Structure and Value Synopsesfor XML Data Graphs

Neoklis Polyzotis
University of Wisconsin-Madison

al ki s@s. w sc. edu

Abstract

All existing proposals for querying XML (e.g.,
XQuery) rely on a pattern-specification language that
allows (1) path navigation and branching through the
label structure of the XML data graph, and (2) pred-
icates on the values of specific path/branch nodes, in
order to reach the desired data elements. Optimizing
such queries depends crucially on the existence of con-
cise synopsis structures that enable accurate compile-
time selectivity estimates for complex path expressions
over graph-structured XML data. In this paper, we
extent our earlier work on structural XSKETCH syn-
opses and we propose an (augmented) XSKETCH syn-
opsis model that exploits localized stability and value-
distribution summaries (e.g., histograms) to accurately
capture the complex correlation patterns that can exist
between and across path structure and element values in
the data graph. We develop a systematic XSKETCH es-
timation framework for complex path expressions with
value predicates and we propose an efficient heuristic
algorithm based on greedy forward selection for build-
ing an effective XSKETCH for a given amount of space
(which is, in general, an A/P-hard optimization prob-
lem). Implementation results with both synthetic and
real-life data sets verify the effectiveness of our ap-
proach.

1 Introduction

The Extensible Markup Language (XML) is rapidly emerg-
ing as the new standard for data representation and ex-
change on the Internet. The simple, self-describing na-
ture of the XML standard promises to enable a broad suite
of next-generation Internet applications, ranging from in-
telligent web searching and querying to electronic com-
merce. In many respects, XML represents an instance of
semistructured data [13, 15]: the underlying data model
comprises a labeled graph of element nodes, where each

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VL DB Conference,
Hong Kong, China, 2002

Minos Garofalakis
Bell Labs, Lucent Technologies

m nos@ esear ch. bel | -1 abs. com

element can be either an atomic data item (i.e., raw values
stored with elements) or a composite data collection con-
sisting of references (represented as graph edges) to other
elements in the graph. Further, labels (or, tags) stored with
XML data elements describe the actual semantics of the
data.

Sophisticated query-processing engines that allow users
and applications to effectively tap into the large amounts
of data stored in XML databases around the globe are go-
ing to be crucial to fulfilling the full potential of XML
and enabling Internet-scale applications. Realizing such
Internet-scale XML query processors (like, e.g., Xyleme
(wwv. xyl ene. com) or Niagara [17]), in turn, hinges on
providing effective support for high-level, declarative XML
query languages. A variety of languages have been pro-
posed for querying semistructured and XML databases,
including XQuery [4], Lorel [15], and UnQL [3]. A
common characteristic of all existing language propos-
als, is the existence of a pattern-specification language
(like, e.g., XPath [7]) built around path and subtree
(““twig™) expressions. These expressions replace the tra-
ditional SQL FROMclause and enable selections based on
value predicates as well as path navigation and branch-
ing through the XML data graph in order to reach the
relevant data elements. While simple path queries were
popularized in the context of object-oriented databases,
the pattern-specification languages proposed for graph-
structured XML data are substantially more complex. In
particular, the XPath language [7] (that lies at the core
of XQuery [4] and XSLT [6], the dominant W3C lan-
guage proposals for XML querying and transformation)
allows branching regular path expressions that enable
queries to navigate along paths in the data graph using
label names, wild cards, value predicates and branch-
ing predicates on the existence of specific sibling paths.
As a concrete example, in a bibliography database, the
XPath expression / / aut hor [book] / paper/ vl db[year
> 1997]/titl e selects the set of all VLDB paper ti -
t | es published after 1997 by aut hors that have pub-
lished at least one book (specified by the aut hor [book]
branch).

Optimizing XML queries with complex path expres-
sions depends crucially on the ability to obtain effective
compile-time estimates for the selectivity of these expres-

sions over the underlying (large) graph-structured XML
database. Similar to relational query optimization, select-
ing an efficient query-execution plan relies on the accurate
estimation of the number of XML elements that are ac-
cessed from (i.e., “satisfy”) a path-expression specification.
Clearly, to be feasible at query-optimization time, this esti-
mation process has to depend on a concise and accurate sta-
tistical synopsis of the structure and values of the XML data
graph that can provide such selectivity estimates within the
memory and time constraints of the optimizer. Of course,
such a synopsis can also be an invaluable tool for providing
users with fast approximate answers and quick feedback to
their queries, either before or during query execution.

Prior Work.! Summarizing a large XML data graph for
the purpose of estimating the selectivity of arbitrary path
expressions with value predicates is a substantially differ-
ent and more difficult problem than that of constructing
synopses for flat, relational data (e.g., [22, 23]). Recent
research studies [1, 5, 12, 24] have considered specialized
variants of our XML summarization problem, focusing on
the simplified case of tree-structured (rather than graph-
structured) data and restricted path expressions (e.g., sim-
ple paths with no branching predicates). It is unclear if
these earlier techniques can be extended to general, graph-
structured XML databases (where non-tree edges can arise
naturally as explicit element references through i d/i dr ef
attributes or XLink constructs [2, 8]) with element values.

Recent proposals for exact and approximate path-index
structures for XML (e.g., [13, 14, 16]) also attempt to
capture the path structure in the underlying XML data
graph. Unfortunately, the usefulness of such structures
as optimization-time synopses for selectivity estimation is
limited, since (a) exact indexes (e.g., the 1- and T-index)
can grow to a fairly large proportion of the data-graph
size [14, 16]; and, (b) approximate indexes (e.g., the A(k)-
index [14]) do not explicitly try to capture the essential sta-
tistical characteristics of the data-graph distribution. Fur-
ther, no path-index structure has addressed the issues that
arise in the presence of element values.

Our Contributions. In our earlier work [20], we have pro-
posed the XSKETCH synopsis model for effectively captur-
ing the key structural (i.e., label path and branching) char-
acteristics of large XML data graphs. In this paper, we
tackle the difficult problem of augmenting our structural
XSKETCH synopses with concise, yet accurate distribution
information on the element values in the XML data. Our
proposed (augmented) XSKETCH synopses provide an ef-
fective tool for selectivity estimation of fully-general, com-
plex path expressions that can incorporate value predicates
on any of the nodes in the label path or branches of the
query structure. To the best of our knowledge, ours is

1Due to space constraints, a detailed overview of related work can be
found in the full version of this paper [21].

the first work to address this timely problem in the most
general setting of graph-structured XML data with element
values. More concretely, the key contributions of our work
are summarized as follows.

e Definition and Systematic Estimation Framework for
(Structure and Value) XSKETCH Synopses. We give a
formal definition of our XSKETCH synopsis model that ex-
ploits localized stability and value-distribution summaries
(e.g., histograms) to accurately capture the complex corre-
lation patterns that can exist between and across path struc-
ture and element values in the XML data graph. We de-
velop a systematic estimation framework for parsing com-
plex path expressions with value predicates over a concise
XSKETCH synopsis and producing an approximate selec-
tivity estimate. Like any estimation technique based on
concise data synopses, our proposed framework relies on
appropriate statistical (uniformity and independence) as-
sumptions to compensate for the lack of detailed informa-
tion.

o Efficient XSKETCH Construction Algorithm. Building
effective XSKETCH synopses is a hard optimization prob-
lem that we have demonstrated to be A"P-hard even for
the much simpler “structure-only” case [20]. Given the in-
tractability of the problem, we propose an efficient heuris-
tic algorithm for XSKETCH construction based on greedy
forward selection. Briefly, our algorithm works by succes-
sive structural and value-distribution refinements that pro-
gressively evolve a very coarse initial summary to a more
accurate synopsis.

o Implementation Results Validating the XSKETCH Ap-
proach. We present results from an experimental study of
XSKETCHes with synthetic and real-life data sets that ver-
ify the effectiveness of our approach. Our results demon-
strate the effectiveness of XSKETCHes in capturing im-
portant data path and value correlations using only limited
space.

2 Background

XML Data Model. Following previous work on XML
and semistructured data [13, 14, 16], we model an XML
database as a directed, node-labeled data graph G =
(Ve, Eg). Each node in Vi corresponds to an XML el-
ement in the database and is characterized by (a) a unique
object identifier (oid), (b) a label (assigned from some al-
phabet of string literals) that captures the element’s se-
mantics, and (c) (possibly) a set of raw data values for
the element. (We use label(v), value(v) to denote
the label and value(s) of v € Vi.) Edges in Eq are
used to capture both the element-subelement relationships
(i.e., element nesting or explicit element references through
i d/i dref attributes or XLink constructs [2, 8, 14, 15]) and
the element-value relationships in the XML data. Note
that non-tree edges, such as those implemented through
i d/i dref constructs, are an essential component and a

“first-class citizen” of XML data that can be directly
queried in complex path expressions [4]. As an example,
Figure 1(a) depicts an example XML data graph modeled
after the Internet Movie Database (IMDB) XML data set
(www. i mdb. con), showing two movies and three actors.
The graph node corresponding to a data element is hamed
with an abbreviation of the element’s label and a unique id
number. Also, as shown, each movie (M element is associ-
ated with two values (i.e., year of production and box-

O fi ce sales), and each actor (A) element is associated
with one value (i.e., nane of the actor); the specific values
for each element are not shown to avoid cluttering the fig-
ure. Dashed lines are used for graph edges corresponding
toi d-idref relationships.

DB1

{Myear,
M boxCf f i c)e;}/\ ’/l\{\A name}

RS A

’ AR9 ARLO0 ARll NRlZ MR13 M14 \MS‘

NS

'\ IRI6 IRL7 IR,/ IRI9 R0 IRRLL22
[N AN V) 0 ,

Ms (1)

{BF}¢

As(1)

i(BF)

A

T IR@)

@ (b)

Figure 1: Example XML Data Graph (a) and Structural XS-
KETCH Synopsis (b).

XML Query Model. Abstractly, an XML path expression
1 (e.g., in XQuery [4]) defines a navigational path over the
XML data graph, specifying conditions on the labels and
(possibly) the value(s) of data elements. A simple path
expression is of the general form 11{o1}/ - /1n{on}
where each 1; denotes an element label and each o; denotes
a (possibly empty) selection predicate on the value(s) of
corresponding elements. The result set of this path expres-
sion includes all elements ¢,, for which there exists a path
e1/ -+ /e, inthe data with 1abel(e;) = 1; and value(e;)
satisfying predicate o;. 2

More complex, branching path expressions have the
general form1 = 1 {01 }[1{o'}]/ - /1n{on}[1"{o™}],
where 1; and o; denote labels and value predicates,
and 1*{c?} are (possibly empty) branching path expres-
sions. A branching path expression is formed from a
simple path expression 1;{c}/---/1,{0,} by attach-
ing the branch predicates 1°{c*} at specific labels. Each
[1'{o?}] clause represents an existential condition, requir-
ing that there exists at least one 1¢{c%} twig at point
1 of the expression. For example, consider a query
over the data graph of Figure 1(a) that looks for all
movies starring an actor that has at least one WebLink
(W) child and that have grossed over $100M in box-

20ur notation isslightly different from that of XQuery, aswe are using
{} to distinguish value predicates from element-branching predicates (de-
noted by []). Also, to simplify the presentation, we do not show explicit
dereference operators for i d- i dr ef edgesin our path expressions.

[CE) / . . %A‘(m
AR3) MR@3) WD)
\ / ¢(Bﬂ

office sales; we can express this query as the branching-
path expression Act or [WebLi nk] / Movi eRef / | DREF/ -
Movi e{boxCf f i ce>100M}. Note that, assuming that both
M4 and M5 grossed over $100M, our example expression
would return only element M4. To simplify the notation,
we often use 1 and & as a shorthand for the label structure
and the set of value predicates in a path expression, and
1{a} as a shorthand for the full, “value-restricted” path ex-
pression.

3 Structure and Value X SKETCH Synopses
3.1 Overview of Structural XSKETCHeS

Abstractly, our structural XSKETCH synopsis mecha-
nism [20] relies on a generic graph-summary model for an
XML data graph G = (Vi, E¢), which is essentially a
node-labeled, directed graph structure S(G) = (Vs, Es),
where: (1) each node in v € Vs corresponds to a subset
of data nodes in a partitioning of Vi (termed the extent
of v — extent(v)) that have the same label (denoted by
label(v)); and, (2) an edge in (u,v) € Eg is represented
in Es as an edge between the nodes whose extents contain
the two endpoints « and v. To enable selectivity estimates
for complex path expressions, each node v of S(G) only
captures summary information about G in the form of a
count field (count(v)) that records the number of elements
in G that map to v, i.e., the size of v’s extent. (We use v
and extent(v) interchangeably in what follows.)

Our structural XSKETCH synopses are specific instan-
tiations of this generic graph-synopsis model that record
some additional edge-label information to capture localized
backward- and forward-stability conditions across synop-
sis nodes [18, 20]. We say that a node « is B(ackward)-
stable (F(orward)-stable) with respect to a parent (resp.,
child) node v in the synopsis, iff all data elements in
extent(u) have at least one parent (resp., child) element
in extent(v). Intuitively, B-stability guarantees that all el-
ements in u descend from v and, therefore, count(u) is an
exact estimate for the expression v/u; similarly, F-stability
ensures that all elements in w reach at least one element in
v and, therefore, count(u) is an exact estimate for u[v].

Definition 3.1 A structural XSKETCH XS(G) =
(Vxs,Exs) for a data graph G is an edge-labeled
graph synopsis for G, where the label for each edge
(u,v) € Exg is defined as: (1)1abel(u,v) = {B},ifvis
B-stable wrt u; (2)1abel(u,v) = {F}, if u is F-stable wrt
v; (3)label(u,v) = {B,F}, if both (1) and (2) hold; and,
(4)label(u,v) = ¢ (empty), otherwise. |

Figure 1(b) depicts an example structural XSKETCH
synopsis for the small IMDB data graph in Figure 1(a).
Our earlier work [20] has proposed a systematic estimation
framework that approximates the selectivity of branching
label paths (with no value predicates) over concise struc-
tural XSKETCHes, and has described effective construction
algorithms for building such synopses.

3.2 Incorporating Value-Distribution Information
A naive solution to adding information on element values

would be to directly apply our structural XSKETCH ideas,
simply treating different data values as different “labels”
in the graph. Of course, the problem with such an ap-
proach is that the number of distinct values in an XML
database is typically far greater than the number of dis-
tinct element labels; thus, such a naive solution is likely
to cause an explosion in the size of any structural graph
synopsis. Even the coarsest graph synopsis (i.e., the label-
split graph that simply groups data nodes by label [20]) can
become too large to be useful as an optimization-time struc-
ture, whereas the perfect graph synopsis (i.e., the fully B/F-
bisimilar graph [20]) can easily be as large as the database
itself. Instead, the key idea of our proposed approach is to
incorporate compressed value-distribution information (us-
ing, e.g., histograms) in the nodes of an XSKETCH synop-
sis in order to effectively capture the distribution of element
values in nodes’ extents. Despite its deceptive simplicity,
this turns out to be a rather difficult problem since, to be
effective, the resulting XSKETCH synopses need to accu-
rately capture complex correlation patterns that may exist
in the underlying graph-structured data. More specifically,
there are two key forms of correlations that our synopses
need to model.

(1) Path/Value Correlations: Given a node v in the XS-
KETCH, the characteristics of the value distribution for
data elements in extent(v) can vary drastically depend-
ing on the specific label path(s) that reach these elements
(or, leave from these elements) in the data. For exam-
ple, consider a bookstore database and a book-labeled
node v in the synopsis that records book-pricing infor-
mation; obviously, the prices of elements in extent(v)
reached through the label path cs/textbooks/book
will be very different from those reached through
poetry/rare — collections/book Thus, just main-
taining a histogram for the complete set of prices under v
is very likely to produce inaccurate estimates for selections
on book prices that specify either of the two label paths.
(2) Value Correlations: Given a node v in the XS-
KETCH, the distribution characteristics for elements in
extent(v) that are reached through (or, lead to) a
specific label path, can depend to a large extent on
the values of other elements on that path. Con-
tinuing with our bookstore example, assume that we
have separated out in a node v’ of our synopsis all
book elements that are reached through the label path
publisher/cs/textbooks/book, and that we have both
an “expensive” and a “cheap” publisher in our database;
then, clearly, the prices under node v’ are correlated to the
names at the publ i sher node that lead to them. Thus,
the selectivity of the path expression publ i sher {nane =
X}/ cs/ t ext books/ book{pri ce>$100} estimated at v’
can be very different depending on whether X = “expen-
sive” or X = “cheap”.

3.2.1 Our Solution: Structure and Value XSKETCHes

Correlations in (flat) relational-data synopses are typically
modeled using concise, multi-dimensional representations
(e.g., histograms, wavelets) for the joint distribution of
correlated attributes [9, 22, 23]. As the above discussion
demonstrates, the graph-structured nature of XML data
poses additional challenges for the effective summarization
of element-value distributions in an XSKETCH, as we need
to capture correlations across both data values and data
structure. More specifically, consider the set of all elements
in the extent of a specific XSKETCH node v. Different
subsets of elements in extent(v) (with, possibly, differ-
ent value characteristics) may be reachable by different la-
bel paths in the data (path/value correlations) and different
value predicates on different labels on the path (value corre-
lations). Clearly, keeping separate joint-distribution infor-
mation (e.g., multi-dimensional histograms or wavelet syn-
opses) for subsets of elements in extent(v) for all possible
combinations of incoming label paths and value-predicate
assignments is impractical — the number of combinations is
simply too large and, for accurate estimates, we would also
need to capture overlap information between such subsets
of extent(v), thus exploding the complexity and space re-
quirements of the synopsis. Instead, our XSKETCH nodes
capture joint-distribution information only along paths and
branches of the synopsis that are common to all elements
in a node’s extent. Thus, given an XSKETCH node v,
the joint-distribution information recorded for elements in
extent(v) considers only the value correlations in v’s sta-
ble twig neighborhood in the XSKETCH.

Definition 3.2 Let v be an XSKETCH node, and let B(v)
denote the set of all nodes in the XSKETCH that reach v
through a B-stable path (including v itself). Also, let F'(v)
denote the set of all nodes in the XSKETCH that can be
reached starting from any node in B(v) through an F-stable
path. The stable twig neighborhood (STN) of v is defined
as STN(v) = B(v) U F(v). |

The key observation here is that, by virtue of stability, the
stable twig neighborhood of an XSKETCH node v captures
path and branching structure that is common to all data el-
ements in extent(v). The joint-distribution information
recorded for v in the XSKETCH tries to capture the fre-
quencies of elements in extent(v) and their possible cor-
relation(s) with the values of (a subset of) other nodes in
STN(v) along specific paths (or, in general, twigs) within
STN(v). In other words, our XSKETCH synopses rely on
(@) structural B- and F-stability to model the dependence
of element values on path and branching structure (i.e.,
path/value correlations), and (b) multi-dimensional distri-
bution synopses (e.g., histograms) to model value correla-
tions within stable “neighborhoods” of the XSKETCH.
Consider an XSKETCH node v and let T" be a twig con-
tained within STN(v). Let dep(v) (C STN(v)) denote the
“correlation scope” of v; that is, the set of nodes in the

XSKETCH for which correlations with the element distri-
bution in extent(v) are captured in the joint-distribution
information maintained in v. (If v itself contains elements
with values then dep(v) must contain at least v.) We also
let dep(v,T') denote the restriction of dep(v) in T (i.e.,
dep(v,T) = dep(v) N T). Then, the joint-distribution
information recorded in v can give direct estimates for
the number of v elements that are reached through the
twig query T'{}, where the value predicates o can be
on any subset of dep(v,T). As a more concrete exam-
ple, consider the twig 7' = wv;[va]/vs[v4]/vs (shown in
Figure 2) that is contained within STN(vs), and assume
dep(vs) = {v1,v4}; then, the joint-distribution kept at v
can be used to directly estimate the number of v5 elements
discovered by v1 {01 }[va]/v3[va{oa}]/vs, Where oy, o4 are
value predicates on nodes v; and vy, respectively. We can
now give a formal definition for our model of structure and
value XSKETCH synopses for XML data.

Definition 3.3 An XSKETCH synopsis XS(G) for an
XML data graph G with element values is a structural XS-
KETCH (Vxs, Exs) for G, where each node v € Vs
can also contain a (possibly) multi-dimensional synopsis
for the joint distribution of elements in extent(v) and the
values of any subset of XSKETCH nodes dep(v) C STN(v)
along specific paths/twigs within STN(v). |

Note that, by the above definition, dep(v) C STN(v)
since, in general, only a subset of the value distribu-
tions in a node’s STN will actually be correlated, and it
is only these correlations (along a given stable twig) that
we need to capture in the XSKETCH node. For non-
correlated value distributions, an independence assumption
is valid and will give accurate estimates [9]. Consider once
again our example stable twig 7' = v1 [va]/v3[v4]/vs With
dep(vs) = {v1,v4}, and assume that the distribution of
vs elements is independent of the values in vs & dep(vs)
(i.e., v3 L ws). Even though the distribution informa-
tion in vs cannot directly give an estimate for the count
of v1{o1 }Hve|/v3{os}[va{o4}]/vs (which contains a value
predicate on v3), a product estimate based on the indepen-
dence of the distributions in v5 and vs is going to give a
good approximation (Figure 2).

Having formally defined our XSKETCH synopsis model,
the remainder of this paper focuses on the two key, interre-
lated challenges of our XML-graph summarization prob-
lem, namely: (1) Defining an estimation framework for
complex path expressions over XSKETCH synopses that re-
lies on well-founded statistical assumptions (e.g., indepen-
dence or uniformity) to compensate for the lack of detailed
information and the approximate nature of the XSKETCH;
and, (2) Designing practical algorithms for effective XS-
KETCH construction that, given a limited space budget,
try to minimize the approximation error in the selectivity
estimates (based on our estimation framework). Before
that, however, we discuss the joint-distribution information

H(01,04) = count(v1{a1}[v2]/v3[v4{ c4]/N5)

% STNWS) Vg
- U C o4
' \?
V2 NG ol
B V3 \
. E ;
e u
. ' Histogram at v5
Va ‘

)" dep(vs) = {v1, va}

count(v3{ a3)

v3| v5 = count(v{o1}[v2]/v3{o3} [v4{c4}]IV5) = H(oLo4) * count(v3)

Figure 2: Example XSKETCH Value-Distribution Information.

maintained at individual XSKETCH nodes in more detail.

3.2.2 Distribution Summaries for XSKETCH Nodes

Thus far, we have been deliberately vague about the exact
form of distribution summaries maintained in the nodes of
our XSKETCH synopsis. A main reason for this is that,
as mentioned earlier, several forms of multi-dimensional
data synopses (e.g., histograms or wavelets) can be used
to produce a concise description of the distribution of el-
ements in a node’s extent across the values in its corre-
lation scope. More specifically, let v be an XSKETCH
node and let D,, denote the cross-product of the value do-
mains for elements in v’s correlation scope, i.e., D, =
X uedep(vydomain(u). Then, the distribution of v’s ele-
ments within its correlation scope can be described by the
joint-frequency table f,[c1,. .., ck] that gives the number
of elements in extent(v) that are reached from (or, lead
to) the tuple of values (c¢1,...,ck) € D, in the corre-
sponding nodes of dep(v). This frequency table f,[] can
be summarized in our XSKETCH using conventional multi-
dimensional histograms [22], Haar wavelets [23], or even
more complex summarization techniques based on statisti-
cal modeling [9]. For concreteness, we use the term “his-
togram” to refer to the distribution information maintained
in XSKETCH nodes in the remainder of this paper.

Unlike the relational case, however, the joint-frequency
table f,[] is not sufficient to provide accurate estimates
for arbitrary value-selection predicates over the nodes of
dep(v). The graph-structured nature of XML data once
again introduces novel challenges in capturing the element
distribution in a node with respect to other nodes in its
STN. As a simple example, consider a v-labeled node
with 10 u-labeled children (uq, ... ,u1o) in the data graph,
and 9 other v-labeled nodes all with a single u-labeled
child (uy1). Further, assume that v nodes carry no values
whereas each u; node carries a value of ¢ (: = 1,... ,10).
Clearly, in our XSKETCH synopsis this simple data config-
uration will result in a single B/F-stable (v,«) edge with
count(v) = count(u) = 10. Assume that dep(v) =
{u}. Then, the joint-frequency table f,[] will have entries
folt]=1fori=1,...,10and f,[11] = 9. Now consider

the branch query v[u{c}] where ¢ = (1 < value(u) <
10). Clearly, the correct count(v[u{o}]) is 1; however, us-
ing the f,] table in the conventional manner to estimate the
selectivity of o (assuming no summarization whatsoever)
we get an erroneous count of 10. The reason, of course, is
“double counting™: even though the frequency table tells
us that each w-value from 1 to 10 is reached by one v-
element, it has no way of telling us that they are in fact
reached by the same v-element! It is easy to see that this
double-counting problem can become much more compli-
cated when the element distribution involves more complex
path structures and overlap patterns between elements. Un-
fortunately, this problem is inherent in all approximation
techniques that estimate the selectivity of ranges by sum-
ming point frequencies and there is no easy solution based
on traditional frequency tables and histogram structuress.

We have proposed an initial solution for avoiding
double-counting in XSKETCH nodes, using specialized
Range Histograms that explicitly capture the overlap be-
tween different value ranges. Intuitively, range histograms
approximate range frequencies instead of point frequen-
cies and essentially map selectivities of ranges to points in
a higher-dimensional space. The complete details can be
found in the full version of this paper [21].

4 Estimation over XSKETCH Synopses

We now define our estimation framework for approximat-
ing path-expression selectivities over a compact XSKETCH
synopsis. Our framework generalizes that described in our
earlier work for the “structure-only” case [20] to deal with
predicates on node values.

4.1 Parsing Path Expressions over an XSKETCH

Let 1{7} = Lli{o1}/ - /Lafon}lnti{ons1}/ -/
Lntk{ontn]/ Insbr1{Onrkt1}/ [Lntktm{Tnthtm}
denote a branching label path over an XML data graph G,
with one branching predicate on label 1,, and a sequence of
value predicates & defined over all labels in the path. (Our
discussion can be simplified if predicates are only specified
for some of the nodes in the label.) Even though we
consider the case of a single-branch path expression, our
methodology can be easily generalized for multi-branch
twigs. We use count(1{c}) to denote the (estimated)
number of data elements that are discovered by the path
expression 1{c} in G, i.e., the selectivity of 1{z}. Con-
sider an XSKETCH synopsis XS(G) of the data, and let
U= v/ [on[vnt1/ - [Vntk]/Vntker/ [Vntkrm
be a path in XS(G) such that, for each i, 1label(v;) = 1;;
we term such an XSKETCH path 7 an embedding of the

3A naive approach would be to incorporate element-id information in
the dimensions of our frequency table. Such an approach, however, is
very infexible with respect to updates in the database and (perhaps most
importantly) it is not at al clear how element-id axes should be handled
during the summarization (histograming) of the table.

label path I. Similar to I, the nodes of the embedding
7 can also be augmented with the appropriate value
predicates o; to obtain the “value-restricted” embedding
v{7}. An element ¢, in extent (v,) is discovered by
this embedding v{z} if there exists a document path
e1/ - /enlent1/ - [entk]/entkr1/ - [€nthim

such that: (1) e; € extent(v;), and (2) the value of
element e; satisfies the corresponding predicate o;, for
eachi = 1,...,n + k + m. It is obvious that if an
element e is discovered by embedding 7{z}, then it also
belongs in the target set of our original path expression
1{z}. Thus, if we use £(1) to denote the set of all
distinct embeddings © of 1 in our XSKETCH synopsis
(i.e., embeddings that differ in at least one node in the
XSKETCH path), then the selectivity of 1{z} is estimated
by summing the selectivities over all embeddings in £(1);
that is, count(1{c}) = > ;c) count(v{c}), where
count(v{7}) denotes the estimated number of elements
discovered by a (value-restricted) embedding 7{z}. (Of
course, we ensure that a synopsis node cannot contribute
more than its total count to this estimate.)

Our selectivity estimation problem, therefore, essen-
tially reduces to estimating the count of the data ele-
ments discovered by each distinct embedding of the la-
bel path in XS(G). This count can be expressed as
count(v{7}) = count(vptirtm) X f(U{T}), where
f(w{7}) denotes the estimated fraction (i.e., empirical
probability) of elements in extent (v, 4k,) that are dis-
covered by the (value-restricted) embedding v{z}. Esti-
mating the fraction f(v{c}) over the XSKETCH is the key
problem that needs to be addressed in our estimation frame-
work; we now explain our solution in detail.

Consider a single-branch path embedding 7 =
vi/ - fvplur/ - Jupl/vns1/ - Jvngm (nOte that we
are using u; for branch nodes to simplify the notation). The
first step in our estimation process is to parse the embed-
ding v into a sequence of maximal, non-overlapping stable
twigs; that is, we break the embedding 7 into a collection
of sub-twigs 77, T5, . . ., such that every XSKETCH node in
the embedding is “covered” by exactly one of the T;’s, and
each T; is a maximal stable twig in 7, i.e., all path (branch)
edges in T; are B-stable (resp., F-stable). This parsing can
be done as follows. Starting from the last node in the em-
bedding (v,), build the first tree 7" in the decomposition
by taking the intersection of the embedding 7 with the sta-
ble twig neighborhood of v;,4,; i.6., T = STN(vp,4-m) N T.
Then, take the nodes of 7" out of ¥ and repeat the process
from those nodes of v — T that were directly connected to
T nodes (i.e., at the outside “border” of T).

It is easy to see that, for the case of our single-branch
embedding w, all the stable twigs resulting from the above
decomposition will be simple paths except perhaps for
the single twig, say 7 that contains the only branching
node v,. More concretely, let the stable-twig decom-
position of v be as follows: Th1 = wvi/ - /ug,, ...,

Ty = vk;_yt1/ - Jonlur/ - fum]/ vk, . Ty =
Vkg 141/ [V Tt = Umy1/ -+ [y ooy Ty =
Umy41/ =+ [Umy,,, Where 0 < ky < ks <---<n+m=
kgand 0 < my < mg < --- < k = myy;1. Note that,
in the above decomposition, the stable twigs 77, . . ., T} es-
sentially cover the main path of the expression (with the
only “true” twig 7T’; possibly covering part of the branch),
whereas twigs Ty11, . .. , T4+ cover the remainder of the
uy/ - -+ Juy branch. Given this decomposition of the em-
bedding 7, we now employ the well-known Chain Rule
from probability theory [10] to rewrite the required frac-
tion as follows (for simplicity, we use &; for the set of all
predicates in twig 7; and =; for the predicate on branch
node u;):

q—1
(TofTa)) [[1(TdE7} ok, 41 | Tipa{iga}/ -

i=j

f{e}) =f

l

o T £ [Tos i{arit] | T4E5 H um, +1{mm 41}/

i=1
- Jumi{mm 3/ Tivd{aj1}/ - /Ta{oq})

-1
. H f(Ti{oi}t/vr; 41 | Tiv1{Tir1}/ - /Ti{o;}
=1
[ur{m1}/ - Jup{m}]/ - - /Ta{@q})-

Note that the second product term above captures the se-
lectivity of the complex expression along the “existen-
tial” branch wy/ - - - /uy, whereas the first and third prod-
uct terms capture the selectivity along the main path. Of
course, by the Chain Rule, the f() frequency terms al-
ways condition on the remainder of the complex path as
it is parsed in a “bottom-up” fashion; intuitively, the reason
for this conditioning is to capture the correlations between
the various twigs that comprise the overall path embedding
v{c}. Also, note that the value predicates for the vy, 1
and w.,,, nodes are not included in the fraction expressions
for the T; and T, terms above, since they are already ac-
counted for in the expression for T 1 and 7,1, (respec-
tively) and included in the corresponding conditionals for
T; and T,4;. To simplify the above expression, our esti-
mation process makes the following “Twig-Independence”
assumption.

Al. [Twig Independence] Given a node v in XS(G), the
distribution of incoming twigs T'{c} to v is inde-
pendent of the distribution of outgoing twigs 7"{c"}
from v for any value predicates &, o’; more for-
mally, f(T{z}/v | v/T'{0"}) ~ f(T{z}/v) and
FOIT' Y] | T} /v) ~ f (0T {o}]).

Twig Independence essentially generalizes our earlier Path-
and Branch-Independence assumptions [20] to our more
general twig-decomposition scheme for path expressions
with value predicates. Using Assumption (Al), we can
eliminate most of the conditionings and simplify our ex-

JTATY)

pression for f(v{z}) to

q—1
F@Eh) ~ f(To{aa)) - [F(Tdi} vk 41 | vk {on; 113)
i=1
l
- [f (s (Tori{mamad] Lwm, {mm, }) (€Y
=1
That is, the only conditioning that remains over the f()
fractions is on the value predicate imposed on the refer-
enced node in our XSKETCH synopsis. Now, let B, ; de-
note the branch expression corresponding to the F-stable
path T,,1; in our decomposition of the /- - - /uy, branch;
that is, Byti = Um,+1[Um;42/ - [Um,y,], fOr i =
,1. Applying the Chain Rule once again for the in-
dividual terms in the above products, we have:

Fo, [vk,+1 | vk +1{ok,+1})
F(Ti{Ti} | vk, /vk;+1{ok,+1})
~ f(vk, [V, +1 | Vi +1{ok;,+1}) - F(Ti{T7}), 2

where the last derivation follows from Twig Independence
(A1). Similarly,

Fum; [Tq+i{Tqxi}] [um; {mm, }) & f(um, [wm;+1] | um; {7m;})
- f(Bgt+itogritl)- 3

To simplify the resulting fractions further, we make one
more independence assumption that aims to compensate
for the lack of statistical-correlation information across
non-stable edges.

(Ti{o} vk, +1 | vk, +1{ok,+1}) =

A2. [Edge-Value Independence Across Non-Stable
Edges] Consider a node v in XS(G) and let u (w)
be a non-B-stable parent (resp., non-F-stable child)
of v in XS(G). Then, the distribution of incoming
(outgoing) edges from « (resp., to w) across the ele-
ments in extent(v) is independent of the elements’
values; that is, for any predicate o on the values of
v elements, we have f(u/v | v{c}) ~ f(u/v) and

folw] [v{o}) =~ f(v[w]).

Assumption (A2) essentially simplifies path-value correla-
tions along non-stable edges; obviously, since it directly
deals with node values and value predicates, it does not
have an analog in our estimation framework for structural
XSKETCHes [20]. Combining Equations (1), (2), (3), and
Assumption (A2), we obtain the following final expression
for the selectivity estimate of our branching-path embed-
ding:

f{e}) =

'.':la

<
Il
-

1
[(Ti{oi}) H J(Bg+i{og+i}])

l

f(vki /UkiJrl) : H f(U’mi [umﬂrl]) (4)

i=1

.ﬂ@

<
Il
—

Intuitively, the above formula gives the selectivity estimate
for the embedding v{z} as a product of two key compo-
nents: (1) the fractions of elements discovered by the stable

paths and branches (in general, stable twigs) in the embed-
ding, i.e., the first two product terms in Equation (4) (note
that these terms capture all value predicates in 7); and, (2)
the selectivities of path or branch edges along the “stability
breaks” in the 7 embedding, i.e., the last two product terms
in Equation (4). It is easy to extend the estimation for-
mula above to the most general case of multi-branch com-
plex path expressions. Equation (4) generalizes our earlier
selectivity-estimation formula for complex paths without
value predicates [20] that, essentially, comprised only the
last two product terms in (4); of course, if no value predi-
cates are involved (i.e., all ;’s are empty), then both of the
leading product terms in (4) would evaluate to 1 since all
the referenced paths and branches are stable [20].

The selectivity terms across “stability-break” edges in
the XSKETCH (f (vk; /vk;+1) and f (wm, [tm,+1])) are esti-
mated using the Backward- and Forward-Edge Uniformity
assumptions (A3-A4) exactly as in our structural estima-
tion framework [20]. Thus, the new challenge that arises
in the presence of path expressions with both structural and
value predicates is to utilize the XSKETCH-summary infor-
mation to provide sound estimates for the selectivities of
stable twigs with selection predicates on node values. We
address this problem next.

4.2 Stable-Twig Estimation Algorithm

Consider a stable twig embedding 7" in an XSKETCH syn-
opsis XS(G), and let & denote a collection of value pred-
icates over the nodes of 7". Our goal is to utilize the sta-
tistical information in XS(G) to obtain an estimate for
f(T{a}), the fraction of data elements that are discovered
by the “value-restricted” twig embedding T{z}.

Once again, to simplify the exposition, we consider a
single-branch stable twig T"; our discussion can easily be
extended to the general, multi-branch case. (We also use T’
as the set of XSKETCH nodes in the twig when no confu-
sion arises.) Let v be anodein T'. Given a set S of ancestor
and/or descendant nodes of v in T', let twig(v, S) denote
the sub-twig of 7" that connects v to all the nodes in S, and
let 7(.S) denote the set of value predicates on nodes of .S in
our twig query (i.e., the restriction of & to .S).

Our algorithm for estimating the selectivity of a stable
twig embedding T{5} (termed TwIGEST) is depicted in
Figure 3. Briefly, our TwIGEST algorithm examines each
node v in the main path of the twig embedding (in reverse
order) and considers the set of value predicates that can
be directly ““covered” by the node’s joint-distribution his-
togram based on its correlation scope dep(v). When a
branching node (e.g., v,) is encountered, TWIGEST tra-
verses the branch top-down once again using nodes’ corre-
lation scopes to cover value predicates in the branch. This
covering of value predicates is based on successive appli-
cations of the Chain Rule as we parse the twig embed-
ding; of course, since each node carries only limited value-
correlation information, our estimate relies on one final in-

dependence assumption for element-value distributions.

Ab5. [Value-Independence Outside Correlation Scope]
The distribution of elements in the extent of an XS-
KETCH node v is independent of the values in other
XSKETCH nodes w that are not in v’s direct correla-
tion scope, i.e., u & dep(v).

Assumption (A5) allows us to simplify the Chain-Rule con-
ditionals to obtain the conditional probability f* in Step 11
of TwIGEST, which can be directly estimated using the his-
togram information in v. Once all value predicates in the
embedding T'{7} have been covered, TWIGEST returns the
accumulated selectivity estimate for f(T{7}).

procedure TWIGEST(XS(G),T{7})

Input: XSKETCH XS(G); stabletwig T =v1/ -+ /vn—k—1/—
UnlVn-1/"" [Un—k]/Vns1/ " [Unt+m With value
predicates 7.

Output: Estimate of the selectivity fraction f(7{z}).

begin

1. Covered := ¢; Uncovered := { nodes with value predicate in 7'}

2. result:=1;index :==n + m; v 1= Vindex

3. whileUncovered # ¢ do

4 I check for predicates covered by node v’s statistics

5 if (Uncovered Ndep(v,T) # ¢) then

6. /I find covered and uncovered ancestors/descendants of

7 [/l v that are in its direct “correlation scope”

8 C' := Covered Ndep(v,T)

9. U :=Uncovered N dep(v,T)

10. Using the element distribution information (histogram)
at v, compute the conditional fraction:

11. [= f(ewig(v, U){E(U)} | twig(v, C){a(C)})

F(wig(v,UUC) {5 (UUC)})

f(twig(v,C){a(C)})
12. /I update result estimate and covered/uncovered nodes
13. result := result x f*; Covered := Covered U U
14. Uncovered = Uncovered — U
15. endif
16. index:=index —1; v := vindex // Move to next twig node
17. endwhile
end

Figure 3: The TwiGEST Algorithm for Selectivity Estimation
over Stable XSKETCH Twigs.

5 XSKETCH Construction

In this section, we turn our attention to the important prob-

lem of effective XSKETCH construction for a given syn-

opsis space budget. Briefly, our approach is based on us-

ing successive, localized refinement operations to gradu-

ally evolve an initial, coarse XSKETCH into a more detailed

synopsis that captures the important path and value corre-

lations in the data. We first discuss the specific set of XS-
KETCH refinement operations that we use, and then present
our construction algorithm in more detail.

5.1 Refinements

In order to approximate path-expression selectivities, our
XSKETCH estimation framework (Section 4) relies on a
number of statistical (uniformity and independence) as-
sumptions that compensate for the lack of detailed path and
value information in the synopsis. Clearly, the accuracy
of an XSKETCH (and the resulting selectivity estimates)
depend crucially on the validity of these assumptions and
the degree to which they reflect the statistical characteris-
tics of the underlying path/value distribution in the actual
data. To build an effective XSKETCH, we need to be able
to appropriately refine the synopsis structure for regions
of the data graph where our estimation assumptions fail,
since these regions are likely to result in high estimation
errors. (The relational-world analog would be allocating
more buckets to “difficult” data regions during histogram
construction [22].) In this section, we introduce such lo-
calized refinement operations for XSKETCH synopses. We
categorize our refinement operations into two types: (1)
structural refinements that refine the path structure in the
XSKETCH, and (2) value refinements that refine the value-
distribution information maintained in XSKETCH nodes.

Structural Refinements. Our structural-refinement opera-
tions try to improve estimation accuracy by locally refining
the path and branching structure of the XSKETCH in order
to capture important structural correlations in the data. Ab-
stractly, each refinement operation uses a partitioning cri-
terion to split an XSKETCH node u into a set of new nodes
{u;}, so that either some uniformity/independence assump-
tion(s) are eliminated for the new synopsis nodes {u;}, or
at least such assumptions are much more realistic for the
new nodes {u; } than « (similar to histogram-bucket splits).
Thus, successive refinements evolve the synopsis to a larger
and more precise structure. Our three structural-refinement
operations, namely b- st abi | i ze, f- st abi | i zeand b-
split, are defined exactly as for our structural XSKETCH
synopses [20], with the addition of two post-processing
steps (common to all structural refinements) that handle the
value distribution information (possibly) maintained in the
XSKETCH node u being split. The definition of our struc-
tural refinements as well as details on the post-processing
steps can be found in the full version of this paper [21].

Value Refinements. Our value-refinement operations try
to improve estimation accuracy for value predicates by in-
creasing the granularity of the value-distribution informa-
tion maintained at individual XSKETCH nodes. Abstractly,
there are two ways to improve the accuracy of the dis-
tribution information at an XSKETCH node u: (1) give
more space (i.e., additional buckets) to the histogram(s)
already in u, and (2) expand the correlation scope of u,
so that additional value correlations within «’s stable twig
neighborhood are captured. Thus, we introduce two new
value-refinement operations for XSKETCH nodes u with
histogram information: (1) add- bucket which allocates

more space to histograms, and (2) expand, which expands
the correlation scope of a node. A detailed discussion of
our two value-refinement operations can be found in the
full paper [21].

5.2 Construction Algorithm

Building an XSKETCH that accurately summarizes a large
XML data graph within a given space budget is, in many
respects, similar to other statistical-model inference prob-
lems, where the goal is to infer an “optimal” statistical
model (e.g., Bayesian or Markov) from an underlying data
set. Unfortunately, we have demonstrated that (like most
such problems [19]) our effective XSKETCH construction
problem is A/P-hard, even for the much simpler case of
purely structural XSKETCHes (i.e., when no values are
present) [20].

Based on this intractability result, we propose a
computationally-efficient heuristic algorithm for building
XSKETCH synopses. Abstractly, our algorithm views XS-
KETCH construction as a search problem over the space
of all possible XSKETCH synopses, and uses our local-
ized XSKETCH refinement operations to effectively ex-
plore this space. More specifically, our algorithm (termed
BUILDXSKETCH) is based on a greedy, forward-selection
paradigm that starts out with a very coarse synopsis model
and incrementally adds more complexity using our local-
ized XSKETCH refinements. The initial (coarse) synop-
sis is basically the label-split graph [20] (that partitions
data element nodes into synopsis node based solely on
their label) augmented with minimal distribution informa-
tion: for each synopsis node v that contains values, a triv-
ial (i.e., single-bucket) one-dimensional histogram is cre-
ated to capture the distribution of values in extent(v).
Our XSKETCH-refinement strategy is based on the idea of
marginal gains [11]: at each step, the refinement opera-
tion that results in the largest increase in accuracy per unit
of extra space required (and, of course, does not violate
our overall space budget for the synopsis) is selected for
inclusion in the XSKETCH. To avoid getting trapped in lo-
cal minima, BUILDXSKETCH takes a number of random
steps (i.e., random node refinements) when no accuracy-
improving neighbor can be found. We rely on two key tech-
niques in order to keep the construction process tractable:
(1) using a reasonably accurate (and large) reference synop-
sis of the data graph instead of the raw data for evaluating
XSKETCH configurations, and (2) biased path and node
sampling to select “interesting” regions of the data for our
refinements and XSKETCH evaluations. The complete de-
tails of our XSKETCH-construction algorithm can be found
in the full version of this paper [21].

6 Experimental Study

In this section, we present results from an empirical study
that we have conducted using our novel XSKETCH syn-
opses over real-life and synthetic XML data sets. Our re-

| [TMDB [XMark |

No. of Elements 102,755 87,480

. No. Nodes 164 80
'(‘;TZSLSF"“ Total Size 9.1KB | 4.1KB
Size of Hists 1.7KB 688B

Reference No. ques 49,181 83,466
Synopsis Tgtal Slze_ 1.9MB 3.3MB
Size of Hists 388KB | 667KB

Table 1: Characteristics of the Two Data Sets.

sults demonstrate the ability of XSKETCHes to capture im-
portant path and value correlations in the underlying data
using only limited space, and to provide accurate selectiv-
ity estimates for complex path expressions.

6.1 Testbed and Methodology

Techniques. Our prototype XSKETCH implementation im-
plements the full estimation framework of Section 4, using
one-dimensional histograms to summarize value distribu-
tions under synopsis nodes with values. As a result, our es-
timation algorithm relies on value independence to approx-
imate path expressions with value predicates. We found
that, even though such independence assumptions are not
valid in general, they are sufficiently accurate for the data
sets used in our evaluation. We are currently extending our
prototype with (conventional and range) multi-dimensional
histograms.

Our construction algorithm considers refinements on a
biased 10% sample of all summary nodes and determines
the score of each operation based on a biased sample of 100
label paths. Note that, in our current implementation, XS-
KETCH construction does not consider expand refinement
operations, since all node histograms are one-dimensional.

Data Sets. We use one real-life and one synthetic data set
in our evaluation.

IMDB: This is a real-life, graph-structured data set from
the Internet Movie Database (www. i ndb. com). It con-
tains a large number of | DREF edges resulting in a highly
irregular and cyclic path structure.

XMark: This is a synthetic, graph-structured data set, mod-
eling the activities of an on-line auction site (www. xm -
benchmar k. or g). The path structure is highly irregular
but the data set does not contain any cycles.

Table 1 summarizes the main characteristics of our data
sets. In both cases, we observe that our accurate reference
synopsis (i.e. the B/F-bisimilar graph augmented with an
accurate histogram for each extent with values) requires a
considerable amount of storage and is, therefore, impracti-
cal as a concise compile-time synopsis. This is obviously
expected, given the highly irregular structure of the IMDB
and XMark data sets. Note that the sizes reported do not
include the space required to store the actual text of each

| [TMDB | XMark

Branching w/o predicates 1901 1057
Paths with predicates 478 254
Simple w/o predicates 933 771
Paths with predicates 483 302

Table 2: Average Query Workload Result Sizes.

label; each label is hashed to an integer and stored in a sep-
arate structure that is not part of the summary.

Workload. We evaluate the accuracy of each synopsis
against a workload of positive path expressions, i.e., ex-
pressions that have a non-zero result size in the original
data. We form the workload by sampling document twigs
or paths from the reference graph and converting them to
the corresponding label paths. The length of path expres-
sions is uniformly distributed between 2 and 5, and the
workload contains 500 path expressions with no predicates
and 500 expressions with one value range predicate. Each
value predicate covers a random 10% range of the value
domain of the tag it is attached to. We form two types of
workloads: (1) Branching Paths, where half of the path ex-
pressions (with and without a value predicate) contain a
branching predicate, and (2) Simple Paths, where no path
expression contains branching predicates. Table 2 summa-
rizes the average result size of each type of path expression
across our two data sets.

We have also experimented with negative workloads,
containing queries that have a zero count in the original
data. Our XSKETCH summaries consistently produced
close to zero estimates with negligible error, and, therefore,
we omit these results from our presentation.

Evaluation Metric. We quantify the accuracy of an XS-
KETCH summary based on the average absolute relative
error of result estimates over path expressions in our work-
load. Given a path expression p with true result size ¢, the
absolute relative error of the estimated count e is computed
as |e—c|/ max(c, s). Parameter s represents a sanity bound
that essentially equates all zero or low counts with a de-
fault count s and thus avoids inordinately high contribu-
tions from low-count path expressions. We set this bound
to the 10-percentile of the true counts in the workload (i.e.,
90% of the path expressions in the workload have a true
result size > s).

In our results, we report the estimation error for path
expressions with value predicates, termed Pred, the esti-
mation error for path expressions without value predicates,
termed No Pred, and the overall error for both types of path
expressions in the workload, termed Overall.

6.2 Experimental Results

XSKETCH Performance for Branching Paths. In this ex-
periment, we evaluate the performance of our XSKETCHes

Rel ative Error
w » a o ~ @
S S o S =) S
T T T T T

*

N
]
T

i
5]
T

=)

L L L L L L L L
5 10 15 20 25 30 35 40 45 50
Synopsi s Size (KB)

(a) IMDB Data Set

80 T T T T T T

70 - B

Rel ative Error
S
o
T
L

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Synopsi s Size (KB)

(b) XMark Data Set

Figure 4: XSKETCH Estimation Error for Branching Paths.

for branching path expressions with range value predicates.

Figure 4 depicts the estimation error of XSKETCHes for
the IMDB and XMark data sets as a function of the synop-
sis size. Note that, in all the graphs that we present, the es-
timation error at the smallest summary size corresponds to
the label-split graph synopsis. Our results indicate that XS-
KETCHes constitute an efficient and accurate summariza-
tion method for graph-structured XML documents: even
for a small space budget of 10KB-20KB, estimation error
drops substantially and is lower than the error of the coars-
est summary (label-split graph). The improvement is more
evident for the IMDB data set where estimation error drops
close to 10% using a small fraction (1%) of the space re-
quired by the “near-perfect” reference synopsis (Table 1).

In both workloads, the estimation error drops faster dur-
ing the first few iterations of our construction algorithm
and follows a more gradual decrease thereafter. This in-
dicates that our XSKETCH construction algorithm captures
the most important correlations early in the build process
and then gradually refines the summary with respect to
“less dominant” dependencies. We note that the locally op-
timal decisions of the greedy construction algorithm can
cause minor fluctuations in the accuracy of the generated
summaries, but, in general, estimation error is decreased as
more storage is allocated.

Overall, our results indicate that our XSKETCH syn-
opses can yield accurate selectivity estimates with low
space overhead and can be efficiently constructed with our
forward selection algorithm.

XSKETCH Performance for Simple Paths. In this exper-
iment, we focus on the simpler case of simple (i.e., non-
branching) path queries with value predicates.

Figure 5 depicts the XSKETCH estimation error for the
IMDB and XMark data sets as a function of the synopsis

size. Our results clearly show that XSKETCHes can accu-
rately estimate the selectivities of simple path expressions
with value predicates over graph-structured XML data. In
both datasets and for an alloted space budget of 15-20
KBytes, the estimation error drops below 10% and is sig-
nificantly lower than the error of the coarsest summary, the
label-split graph. In addition, this low error is achieved for
a fraction of the size of the reference synopsis (Table 1). In
the IMDB data set, for example, XSKETCHes drop the es-
timation error from 50% to 5% for a space budget equal to
only 0.07% of the size of the reference synopsis. Regard-
ing the construction process itself, we once more observe
that our XSKETCH construction algorithm is able to cap-
ture the most important path and value correlations in the
data during the first few steps of the build process, thus
reducing the estimation error substantially for small XS-
KETCH sizes. Overall, XSKETCHes can efficiently capture,
in limited space, the simple path structure and value distri-
bution of the input data, thus providing accurate estimates
for simple path expressions with value predicates.

7 Conclusions

In this paper, we have proposed a hovel XSKETCH graph-
synopsis model for XML data graphs with raw data val-
ues. Our proposed synopses exploit localized stability
and value-distribution summaries to accurately capture the
complex correlation patterns that can exist between and
across path structure and element values in the data graph.
We have also developed a systematic XSKETCH estimation
framework for path expressions with value predicates that
relies on appropriate statistical assumptions to compensate
for the lack of detailed information in the synopsis. Finally,
we have proposed an efficient XSKETCH construction al-
gorithm based on greedy forward selection. Results from

80 T T T T T

70 - g
60]
50 i 4

40

Rel ative Error

sof A
20 -

10

L L L !
5 10 15 20 25 30 35 40 45 50
Synopsi s Size (KB)

(a) IMDB Data Set

80 T T T T T T

70 - B

60 B

50 B

Rel ative Error
S
o
T
L

30

20

10

0 5 10 15 20 25 30 35 40 45 50
Synopsi s Size (KB)

(b) XMark Data Set

Figure 5: XSKETCH Estimation Error for Simple Paths.

our XSKETCH implementation have verified the effective-
ness of our approach.

References

[1] A. Aboulnaga, A.R. Alameldeen, and J.F. Naughton. “Esti-
mating the Selectivity of XML Path Expressions for Internet
Scale Applications”. In Proc. of the 27th Intl. Conf. on Very
Large Data Bases, September 2001.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E.
Maler. “Extensible Markup Language (XML) 1.0 (Sec-
ond Edition)”. W3C Recommendation (available from
www. W3. or g/ TR/ REC- xm /), October 2000.

[3] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. ‘A
Query Language and Optimization Techniques for Unstruc-
tured Data”. In Proc. of the 1996 ACM SIGMOD Intl. Conf.
on Management of Data, June 1996.

[4] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. “XQuery 1.0: An XML Query
Language”. W3C Working Draft 07 (available from
www. W3. or g/ TR/ xquer y/), June 2001.

[5] Z. Chen, H.V. Jagadish, F. Korn, N. Koudas, S. Muthukrish-
nan, R. Ng, and D. Srivastava. “Counting Twig Matches in a
Tree”. In Proc. of the 17th Intl. Conf. on Data Engineering,
April 2001.

[6] J. Clark. “XSL Transformations (XSLT), Version 1.0".
W3C Recommendation (available from www. w3. or g/ -
TR/ xsl t /), November 1999.

[7] J. Clark and S. DeRose. “XML Path Language (XPath),
Version 1.0". W3C Recommendation (available from
www. W3. or g/ TR/ xpat h/), November 1999.

[8] S. DeRose, E. Maler, and D. Orchard. “XML Linking Lan-
guage (XLink), Version 1.0". W3C Recommendation (avail-
able from www. w3. or g/ TR/ xI i nk/), June 2001.

[9] A. Deshpande, M. Garofalakis, and R. Rastogi. “Indepen-
dence is Good: Dependency-Based Histogram Synopses for
High-Dimensional Data”. In Proc. of the 2001 ACM SIG-
MOD Intl. Conf. on Management of Data, May 2001.

[10] W. Feller. “An Introduction to Probability Theory and its
Applications — Volume I”. John Wiley & Sons, 1968.

[11] B. Fox. “Discrete Optimization Via Marginal Analysis”.
Management Science, 13(3):211-216.

[12] J. Freire, J.R. Haritsa, M. Ramanath, P. Roy, and J. Siméon.
“StatiX: Making XML Count”. In Proc. of the 2002 ACM
SIGMOD Intl. Conf. on Management of Data, June 2002.

[13] R. Goldman and J. Widom. “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases”.
In Proc. of the 23rd Intl. Conf. on Very Large Data Bases,
August 1997.

[14] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. “Ex-
ploiting Local Similarity for Efficient Indexing of Paths in
Graph Structured Data”. In Proc. of the 18th Intl. Conf. on
Data Engineering, February 2002.

[15] J. McHugh and J. Widom. “Query Optimization for XML".
In Proc. of the 25th Intl. Conf. on Very Large Data Bases,
September 1999.

[16] T. Milo and D. Suciu. “Index structures for Path Expres-
sions”. In Proc. of the 7th Intl. Conf. on Database Theory,
January 1999.

[17] J.F. Naughton, D.J. DeWitt, D. Maier, et al. “The Niagara
Internet query system”. IEEE Data Eng. Bulletin, 24(2).

[18] R. Paige and R.E. Tarjan. “Three Partition Refinement Al-
gorithms”. SIAM Journal on Computing, 16(6).

[19] J. Pearl. “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference”. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA, 1988.

[20] N. Polyzotis and M. Garofalakis. “Statistical Synopses for
Graph-Structured XML Databases”. In Proc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Data, June
2002.

[21] N. Polyzotis and M. Garofalakis. “Structure and Value Syn-
opses for XML Data Graphs”. Bell Labs Tech. Memorandum,
February 2002.

[22] V.Poosalaand Y.E. loannidis. “Selectivity Estimation With-
out the Attribute Value Independence Assumption”. In Proc.
of the 23rd Intl. Conf. on Very Large Data Bases, August
1997.

[23] J.S. Vitter and M. Wang. “Approximate Computation
of Multidimensional Aggregates of Sparse Data Using
Wavelets”. In Proc. of the 1999 ACM SIGMOD Intl. Conf.
on Management of Data, May 1999.

[24] Y. Wu, J.M. Patel, and H.V. Jagadish. “Estimating Answer
Sizes for XML Queries”. In Proc. of the 8th Intl. Conf. on
Extending Database Technology (EDBT’02), March 2002.

