyto its dependentghecomputatiorrelateddelays
atthesourceaccumulatendtheresultinglossof fidelity
is primarily dueto this effect. Whenwe performedhese
experimentswith only five dataitems,we noticed,asex-
pectedthatthe effect of communicatioroverheadsvas
much more apparenthan due to the relatively smaller
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computationatielaysencountereat the source.ln sum-
mary, whenthe numberof dataitemsto be handledis
large,thecomputationatlelaysatthesourcewill havean
adwerseaffectonthescalabilityof thesource.This effect
will bepronouncedvhenall repositorieslesiretheirdata
athigh coherenyg (asindicatedby the T=100%graph).

This pointis corroboratedurtherby Figure6, where
the loss in fidelity worsenswith increasingcomputa-
tional delays,especiallywhencohereng tolerancesare
stringent.

Controlled Cooperation

Whenwerepeathescenariavhoseresultsweredepicted
in Figure3, but with thedegreeof cooperatiorchoseras
perEqg. (2), thatis irrespectve of how mary coopera-
tive resources nodehas,if offersonly coop_degree re-
sourcedor its dependentsThe performances asshavn
in Figure7(a). Thebehaior becomesnlL shapedurve,
thatis, afterthe choservalueof coop_degree, lossof fi-
delity stabilizes.

With controlledcooperatiorin effect, we studiedthe
impactof communicatiorand computationaddelayson
fidelity. Theresults(seeFigures7(b) and7(c), notethat
the Y axis goesonly from 0 to 5) showv that we can
counterthe effect of large delaysin the systemby ad-
justingthe degreeof cooperatiorasperEqg. (2).

In generaltheseresultsalsoshav that, usingour ap-
proach highfidelity canbe obtainedevenif arepository
incurs large computationcosts(example, if we extend
our approacho executegeneralcontinuousqueries[6])
or whendatasizesarelarge,in which casethe commu-
nicationdelayswill belarger.

For example, with increasingcomputationaldelays,
a smallervalue of coop_degree is used(seeEqg. (2)),
and this reducesthe load at a repository; on the other
hand,a small value of computationablelay resultsin a
larger value of coop_degree. Similarly, with increasing
communicatiordelays,a largervalue of coop_degree is
usedandthiswill reducetheloadonthenetwork; onthe
otherhand,a small value of communicationdelay will
resultin a smallvalueof coop_degree. Our resultsindi-
catethatthedegreeof cooperatiorshouldbehigherwhen
the communicatiordelaysarelarge andlower whenthe
computationatielaysarelarge.

This clearlydemonstratethe benefitsof choosinghe
degree of cooperationbasedon systemoverheadsfor
providing highfidelity.

In fact, once we have such controlled cooperation,
performances not affectedby changedo the formulae
usedto computethe preferencdactorin d3t construction
algorithm(seeSection4). We shaw in [21] thatit is not
alsoaffectedby theexactvalueof C (seeSection3) used
to determinghe coop_degree.

6.3.3 Impr ovementin Fidelity When CoherencyRe-
quirementsare usedto Filter Updates

We have claimedthat only updateof interestshouldbe
disseminatetly arepositoryto its dependentln thissec-
tion, we demonstratehat this filtering is, in fact, essen-
tial to achieving highfidelity. To demonstrat¢hisaspect,
we compareour approacho a systemwhereall updates
to a dataitem aredisseminatedo repositoriesnterested
in that dataitem. Sucha systemis emulatedby sim-
ply usingaverystringentcohereng tolerancgT=100%)
causingall updatego bedisseminatedWe comparethis
systemto onewherethe cohereng requirementsrenot
stringent(T=0%). Lessstringentc’s resultin filtering
and selectve forwarding of updates. Thus, ary differ-
encein performancéetweerthesesystemss indicative
of the fidelity improvementresultingfrom the filtering
that occurswhen repositoriesdisseminateonly dataof
interestto their dependents.

Figure 8 depictsour results. The figure shavs that
comparedo the fidelity of our approach(indicatedby
theflat “filtered” curve)theapproachhatdisseminatell
updatesin fact,resultsin worsefidelity acrosghe com-
pleterangeof coop_degree values. This is becausehe
latter approachdisseminatesnore messagesyhich in-
creaseshe network overheadsiswell ascomputational
delaysat repositoriescausinga lossin fidelity. In con-
trast, intelligent filtering and selectve disseminatiorof
updatesasedon datas coherenyg requirementganre-
duceoverheadsindimprove fidelity.

Study of Sensitvity to Parameters of the Tree Con-
struction Algorithm

At eachlevel, the load controller choosesrepositories
whosepreferencedactoris within P = 5% of the pref-
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erencefactor for the most preferredparent. We exper

imentedwith differentvaluesof P (seeFigure9). For
P = 1%, thelossin fidelity is high. This is dueto the
factthatveryfew of theparentgtypically 1) will beserv-
ing all therequirementsf thedependentsThis addson
to theload at the parentandhencefidelity of the system
is affected. If a nodehasa large numberof parents(as
will bethecasefor P > 15%, morepushconnectionsire
usedfrom acertainlevel (a parentusesonepushconnec-
tion per child, irrespectve of the numberof dataitems
senedto the child) for a singlechild. Becauseof thisa
level canonly sene fewer childrenandthis will in turn

increasethe diameterof the d3t, againresultingin loss
of fidelity. Oncethe degreeof cooperatioris chosenthe
valueof P haslittle impactonfidelity. Thisis shavn by

thecurvesmarkedby P = 1W, P = 5W, P = 15W,

P = 25W. (W indicatesthe samescenariowith con-
trolled cooperation.)As canbe seen thesecurvesoffer

high fidelity for all P values.

Our next experiment was to determine if the
formula used for calculating the Preference Fac-
tor had an impact on fidelity. So we modi-
fied the one used so far (See Section 4) to ex-
perimentwith an alternatve preference factor =
delay(P, Q) x numDependents(P). Thisdoesnotac-
count for data availability at a parent. As Figure 10
shaws, the choiceof the preferencdunction(P1 vs P2)
hasinsignificantimpactonresultingfidelity whenthede-
greeof cooperatiorsmall.

The resultsalsoindicatethat oncethe degreeof co-
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Figure10: Effect of DifferentPref-
erence-unctions

operations choserasdiscussedh Section3, theparam-
etersof LeLA have little, if any, impacton fidelity ob-
tained.As shawvn by curvesmarkedby P1W and P2W

for arangeof thedegreeof cooperatiorvaluesthevaria-
tion of fidelity is lessthan1%. Thisrangedepend®nthe
communicationand computationabverheads.As long

aswe choosethe degreeof cooperatiorfrom this range,
other parameterdecomesecondaryfor achieving high

fidelity.

6.3.4 Performance of Update Dissemination Algo-
rithms

In this section, we comparethe performanceof the
source-basedndclient-basedlisseminatioralgorithms.
Figurell(a)shavsthatthesourcedoesnearly50%more
checksof incomingdatavaluesto determinef the data
value needsto be disseminatedo its dependents.As
shawvn in Figure 11(b), both approachesendthe same
numberof messagethroughthe systemandasdiscussed
in Section5, both approacheguaranteel00% fidelity.
Sothedistributedapproacthis preferable.

6.3.5 Scalability of the algorithms

We have also studiedthe effect of increasingthe num-
ber of repositorieson fidelity. Whereaswith unlimited
cooperation the diameterof the d3t could grow to be
very high with increasingnumberof nodesin the net-
work, controlledcooperatiorlimits this growth. For ex-
ample,whenthe numberof repositoriegrows from 100
(for thebasecase}o 300(andwith thatthetotal number
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of nodesin the systemgrows from 700to 2100nodes),
theincreasen thelossin fidelity with controlledcooper

ationwasobsenedto belessthan5%. Thisis indicative

of the scalabilityof ourapproach.

6.4 Summary of Experimental Results

Our performancestudyindicatesthat

e Eachrepositoryshoulddisseminatenly updatesf
interestto its dependents.

e Cooperatioris essentiato achieve highfidelity and
high scalability

e Cooperatiorbeyonda certainpoint leadsto lossof
fidelity. This is becausef a repositoryagreesto
disseminatelatato too mary dependentsjueueing
anddisseminatiordelaysat that repositorycanre-
ducethefidelity achieved.

¢ Whencommunicatiordelaysandcomputationatie-
lays are not negligible, the degree of cooperation
shouldbe chosentaking communicatiorand com-
putationaldelaysinto accountbecauseutsidethe
optimal value, the algorithms could lead to in-
creasedossof fidelity.

7 RelatedWork

Recently several efforts have focusedon maintaining
consisteng betweersourcesaandcachedcopiesor repli-
cas. The problemof dynamicdatadisseminatiordiffers
from both cachingandreplicationin several significant
waysasdiscussedn [21].

An early work focusedon a push-basedapproach
basedon expiration times[2]. Achieving transactional
consisteng among replicas in traditional databases
has beenstudiedin [11]. Other efforts that employ
push-basedechniquednclude broadcastisks[1] pub-
lish/subscribepplicationd16], andspeculatie dissem-
ination[3]. However, the notion of coherenyg definedin
thispaperrequiresadifferentarchitectureandalgorithms
thanthosein the above efforts.

The problemof selectingan optimalnumberof repli-
cashasbeenstudiedin [8]. Usingclient-obseredround-
trip delaysasthe metric, they shav that the payofs of

increasinghe numberof replicasbeyonda certainpoint

are not significant. We focus on a differentproblem—
data dissemination—andise a different metric—data
fidelity—to shav a someavhat similar result: increasing
the degreeof cooperatiorbeyond a point is detrimental
to fidelity.

Consisteng maintenancéasalsobeenstudiedin the
context of webcaching[14]. In this context, hierarchical
webproxy architecture$5] andcooperatiewebcaching
[24, 23, 25] have alsobeenstudied. The differencebe-
tweentheseefforts and our work is that we focus on
rapidly-changinglynamicweb datawhile they focuson
webdatathatchangest slowertime-scalege.g.,tensof
minutesor hours)—animportantdifferencethat results
in very differentsolutions.Efforts thatfocuson dynamic
web contentinclude[13] wherepush-basechvalidation
anddependencgraphsareemployedto determinavhere
to pushinvalidatesandwhen. Achieving scalability by
adjustingthe cohereng requirementf dataitems is
studiedin [12]. Thedifferencebetweertheseapproaches
andoursis that,in [12] repositoriesion’t cooperatavith
oneanotherto maintaincohereny.

Mechanismsfor disseminatingfast changingdocu-
mentsusing multicast-basegush has beenstudiedin
[20]. The differencethoughis that recipientsreceve
all updatesto an object (therebyproviding strongcon-
sisteng), whereasour focus is on disseminatingonly
thoseupdatesthat are necessaryo meetuserspecified
coherenyg tolerances. Multicast tree constructional-
gorithmsin the context of application-lerel multicast
have beenstudiedin [10]. Whereasthesealgorithms
are generic, the d*t in our case,which is akin to an
application-leel multicasttree,is specificallyoptimized
for the problemat hand,namelymaintainingcohereng
of dynamicdata.

[18] also dealswith disseminationof time varying
data. In fact the metric usedin [18] is similar to fi-
delity. Givenafixedavailablebandwidththey determine
theachiezabledatacohereng. Onthe otherhand,given
a coherenyg requirementye determinea dissemination
structureto maximizethe achievedfidelity.

Ourwork canbeseerasproviding supportfor execut-
ing continuousqueriesover dynamicallychangingdata
[15, 6]. Continuousgueriesin the Conquersystem[15]
aretailoredfor heterogeneoudata,ratherthanfor real
time data,andusesa disk-basedlatabaseasits baclend.
NiagraCQ[6] focuseson efficient evaluationof queries
asopposedo coherentlatadisseminatiorto repositories
(whichin turn canexecutethe continuougjueriesresult-
ing in betterscalability).

8 Conclusions

In this paper we examinedthe designof a datadissem-
ination architectureinvolving repositoriesthat cooper

atewith oneanotherto maintaincohereng of the time-

varyingdatastoredin them. Thekey contributionsof our
work are:



¢ Designof a push-basedlisseminatiorarchitecture
for time-varyingdata. Oneof the attractionsof our
approachis that it doesnot requireall updatesto
a dataitem to be disseminatedo all repositories,
sinceeachrepositorys cohereng needsareexplic-
itly taken into accountby the disseminatioralgo-
rithm. This intelligent filtering and selectve dis-
seminationof updatesbasedon users cohereng
toleranceseducesthe system-widenetwork over-
headaswell asthe load on repositories. Thesein
turn improve thefidelity of datastoredat reposito-
ries.

¢ Designof mechanismdgor maintainingcoherenyg
of datawithin an overlay network of repositories.
Our mechanismswere designedto take into ac-
countcommunicationdelays,computationalover-
heads,andthe systemload. We also studiedtheir
relative performanceand shaved that cooperation
amongrepositoriesnustbeusedto improvefidelity
substantiallywith lower overheads but beyond a
certainpoint, suchcooperationcan be detrimental
to performance.

Whereasour approachusespush-basedlissemina-
tion, otherdisseminatiormechanismsuchaspull [22],
adaptie combinationsof pushand pull [4], aswell as
leaseg$17] couldbeusedto disseminateatathroughour
repositoryoverlay network. The useof suchalternatve
disseminatiormechanismsswell asthe evaluationof
our mechanismsn a real network settingis the subject
of futureresearch.

Finally, we would like to point out how our work can
be viewed from the perspectie of peerto-peersystems
andstreamingdata. Our repositoriedilter the datathat
is streamedo them beforeforwardingthe datato their
dependentsNote that, in principle, a repositoryR can
be a dependentf anotherrepository( for dataitem x
whereasR could obtaindataitem, y, from Q. In other
wordsthe repositorieform peersandtheir job is to se-
lectively disseminatestreamingdatato eachother In
otherwords, this papercould alsohave beentitled: Se-
lective Peerto-PeerDisseminatiorof StreamingData!
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