
Provisions and Obligations in Policy Management
and Security Applications

�

Claudio Bettini
�
, Sushil Jajodia

�
, X. Sean Wang

�
, Duminda Wijesekera

�

�
DSI, Università di Milano, Italy. bettini@dsi.unimi.it,�

Dept. of Info.& Software Eng., George Mason University, USA. � jajodia,xywang,dwijesek � @gmu.edu

Abstract

Policies are widely used in many systems and ap-
plications. Recently, it has been recognized that
a “yes/no” response to every scenario is just not
enough for many modern systems and applica-
tions. Many policies require certain conditions
to be satisfied and actions to be performed be-
fore or after a decision is made. To address this
need, this paper introduces the notions of provi-
sions and obligations. Provisions are those con-
ditions that need to be satisfied or actions that
must be performed before a decision is rendered,
while obligations are those conditions or actions
that must be fulfilled by either the users or the
system after the decision. This paper formalizes
a rule-based policy framework that includes pro-
visions and obligations, and investigates a reason-
ing mechanism within this framework. A pol-
icy decision may be supported by more than one
derivation, each associated with a potentially dif-
ferent set of provisions and obligations (called a
global PO set). The reasoning mechanism can de-
rive all the global PO sets for each specific policy
decision, and facilitates the selection of the best
one based on numerical weights assigned to pro-
visions and obligations as well as on semantic re-
lationships among them. The paper also shows the
use of the proposed policy framework in a security
application.

�
The work of Bettini was partly performed at and supported by the

Center for Secure Information Systems of GMU, the work of Jajodia and
Wijesekera was partly supported by the NSF under grant CCR-01113515,
and the work of Wang was partly supported by the NSF Career Award
9875114.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

Policies are widely used and play an important role in many
different contexts. In a computer system, policies provide
the basis for the design of its underlying control mecha-
nisms. For example, an access control policy defines what
information users are authorized to read or modify. Most
research on policies, however, has been on traditional static
policies where user requests are only evaluated based on
the currently available information and only “yes/no” deci-
sions are made. For modern applications (e.g., business-to-
business or business-to consumer applications), such tradi-
tional static policies are too inflexible to meet the complex
requirements.

As an example, consider a loan application and manage-
ment (payment collection etc.) system. It allows users to
initiate a loan application process if they are already regis-
tered in the system. All users are given an opportunity to
register with the system by supplying the necessary infor-
mation, and if this step is successful, they have permission
to proceed with the loan application process. Note that here
the initiation of the loan application is not a statically as-
signed permission to users. Users are given the permission
to apply for loan as long as they satisfy some conditions;
if they don’t satisfy these conditions, they may be able to
perform certain actions to satisfy them.

Continue the above example and assume a loan appli-
cation is approved. In this case, the applicant will have
the access to the funds under the condition that the user
agrees to pay off the loan according to a certain payment
schedule. Here again, such a condition is different from
a statically assigned permission in the sense that the user
promises to satisfy certain obligations in the future, and the
system needs to be able to monitor such obligations and
take appropriate actions if the obligations are not met.

From the example, we see that policies in many applica-
tions are complex, and a system requires flexible and pow-
erful mechanisms to handle conditions and actions before
and after certain decisions (access to the loan funds by the
applicant in the example). Since the two sets of conditions
and actions are conceptually different and require different
management techniques, we distinguish between them by
calling them provisions and obligations, respectively. Intu-

itively, provisions are specific actions to be performed be-
fore the decision is taken, and obligations are actions that
will be taken in the future.

We base our formal policy model on logic rules as found
in deductive databases. This is similar to static access con-
trol mechanism [11]. For example, a rule may specify that
a user can access the funds of a loan only if the user is the
owner of the loan. More complex rules may be possible
such as the rule that a user can access an insurance policy
if the user is the owner but the policy is not canceled, or the
user is a manager of the insurance company.

The basic idea of enhancing the above static mechanism
is that we attach two sets of predicates, namely provisions
and obligations. We separate these two sets of predicates
from the more static parts of the policy rules in order to
manage them in special and specific manners. For example,
the non-satisfaction of a provision does not necessarily lead
to a denial of access; rather, it may prompt the user with
additional actions. Similarly, an obligation is not a usual
condition that is satisfied at the time of the access; rather,
it may prompt the system to monitor certain promises be-
cause of this access.

At the first glance, a provision may appear to be the
same as a precondition and an obligation a post condition.
In designing and implementing software systems, a precon-
dition of a method or function characterizes the conditions
under which the method/function is expected to perform as
specified [9, 15]. Hence, it is the responsibility of the user
of the method/function to ensure that the method/function
is called in an environment satisfying the precondition. A
provision has a different semantics in that the satisfaction
of the provision is not required in order to evaluate the as-
sociated rules for a decision. Actually, a decision may be
made with an attached “provision”, which needs to be sat-
isfied by the users or system.

Similarly, a method/function execution comes to a com-
pletion in an environment in which its stated post-condition
is satisfied [9, 15]. If the method/function is called in an en-
vironment that satisfies its preconditions, then it is the re-
sponsibility of the method/function to ensure that the post-
condition is satisfied when the execution terminates nor-
mally. Notice that, as we have formulated, obligations are
not the responsibility of the access control module, but that
of the users or systems. Hence, they may not be satisfied
upon the termination of a rule that grants an access. Notice
that the obligation fulfillment, as stated in our loan example
may take much longer time than being valid immediately
after the granting of access privilege.

The focus of this paper is to reason about the policy
rules in the presence of provisions and obligations. More
specifically, the system must deduce what actions (if any)
that a user may perform in order to gain access, and what
promises (if any) that a user must make after gaining the
access. It is possible that a number of different set of pro-
visions and obligations lead to the same permission. Then
we need a mechanism to allow the user or the system to
choose the most appropriate ones. Our approach is to de-

compose the policy evaluation procedure into two steps,
the first being evaluating rules with attached provisions and
obligations and the second picking up desirable provisions
and obligations from multiple possibilities for the same de-
cision. This approach enables the materialization of the
model and of the specification of the alternative sets of pro-
visions and obligations. This feature is particularly valu-
able in contexts, like access control, where the number of
requests is much more frequent than the updates to the pol-
icy, and where efficiency is a concern.

Our reasoning framework is independent from the spe-
cific applications as long as they involve policies with pro-
visions and obligations. The framework is also independent
from the specific language used to define provision and
obligation actions. However, in order to make our study
more concrete and practical, we discuss a special applica-
tion of our framework on security policies with provisions
and obligations. Since obligations are promises from users
to be fulfilled in the future, monitoring obligation is an es-
sential part of the system that uses provisions and obliga-
tions in its policies. We refer the readers to [5] for more
details.

In summary, the contribution of the paper is threefold.
Firstly, we formalize the provisions and obligations in rule-
based policy language, and provide a reasoning mechanism
to derive relevant provisions and obligations for a particu-
lar policy decision. The key idea is the separation of provi-
sions and obligations from static rules which also supports
a partial materialization of the policy model. Secondly, we
introduce a mechanism that allows the automatic choice
among alternative provisions and obligations. Lastly, we
give an example on how the framework can be used in a
dynamic access control system.

The rest of the paper is organized as follows. In the
next section, we formalize policy rules with provisions and
obligations and mechanism to reason about them. In Sec-
tion 3, we present the system considerations on the choice
of provisions and obligations that are derived from the for-
mal model of the previous section. In Section 4, we discuss
a dynamic access control mechanism in our framework. We
relate our work with other contributions in Section 5, and
conclude the paper in Section 6 with summary remarks and
future research directions.

2 Policy rule evaluation with provisions and
obligations

In this section we describe our formal approach to rule eval-
uation with provisions and obligations. Initially, we assume
that the policy can be represented by a set of rules and facts
in the form of a (positive) datalog program, but with each
rule and fact associated with its provisions and obligations.
Then, we will discuss how the language to represent policy
rules can be extended to a more expressive one, in particu-
lar including negation.

2.1 Representation of the policy rules

Given finite sets of variables � , constants � , and predicate
symbols � , an atom is a formula �����	��
���
������ where �
is a predicate symbol and each ��� is either a constant or a
variable symbol. An atom is said to be ground if it is vari-
able free. A rule is a formula written as ��������
���
����
where ��
�����
����
���� are atoms; � is called the head and
����
���
���� the body of the rule. In clausal form a rule is
expressed as �� "!#���$ ����% "!#��� . A fact is a ground atom
represented by a rule with an empty body and the atom it-
self as its head. As a safety requirement, we assume that
each variable appearing in the head of a rule also appears
in the body.

For now, we ignore provisions and obligations, and de-
fine a policy to be a set of policy rules.

As in the general case of logic programs, the semantics
of the set of policy rules is characterized by its least Her-
brand model. In the case of datalog rules we also know
that this model is finite and that can be effectively derived
by bottom-up evaluation. If & is the policy, we use ')(to
denote its least Herbrand model. In the following we use
the term ‘model’ to refer to the least Herbrand model.

Example 1 The following is an example of a set of rules
assuming the set of variable symbols is �+*,
�-.
�/ � and the
set of constant symbols ��01
	2�
�3 � .

�4����*.�5�6��78��*,
�-��9
	��:;��-��
��78�%01
	2��<�
��:8�=2��<�
�4����-��<�6�?>;�%/@
�-.
�3�
�?>;�%3�
�01
�3�<�

In this case, ���4���%0$� , ��78�%01
	2�� , ��:A�=2�� , �?>;�%3�
�01
�3� � is the
model. Indeed, the last three ground atoms are facts,
and the only intensional predicate is �B� , which gives two
derivations of �B���%0$� . C

In the case of policy rules, a certain ground atom being
in the model means that the specific decision represented
by that atom is supported by the policy rules. Note that
until now we have ignored provisions and obligations, and
hence each rule can be applied unconditionally as long as
atoms in the body are satisfied.

2.2 Representation of provisions and obligations

We represent provisions and obligations by two disjoint
sets of predicate symbols D and E that are also disjoint
from the set of predicate symbols � allowed in the pol-
icy rule specification language. On the other hand, the sets
of variable and constant symbols � and � admitted in the
predicates are the same used in the policy rules. The predi-
cate symbols in D and E may be of any nonnegative arity.

An atom is either one of the symbols F , or G , or a pred-
icate HI��������
���
���JA� with HI�LKMD or N"��������
����
���JA� with
N"�"KOE and each ��� is either a constant from � or a vari-
able from � . When not clear from the context we distin-
guish these atoms from those in the policy, by calling them

H�N -atoms. Then, a H�N -formula is either a H�N -atom, or
a disjunction of H�N -formulas, or a conjunction of H�N -
formulas. A H�N -atom is ground if it is variable-free, and a
H�N -formula is ground if each of the atoms in the formula
is ground. An interpretation P of a H�N -formula is a map-
ping from each ground atom to the constant True or False,
with the atoms F and G mapping to the constants True and
False, respectively. The satisfaction of a H�N -formula is de-
fined inductively on the structure of the formula, as usual,
considering ground atoms as a basis, and the conjunction
and disjunction operators that appear in the formula.

For each policy rule &?� in & there is an associated H�N -
formula, denoted by Q.(SR , representing the provisions and
obligations for that rule. We also impose the intuitive con-
straint that each variable appearing in Q.(SR must appear in
the body of &?� . Note that since these predicates are not part
of the policy rule specification (the datalog program), they
do not appear in its model 'T(.

Example 2 The rules in Example 1 are labeled here with
provision and obligation. Note that an obligation, e.g.,
N?�A�=U8
�*,
�-�� , may involve constant symbols (U in this case)
that do not appear in the rule’s body, and not necessarily
they appear in any other rule. For example, a company may
accept a deal imposing as obligation that the other party de-
volves part of the income to a charitable organization. This
organization may be identified by the constant U in N�� and
does not appear in any other policy rules. C

Rule PO-formula
�%&����V�4����*.�5�6��78��*,
�-��9
	��:8��-�� N?���=U8
�*,
�-��
�%&�7+�V��78�%01
	2��<� HW���=2��
�%&�:+�V��:8�=2��<� F
�%&">��V�4����-��<�6�?>;�%/@
�-.
�3� HI78��-.
�0$��XYHI:;�%0$�

XZN"78��-.
�3�
�%&�[+�V�?>;�%3�
�01
�3�<� F

2.3 Global Provision and Obligation Set

In the following we assign to each ground atom � in the
model '\(, a H�N -formula]�^ , called its global provision
and obligation set (GPOS). Intuitively, a GPOS for � rep-
resents the alternative sets of provisions and obligations
that must be satisfied to derive � .

Example 3 Considering the fragment of policy specifica-
tion in Example 2, the GPOS]B�=�B���%0$��� for �4� is
�%HW�A�=2��?X_N?�A�=U8
�01
	2����? `�%HI78�%01
�0$��XaHI:8�%0$��XaN"7;�%01
�3���9�
The reader can easily see that if provision H5�A�=2�� is satisfied
(the corresponding actions have been taken) and obligation
N?�A�=U8
�01
	2�� has been accepted, the GPOS is satisfied since
the first conjunctive subformula is satisfied. In this case,
we know that �B���%0$� can be derived. Indeed, the first three
rules can be fired under these provisions and obligations.
Similarly, the satisfaction of the second conjunctive subfor-
mula enables the firing of the last two rules that also derive
�4���%0$� . Since each of the other atoms in the model were
given as facts in the policy rules, its GPOS is simply given
by the associated H�N -formula. C

To formalize the GPOS concept we need the following
preliminary definition.

Definition 1 Given an interpretation P of a H�N -formula, a
rule &�� in & is said to be P -enabled if there exists a ground
substitution � for the variables in Q.(SR , such that Q1(SR under
� is satisfied by P . A rule is said to be P -grounded if it is
obtained by an P -enabled rule by applying � to the head
and body of the rule.

Note that multiple P -grounded rules may exist for each
rule in & and that they are not necessarily variable-free. A
rule &�� with QI�%&�� ��� F is considered P -grounded for any
interpretation P . We can now formally define GPOS.

Definition 2 Given a set & of policy rules with associated
H�N -formulas, and a ground atom ��� �0 � in the model ')(,
the global provision and obligation set (GPOS) of ��� �0$� is
the ground H�N -formula]?^ such that an interpretation P
satisfies]�^ if and only if ��� �0$� is in the model of the set of
all P -grounded rules from & .

Before showing how the GPOS of an atom can be com-
puted, we should consider a semantics aspect which may
allow the system to obtain equivalent but simpler H�N -
formulas. It is not unusual that in order to satisfy a provi-
sion we may be forced to satisfy other provisions. For ex-
ample, in a certain site policy, in order to satisfy a provision
which requires a user to have entered his credit card num-
ber, it is necessary for the user to have first registered with
the site, and hence this second requirement, which may be
a provision itself used in a different authorization rule, is
implicitly satisfied by the first. We say that provision HW7
is subsumed by provision H<� , (denoted by H#7 � HW�) when
satisfying HI7 implies satisfying H<� . Note that if these are
ground atoms this relation can only be explicitly stated by
the administrator or the site designer. In other cases, if pro-
visions are represented as complex formulas in a different
logic where subsumption is decidable, a subsumption hier-
archy may be automatically derived.

In the following we assume that any algorithm comput-
ing the GPOS of an atom uses the subsumption hierarchies
to substitute with F any provision or obligation if there is
another one in the same conjunctive formula that is sub-
sumed by it.

2.3.1 A bottom-up model and GPOS computation

If we want to precompute the GPOS for all of the ground
atoms, it is convenient to compute it together with the
derivation of the model of the rules. However, standard
algorithms for model computation have to be substantially
modified for this purpose.

Assume �4��
����
	��� are the predicate symbols appear-
ing in the program & . In the computation, we associate
each ��� with a set ���� of pairs of the form � �0$��
�� � where�0 � is a tuple of constants. Two such sets of pairs are said
to be equivalent if for each pair � �01
�� � in one, there is a a
pair � �0	�%
��
� � in the other such that

�0�� �0�� and � is logically
equivalent to � � , and vice versa.

To perform the above computation, we use the func-
tion Eval(&�8
���9��
����
�����), where &� is a rule in & , with
atoms ��9��
���
	���� appearing in its body, and for each� ���8
����� , ���� is a pair in the set ����� . The func-
tion does the following: if using the ground atoms iden-
tified by ��9�A
����
����� , and rule &� , we can derive a ground
atom ��J � �0$� , then the function returns the pair � �01
�� � where
� is the conjunction of the H�N -formulas in all ���� and
QI�%&��� with variables instantiated accordingly to the tuples
in ��9��
���
����� .

The algorithm to derive the model of the set of rules and
all the GPOS is reported in Figure 1. Clearly, the algorithm
efficiency can be greatly improved by a number of possible
optimizations. However, for the sake of simplicity in the
presentation, the algorithm does not include any of them.

INPUT: a set � of policy rules with associated ��� -formulas.

OUTPUT: the model of � with each atom � associated with
its global set of provisions ��� .

1. For i=1 to n do � �"! #%$.

2. repeat

(a) For i=1 to n do &�'�"! #(� � .
(b) For each rule �*) and combination of pairs+)�,�-�.�.�.�- +)�/ from &�0)�,�-�.�.�.�-*&�0)�/ , respectively,

where �0)�� appears in the body of �*) , do
�213! #4&��16587:9; -=<?> where ��1 is the head predicate
in �*) and 7:9; -=<?> =Eval(�*)@- +)�,�-�.�.�.�- +)�/).

until � � is equivalent to &�'� for all A , BDCEAFCEG .

3. The model for � is the set of all ground atoms ���=7:9; >
such that the set &�'� contains at least a pair 7:9; -=<?> .
The GPOS for atom �'�=7:9; > is <*,8HI.�.�.DHJ<F1 , where
7:9; -=<*,�>�-�.�.�.�-�7:9; -�<F1K> are all the pairs in &�'� .

Figure 1: The algorithm for model and GPOS computation

Example 4 Consider the fragment of policy specification
in Example 2. In this case LM�ON , since we have N pred-
icates appearing in the rules, and all sets P,� with

� �
�8
����
�N are set to be empty in step 1. The sets

���� get the
same value at step 2.a in the first iteration, and hence no
pair �� is available for step 2.b. The rules are considered
one by one, but only &?7 , &�: , and &�[lead to a nonempty
result for the Eval function, since these are the only ones
with a nonempty body. At the end of the first iteration, we
have P,�E�RQ , PS7S� � ��T=2�
�0�U9
�HW���=2���� � , PS:S� � ��T=2VU9
9F?� � ,
P.>E� � ��T%3�
�01
�3WU9
9F?� � . Since the termination condition is
not verified a second iteration is performed. The pairs con-
tained in the PS� sets are now assigned to the

���� sets. Let us
consider in detail step 2.b when rule &�� is considered. ��7
and ��: are the predicates in the body of &�� , hence we can
disregard ��� and ��> . There is only one possible combina-
tion of �7 , and �: , since each set ���7 and ���: contains a sin-
gle pair. The function Eval(&��+
+��T=2�
�0�U9
�HW�A�=2����9
+��T=2VU9
9F?�)
returns the pair ��T%0�U9
�H<�A�=2��ZX`N?���=U8
�01
�3��� that is the new
value for P,� . The iterations of step 2.b considering &�7 ,

&�: , and &�[derive the same pairs as the ones derived in
the previous iteration of the repeat statement, while the
function Eval during the application of &?> returns the pair
��T%0�U9
�HI7;�%01
�0$�4X_HI:;�%0$��X N"78�%01
�3��� that is inserted in PI� .
The termination condition of the “repeat” loop is not sat-
isfied yet and a third loop iteration is performed. In this
iteration no new pair will be added, but the

��4� is as-
signed its final value from PI� . The loop termination con-
dition is now true, and by step 3, the GPOS for H5�A�%0$� is
�%HW�A�=2���X�N?���=U8
�01
	2����� �%HI7;�%01
�0$��X_HI:;�%0$��X�N"7;�%01
�3��� ,
while the ones for ��7A�=� , ��:8�=� , and �?>;�=� are the single for-
mulas in the corresponding pairs. C

Theorem 1 The procedure in Figure 1 terminates and it is
correct.

2.3.2 A top-down procedure to compute a GPOS

If the model '\(of the set of rules & has already been
computed, the global provision set] ^������� of a ground atom
��� �0$� in '\(can be derived by the procedure in Figure 2.
Intuitively, the procedure uses a top-down strategy starting
from ��� �0$� , and for each rule/fact used in the derivation,
it collects the associated set of provisions and obligations.
Disjunction is inserted when alternative ’ground’ rules are
applied.

INPUT: a set & of rules with associated H�N -formulas,
the model '\(, a ground atom ��� �0$� in 'T(.

OUTPUT: the GPOS] ^������� .
1. For each rule &?^ and ground substitution � for all

of its variables, such that:
a) its head predicate can be unified with � through
�
b) Each ground atom �	� in the resulting body is in
'\(.

do
We construct a formula]B�%� �� � X ����XO]B�%�
�� � X� QI�%&�^ ���� where each � �� is a ground atom in the
body with]����R computed recursively as described
for]B�=��� , and

� QI�%&�^ ���� is the ground version (un-
der �) of the H�N -formula associated with &?^ .
If an atom � �� has already been considered in a pre-
vious recursion of the current derivation, let] ���R �
G . (we detect a useless cyclic derivation).

2.]�^ is given by the disjunction of the formulas ob-
tained for each of the above qualifying rule and sub-
stitution.

Figure 2: Top-down derivation of a global provision set

Example 5 Consider the fragment of policy specification
in Example 2, and suppose we want to derive the GPOS
for �4���%0$� . Rule &�� with substitution �+*���01
�-��A2 � matches
both conditions 1.a and 1.b., and no other substitution can

be used since ��78�%01
	2�� and ��:8�=2�� are the only ground in-
stances of ��7 and ��: , respectively, in the model. Then,
]B�=�4���%0$���8�]B�=��7A�%01
	2���� XM]B�=��:A�%01
	2���� X N?���=U8
�01
	2�� .
Applying recursively the procedure to derive]B�=�478�%01
	2����
and]B�=��:8�%01
	2���� , we find only one applicable rule for
each of them with empty body. Hence we easily obtain
]B�=��78�%01
	2���� �6HW���=2�� and]B�=��:8�%01
	2���� � F , which are
substituted in the above formula obtaining]B�=�Z���%0$��� �
HW�A�=2��4X N?���=U8
�01
	2�� . We have a second iteration of step 1
since rule �%&">�� also matches conditions 1.a and 1.b with
the only possible substitution ��/���3�
�-���0 � . In this case
]B�=�4���%0$���0�a]B�=�?>;�%3�
�01
�3���@XBHI7;�%01
�0$��XZHI:;�%0$��X�N"7;�%01
�3�
from which]B�=�?>;�%3�
�01
�3��� is dropped since it evaluates to
F by applying &?[with the empty substitution. By step 2
the required GPOS is given by the disjunction of the formu-
las derived in each iteration of step 1. Hence,]B�=�Z���%0$���0�
�%HW�A�=2��SX N?�A�=U8
�01
	2����S �%HI7;�%01
�0$� X HI:8�%0$� X N"78�%01
�3��� . C

2.4 Extensions to the policy representation language

One of the most significant extensions to the expressiveness
of the language is probably allowing negation of atoms in
the body of a rule. For example, with this extension a policy
may establish that a certain individual can access certain
data if a certain other individual cannot access the same
data based on the policy rules.

This extension can be achieved quite naturally by al-
lowing the policy rules to be represented as a stratified or
locally-stratified datalog program with negation, for which
we know minimal fixed points of the evaluation can be
found, one of which is identified as the intended model.
We recall that rules are stratified if whenever there is a rule
with predicate P as its head and a negated atom in the body
with predicate � , there is no path in the dependency graph1

from P to � . Local stratification [17] essentially impose
the same condition but considering ground instantiations
of the rules. There are well known techniques to check and
find a stratification [20]. Note that rules should also be safe,
i.e. all variables must be limited either by appearing in a
positive predicate in the body or by being (even indirectly)
equated to a constant or to a limited variable.

The introduction of this limited form of negation re-
quires that we also extend the logic for H�N -formulas intro-
ducing negation as an additional logic operator, as it will
be clear from the following discussion. The algorithm to
derive the GPOS must take into account the stratification.
In the case of the algorithm illustrated in Figure 1, its steps
must be applied for each stratum, starting from the lowest
one. When considering stratum

�
, the derivable ground in-

stances of all predicates appearing at lower strata and their
associated GPOS have already been computed. This means
that if !W� appears in the body of a rule at stratum

�
, since

stratification guarantees that all rules deriving � will be at
a lower strata, all atoms ��� �0$� that can be derived (with
the associated GPOS) have already been identified. Hence,

1The dependency graph has a node for each predicate and a directed
edge from � , to ��� is in the graph if predicate � , appears (possibly
negated) in the body of a rule and predicate ��� is in the head.

!W� can be true (i.e., the rule can be applied) for all possible
instantiations ��� � 2�� with

� 2��� �0 without imposing any pro-
visions, and also for ��� �0$� but with associated provisions
!<]B� �0$� . The inclusion of this step and the repetition of the
rule evaluation cycle for each stratum leads quite straight-
forwardly to the desired extension of the algorithm in Fig-
ure 1. We do not report here the details of the algorithm.

Other extensions to the policy rule specification lan-
guage may be obtained considering rules expressed in dat-
alog with order or temporal constraints. An example of
security policy using this language can be found in [7].

3 The choice of rules: a system perspective
The GPOS of an atom indirectly represent the alternative
sets of policy rules that can be used to derive the atom. In-
deed, if we transform the global provision set (GPOS) of a
certain ground atom in disjunctive normal form (DNF), by
Definition 2, each conjunctive subformula represents one
set of provisions and obligations that is sufficient to satisfy
in order to derive the atom. The definition also says that
the necessary rules are the P -grounded rules in the policy,
where P is an interpretation satisfying the subformula.

In this section we investigate the problem of selecting a
minimum set of provisions and obligations, and hence in-
directly of rules, sufficient to derive what the user is asking
for. We will see that the minimality criteria is not simply
based on the number of provisions and obligations. We
start with the following definition.

Definition 3 A set of ground H�N -atoms is called a valid
provision and obligation set (VPOS) for a ground atom � ,
if the conjunction of the atoms in the set logically implies
the GPOS of � .

The set of H�N -atoms in each conjunctive subformula in
the DNF representation of a GPOS is a VPOS accordingly
to Definition 3. If one of the subformula is equivalent to
F we have an empty VPOS. Satisfying all the provisions
and obligations in a VPOS for atom � makes it derivable
accordingly to the policy. However, since the provisions
and obligations must be typically satisfied by an external
user performing certain actions, the system needs to care-
fully examine alternative VPOS, possibly identifying a best
choice among them that will be proposed to the external
user.

3.1 Simplifying a GPOS and comparing VPOS

Certainly, the best choice is an empty set of provisions and
obligations, i.e. identifying a VPOS equal to F , since this
means that the atom can be derived without any provision
nor obligation.

Hence, the first step performed by the system when eval-
uating a GPOS, is to verify if some of the provisions and
obligations appearing in the formula are already satisfied.
Note that for obligation predicates the satisfaction has sim-
ply the meaning of the obligation being accepted by the
subject that is supposed to fulfill it. In practice this test

involves a lookup in a data structure or in a database, sim-
ilarly to what is done for external predicates. Any satisfied
predicate is replaced by F in the formula.

When negation is allowed in the policy rules, as de-
scribed in Subsection 2.4, negation may be applied to a
H�N -formula during GPOS generation. This leads to hav-
ing negated ground atoms in the formula. Intuitively, a
negated provision or obligation simply means that the sys-
tem should check that it is not satisfied, i.e., the correspond-
ing actions have not been taken. Hence, during the simpli-
fication of a GPOS, each negated atom !#H such that H
evaluates to True is substituted with G while if H evalu-
ates to False is substituted with F . The same for obligation
predicates.

The process illustrated above may lead to identifying a
VPOS equal to F , that is certainly the best we can hope
for. Otherwise, since all of the VPOS contain at least a
predicate, we need to compare them.

In order to compare different VPOS, an ordering on pro-
vision and obligation predicates must be established. Con-
sidering the notion of subsumption described in Section 2,
we already have a way to decide between two alternative
provisions HW� and HI7 if we know that H#7 is subsumed by
HW� . Intuitively, H<� will only involve a subset of the ac-
tions required to fulfill H#7 , and hence it should be pre-
ferred as probably easier to fulfill. However, there are
other semantic-based considerations which could make a
provision (or set of provisions) preferable to another one.
For example, the action of sending a confirmation email
may be evaluated easier to satisfy than the registration at
a site, while they may appear as alternative provisions for
the derivation of a certain authorization in a security policy.
The obligation of notifying the supplier to obtain more li-
censes each time we make new installations of its software
is likely to be preferable than the one asking to buy separate
copies of the software.

Our approach is to assign a numeric weight �������
to each provision predicate H (and similarly ��� for each
obligation predicate N) with the intuitive meaning that
lower weight provisions are preferable to higher weight
ones.

Considering the relation with subsumption defined
above, the assignment of weights should always satisfy the
following condition:

If HI7 is subsumed by H<� then � �%HW��
	�� �%HI7��
Clearly, the same must hold for obligations. This rule guar-
antees that the weight system implicitly applies the prefer-
ence criteria about subsumed provisions illustrated above.

In general, the weight system allows the system to as-
sign a global weight to each alternative set of provisions.
More formally, for each VPOS the system computes its
weight as the sum of the weights of the predicates appear-
ing in it. Note that even if two atoms in a VPOS have the
same predicate, and hence the same weight, both partici-
pate in the sum since they are different ground instances.
This technique implicitly defines a partial order on differ-
ent derivations of the same atom and allows the system to

support a certain decision by asking the minimum set of
provisions and obligations allowed by the policy.

Definition 4 A best provision and obligation set (BPOS)
for an atom � is a VPOS having the minimum weight
among all the VPOS for that atom.

If an empty VPOS exists, it will have � as global weight
and will be the unique BPOS. In Figure 3 we report a con-
cise description of the procedure to derive the BPOS. The
function Eval-atom used in the procedure simply checks
if a provision/obligation (represented by a ground atom) is
currently satisfied in the system.

1. Transform GPOS in DNF. For each conjunctive sub-
formula, the set of its atoms forms a VPOS.

2. For each VPOS from Step 1 do:

(a) For each predicate H<� in VPOS such that Eval-
atom(HW�)=true replace HW� with F

(b) If a VPOS is the empty set, it is the unique
BPOS and the procedure terminates

3. For each VPOS returned by Step 2 do:
� � VPOS �0��� � � �%HI� ����� � �=ND�� where

�
and�

are indexes over all provisions and obligations ap-
pearing in the VPOS

4. Any VPOS whose weight is equal to
' � L���� � � VPOS �=��� where � is an index over
all weighted VPOS, is a BPOS.

Figure 3: The procedure to find BPOS

Theorem 2 Given a policy specification, a ground atom in
its model, and an assignment of weights to provisions and
obligations predicates, the procedure illustrated in Figure 3
derives all BPOS for that atom.

Example 6 Consider the fragment of policy specification
in Example 2. Suppose, based on a user request, we
need to derive �B���%0$� . By computing the model of the
policy rules we see that �B���%0$� can be actually derived
and its associated GPOS as computed in previous exam-
ples is]B�=�4���%0$����� �%HW�A�=2���X�N?�A�=U8
�01
	2����� �%HI7;�%01
�0$��X
HI:;�%0$�BX`N"7;�%01
�3��� . In this case the formula is already in
DNF and we can identify VPOS � = HW���=2�� XON?�A�=U8
�01
	2�� and
VPOS 7 = HI7;�%01
�0$�#X HI:;�%0$�#X N"7;�%01
�3� . Note that in this ex-
ample no subsumption relation holds between HW7 , HI: , and
N"7 , as well as between H<� and N?� , otherwise some of them
would have been dropped during the GPOS derivation. In
step 2, the procedure evaluates the atoms in each VPOS,
and suppose that in this case only the provision HW7;�%01
�0$� is
already satisfied and hence substituted with F . None of the
VPOS is equal to F , hence the procedure continues with
step 3. Suppose now that N�� is subsumed by N�7 , i.e., ful-
filling obligation N�� implies fulfilling also N�7 . Suppose

also that the weights are assigned as follows: � �%H5��D�I� ,
� �%HI7��3�
	 , � �%HI:�� ��	 � �=N?��� ��� , and � �=N"7�� � � .
Since HI7 can be ignored, we obtain � � VPOS ��� � N and
� � VPOS 7��E�� . Hence, in this case there is a unique
BPOS for �4���%0$� equal to HI:;�%0$�?X_N"78�%01
�3� . C

While here we assume that a single weight is given for
a provision or obligation predicate, the technique is easily
extended to take into account different weights assigned to
different ground instances of the same predicate.

3.2 BPOS extensions and system provisions

Different preference criteria can be used to refine the notion
of BPOS considering the specificity of a particular domain
and application. For example, the minimization of provi-
sions may be given precedence with respect to that of obli-
gations. In this case a BPOS is defined as a VPOS having
the minimum weight of obligations among all the VPOS
with the minimum weight of provisions. Consistently, in
the procedure of Figure 3, the weight of a VPOS should
be defined as a pair � � �
 � � � over which the new mini-
mization criteria can be easily applied in Step 4 of the same
procedure. The same idea can be pushed forward consider-
ing different types of provisions, one of which deserves to
be discussed.

Until now we have considered provisions mainly as ac-
tions that an external user should perform in order for a pol-
icy rule to be applicable. However, in many cases there are
actions that the system itself should perform before consid-
ering a policy rule applicable: we call these system provi-
sions and, syntactically, a disjoint set of predicates should
be used to distinguish them from the others. These provi-
sions should also have an associated weight. A reasonable
strategy may consider these provisions of secondary impor-
tance with respect to the ones we will have to ask the user
to satisfy. In this case a BPOS may be selected minimiz-
ing first user provisions, then obligations and, if still there
is more than one candidate, system provisions. The proce-
dure in Figure 3 can be easily extended to implement this
strategy as briefly discussed above.

3.3 Materialization and other system issues

Upon a user request for a decision represented by a ground
atom � , the system will return the unique BPOS to the
user if one exists (in the best case is the empty one), oth-
erwise it may be instructed to randomly select a BPOS or
to leave the choice to the user. These issues are typically
application dependent. We should note however, that these
choices can affect the possible optimizations applicable to
the algorithms. For example, the weighting technique may
be used to prune some of the derivations during the model
construction, if we admit the possibility of ignoring some
of the VPOS. This clearly rules out the possibility of giving
all alternative choices to the user, that in some application
contexts may be a useful feature.

A critical system consideration is the opportunity of
precomputing the policy model and the GPOS formulas.

While the general procedures we have described above do
not assume precomputation we discuss here under which
conditions this technique can be applied.

If we precompute the model and the policy rules include
some external predicate which is ‘state’-dependent we have
a potential problem since the model will be computed at a
specific time, and changes in the system state will not be
reflected in the model.

A solution to this problem is considering each ‘state’-
dependent predicate appearing in a policy rule as a sys-
tem provision, hence including it in the H�N -formula asso-
ciated with that rule. In this way all possible derivations
involving the rule will be considered, and only at eval-
uation time (when computing BPOS) the satisfiability of
the ‘state’-dependent predicates will enable or disable the
derivation according to the state of the system at the current
time. Technically, this can be easily achieved by extending
step 2.a in Figure 3: if the Eval-atom function for one of
these predicates returns False the atom is replaced by G .
A weight greater than zero is assigned to each predicate
denoting a system provision.

The set of predicates that are considered ‘state’-
dependent is actually decided by the system administra-
tor, depending on the specific application requirements. In-
deed, some of the predicates that are semantically ‘state’-
dependent may be left in rules in order to speed-up the sys-
tem at runtime if, for example, changes in their value occur
very rarely compared with policy evaluation requests. The
price to pay for this speedup is the re-materialization pro-
cess to be done whenever one of their value changes.

Another interesting issue arises if we do not assume a
single transaction for the interaction with the user when the
system asks for provisions and obligations, the user per-
forms the necessary actions, and finally the system satisfies
its request. The problem is independent from materializa-
tion and it is illustrated by the following example: Suppose
at time � the user makes a request for � and the system
replies asking the user to satisfy a provision and/or to ac-
cept an obligation, the user performs the required actions
and makes a second request to the system at time � � . How-
ever, the system denies the derivation because a ‘state’-
dependent predicate in the body of a rule involved in the
derivation is no more satisfied at � � . This system behavior
is certainly undesirable from the user point of view. One
way to alleviate the problem is to include in the system
answer to the user, not only the required provisions and
obligations, but also information about the current ’state’,
i.e., contextual information that if not changed will guaran-
tee the sufficiency of satisfying the required provisions and
obligations. For example, a site may accept a transaction in
any business day, provided the user is registered. Here be-
ing in a business day is a ‘state’-dependent condition. The
not-yet-registered user that asks to perform a transaction
will be answered to satisfy the provision and will be given
the guarantee that if that is done and the request is made in
a business day the transaction will be allowed. Technically,
this simply requires including the‘state’-dependent predi-

cates from the BPOS in the answer to the user. Clearly,
there are many other possible ways to address this problem,
including that of offering a few alternatives to the user.

3.4 Obligations management

A user accepting a policy with obligations agrees to ful-
fill them. In order to ensure that agreed upon obligations
are fulfilled, the system monitors obligation fulfilling, and
in case of failure, takes necessary compensating actions.
Such compensating action could range from decreasing
the trustworthiness of the user, replacing unfulfilled obli-
gations with (perhaps costlier) alternatives, and/or taking
punitive actions such as informing relevant authorities of
the defaulted or terminating the policy in-force. In order to
replace obligations with more stringent ones, the user need
to be informed of changes in contractual obligations. Simi-
larly, fulfilling obligations as promised may result in a (pos-
itive) compensating action such as acknowledging payment
of monthly fees and thanking the user, and perhaps upgrad-
ing her trustworthiness, referred to as the reliability rating
similar to the credit rating used by lending institutions in
the United States. This is a complex issue and please refer
to [5] for a more detailed discussion.

4 Applications to security policies

In this section we apply the theory we have developed
to a specific domain: security policies for access control
([21, 11]). The literature on this topic is quite extensive;
different languages have been proposed to specify access
authorizations and authorization rules in different contexts
(relational models, object oriented models, multimedia sys-
tems, XML, etc..), as well as to deal with concepts like del-
egation, negative authorizations, role-based authorizations,
conflict resolution, and many issues concerning the admin-
istration of the policy.

The specification of a security policy can be easily ex-
tended with our notion of provisions and obligations for
most of the proposed languages, since authorizations are
specified by special predicates, and rules can be repre-
sented as datalog rules (in some case with negation). In
particular this extension can be applied to one of the most
expressive languages recently proposed [11] as well as to
languages that allow to express time-dependent and peri-
odic authorizations [7].

In the following we do not consider a specific formal-
ism, but use a simplified syntax that will be sufficient to
illustrate the extension to including provisions and obliga-
tions.

Access authorizations are represented as a ternary pred-
icate access(object, subject, access-mode),
with the intuitive meaning of authorizing the subject to
access the object in a certain access-mode. Typical
access modes are write, read, modify.

Authorization rules allow authorizations to be derived
based on other authorizations and/or on certain predicates.
Typed variables can be used in rules.

Objects and subjects may be organized in hierarchies,
and typed variables together with predicates which estab-
lish relations in the hierarchy can be used in authorizations
to provide access to all objects in a certain class, and/or by
subjects in a certain group.

Provisions and obligations can be associated with both
single authorizations (that we can see as facts) and autho-
rization rules, in the form of a H�N -formula.

We recall that while predicate symbols in provisions
and obligations cannot appear in the rules, constant sym-
bols and variable symbols are shared, and in particular we
have the constraint that each variable appearing in a provi-
sion/obligation predicate attached to a rule must appear in
that rule’s body.

4.1 An example of a security policy with provisions
and obligations

In Table 1 we report a few of the conditional rules that may
define a security policy for a b2b web site.

The rules have the following intuitive meaning:

� Rule R1 says that any user of the web site can read the
contract proposals posted by the suppliers provided
that he has registered at the web site.

� Rule R2 says that any manager of a supplier company
can write a contract provided that he has registered
at the web site. The manager, however, must be the
issuer of the contract.

� Rule R3 says that whoever has the authorization to
write a contract has also the authorization to modify
the contract terms of that contract

� Rule R4 says any manager who can read a contract can
also modify it (resulting in a counter-offer to the con-
tract proposal) provided that he has registered at level
2 (i.e., he has provided a second level authentication
for reserved operations), that he or the system notifies
the supplier of the intention of proposing a counter-
offer, and with the obligation of electronically signing
the contract within 5 days if the changes are accepted
by the counterpart.

� Rule R5 simply says that the authorization to modify
an object implies the authorization of modifying all of
its parts. In the case of the contracts this rule allows to
derive the authorization to modify the contract terms
if there exists an authorization to modify the contract.

Even in the context of access control authorizations, it is
very likely that more than one derivation of the same autho-
rization can be obtained using different sets of rules. While
this may only have an impact on efficiency in traditional
authorization systems, in the context we are considering,
different sets of rules have associated different sets of pro-
visions and obligations.

In the following we illustrate the application of the tech-
niques described in the previous sections to this example.

Suppose a certain user asks for the permission to modify
the terms of a contract proposal. This request is interpreted
by the authorization system considering that the userid is
uid1, that the user has the role of manager and the spe-
cific object he asks to modify is identified by the constant
contract1-terms which is part of contract1. The
system also has the information that contract1was orig-
inally issued by that user. Technically, the user is asking for
the authorization

� �3�������������;� contract1-terms
 uid1
��
	 � �� -��
that must be evaluated against the site security policy.

Table 2 reports the output of the procedure in Figure 1
applied to the fragment of the security policy reported in
Table 1, limiting the constants to those required in this ex-
ample. Each atom in the first column is included in the
model and has a corresponding GPOS.

Note that there are two alternative sets of provisions
and obligations for the desired authorization. Referring to
the terminology used in the previous sections we have two
VPOS associated with it. In this case, the first VPOS is as-
sociated with the application of rules R1, R4, and then R5,
while the second with that of R2, and then R3. Intuitively,
this is due to the fact that the policy allows both the issuer
of the contract and a potential customer to modify a con-
tract, even if requiring different conditions, provisions and
obligations.

In the example all conditions are satisfied (i.e., the exter-
nal predicates in(uid1, Manager) and issuer(uid1,contract)
evaluate to true) but still the authorization has different
VPOS.

According to what explained in Section 3.1 the system
first tries to simplify the GPOS, checking if some of the
involved predicates are already satisfied. For example, the
system checks if user uid1 is already registered. If that
is the case, one of the VPOS (Register(uid1)) is equal to
F and the authorization can be given without any provi-
sions and obligations. Suppose now that the GPOS can-
not be simplified, i.e., none of the involved provisions and
obligationsis already satisfied. Then, the system must com-
pare the two VPOS trying to identify the most convenient
to satisfy for the user. In this example we can observe that
the Register at level2(uid1) provision is subsumed by the
Register(uid1) provision; formally, this fact is semantic in-
formation given by the site designers. By the condition
imposed in Section 3.1 this subsumption implies that the
weight associated with Register at level2(uid1) is higher
than the one associated with Register(uid1), and since the
weight for the provision Notify(uid1) and the obligation
Sign within 5days(uid1,contract1) are greater than zero,
the second VPOS is selected as the best provision and obli-
gation set (BPOS) and the user is simply asked to register
at the site in order to modify the contract.

4.2 Domain related extensions

By applying the general theory developed in the previous
sections of this paper to the domain of access control we

R1 = access(contract, s, read) �
PRV: Register(�)

R2 = access(contract, s, write) � in(s, Manager), issuer(s,contract)
PRV: Register(�)

R3 = access(contract terms, s, modify) � access(contract, s, write), partof(contract terms, contract)

R4 = access(contract, s, modify) � access(contract, s, read), in(s, Manager), issuer(s
�
,contract)

PRV: Register at level2(s), Notify(s
�
)

OBL: Sign within 5days(s,contract)

R5 = access(o1, s, modify) � access(o2, s, modify), partof(o1,o2)

Table 1: A subset of rules in the site security policy

Atom GPOS
access(contract1, uid1, read) Register(uid1)
access(contract1, uid1, write) Register(uid1)
access(contract1, uid1, modify) (Register at level2(uid1) X Notify(uid1) X

Sign within 5days(uid1,contract1)) (Register(uid1))
access(contract1-terms, uid1, modify) (Register at level2(uid1) X Notify(uid1) X

Sign within 5days(uid1,contract1)) (Register(uid1))

Table 2: Example output.

identified two domain-dependent aspects which require a
specific solution.

Provisions by different subjects In a derivation path it is
possible that a certain rule requires a provision to be satis-
fied by a subject different from the one requesting the ac-
cess. For example, a rule may state that John can read a
document if Ann can write that document, and there may
be a conditional authorization for Ann to write that docu-
ment provided she subscribe to a certain service. Since it
is unlikely that the system asks to a third party to perform
certain actions to allow a different user to access some data,
these provisions are evaluated as conditions: either they are
already satisfied or the rule cannot be applied.

Negative authorizations When negative authorizations
can be specified in the authorization language (as in [11]
and in several other proposals), the evaluation triggered by
an access request is more involved.

The model of the access control policy rules may in-
clude negative authorizations like

0 3�3���U�U;� contract2-terms
 uid
����
	 � �� -��
denying to uid the right to modify contract2-terms.
This rule may have been given explicitly or derived by
a chain of rule applications. Negative authorizations and
rules deriving negative authorizations can also be subject
to provisions, however these provisions typically are in the
form of actions to be performed by the system and not by
the subject involved in the authorization. For example,

RNEG = ����������� � oid
 uid
����A�
PRV: L 	�� �� -S�%0 � � �

says that any operation on object oid by user uid should
be denied, and an email notification should be sent to the

administrator. A derivation of a negative authorization may
also involve positive authorizations and rules, however all
associated provisions and obligations except those to be
performed by the system must be considered as condi-
tions. Intuitively, we don’t want to ask a user to perform
certain actions in order to deny himself the access he re-
quested, and, as explained above, we also don’t want to
ask other users to satisfy provisions for derivations origi-
nated by a different user’s request. Hence, either the pro-
visions and obligations associated with an authorization or
rule are already satisfied or the authorization/rule cannot be
used. Even in the presence of negative authorizations and
rules, the criteria used to decide among different VPOS is
the minimization of the sum of the weights associated with
each one. Since, as explained above, there are only sys-
tem provisions and obligations associated with a negative
authorization in the resulting model, the minimization intu-
itively applies to system resources (memory space, latency
time, computational power, etc.).

5 Related work

Several recent contributions in the area of policy specifica-
tion languages, policies for network management, and se-
curity policies can be found in [18]. Examples of languages
for policy specification are the PONDER language [8], and
the Policy Description Language (PDL) [16]. “Obligation
policies” in PONDER are event triggered condition-action
rules for policy based management of networks and dis-
tributed systems. Similarly, PDL policies use the event-
condition-action rule paradigm of active databases to define
a policy as a function that maps a series of events into a set
of actions. It is not the goal of our paper to propose a full-

fledged policy specification language like PONDER, on the
contrary our contribution emphasizes the role of policy rule
conditions that can be made true by actions of external
agents. By separating the specification and the processing
of provisions and obligations from the rest of the policy,
we provide a mechanism for identifying the most conve-
nient way of deriving a specific policy decision. This is
missing from the reasoning mechanisms underlying these
languages and we believe its integration may be an inter-
esting direction to pursue.

In general, our work is related to [1], which gives an in-
formation process specification language for e-commerce
and related tasks. However, our proposal focuses on poli-
cies instead of processes, and we also provide a reasoning
mechanism. Regarding obligation monitoring, the follow-
up paper [5] discusses many related issues. Some of the
monitoring tasks can also be treated in the framework of
EMs of [19].

There have been numerous papers on access control
policies (see e.g., [21, 7, 11]), modeling a number of as-
pects including role-based access control, delegation, time-
dependent access control, multiple access control policies,
etc. All these models, however, assume that the system
either authorizes the access request or denies it. The con-
cept of provisional authorizations has only been introduced
very recently. [14] proposes an access control system for
XML documents where optional provisional actions are in-
cluded in the specification of each authorization. A pro-
visional action is defined as a set of functions (log, verify,
encrypt, transform, write, create, and delete) used for ex-
tending the semantics of the authorization policy. In this
case the above actions are taken by the system as part of
the XML document transformation triggered by a user re-
quest. This concept has been generalized in [10] where a
formal treatment of provisional authorizations and rules is
proposed. Here a provisional authorization imposes that
an access can be granted provided that the user (and/or the
system) take certain actions prior to authorization of his
request. The paper identifies a class of logics that can be
used to specify provisional authorizations and elaborates
on the notion of weakest precondition under which an ac-
cess can be granted. Our notion of provision is analogous,
but we separate the syntax and semantics of provisions and
obligations from authorizations. We also conceptually dis-
tinguish obligations from provisions: in [14] they simply
differ syntactically for the value of the attribute “timing”
which is before for the actions that describe provisions
and after for obligations.

We also provide a technique to represent semantic rela-
tions between provisions/obligations, that allows the sys-
tem to automatically identify preferable derivations among
a set of alternatives. The approach in [10] only partially
achieves this goal since a lattice over logical implication is
used to represent the relationships among different sets of
provisions; the lattice cannot capture the semantics hidden
in the fixed interpretation of the atomic predicates. We may
also say that our work complements the one in [10] since

their contribution is focused on the model theoretic seman-
tics of the language while ours is focused on the algorithms
and techniques needed to derive the “most convenient” au-
thorizations.

The technique we use to compare different VPOS has
some relationship with techniques assigning weights to
rules in rule-based systems. In [2], for example, the au-
thors consider production rule systems with priorities asso-
ciated with the rules. User-defined priorities are assumed
to override default priorities. The paper proposes an algo-
rithm for determining the order between two rules given a
default total order and an overriding partial order over some
of the rules. Priorities may be seen as the weights we assign
to provisions and obligations, and their algorithm may be
adapted to our policy rules if we consider provisions and
obligations as the conditions in the rules. However, our
technique allows for a decoupling of the evaluation process,
in order to precompute the policy model and only leave
at runtime the comparison of VPOS and the evaluation of
state-dependent conditions. This becomes a significant ad-
vantage in critical applications involving security policies.

There has been work on using logic rules for controlling
rights. Work by Kagal and Finin [13, 12] has Horn Claus
rules for stating access rights and distributed trust. Their
rules permit conditional delegations and access, where the
conditions in the conditional must be satisfied in order to
obtain access privileges. According to [12], they plan to
add obligations to their framework. Our work differs from
theirs in many major ways. Firstly, we do have obligations.
Secondly, our provisions are different from conditions that
appear in conditional access permissions in a critical way.
That is, these conditional predicates are not evaluated by
the rule base responsible for the evaluation of rule. It is the
responsibility of an external agent to communicate the ful-
fillment of the provisions to the rule execution/evaluation
engine. For example, registering with an auction house
may not be handled by the access control module that is
responsible for granting the authority to place bids. More-
over, the conditions that Kagal et al. [12] refer to are eval-
uated as they are, independent of whether or not the same
accesses can be obtained by satisfying different conditions.
In contrast, our provisioning framework looks for the best
provisions and asks an external agent to check for their va-
lidity.

Another line of research dealing with access policies
is trust management. For example, the work by Blaze et
al. [3, 4] deals with trust management issues in a decentral-
ized environment. Although trust can be used in granting
accesses to protected objects, neither provisions nor obli-
gations deal with trust based accesses.

6 Conclusion

In this paper, we illustrated that policy management in a
complex system calls for more dynamic mechanisms like
provisions and obligations. In order to successfully use
provisions and obligations in a system, we provided a rea-
soning mechanism based on which a system may render

decisions, ask for actions (as provisions) and promises (as
obligations) from the user or the system. We believe the
policy language with provisions and obligations and the
reasoning mechanism is applicable in various situations.
As an example, we explored their use in a security appli-
cation explaining how the proposed mechanism deals with
domain specific issues like negative authorizations.

The paper gives rise to a number of interesting issues
to be explored further. Some are mentioned in the related
work section above. Another interesting direction is to in-
vestigate specification and reasoning about provisions and
obligations themselves. We provided some examples, but a
more rigorous treatment is needed if the provision and obli-
gations have complex structures. Monitoring obligations
may also become an involved process when quantitative
temporal constraints are part of the obligation specification,
as it is realistic, for example, in complex policies regulating
b2b sites. In this case temporal constraint reasoning tech-
niques, as described e.g., in [6], may be integrated in the
proposed architecture.

References
[1] K. Aberer and A. Wombacher. A language for infor-

mation commerce processes. In Third International
Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems, June 2001.

[2] R. Agrawal, R. Cochrane, B. G. Lindsay. On Main-
taining Priorities in a Production Rule System. in
Proc. of Very Large Data Bases, pp. 479–487, 1991.

[3] M. Balze, J. Feigenbaum and J. Lacy. Decentralized
Trust Management. in IEEE 17th Symp. on Security
and Privacy, 1996.

[4] M. Balze, J. Feigenbaum and M. Staauss. Compliance
Checking in the PolicyMaker Trust Management Sys-
tem. Proc. Financial Crypto’98, LNCS, No. 1465,
Springer-Verlag, 1998.

[5] C. Bettini, S. Jajodia, X. Sean Wang, and D. Wi-
jesekera. Obligation Monitoring in Policy Manage-
ment. IEEE 3rd Intern. Workshop on Policies for Dis-
tributed Systems and Networks, June 2002.

[6] C. Bettini, X. Sean Wang, S. Jajodia, Solving Multi-
Granularity constraint networks, Artificial Intelli-
gence, to appear. A preliminary version has appeared
in Proc. of the 3rd Intern. Conf. on Principles and
Practice of Constraint Programming, LNCS 1330,
435–449, Springer, 1997.

[7] E. Bertino, C. Bettini, E. Ferrari, P. Samarati. An
Access Control Model Supporting Periodicity Con-
straints and Temporal Reasoning. ACM Transactions
on Database Systems, 23(3):231–285, 1998.

[8] N. Damianou, N. Dulay, E. Lupu, M. Sloman The
Ponder Policy Specification Language in [18], 2001.

[9] D. Gries. The Science of Programming. Springer-
Verlag, 1981.

[10] S. Jajodia, M. Kudo, V.S. Subrahmanian. Provisional
Authorizations. In E-Commerce Security and Pri-
vacy, Anup Gosh (Ed.), pp. 133–159, Kluwer Aca-
demic Press, 2001.

[11] S. Jajodia, P. Samarati, M.L. Sapino, and V. S. Sub-
rahmanian. Flexible Support for Multiple Access
Control Policies. ACM Transactions on Database
Systems, 26(2):214–260, 2001.

[12] L. Kagal, T. Finin and A. Joshi. Trust-Based Secu-
rity in Pervasive Computing Environments. in IEEE
Computer, December 2001.

[13] L. Kagal, J. Undercoffer, F. Perich, A. Joshi and T.
Finin. A Security Architecture for Pervasive Comput-
ing Systems. Grace Hopper Celebration of Women in
Computing 2002.

[14] M. Kudo and S. Hada. XML document security based
on provisional authorization. In Proc. of the 7th ACM
conference on Computer and communications secu-
rity, pp. 87–96, 2000.

[15] B. H. Liskov and J. M. Wing. A Behavioral Notion
of Subtyping. ACM Transactions on Programming
Languages and Systems, pages 1811-1841, Novem-
ber, 1994.

[16] J. Lobo, R. Bhatia, and S. Naqvi. A Policy Descrip-
tion Language. In Proc. of National Conference of
the American Association for Artificial Intelligence,
Orlando, FL, USA, 1999.

[17] T. Przymusinski. On the declarative semantics of de-
ductive databases and logic programs. In J. Minker,
editor, Foundations of deductive databases, pages
193–216. Morgan Kaufmann, San Mateo, 1988.

[18] M. Sloman, J. Lobo, and E. Lupu, editors. Policies
for Distributed Systems and Networks, International
Workshop, POLICY 2001 Bristol, UK, January 29-31,
2001, Proceedings, volume 1995 of LNCS. Springer,
2001.

[19] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, February 2000.

[20] J. D. Ullman. Database and Knowledge-base sys-
tems. Computer Science Press, 1988.

[21] T.Y. C. Woo, S. S. Lam. Authorizations in distributed
systems: A new approach. Journal of Computer Se-
curity, 2(2,3):107–136, 1993.

