
A Case for Fractured Mirrors

 Ravishankar Ramamurthy David J. DeWitt Qi Su

Department of Computer Sciences
University of Wisconsin-Madison

ravi@cs.wisc.edu, dewitt@cs.wisc.edu, qi@cs.wisc.edu

Abstract

The Decomposition Storage Model (DSM) vertically
partitions all attributes of a given relation. DSM has
excellent I/O behavior when the number of attributes
touched in the query is small. It also has a better cache
footprint than the N-ary storage model (NSM) that is used
by most database systems. However, DSM incurs a high
cost in reconstructing the original tuple from the
partitions. We first revisit some of the performance
problems associated with DSM. We suggest a simple
indexing strategy and compare different reconstruction
algorithms. The paper then proposes a new mirroring
scheme, termed fractured mirrors, using both NSM and
DSM models. This scheme combines the best aspects of
both models, along with the added benefit of mirroring to
better serve an ad-hoc query workload. A prototype
system has been built using the Shore storage manager
and performance is evaluated using queries from the TPC-
H workload.

1. Introduction

A number of the fundamental assumptions upon which
the current generation of database systems are based have
changed dramatically over the past decade. CPU speeds
are improving rapidly (recently even faster than Moore’s
law would have predicted) and the amount of main
memory that is affordable is also increasing. While disk
capacities have also shown similar improvements, disk
seek times and effective transfer rates (transfer rate
/capacity) have improved at a much slower rate (almost a
factor of 10 slower). In addition since it appears that disk
capacities are growing faster than database sizes, even the
benefits of using parallelism are likely to diminish. Hence

disk I/O will certainly constitute the primary performance
bottleneck. Moreover, in modern architectures, cache
performance has also been shown to be an important
factor in the CPU time of query execution [11]. Hence
database storage architectures that are more conscious of
disk-arm optimizations and cache effects during query
processing are needed.

Database systems usually store all the attributes of a
relation together. But this format is not ideal for modern
database architectures given that cache-misses form an
important component of query execution time [1]. An
alternate storage model (DSM) uses vertically partitioned
tables [8]. In this representation, each attribute of a
relation is stored as a separate relation along with a
surrogate that identifies the original tuple that the attribute
came from.

A B C ID A ID B ID C
A1 B1 C1 1 A1 1 B1 1 C1
A2 B2 C2 2 A2 2 B2 2 C2
A3 B3 C3 3 A3 3 B3 3 C3
A4 B4 C4 4 A4 4 B4 4 C4
A5 B5 C5 5 A5 5 B5 5 C5

The figure above shows a sample relation in the NSM
representation on the far left and the corresponding DSM
representation on the right. As described in [8], the DSM
model maintains two copies of each partition, one
clustered on IDs as shown above, and the second
clustered on the attribute value, which serves as an index.
DSM seems to have good I/O behavior when the number
of attributes touched by a query is low. Consider a sample
scenario in which a selection operation has low
projectivity and low selectivity, i.e. only a few attributes
are projected from a large percentage of the tuples. With
the DSM representation only the partitions required by the
query would be scanned, minimizing the number of disk
I/Os performed while maximizing L1 and L2 data cache
performance. With the NSM representation, since the
query predicate is not very selective, an index would not
be useful and the entire relation would be scanned. In
addition, NSM would have poor cache performance [1].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

PAX is a recently proposed alternative implementation of
the NSM representation that employs vertical partitioning
within each page [2]. For this example query, PAX
would have a much better cache footprint than NSM,
while having the same I/O characteristics as NSM. Hence
for this query, it seems that DSM is the best choice.
However, it is just as easy to come up with examples
where the NSM representation is better. While DSM
seems to be ideal for selections with low projectivity and
low selectivity, as the projectivity increases, the cost of
reconstructing the original tuple from the partitions begins
to dominate the execution time. On the other hand, the
NSM model is tuned for workloads that are highly
selective and uses most of the attributes. Hence, neither
storage format is optimal for all queries. The paper
proposes a storage architecture that is a variant of the
existing mirroring technique as a first step towards
addressing this problem.

Mirroring [5][14] (RAID 1) is a technique for providing
fault tolerance that maintains two (or more) identical
copies of each disk. If one disk of the mirrored pair fails,
the system can continue operating while the failed disk is
replaced and then recovered from the mirror. Mirroring
can be implemented in either hardware or software. In
addition to providing fault tolerance, mirrors can also be
used to improve performance by partitioning random
seeks across the mirrored pair [5]. This can be critical
since random seeks are very slow.

In this paper we propose a new form of mirroring termed
fractured mirrors. With this scheme, instead of the two
disks in the mirrored pair being physically identical, they
are logically identical. The naïve implementation of
fractured mirrors would store the NSM copy of a table on
one disk of the mirrored pair and the DSM copy on the
second disk1.

This scheme retains the advantages of both the NSM and
DSM representations. Queries touching only a few
attributes of a large number of rows will use the DSM
copy. Highly selective queries or queries requiring a
majority of the attributes will use the NSM copy. This
idea builds on the idea of disk shadowing [5][14], which
demonstrated that mirrors could be used profitably during
query processing and not only for the purposes of fault
tolerance. By storing the mirrors in different storage
formats, we can formulate query plans that can truly
maximize disk utilization while minimizing the number of
L1 and L2 cache misses. However a naïve implementation
of DSM can lead to surprisingly bad performance, even
when very few attributes are used. The next section

1 If a table is horizontally striped across multiple mirrored pairs,
the rows stored on a single mirrored pair will be stored in their
NSM representation on one disk and their DSM representation
on the second.

details the performance limitations of the DSM
representation and how simple storage schemes and scan
algorithms can improve its limitations. Section 3
describes our prototype, strategies for structuring the
fractured mirrors and alternative query execution plans
that the use of fractured mirrors can provide. An
experimental evaluation of the prototype using queries
from the TPC-H benchmark suite follows. The paper
concludes with a presentation of related work and
strategies for handling updates.

2. Storing and Scanning DSM Partitions

2.1 The Naive Implementation

The straightforward way of implementing the vertical
partitions of the DSM model is to store each vertical
partition as a separate relation with two attributes, an
integer that acts as an identifier and the column’s value as
illustrated previously. When used to store the Line-item
table from the 1 GB version of TPC-H benchmark (which
has 16 attributes) this approach has very poor space
utilization and performance. With the NSM
representation, this table occupies about 1.1 GB and a full
table scan takes 74.5 seconds.2 The DSM representation
on the other hand occupies 2.8 GB. For DSM, the
attributes were assembled one tuple at a time like a
traditional scan. The following table illustrates that a
naïve implementation of DSM provides a performance
advantage only when a single attribute from the table is
touched.

Projectivity 1 2 4 8
ScanTime(s) 68.29 138.06 366.86 759.39

Several factors contribute to the poor performance of this
implementation strategy. First, the naïve DSM
implementation stores each (ID, <AttrValue>) pair as
standard database record on a slotted page [15]. While the
slot overhead is generally not significant when a record is
used to hold a tuple in the NSM representation, it can
become significant when the record is used for a single
(ID, <Attr Value>) pair. Furthermore, for fixed-length
attributes, whose position on the page can be computed
from the length of the attribute and the ID, the slotted
page representation is redundant. The second significant
source of wasted space is the ID itself. Storing a 32 or 64
bit identifier with each attribute can easily double the
space required to store a table. It is very important to keep
in mind that the real issue is not the disk space required
for the slot array entry or the ID. Disk space is almost free
these days. The issue is that the extra space consumes

2 The NSM copy and DSM partitions were stored as files in
Shore configured to have a 128 MB Buffer pool and 32 KB page
size.

precious I/O disk operations when the partition is
processed.

 Another drawback of the naïve strategy is that it is not
possible to quickly reassemble a tuple from its vertical
partitions given the tuple’s ID. Some form of index such
as a B-Tree mapping ID to <AttrValue> is required to do
this efficiently.

This leads to an alternative representation in which each
vertical partition is stored as a B-Tree on ID with the leaf
pages containing (ID, <Attr Value>) pairs. While this
approach still wastes space storing a tuple’s ID once for
each of attribute values plus the cost of a slot array entry,
it makes the task of reassembling a tuple given its ID
straightforward. More importantly, it leads us to a refined
representation that we describe below.

2.2 A Sparse B-Tree Based Representation

Our refined design uses a modified B-Tree design in
which the overhead of the redundant IDs is eliminated for
both fixed and variable length attributes and the slot array
overhead is eliminated for fixed length attributes.

Our approach is based on several simple observations.
First, IDs are system generated by incrementing a counter,
and are never reused3. Thus, new (ID, <Attr Value>) pairs
are always appended to the right-most leaf node of the B-
Tree. In addition, for fixed-length attributes, given the ID
of the lowest attribute value on a leaf page, there is no
need to store the IDs of the remaining attributes as they
can be computed given the attribute’s offset from the start
of the page. This avoids the need for either a slot-array or
IDs. Furthermore, if storage extents are guaranteed to be
contiguous, then all records can be retrieved using offset
computation on physical RIDs and the B-Tree is no longer
necessary [21]. For variable length attributes, a standard
slot array is necessary, but the attribute’s position in the
slot array can be used to calculate the attribute’s ID.
Consequently, for fixed-length attributes, the B-Tree leaf
pages contain only attribute values without IDs or slot
arrays, raising the effective space utilization to essentially
100%. The upper levels of the B-Tree are organized in a
normal fashion with the key entry for a leaf page
containing the ID value corresponding to the “smallest”
tuple on the leaf page.

Processing the attribute values in a DSM partition
happens in one of two ways. For a sequential scan of all
values, the index is first traversed to the left-most leaf and
then the leaf pages are scanned sequentially. To retrieve
the attribute value for the tuple with a particular ID, the
B-Tree is traversed to locate the correct leaf page by
searching for the index entry that “covers” the ID. An
index entry is said to cover a particular ID if the ID lies

3 Handling deletes is discussed in a later section

between the index entry and its succeeding entry in the
index. Once the correct leaf page is located, the page is
read and the offset computation described above is used to
locate the desired attribute value.

2.3 Tuple Reconstruction Algorithms for DSM

Scan is a fundamental database operation that scans all
tuples in a table, possibly applying one or more
predicates in the process. When one or more of a table’s
attributes are not required by subsequent operators in the
query, the scan is normally combined with a project
operator to eliminate unwanted attributes as output tuples
are produced. In a database system that uses the NSM (or
PAX) storage representation, the scan operation is trivial
to implement; successive pages of a relation are read until
the end of file is reached. In the case of the B-Tree DSM
representation described in Section 2.2, several different
scan algorithms are possible. In this section we describe
and compare these algorithms for reconstructing a tuple
(or portions of a tuple) from the B-Trees used to hold the
vertical partitions.

Tuple-at-a-time Reconstruction

The simplest DSM reconstruction algorithm begins by
opening a sequential scan on the B-Trees of each attribute
required to produce the output relation plus those
attributes on which a predicate is to be applied. The scans
are processed in lock-step one tuple at a time, any
applicable predicates are applied and qualifying tuples are
materialized in their NSM representation on the
reconstruction operator’s output stream. The primary
disadvantage of this approach is that it incurs a random
seek each time a new B-tree leaf page is read.

Chunk-based Reconstruction

A scan of a relation stored in the DSM representation can
also be viewed as a multi-way join of each of the table’s
vertical partitions. Since today’s database systems include
very efficient join algorithms, one might be tempted to
simply use the standard join code to reconstruct a table
from its partitions. However, reassembling a table of 20
attributes with a 19-way join is likely to overwhelm any
database system. The join of the DSM partitions is
actually a very special kind of merge-join in which the
input tables are already sorted on the join attribute (i.e. the
“virtual” ID value) and each attribute value joins exactly
one attribute from all the other partitions and, thus, is
handled exactly once.

If N pages of memory are available and K attributes are
accessed by the scan, the reconstruct-in-chunks algorithm
begins by dividing the memory into K chunks of size N/K
pages. Each chunk corresponds to one attribute. It then
opens scans on the B-Trees of each of the K attributes,
filling each of the K chunks with N/K leaf pages from the

corresponding B-Tree before proceeding to the next
chunk. The value of this simple tactic cannot be
overemphasised. While disk capacity increased a factor of
1000 in the twenty-year period from 1980 to 2000 (80
MB to 80 GB), the time for a random disk seek has
decreased by only a factor of 6 (from 30 ms to 4.9 ms)
over the same period. Filling each vertical partition a
chunk at a time, reduces the number of random seeks
performed by the “ join” by a factor of N/K.

The other key technique the algorithm uses is to process
attribute values in a chunk in cache-line size units to
insure that the L1 and L2 data caches are used as
effectively as possible. Thus, with a 64 byte cache line
and 4 byte attribute values, the algorithm constructs
output tuples 16 at a time.

2.4 Performance

This section evaluates the effectiveness of the suggested
storage schemes and scan-algorithms. We first show how
to select an appropriate value for N/K - the number of
pages to use for each attribute with the Chunk based
merge algorithm.

The graph above illustrates how the reconstruction time
using the Chunk-based merge algorithm varies as a
function of the chunk size for scanning 5 and 10 attributes
from the 1GB version of the TPC-H Line-item table. As
the graph illustrates beyond about 6 pages no further
improvement occurs. For all subsequent experiments, a
chunk size of 5 pages is used.

The next graph shows the DSM scan times as a function
of the number of attributes being reassembled using the
tuple-at-a-time and the chunk-based merge algorithms.
For reference, the NSM scan time for the table is also
shown.

While the tuple-at-a-time algorithm can reassemble only 4
attributes in less time than the time required to
sequentially scan the entire NSM table, the chunk-based
algorithm can reassemble 12 out of 16 attributes before its
performance becomes worse. The results for both
algorithms are much better than the results presented for
the Naïve DSM implementation in Section 2.1, which
required 138 seconds to reassemble just two attributes.
Since the naïve representation also used a tuple-at-a-time
algorithm, the primary difference is due to the improved
B-tree-based storage scheme described in Section 2.2.

We think these results are very encouraging. By
eliminating the redundant storage of IDs and, by using
better scan algorithms, these results indicate that the DSM
representation, when implemented properly, can provide
better performance over a much wider range of situations
than previously believed. In the following section we
describe a new mirroring strategy that incorporates both
NSM and DSM copies of a table.

3. Mirroring using DSM

3.1 Introduction

Both the NSM and DSM storage models have inherent
limitations. Database systems, having to pick one, have
traditionally chosen NSM, as it is more suitable for
OLTP-like applications. Most database systems today
employ some form of redundant storage to provide
tolerance to disk failures. While RAID-5 is frequently
used today, the trend is toward increased use of RAID-1
(mirroring). Even though mirroring incurs a 100%
storage penalty, write operations are more efficient than
RAID-5 since there is no check sum block to be updated.

In this section we describe a new form of mirroring that
we term fractured mirrors. The basic idea is simple:
rather the two disks in a mirror being identical physically,
they are instead logically identical. In particular, with
fractured mirrors, one copy of each table is stored in a
NSM representation and one is stored in a DSM
representation. This section outlines how such a system
can be constructed while retaining the advantages of both
formats without losing the advantages of mirroring.

 3.2 Data placement for Fractured Mirrors

The simplest way of implementing mirrors would be to
put the NSM copy on one disk of the mirrored pair and
the DSM copy on the other disk as shown in Figure 1. For

DSMScan Performance

0
20

40
60
80

100
120
140

160
180

1 3 6 10 14

Num of Attributes

D
S

M
 S

ca
n

 T
im

e
(s

)

NSM Scan Time

Tuple-at-a time

Chunk algorithm

Estim a ting N/K va lue

0

20

40

60

80

100

1 2 4 6 10

Num be r o f page s

D
S

M
 S

ca
n

 T
im

e
(s

)

Sc anning 5
attr ibutes

Sc anning 10
attr ibutes

each query, the optimizer would decide which copy is
best and the corresponding representation would be used
to execute the query. The main disadvantage of this
approach is that if the query workload is skewed towards
one of the two representations, the two disks will not be
utilized uniformly. Another problem is that random seeks
cannot be distributed between the mirrors. This is because
NSM and DSM do not have similar performance when it
comes to index lookups. NSM can retrieve the entire tuple
in one access, while DSM must retrieve the additional
attributes by means of additional index lookups using the
ID. Hence the load on the two disks will not be
symmetric. It is, however, possible to place each storage
model on hardware specifically tuned for the model. This
is an idea to explore in the future.

 Figure 1: Data placement based on storage model.

A solution to this problem is the notion of fractured
mirrors, in which data is placed on the mirrors in the
following fashion. Consider a system with two disks. As
shown in Figure 2, the NSM copy is declustered across
the two disks using a round-robin based scheme into two
equal sized fragments NSM0 and NSM1. On disk 1, along
with NSM0, we store the tuples of NSM1 in DSM format
and along with NSM1 on disk 2, we store the tuples of
NSM0 in DSM format. Since both disks have NSM0 and
NSM1 in some data format, they both have a complete
copy of the data. Hence this constitutes a valid mirroring
scheme. Even if the query workload is skewed towards
one representation, since both storage formats are
represented on each disk, accesses will be uniformly
distributed across both disks. More importantly, we can
now partition random seeks between disks in a symmetric
fashion. Since the NSM copy is declustered, on average,
one half of the random page accesses will be handled by
each disk, a key property that the original mirroring
scheme guarantees [5].

An important issue is the choice of an appropriate de-
clustering algorithm [13]. It is essential that the tuples be
distributed uniformly using round-robin declustering
between the two disks, and not using a deterministic

scheme like hashing or range-partitioning. In some ways
fractured mirrors are similar to RAID 10, which first
mirrors an entire file and then declusters blocks between
mirrors for higher bandwidth. The significant difference,
of course being the presence of multiple storage
representations. Another fundamental difference between
the proposed system and RAID schemes is that RAID
schemes usually are implemented by the disk controller in
hardware. Fractured mirrors have to be implemented in
software, which may lead to some inefficiency.

Given a query the database system can now select the
storage format most appropriate for evaluating the query.
Issues in generating query plans for the mirrors are
discussed in Section 4. In the following section we
present some experimental results executing queries from
the TPC-H suite on this system.

 Figure 2: Data placement for fractured mirrors.

3.3 Experiments on the TPC_H Suite

A prototype relational system was built using Shore [6] as
the underlying storage manager and included the normal
relational operators such as scan, join, split, merge etc
along with operators to implement functionality for the
chunk algorithm. The experiments were run on a Pentium
III dual processor machine (550 MHz) with 1 GB of main
memory running Linux 7.1. Three disks (sequential
bandwidth 15-20 Mbytes/s) were used for storing data:
two Shore volumes were stored on the first two for the
fractured mirrors, and the third disk was used to hold the
Shore log file. The Shore buffer pool size was set to 128
MB. A page size of 32 KB was used. 1 GB of TPC-H data
was generated using the data generator. This data was
converted into a tuple representation and stored on the
two volumes as shown in Figure 2. The queries were run
and their results were validated as indicated in the
benchmark specification [24]. All reported times are cold
times and are the average of three runs. The Shore buffer
pool was flushed between queries by dismounting and
remounting the disks between runs. All running times are

 NSM DSM

 NSM0
 DSM1

 DSM0
 NSM1

reported in seconds. A brief description of each query
along with its execution times is given. Query plans are
illustrated wherever appropriate.4

The initial queries demonstrate the advantage of
maintaining a copy of the database in the DSM form. In
each of these queries, the DSM plan assembles all the
required partitions of a relation in a leaf node of the query
plan using the Chunk Algorithm.

Query 6:

Query 6 computes an aggregate over selected rows of the
Line-item Table. The DSM plan only scans the relevant
attributes. (Only 4 attributes are used by the query)

 NSM plan DSM plan

Execution Times (s):
DSM: 25.555
NSM: 75.622

Query 1:

Query 1 is similar to Query 6, except it contains more
complicated aggregate computations. The query touches
seven of the attributes from the Line-item table and has a
predicate on the l_shipdate field that selects about 97% of
the rows.

Execution Times (s):
DSM: 70.091
NSM: 143.675

Query 12:

Query 12 is a join query between Line-item and Orders
tables followed by an aggregation. The DSM plan consists
of two DSM_Scan nodes feeding into the join operator.
Four attributes are used from Line-item and two are used
from Orders.

4 For simplicity, sequential plans are shown. The actual
plans executed are the parallel versions taking into
account the declustering in the two-disk system.

Execution Times (s):
DSM: 164.726
NSM: 232.865

Query 10:

Query 10 is a four-way join between the Line-item,
Orders, Customer, and Nation tables. The query includes
an order-by and a group-by clause and requires only the
first 20 results. Order-by was implemented using the sort
routine of Shore. The DSM plan is shown below with the
number of attributes required from each relation. Again
DSM has the best performance even though the query
touches most of the attributes of the Customer table (7 out
of 9).

DSM plan

Execution Times (s):
 DSM: 277.416
 NSM: 412.612

Query 1*:

This query demonstrates the advantage of having both
NSM and DSM representations in a mirrored system. This
query is a slightly modified version of query 1 that was
discussed previously. The query predicate on l_shipdate is
reversed to make it highly selective.

An index was built on the l_shipdate column to evaluate
this query efficiently. This query shows how DSM
performance deteriorates with highly selective queries
with even moderate degrees of projectivity since it has to
probe additional indexes to fetch the required attributes.

Scan Line-item

Aggregation

DSMScan Line-item
(4 attributes)
Chunk Algorithm

Aggregation

DSM Scan Orders
(3 attributes)

DSM Scan Line-item
(4 attributes)

 Join
(Hybrid-Hash)

DSM Scan Customer
(7 attributes)

 Join on
Customer-Id

 Group By
 Customer-Id

 SORT
 (Top 20)

 Join
on Nation-Id

DSM Scan Nation
(2 attributes)

In the DSM plan, the index on l_shipdate produces the
IDs of the qualifying tuples and then the required
attributes are obtained by using the ID to probe the
corresponding sparse B-Tree indexes. The 6 attributes
probed are assembled using a DSMScan and the
aggregate is evaluated. In this case choosing the NSM
plan would be better and would be feasible in the
mirrored architecture.

Execution Times (s):
DSM: 13.056
NSM: 6.455

 NSM plan DSM plan

Query 19:

The DSM plans in the previous cases assembled all the
attributes of a particular relation in a leaf node. However,
in some cases, it may be more efficient to put together the
attributes in multiple stages based on the selectivity of
each of the attributes touched by the query.

Query 19 is a join between the Line-item table and Parts
table. The query computes the revenue of parts by using
the extended price and discount attributes of the Line-item
table for those tuples that qualify the join. It turns out that
the join is highly selective, producing only 121 tuples.
Moreover, the attributes required for computing the
aggregate are not required anywhere else in the plan.
Hence, with the DSM plan, instead of scanning all six
required attributes from Line-item in a leaf level operator
(DSM-1), another plan would scan only four attributes at
the leaf level (DSM-2). The IDs of the tuples produced by
the join would then be used to probe the B-trees
corresponding to the DSM partitions of the remaining two
attributes that are needed to compute the aggregate. Since
this algorithm will incur a large number of random
accesses to DSM tuples, it is viable only for very highly
selective predicates such as the one in this query (in
which only 121 tuples out of 6 million satisfy the
predicate). The DSMScan on Line-item would produce
the tuple-ids along with the attributes. The join would

project the tuple-ids of the tuples that qualify the join,
these ids would be used to probe the index on the
partitions l_extendedprice and l_discount, and the values
will be used to compute the aggregate. The two
alternative DSM query plans are shown in the figure
below.
The l_shipmode attribute used by this query is a fixed
length string type. Since the attribute contains only four
distinct values, the string values are encoded as an integer
field to exploit the fixed length optimizations for DSM
suggested earlier.

Execution Times (s):
 NSM: 264.469
DSM-1: 224.192
DSM-2: 208.630

Alternate DSM Plans

 IDs

 DSM-1 DSM-2

Hybrid Plan:

We use a simple query to demonstrate the notion of
hybrid plans, plans in which both data models are used to
evaluate the query plan. The query selected is a modified
version of Query 12 which is a join between Line-item
and Orders. An additional predicate is added to the Order
table to restrict the number of order tuples and all
attributes from the Orders table are projected for the
tuples that qualify the join. The best plan for this query is
a hybrid plan in which the NSM copy of the Orders table
and the DSM copy of the Lineitem table are joined.

Execution Times (s):
Pure DSM: 190.804
Pure NSM: 193.212
 Hybrid: 148.637

 IndexScan
 (l_shipdate)

 Aggregation

 IndexScan
(l_shipdate)

Aggregation

DSMScan Lineitem
 (6 attributes)

DSMScan
Line-item
(6 attrs)

 DSMScan
 Parts
 (4 atttrs)

 DSMScan
 Line-item
 (4 attrs)
(

DSMScan
 Parts
 (4 attrs)

 Join

ID lookup
l_discount

ID lookup
l_extprice

DSMScan
 (2 attrs)

 Aggregation

 Aggregation

 Join

ID lookup
l_discount

ID lookup
l_quantity

As we can see, there is not much difference between the
pure NSM and pure DSM plans. Each of these plans has
one leg of the join that is not optimal in terms of disk I/O.
The hybrid plan uses the best means to scan each relation
in the join and hence is better than the other two plans.

Hybrid Plan

The speed-up obtained by using DSM for the discussed
plans is summarized below. We can see that using DSM
yields speed-up factors ranging from 1.3 to 3.

 Query NSM/DSM Ratio
 TPC-H Query 6 2.96
 TPC-H Query 1 2.04
 TPC-H Query 10 1.49
 TPC-H Query 1* 0.49
 TPC-H Query 12 1.42
 TPC-H Query 19 1.26
 Hybrid Plan 1.30

We have also seen for some queries, such as Query 1*
DSM performs poorly. Having both copies as part of a
mirrored system is likely to serve a wider range of query
workloads. Another advantage of maintaining both
representations is that the best plan for certain queries is
one in which both representations are employed. It is to
be noted that these numbers do not necessarily depict the
best-case scenario for DSM. In an environment having
relations with large number of attributes the speed-up
factors could be much more substantial. For example, one
of the key tables used for the Sloan Digital Sky Survey
has over 400 attributes [18].

3.4 Synchronising the mirrors

Once the mirrors have been created, they have to be kept
synchronised through the course of database operations
such as inserts, updates and deletes. In traditional
mirroring, all such operations are applied directly to both
the copies, which is not feasible with fractured mirrors
since the DSM and NSM copies do not have identical
performance characteristics under these operations. For

instance, an insert operation corresponding to a tuple with
n attributes would result in n insert operations on the
corresponding vertical partitions of the DSM copy.
Hence, given high update rates, the overhead of
maintaining the mirrors up to date may result in a serious
performance penalty.

The solution we are implementing uses an intermediate
representation of the relation to serve as a differential file
to record updates and inserts [17]. The differential file is
implemented as a relation with three attributes having the
schema (Tuple-Id, Attribute-Id, Value). A single entry
represents a new attribute value of the original tuple. An
insert operation would now result in the insert of n tuples
to this relation, the main difference being that the inserts
can be implemented as a sequence of sequential writes
since the differential file is clustered on the Tuple-Id
value. With main memories becoming larger and larger,
the differential file can be cached in memory until the
actual updates have been applied to the appropriate DSM
partitions.

Once we have recorded the inserts and updates in the
differential file, we have to propagate these values to the
original partitions regularly to ensure that the differential
file does not grow too large. Eventually we hope to
piggyback these writes whenever there are reads to nearby
cylinders as discussed in [16].

Deletes are handled in a slightly different fashion. We
maintain a single column relation. Each page of the
relation contains a bitmap. For instance a page of size 8K
bytes would contain about a bitmap with 64,000 entries.
To delete a particular tuple in the original relation, we
need to find the page that contains the bit-entry
corresponding to the given tuple-id. The index structure
described in Section 2.2 can provide this access path.
Once the corresponding bit has been located, it is set to 0
to indicate that the tuple has been deleted. A suitable
garbage collection mechanism is used to clean up tuples
that have been deleted. This is similar to the notion of an
existential bitmap outlined in [21].

A side-effect of these schemes is that the differential file
must be consulted during query processing. The Chunk-
based reconstruction algorithm described in Section 2.3
can be extended in a simple fashion to consult the
differential file and the delete bitmap while assembling
tuples. The original k-way merge becomes a k+2 way
merge with the differential file and the delete bitmap read
in tandem with the vertical partitions being assembled.
Tuples from the differential file and the delete bitmap
corresponding to the tuple-ids currently being
reconstructed in memory are also read into main memory.
We essentially ensure that the tuple being assembled has
not been deleted and is also merged with the differential
file updates for it before sending it to the output stream.

DSM Scan Line-Item
(5 attributes)

 Scan Orders

 Join
(Hybrid-Hash)

 Aggregation

Any additionally inserted tuples in the differential file
must also be processed. The differential file and the delete
bitmap are clustered on tuple-id for efficient merging
during the Chunk algorithm.

A disadvantage of caching the differential file in memory
is that the time to reconstruct a disk after a failure may be
longer than with traditional mirroring. If failure only
involves a disk, the failed disk can be reconstructed using
its mirror and the memory-resident differential file. If a
failure involves a loss of a disk as well as the loss of
memory, then it will be necessary to also use the
transaction log to recovery the updates that had not yet
been applied to the DSM copy on disk. The proposed
scheme for handling updates should work well as long as
it is possible to keep the differential file small and
propagate the changes to the partitions on a regular basis.

It is possible in certain environments, such as those
characterized by the TPC-C benchmark, that traditional
mirroring (NSM + NSM) will likely have better
performance than fractured mirrors. However, it may be
the case that, if the updates are mainly updates to
individual attributes, and not inserts (as is the case with
TPC-C), that fractured mirrors should actually have
performance similar to traditional mirrors.

Fractured mirrors are suitable for systems that have
complex queries and a relatively small update to query
ratio in the workload. We are currently working on an
intermediate system that is likely to have update
performance between the two extremes discussed. Some
of the main differences of this system and the one we
have discussed before are as follows. Only fixed length
records are partitioned and all variable length records are
clustered as a single partition. By careful data placement
based on disk geometry we hope to reduce seek times.

 Figure 3: Placing partitions in adjacent cylinders

Traditional data clustering lays out data sequentially
cylinder by cylinder. We modify this slightly for the
partitions. The first partition will be placed on track 1 of
cylinder 1,2,3… etc. The second partition will be placed
on track 2 of cylinder 1,2,3… etc. Thus, when we seek to
a particular cylinder, the corresponding tracks will contain
the vertical partitions of a table. With a single seek
operation about 10 partitions can be reached on a modern
disk drive. Given that all these are partitions contain fixed
length attributes, no additional disk seeks are needed to
propagate updates or inserts to these partitions. Clearly,
the update performance in this approach will be
intermediate to normal mirroring and the fractured mirrors
approach. The data placement strategy is illustrated in
Figure 3.

For this increase in performance, we need to invest more
effort in data placement. If the workload characteristics
are known in advance and if the update rates do not merit
the increased complexity of this approach, the original
scheme of fractured mirrors would be more suitable.

We intend to study compression techniques for DSM in
tandem with careful data placement techniques for the
partitions as future work.

4. Issues in Query Processing

This section outlines how queries can be evaluated for
fractured mirrors. Traditionally query processing proceeds
without regard to whether the data is mirrored or not. The
read requests generated during query execution are
appropriately scheduled between mirrors based on
expected seek times by a low-level disk scheduler. In our
architecture, there is an opportunity to push this decision
up to the level of the query optimizer, as it can choose a
plan that better exploits the semantics of the different data
formats used in the mirrors. This section explains how a
traditional bottom up search based query optimizer can be
extended to generate plans in this environment.

4.1 Optimize-twice Approach

Since we have data stored in two different data models, a
simple way to look at query optimization is to determine
the best possible way to execute the plan using the NSM
and DSM representations and then pick the better of the
two plans. Consider two relations R (R1, R2, R3) and S
(S1, S2) and a simple join query between them. (Assume
R1 and S1 are the attributes on which the query is joined)

Query = �R2 (R S) projects all R2 attributes which
qualifies the join.
The corresponding DSM schema for R and S is
R-1 (id, R1), R-2 (id, R2), R-3 (id, R3) and
S-1 (id, S1), S-2 (id, S2)

Platter 1

Platter 2

Platter N

.

.

.

Cylinder 1
Cylinder 2

Track 1

Track 2

Track N

Attribute #2

Attribute #1

Attribute #N

The equivalent query for the DSM relations would be

�R2 (R-1 �R-2� �S-1��
 The DSM query has the original join between the R1
partition and S1 partition and an additional join based on
ID to retrieve the R2 attributes that belong to this join
result. The Chunk algorithm discussed would be
implemented as a specialized join algorithm that can be
used for joining partitions. The query optimizer would use
standard join ordering schemes and decide the best plan
for the above query using a suitable cost model. Having
obtained the best plans for each storage model, we can
look at the optimizer cost estimates for both the plans and
we would pick the plan having the better cost. Even
though this approach is simple, each query is optimized
twice, which would add to the overhead of query
execution.

4.2 Combined search of plan space

Ideally we would like to explore the search space of both
storage models in a combined fashion, thereby
eliminating the redundancy of the optimize-twice
approach. This section outlines how a bottom-up search
based optimizer can be extended to achieve this objective.
A detailed overview of bottom-up search is available in
the survey [10].

We need a new logical operator Assemble that
corresponds to an operator that combines operator trees
having partitions of the same relation. In the case we are
assembling leaf nodes that are scans on vertical partitions,
the algorithms discussed in 2.3 would be suitable for
implementing this operator. In case we are assembling
two trees of operators having partitions of the same
original relation, the IDs of the partitions produced by the
first tree would be used to probe the sparse B-Tree
indexes of the partitions in the second. This operator is
similar to the materialize operator proposed in [4] for
evaluating pointer joins in object-oriented database
systems.

Consider the simple join query considered in the previous
section. First consider how the search space of plans is
explored for the NSM model. For simplicity we assume
that the database has no indexes to use for this query.

The given query is �R2 (R S). The base nodes for the
search would be scan nodes on relations R and S. Let
these be denoted by {R} and {S}. In the first phase of
search-space exploration, all possible operators will be
applied to the base set. For this example we will have a
join operator that will generate the nodes {R, S} and {S,
R}, corresponding to the 2 join orders possible. Since
both of these nodes have the same logical properties, only
the plan with the least cost will be retained. It happens
that the plan chosen will be complete since it can

implement the projection on R2, which is the only
operation left. Thus, it would be chosen as the optimal
plan.
Let us consider combined optimization for both NSM and
DSM. When starting the search, we need to add as base
nodes all possible initial access paths. Hence we need to
include the nodes in the previous case as well as scans on
all partitions touched by the query i.e. {R}, {S}, {R1},
{R2}, {S1}. Among the set of operators that would
generate new operator trees would be the join operator (as
in the previous case) and the Assemble operator which
would combine partitions.

The Join operator would generate joins for nodes that can
satisfy the join predicate (between attributes R1 and S1).
It would generate the following nodes, {R, S}, {R1, S},
{R1, S1}, {R, S1} and the corresponding nodes with the
join orders reversed. The Assemble operator would
generate {R1, R2}. The Assemble operator is not
sensitive to the order in which the partitions are
assembled. Hence {R2, R1} will not be generated. These
nodes will again be grouped into equivalence classes and
the minimal cost node will be retained for each class.
Here are the classes and the best plans for those classes.
(We do not include the nodes generated due to join
commutativity for simplicity)

Class 1: {R, S} {R, S1} – best plan {R, S1}
Class 2: {R1, S} {R1, S1} – best plan {R1, S1}
Class 3: {R1, R2}

Among these classes, only Class 1 is complete since it can
project the attribute R2 (the class includes a scan on all
attributes of relation R).

In the next phase of optimization, the Assemble operator
will combine {R1, S1} and {R1, S} with {R2} to generate
{R1, S1, R2} and {R1, S, R2}. The join operator will
combine {R1, R2} with {S} and {S1} to generate {R1,
R2, S} and {R1, R2, S1}. Now, all the generated trees
will belong to Class 1 and the best plan among {R, S1}
(the current best plan) and these plans would be picked as
the optimal plan.

The Assemble operator would maintain logical properties
that combine the logical properties of the individual
partitions being scanned. Among the logical properties we
need to maintain is the notion of attributes that come into
scope. For example, the join operator can evaluate the join
{R1, S} because the attributes required for the join from
R (just R1) have already come into scope. By maintaining
this property we can ensure that vertical partitions are also
considered in the joins and the Assemble operator will
ensure that larger partitions are generated from smaller
partitions. This ensures that the combined space of plans
for NSM and DSM will be explored together.

An interesting benefit of this approach is that we can
generate hybrid plans in which the final query plan has
part of the query using NSM and another part using DSM.
For our query example, {R, S1} is a hybrid plan. In
certain cases such plans are better than fully DSM or
NSM plans, which would be the only type of plans,
generated in the “ optimize-twice” approach.

Thus, conventional query optimization can be extended in
a simple fashion to generate plans for fractured mirrors.
Such an optimizer is currently being developed and we
are in process of investigating further details including
cost models, search space efficiency and appropriate
heuristics for restricting search space.

5. Related Work

Disk technology trends were discussed in [9]. The authors
point out that, while disk prices have dropped by a factor
of 10,000, accesses per second have grown by a factor of
only 100. [1] studied the importance of cache
performance in query processing and PAX was proposed
as a solution [2]. Given that we have an additional copy in
DSM, some of the advantages of PAX can be bought by
simply using the DSM copy. The effectiveness of using
PAX for the NSM copy in fractured mirrors is to be
studied as future work.

The notion of using DSM for good disk bandwidth and
cache performance is similar to the notion of building
covering indexes for the query at hand. But, for query
workloads whose patterns are not known before hand, it
may not be possible to build efficient covering indexes.
By using the individual DSM partitions and the Chunk
algorithm, we can simulate the functionality of covering
indexes. Covering indexes have been studied in detail and
are available in products like Microsoft SQL Server. The
performance of the DSM model has been studied in [8],
[12]. The conclusions were that DSM is better when the
projectivity is low and the selectivity is medium to low
while NSM is better when both the projectivity and
selectivity are high. Performance of single attribute
modification is the same for DSM and NSM, while NSM
provides much better record insert/delete performance.
The query processing algorithm presented in [12] needed
the notion of join indexes, while we have outlined how
query optimization can be extended in a general fashion to
support DSM. A performance evaluation of DSM using
the TPC-D benchmark has also been carried out in [22]
using the Monet main memory database system.

Some of the very early prototype database systems that
hinted at using decomposed storage were [19][20]. The
BUBBA project was among the better-known projects
that advocated the use of DSM. The BUBBA system [7]
proposed a notion of using a set of inverted files and a

remainder relation as an online copy instead of mirroring.
DSM has also been used as a physical storage model to
implement object-oriented data models. Query rewriting
schemes for translating queries on an object-based model
into DSM is presented in [22] using the Monet main
memory database system. The notion of projection
indexes [21] is an implementation of DSM used in
warehousing environments. Among today’ s database
products, Sybase-IQ [23] whose target market is data
warehousing uses vertically partitioned attributes as its
storage model. By using efficient compression techniques
and advanced bitmap indexing, aggregate queries (which
are typical in a warehousing environment) can be
answered very efficiently. We were not able to obtain
further details as to how the partitions were indexed and
how queries were optimized. The fact that DSM is
suitable for decision support workloads has already been
discussed [21][22][23]. As far as we can tell, this paper is
the first to propose the notion of mirroring using different
data storage formats.

Using mirrors to optimize reads by distributing random
seeks between the disks was first discussed in [5]. This
technique was extended to optimize write performance.
The scheme described in [14] used a notion of distorted
mirrors, which worked at the granularity of disk blocks
and cleverly managed the blocks in two partitions. The
notion of the mirrors not being identical is similar to our
general idea though their paper is not concerned with
storage models. It would be interesting to see if some of
their optimizations for placing disk blocks would still be
valid under the current scheme of fractured mirrors. Our
proposal of propagating updates to the vertical partitions
by using a differential file in memory is similar to update
piggybacking suggested in [16].

The 3-column relation proposed for organizing the
differential file has been proposed in a different context.
New e-commerce applications require data schemas that
are constantly evolving and hence require table structures
that are more flexible than the standard NSM
representation. [3] proposed the 3-column relation as the
standard storage format, whereas we use it only as a
differential file to record the updates.

6. Conclusions and Future Work

The Decomposition Storage Model (DSM) has not found
acceptance by the database vendors. Given technology
trends and the need for storage architectures that are more
aware of disk-arm and cache effects during query
processing, DSM is likely to play an important role in the
future. The paper identified some of the fundamental
performance limitations of DSM. Contributions of this
paper include alternate storage schemes and scan
algorithms for DSM, which as demonstrated, provide a

dramatic increase in performance over the naïve
implementation.

 A new mirroring technique was proposed as a storage
architecture that can best exploit the advantages of DSM.
We would like to think of our work as extending the
current spectrum of mirroring techniques. Based on the
workload mix (queries and updates), the complexity of
queries, and the update frequency, one can pick the
mirrored architecture that is most suitable. As shown for
complex queries such as those in the TPC-H suite, there
are obvious benefits in maintaining a copy in DSM. For
workloads that do not have high update rates, the notion
of fractured mirrors is likely to suffice. For higher update
rates and TPC-H like queries, the optimized version of
fractured mirrors which pays more attention to data
placement is likely to be a better choice. For simple
queries with high update rates the original mirroring
scheme is the best.

As part of our future work, we intend to examine a
number of issues. Given a query workload, we need to
decide good data placement schemes for the partitions.
The current evaluation of the system has primarily
focussed on the TPC-H query workload. Future work
would include experimenting with different transaction
protocols to update the DSM copy efficiently and an
evaluation of the system using an OLTP benchmark like
TPC-C. Query optimization for the mirrors offers many
problems to be studied. We also need efficient schemes to
handle variable length records and NULL values.
Currently the mirroring scheme is implemented in
software; it would be interesting to see if RAID hardware
can be leveraged to any extent.

Acknowledgements

We would like to thank the referees for their detailed
comments, the Borg team and Anastassia Ailamaki for
sharing their code and Joseph Burger for many
clarifications on the efficient use of Shore.

References

[1] A.Ailamaki, D.DeWitt, M.Hill, D.Wood. DBMS on a
modern processor: Where does Time Go?
Proceedings of VLDB 1999.

[2] A.Ailamaki, D.DeWitt, M.Hill, M.Skounakis.
Weaving Relations for Cache Performance.
Proceedings of VLDB 2001.

[3] R.Agrawal, A.Somani, Y.Xu. Storing and Querying
of E-Commerce Data. Proceedings of VLDB 2001.

[4] J.Blakeley, W.J.McKenna, G.Graefe. Experiences
building the open OODB Query Optimizer.
Proceedings of ACM SIGMOD 1993.

[5] D.Bitton, J.Gray. Disk Shadowing. Proceedings of
VLDB 1988.

[6] Carey et al. Shoring up Persistent Applications.
Proceedings of ACM SIGMOD 1994.

[7] G.P.Copeland, W.Alexander, E.E.Boughter,
T.W.Keller. Data Placement in BUBBA. Proceedings
of ACM SIGMOD 1988.

[8] G.P.Copeland, S.Khosafian. A Decomposition
Storage Model. Proceedings of ACM SIGMOD 1985.

[9] J.Gray, G.Graefe. The 5-minute Rule Revisited and
Other Storage Rules of Thumb. ACM SIGMOD
Record 26(4) : 63-68 (1997)

[10] Y.Ioannidis. Query Optimization. The Computer
Science and Engineering Handbook 1997: 1038-
1057

[11] K.Keeton et al. Performance Characterization of a
Quad Pentium Pro CPU using OLTP workloads:
Proceedings of ISCA 1998.

[12] S.Khoshafian, G.Copeland et al. A Query Processing
Strategy for the Decomposed Storage Model.
Proceedings of ICDE 1987.

[13] M.Livny, S.Khosafian, H.Boral. Multi-Disk
Management Algorithms. Proceedings of
SIGMETRICS 1987.

[14] C.Orji, J.Solworth. Doubly-Distorted Mirrors.
Proceedings of ACM SIGMOD 1993.

[15] R.Ramakrishnan, J.Gerhke. Database Management
Systems. WCB/McGraw-Hill 2000

[16] J.Solworth, C.Orji. Write-only Disk Caches.
Proceedings of ACM SIGMOD 1990.

[17] D.Severance, G.Lohman. Differential Files: Their
application to the maintenance of large databases.
ACM TODS September 1976 vol. 1 number 3.

[18] A.Szalay et al. Designing and mining multi-terabyte
astronomy archives: The Digital Sky Survey.
Proceedings of ACM SIGMOD 2000.

[19] P.J.Tittman. An Experimental database system using
binary relations. IFIP Working conference on
database management. 1974

[20] S.Todd. The PeterLee Relational Test Vehicle. IBM
Systems Journal vol. 15 no 4 1976

[21] P.O.Neil, D.Quass Improved Query Performance
with Variant Indexes. Proceedings of ACM SIGMOD
1995

[22] P.Boncz, A.N. Wilschut, M.L. Kersten Flattening an
Object Algebra to Provide Performance. Proceedings
of ICDE 1998

[23] Sybase IQ White papers. www.sybase.com
[24] TPC-H Benchmark Specification www.tpc.org

