
Exact Indexing of Dynamic Time Warping

Eamonn Keogh

University of California - Riverside
Computer Science & Engineering Department

Riverside, CA 92521
USA

eamonn@cs.ucr.edu

Abstract
The problem of indexing time series has attracted
much research interest in the database
community. Most algorithms used to index time
series utilize the Euclidean distance or some
variation thereof. However is has been forcefully
shown that the Euclidean distance is a very
brittle distance measure. Dynamic Time Warping
(DTW) is a much more robust distance measure
for time series, allowing similar shapes to match
even if they are out of phase in the time axis.
Because of this flexibility, DTW is widely used
in science, medicine, industry and finance.
Unfortunately however, DTW does not obey the
triangular inequality, and thus has resisted
attempts at exact indexing. Instead, many
researchers have introduced approximate
indexing techniques, or abandoned the idea of
indexing and concentrated on speeding up
sequential search. In this work we introduce a
novel technique for the exact indexing of DTW.
We prove that our method guarantees no false
dismissals and we demonstrate its vast
superiority over all competing approaches in the
largest and most comprehensive set of time
series indexing experiments ever undertaken.

1. Introduction
The indexing of very large time series databases has
attracted the attention of database community in recent
years. The vast majority of work in this area has focused
on indexing under the Euclidean distance metric [5, 10,
17, 18, 21, 34]. However there is an increasing awareness

that the Euclidean distance is a very brittle distance
measure [6, 16, 20]. What is needed is a method that
allows an elastic shifting of the time axis, to
accommodate sequences which are similar, but out of
phase, as shown in Figure 1. Just such a technique, based
on dynamic programming, has long been known to the
speech processing community [27, 29]. Berndt and
Clifford introduced the technique, Dynamic Time
Warping (DTW), to the database community [3].
Although they demonstrate the utility of the approach,
they acknowledge that its resistance to indexing is a
problem and that “…performance on very large databases
may be a limitation”. Despite this shortcoming of DTW,
it is still widely used in various fields: In bioinformatics,
Aach and Church successfully applied DTW to RNA
expression data [1]. In chemical engineering, it has been
used for the synchronization and monitoring of batch
processes in polymerization [13]. DTW has been
successfully used to align biometric data, such as gait,
signatures and even fingerprints [12]. Many researchers
including Caiani et al. [4] have demonstrated the utility of
DTW for ECG pattern matching. Finally in robotics,
Schmill et al. demonstrated a technique that utilizes DTW
to cluster an agent’s sensory outputs [30].

Euclidian

DTW

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Figure 1: Note that while the two sequences have an overall
similar shape, they are not aligned in the time axis.
Euclidean distance, which assumes the ith point in one
sequence is aligned with the ith point in the other, will
produce a pessimistic dissimilarity measure. The nonlinear
Dynamic Time Warped alignment allows a more intuitive
distance measure to be calculated

More than two-dozen techniques have been introduced
to index time series under the Euclidean distance [5, 10,
17, 18, 21, 34] (see [18] for a more comprehensive
listing). In addition, several researchers have shown
techniques to approximately index DTW [33], or
introduced methods to reduce its demanding CPU time
[6]. However only two researchers have claimed to have
introduced an exact indexing technique for DTW [19, 23].
In the case of [23], the claim of no false dismissals was
later retracted [24, 26]. We have carefully implemented
only technique to correctly claim the ability to exactly
index DTW, and the only other lower bounding
approximation of DTW, for detailed comparison with our
proposed approach.

In contrast to the approaches above, we will prove the
no false dismissal property of our approach and
demonstrate its superiority with the most comprehensive
set of time series indexing experiments ever undertaken.
In particular, in terms of number and diversity of datasets,
size of datasets, range of query lengths and indexing
parameters, our experiments are one to two orders of
magnitude larger that all previous papers combined.

The rest of the paper is organized as follows. In
Section 2 we will consider the utility of time series
similarity search, review the DTW algorithm, and
consider related work. In Section 3 we will introduce a
novel lower bounding technique that tightly approximates
the true DTW distance. Section 4 introduces a method
that allows the exact indexing using our lower bounding
function. In Section 5 we conduct an exhaustive empirical
comparisons of our method with completing techniques.
Finally in Section 6 we offer conclusions and suggestions
for extensions.

2. Background
Similarity search in time series is useful in its own right as
a tool for interactive exploration of very large databases,
it is also a subroutine in many data mining applications
including rule discovery [7], clustering [6, 8], and
classification [9, 16]. The superiority of DTW over
Euclidean distance for these tasks has been demonstrated
by several authors [1, 6, 13, 20, 30, 33]. However for
completeness, we include a simple experiment to illustrate
the point.

The most studied time series classification/clustering
problem is the Cylinder-Bell-Funnel dataset [16], it a
deceptively simple looking 3-class problem, Figure 2
shows typical examples of each class.

Cylinder Bell Funnel
Figure 2: Typical examples from the Cylinder-Bell-Funnel
dataset

The problem has been attacked with sophisticated
techniques including rule-base learners [16], boosting,

Bayesian techniques, and decision trees. We performed a
simple classification experiment on this dataset, using the
1- nearest neighbour algorithm. Our dataset consists of ten
instances of each class, and the classifier was evaluated
using the “leaving-one-out” strategy. Since we had the
luxury of unlimited data, we averaged the results over
1,000 runs. The mean error rate for the Euclidean distance
metric on the problem was 0.2734, but for DTW it was
only 0.0269, an order of magnitude lower. This “off-the-
shelf” result is competitive with the highly tuned,
sophisticated techniques enumerated above. The lower
error rate came with a cost however; classification with
DTW took approximately 230 times longer that with
Euclidean distance.

This result reiterates the utility of DTW and motivates
the necessity of introducing techniques to index it.

 C A time series of length n C = c1, c2,…, ci,…, cn.
[ci : cj] A subsequence of C, beginning at ci and ending at cj
C A piecewise linear approximation of a time series. [17,34]
DTW The Dynamic Time Warp distance measure
LB_Kim The lowerbounding function introduced by Kim et al. [19]

LB_Yi The lowerbounding function introduced by Yi et al. [33]

LB_Keogh The lower bounding function introduced in this work

Table 1: The basic notation used in this work

2.2 Review of DTW

Suppose we have two time series Q and C, of length n and
m respectively, where:

Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

To align two sequences using DTW, we construct an n-
by-m matrix where the (ith, jth) element of the matrix
contains the distance d(qi,cj) between the two points qi
and cj (i.e. d(qi,cj) = (qi - cj)2). Each matrix element (i,j)
corresponds to the alignment between the points qi and cj.
This is illustrated in Figure 3. A warping path W, is a
contiguous (in the sense stated below) set of matrix
elements that defines a mapping between Q and C. The kth
element of W is defined as wk = (i,j)k so we have:

W = w1, w2, …,wk,…,wK max(m,n) ≤ K < m+n-1 (3)
The warping path is typically subject to several

constraints.
• Boundary conditions: w1 = (1,1) and wK = (m,n), this

requires the warping path to start and finish in
diagonally opposite corner cells of the matrix.

• Continuity: Given wk = (a,b) then wk-1 = (a',b') where
a–a' ≤1 and b-b' ≤ 1. This restricts the allowable steps
in the warping path to adjacent cells (including
diagonally adjacent cells).

• Monotonicity: Given wk = (a,b) then wk-1 = (a',b')
where a–a' ≥ 0 and b-b' ≥ 0. This forces the points in
W to be monotonically spaced in time.

Figure 3: A) Two sequences Q and C which are similar, but
out of phase. B) To align the sequences we construct a
warping matrix, and search for the optimal warping path,
shown with solid squares. C) The resulting alignment

There are exponentially many warping paths that
satisfy the above conditions, however we are only
interested in the path that minimizes the warping cost:

= ∑ =

K

k kwCQDTW
1

min),((4)

This path can be found using dynamic programming
to evaluate the following recurrence which defines the
cumulative distance γ(i,j) as the distance d(i,j) found in
the current cell and the minimum of the cumulative
distances of the adjacent elements:
 γ(i,j) = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j) , γ(i,j-1) } (5)

The Euclidean distance between two sequences can be
seen as a special case of DTW where the kth element of W

is constrained such that wk = (i,j)k , i = j = k. Note that it is
only defined in the special case where the two sequences
have the same length. The time and space complexity of
DTW is O(nm).

0 0.2
0.4
0.6
0.8 1

Q C

C

Q

C

Q

A)

B)

C)

This review of DTW is necessarily brief; we refer the
interested reader to [22, 27] for a more detailed treatment.

2.3 Related work

While there has been much work on indexing time series
under the Euclidean metric [5, 10, 17, 18, 21, 34], there
has been much less progress on indexing under DTW.

Yi, Jagadish, and Faloutsos [33] introduced a
technique for approximate indexing of DTW that utilizes
their FastMap technique [11]. The idea is to embed the
sequences into Euclidean space such that the distances
between them are approximately preserved, then classic
multi-dimensional index structures can be utilized [14]. In
addition, they introduce a lower bounding function
(described in more detail in Section 3.2) that can be used
to prune some of the inevitable false hits their method will
introduce. The method does produce an observed
(maximum) speedup of 7.8 over sequential scanning.
However this does have some limitations. First, it does
allow false dismissals. Second, while the time to build the
index is linear in M (the size of the database), it is actually
O(Mn2), which quickly becomes intractable for very large
databases and/or long sequences.

Kim et al. introduced an exact algorithm for indexing
of time series under DTW [19]. The method extracts four
features from the sequences and organizes them in a
multi-dimensional index structure. They introduce a lower
bounding function (described in more detail in Section
3.2) that is defined on the four features and thus guarantee
no false dismissals. Although the work introduced the first
technique for exact indexing under DTW, it suffers from
several limitations. First the method only allows the
extraction of exactly four features, and thus cannot take
advantage of multi-dimensional index structures that scale
well to higher dimensions. In addition, although four
features are extracted, only one of them (determined at
query time) is actually used in the lower bounding
function, thus the lower bound is very loose, and many
false alarms are generated, each of which will require
evaluation with the quadratic-time DTW algorithm.

In Park et al. [23] the authors demonstrate a DTW
indexing technique which is based on a piecewise linear
representation of the data. They “prove” that this method
can guarantee no false dismissals. Unfortunately, the no
false dismissals claim is incorrect. A candidate sequence
in the database can differ from the query sequence by an
arbitrarily small epsilon and still not be retrieved [26]. A
later version of the paper did carry a disclaimer stating
“…it is possible that a subsequence similar to a query in
terms of the original time warping distance may not be
included in the answer set in our approach” [24].
However this qualification understates the problem.

Having tested the approach with 39,200 experiments on
32 different datasets we found that the approach only
returned the true best match to a 1-nearest neighbor query
613 times. This result does not significantly differ from
random chance. We therefore exclude this approach from
further consideration.

There are only two desirable properties of a lower
bounding measure:

• It must be fast to compute. Clearly a measure
that takes as long to compute as the original
measure is of little use. In our case we would like
the time complexity to be at most linear in the
length of the sequences. Another attempt at indexing DTW utilizes a suffix tree

[25]. While the method is interesting, we do not include it
in our empirical comparisons since the index size is one to
two orders of magnitude larger than the data itself. Such
enormous space overhead is simply untenable for very
large databases. In any case, the claimed speed up is
rather modest.

• It must be a relatively tight lower bound. A
function can achieve a trivial lower bound by
always returning zero as the lower bound
estimate. However, in order for the algorithm in
Table 2 to be effective, we require a method that
more tightly approximates the true DTW
distance. Finally there has been some work in which attempts at

indexing and/or lower bounding are abandoned and
instead efforts are concentrated on fast approximation of
the DTW distance using a lower resolution approximation
of the data. The idea was introduced by [6] who use a
piecewise linear approximation of the data. The method
shows significant speedup with few false dismissals. A
similar idea was suggested by [5]. Here the authors obtain
the lower resolution of the data approximation with
wavelets and use their approximate distance measure
instead of Yi et al’s lower bounding measure, within the
FastMap framework. The method improves the speedup
of Yi et al’s work at the expense of introducing more false
dismissals.

While lower bounding functions for string edit, graph

edit and tree edit distance have been studied extensively
[22], there has been far less work on DTW, which is very
similar in spirit to its discrete cousins. Below we will
consider the existing DTW lower bounding techniques.

3.2 Existing lower bounding measures

To the best of our knowledge there are only two existing
lower bounding functions available for DTW (Not
including [23] which incorrectly claims to be lower
bounding, or [25] which has a time complexity equal to
the full algorithm). While referring the interested reader
to the original papers for detailed explanations, below we
give a visual intuition and brief explanation of each. 3. Lower bounding the DTW distance

The lower bounding function introduced by Kim et al.
[19] (hereafter known as LB_Kim), works by extracting a
4-tuple feature vector from each sequence. The features
are the first and last elements of the sequence, together
with the maximum and minimum values. The maximum
absolute difference of corresponding features is reported
as the lower bound. Figure 4 illustrates the idea.

In this section we explain the importance of lower
bounding, and introduce our new lower bounding distance
measure.

3.1 The utility of lower bounding measures

Time series similarity search under the Euclidean metric
is heavily I/O bound, however similarity search under
DTW is also very demanding in terms of CPU time. One
way to address this problem is to use a fast lower
bounding function to help prune sequences that could not
possibly be a best match. Table 2 gives the pseudocode
for such an algorithm.

0 5 10 15 20 25 30 35 40

A

B

C

D

Algorithm Lower_Bounding_Sequential_Scan(Q)
1. best_so_far = infinity;
2. for all sequences in database
3. LB_dist = lower_bound_distance(Ci, Q);
4. if LB_dist < best_so_far
5. true_dist = DTW(Ci, Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11. endfor

Figure 4: A visual intuition of the lower bounding measure
introduced by Kim et al. The squared difference between the
two sequence’s first (A), last (D), minimum (B) and
maximum points (C) is returned as the lower bound

The lower bounding function introduced by Yi et al.
[33]. (hereafter referred to as LB_Yi) takes advantage of
the observation that all the points in one sequence that are
larger (smaller) than the maximum (minimum) of the
other sequence must contribute at least the squared

Table 2: An algorithm that uses a lower bounding
distance measure to speed up the sequential scan
search for the query Q

difference of their value and the maximum (minimum)
value of the other sequence to the final DTW distance.
Figure 5 illustrates the idea.

Figure 5: A visual intuition of the lower bounding measure
introduced by Yi et al. The sum of the squared length of
gray lines represent the minimum the corresponding points
contribution to the overall DTW distance, and thus can be
returned as the lower bounding measure

3.3 Proposed lower bounding measure

Before introducing our lower bounding technique we
must review an additional detail of the DTW algorithm
that we deliberately omitted until now.

3.3.1 Global constraints on time warping

In addition to the constraints on the warping path
enumerated in Section 2.2, virtually all practitioners using
DTW also constraint the warping path in a global sense
by limiting how far it may stray from the diagonal [3].
The subset of matrix that the warping path is allowed to
visit is called the warping window. Figure 6 illustrates
two of the most frequently used global constraints, the
Sakoe-Chiba Band and the Itakura Parallelogram [27, 29].

Figure 6: Global constraints limit the scope of the warping
path, restricting them to the gray areas. The two most
common constraints in the literature are the Sakoe-Chiba
Band and the Itakura Parallelogram

There are several reasons for using global constraints,
one of which is that they slightly speed up the DTW
distance calculation. However the most important reason
is to prevent pathological warpings, where a relatively
small section of one sequence maps onto a relatively large
section of another. The importance of global constraints
was documented by the originators of the DTW

algorithm, who where exclusively interested in aligning
speech patterns [29]. However, has been empirically
confirmed in other settings, including finance, medicine,
biometrics, chemistry, astronomy, robotics and industry.

0 5 10 15 20 25 30 35 40

max(Q)

min(Q)

As a motivating example consider the two sequences
in Figure 1 which were used to illustrate DTW. The
smooth peaks in each correspond to increase in demand
for electrical power during weekdays. In the topmost
sequence there is no peak on Monday because it was a
national holiday, the same is true for Wednesday in the
bottom sequence. In this domain, we may well decide that
that it makes sense to allow warpings of up to one day, i.e.
Monday may warp to Tuesday and Tuesday may warp to
Wednesday etc, but more drastic warpings (i.e. Monday to
Friday) should not be allowed. This constraint can easily
be enforced by using a Sakoe-Chiba Band with a width
equal to n/7.

3.3.2 Proposed lower bounding measure

We can view a global constraint as constraining the
indices of the warping path wk = (i,j)k such that j-r ≤ i ≤
j+r where r is a term defining the reach, or allowed range
of warping, for a given point in a sequence. In the case of
the Sakoe-Chiba Band r is independent of i, for the
Itakura Parallelogram r is a function of i.

We will use the term r to define two new sequences, U
and L:

 Ui = max(qi-r : qi+r) (6)
Li = min(qi-r : qi+r) (7)

U and L stand for Upper and Lower respectively, we
can see why if we plot them together with the original
sequence Q as in Figure 7. They form a bounding
envelope that encloses Q from above and below. Note that
although the Sakoe-Chiba Band is of constant width, the
corresponding envelope generally is not of uniform
thickness. In particular, the envelope is wider when the
underlying query sequence is changing rapidly, and
narrower when the query sequence plateaus.

 C

Q

C

Q

Sakoe-Chiba Band Itakura Parallelogram

U

L
0 5 10 15 20 25 30 35 40

L

A

B

U

Q

Q

Figure 7: An illustration of the sequences U and L, created
for sequence Q (shown dotted). A was created using the
Sakoe-Chiba Band and B using the Itakura Parallelogram

Proof: We wish to prove An obvious but important property of U and L is the
following:

∑∑
==

≤

<−
>−

K

k
k

n

i
iiii

iiii

w
otherwise

LcifLc
UcifUc

11

2

2

0
)(
)(

 ∀i Ui ≥ qi ≥ Li (8)
Having defined U and L, we now use them to define a

lower bounding measure for DTW. Since the terms under radicals are positive, we can square
both sides:

∑
=

<−
>−

=
n

i
iiii

iiii

otherwise
LcifLc
UcifUc

CQKeoghLB
1

2

2

0
)(
)(

),(_
 (9)

∑∑
==

≤

<−
>−

K

k
k

n

i
iiii

iiii

w
otherwise

LcifLc
UcifUc

11

2

2

0
)(
)(

This function can be readily visualized as the
Euclidean distance between the any part of the candidate
matching sequence not falling within the envelope and the
nearest (orthogonal) corresponding section of the
envelope. Figure 8 illustrates the idea.

From Eq. 3, we know that n ≤ K, so our strategy will be to
show that every term in the left summation can be
matched with some greater or equal term in the right
summation.
There are three cases to consider, for the moment we will
just consider cases when ci > Ui. We want to show: C

0 5 10 15 20 25 30 35 40

C

A

B
U

L

U

L

Q

Q

 (ci – Ui)2 ≤ wk
 (ci – Ui)2 ≤ (ci – qj)2 By definition (cf Section 2.2).
 (ci – Ui) ≤ (ci – qj) Since ci > Ui, we can take square roots
 – Ui ≤ – qj Add – ci to both sides.
 qj ≤ Ui Add Ui + qj to both sides.
 qj ≤ max(qi-r:qi+r) By definition, Eq, 6.
Since we have n = m, then j-r ≤ i ≤ j+r, ⇒ i-r ≤ j ≤ i+r, so
we can rewrite the right hand side as
 qj ≤ max(qi-r, q(i+1)-r, qj,…, qi+r)
If we remove all terms except qj from the RHS we are left with
 qj ≤ max(qj) Which is obviously true.
The case ci < Li yields to an similar argument. The final
case is simple to show, since clearly
 0 ≤ (ci – qj)2 Because (ci – qj)2 must be nonnegative

Thus we have shown that each term on the left side is
matched with an equal or larger term on the right side, our
inequality holds, so LB_Keogh(Q,C) ≤ DTW(Q,C).■

In the next section we will show how LB_Keogh can
be indexed.

Figure 8: An illustration of the lower bounding function
LB_Keogh(Q,C). The original sequence Q (shown dotted),
is enclosed in the bounding envelope of U and L. The
squared sum of the distances from every part of the
candidate sequence C not falling within the bounding
envelope, to the nearest orthogonal edge of the bounding
envelope is returned as the lower bound. Bounding envelope
A was created using the Sakoe-Chiba Band and bounding
envelope B using the Itakura Parallelogram

4. Indexing DTW
Virtually all approaches to indexing time series under the
Euclidean distance that guarantee no false dismissals use
the GEMINI framework of Faloutsos et al. [5, 10, 17, 18,
21, 34]. Using the GEMINI framework all one has to do is
to choose a high level representation of the data and
define a lower bounding measure on it. Many such
representations have been suggested, including Fourier
Transforms [11], Wavelets [5], Singular Value
Decomposition [21], Adaptive Piecewise Constant
Approximation [18] and a simple technique independently
introduced by two authors called Piecewise Constant
Approximation (PAA) [17, 34]. This technique is
attractive because it is simple, intuitive and competitive
with the other, more complex approaches. In this section
we will show that PAA can be adapted to allow indexing
under DTW. We begin with a brief review of PAA.

Since the tightness of the bounds is proportional to the
number and length of the gray hatch lines, we can see that
in this example at least, that the Itakura Parallelogram
provides a tighter bound than the Sakoe-Chiba Band, and
both appear tighter than LB_Kim or LB_Yi in Figures 4
and 5 respectively.

We will now prove the claim of lower bounding.
Proposition 1: For any two sequences Q and C of the
same length n, for any global constraint on the warping
path of the form j-r ≤ i ≤ j+r, the following inequality
holds: LB_Keogh(Q,C) ≤ DTW(Q,C)

4.1 Piecewise Constant Approximation

We have previously denoted a time series as C = c1,…, cn.
We assume each sequence in our database is n units long.
Let N be the dimensionality of the space we wish to index
(1 ≤ N ≤ n). For convenience, we assume that N is a factor
of n. This is not a requirement of our approach, however it
does simplify notation.

A time series C of length n can be represented in N
dimensional space by a vector NccC ,,1 K= . The ith

element of C is calculated by the following equation:

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

cc
1)1(

 (10)

 Simply stated, to reduce the time series from n
dimensions to N dimensions, the data is divided into N
equal sized “frames”. The mean value of the data falling
within a frame is calculated and a vector of these values
becomes the data reduced representation. The complicated
subscripting in Eq. 10 just insures that the original
sequence is divided into the correct number and size of
frames. The representation can best be visualized as an
attempt to model the original time series with a linear
combination of box basis functions as shown in Figure 9.

Figure 9: The PAA representation can be readily visualized
as an attempt to model a sequence with a linear combination
of box basis functions. In this case, a sequence of length 256
is reduced to 16 dimensions
Given two original sequences Q and C, we can

transform them into Q and C using Eq. 10, and
approximate their Euclidean distance by:

()∑ =
−≡

N

i iiN
n cqCQDR

1
2),((11)

A proof that DR(Q , C) lower bounds the true Euclidean
distance is in [17] (A different proof appears in[34]).

4.2 Modifying PAA to index time warped queries

In Section 3 we introduced the lowering bounding
function LB_Keogh, however calculating this function

requires n values. Since n may be in the order of hundreds
to thousands, and multi-dimensional index structures
begin to degrade rapidly somewhere above 16 dimension
[15, 31], we need a way to create a lower, N dimension
version of the function, where N is a number that can be
reasonably handled by a multi-dimensional index
structure [14]. We also need this lower dimension version
of the function to lower bound LB_Keogh (and therefore,
by transitivity, DTW).

We begin by creating special piecewise constant
approximations of U and L, which we will denote U and

. Although they are piecewise constant approximations,
the definitions of U and differ from those we have
seen in Eq. 10, in particular we have

ˆ

L̂
ˆ L̂

() ()()iii
N
n

N
n UUU ,...,maxˆ

11 +−= (11)

 () ()()iii
N
n

N
n LLL ,...,minˆ

11 +−= (12)

We can visualize U and as the piecewise constant
functions which bound, without intersecting, U and L
respectively. Figure 10 illustrates this intuition.

ˆ L̂

0 5 10 15 20 25 30 35 40

U

L
^

^

0 50 100 150 200 250
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 10: We can readily visualize U and C as the
piecewise constant functions which bound, without
intersecting, U and L respectively

ˆ ˆ

We are now able to define the low dimension, lower
bounding function, which we denote LB_PAA. Given a
candidate sequence C, transformed to C by Eq. 10, and a
query sequence Q, with its companion PAA functions U
and , the following function lower bounds LB_Keogh

ˆ

L̂

∑
=

<−
>−

=
N

i
iiii

iiii

otherwise
LcifLc
UcifUc

N
nCQPAALB

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(
),(_

 (13)

The proof that LB_PAA(Q, C) ≤ LB_Keogh(Q,C) is
a straightforward but long extension of Proposition 1, we
omit it for brevity.

The final step necessary to allow indexing is to define
a MINDIST(Q,R) function that returns a lower bounding
measure of the distance between a query Q, and R, were R
is a Minimum Bounding Rectangle (MBR).

Suppose our index structure contains a leaf node U.
Let R = (L, H) be the MBR associated with U where L =
{l1, l2, …, lN} and H = {h1, h2, …, hN} are the lower and
higher endpoints of the major diagonal of R. By

definition, R is the smallest rectangle that spatially
contains each PAA point Ncc ,,1 K=C stored in U.
Given the above, MINDIST(Q,R) is defined as:

∑
=

<−
>−

=
N

i
iiii

iiii

otherwise
LhifLh

UlifUl

N
nRQMINDIST

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(
),(

 (14)

This function is visualized in Figure 11.

Figure 11: A) A representation of a Minimum Bounding
rectangle (MBR). B) A subsection of the query shown in
Figure 10, with its attendant functions U and C . C) An
illustration of the MINDIST function. The lengths of the
arrow lines, squared, scaled by n/N, summed and square
rooted, are returned as the minimum distance between Q and
any sequence contained within R

ˆ ˆ

Having defined LB_PAA and MINDIST(Q,R) we are
now ready to introduce the K-Nearest Neighbor search
algorithm. The basic algorithm is shown in Table 3, it is
an optimization on the GEMINI K-NN algorithm [11] as
suggested by [31], and is a modification of the algorithm
used for indexing time series under the Euclidean metric
in [18].

A query KNNSearch(Q,K) with query sequence Q
and desired number of neighbors K retrieves a set C of K
time series such that for any two sequences C ∈ C, E ∉
C, DTW(Q,C) ≤ DTW(Q,E). Like the classic K-NN
algorithm [28], the algorithm in Table 3 uses a priority
queue queue to visit nodes/objects in the index in the
increasing order of their distances from Q in the indexed
(i.e. PAA) space. The distance of an object (i.e. PAA
point) C from Q is defined by LB_PAA(Q,C) (cf.
Section 4.2, Eq. 13) while the distance of a node U from
Q is defined by the minimum distance MINDIST(Q,R) of
the minimum bounding rectangle (MBR) R associated
with U from Q.

We begin by pushing the root node of the index into
the queue (Line 1). The algorithm navigates the index by
popping out the item from the top of queue at each step

(Line 8). If the popped item is an PAA point C, we go to
disk to retrieve the original time series C, and we compute
its exact distance DWT(Q,C) from the query then insert it
into a temporary list temp (Lines 9-11). If, on the other
hand, the popped item is a node of the index structure, we
compute the distance of each of its children from Q and
push them into queue (Lines 12-17).
Algorithm KNNSearch(Q,K)
Variable queue: MinPriorityQueue;
Variable list: temp;

1. queue.push(root_node_of_index, 0);
2. while not queue.IsEmpty() do
3. top = queue.Top();
4. for each time series C in temp such that

DTW(Q,C) ≤ top.dist
5. Remove C from temp;
6. Add C to result;
7. if |result| = K return result ;
8. queue.Pop();
9. if top is an PAA point C
10. Retrieve full sequence C from database;
11. temp.insert(C, DTW(Q,C));
12. else if top is a leaf node
13. for each data item C in top
14. queue.push(C, LB_PAA(Q,C));
15. else // top is a non-leaf node
16. for each child node U in top
17. queue.push(U, MINDIST(Q,R)) // R is

 MBR associated with U.

h1

h2

hi

l1 l2

li

MBR R = (L, H)
 L = {l1, l2, …, lN}
 H = {h1, h2, …, hN} 0 50 10 15

A) B)

C)

Query Q

MINDIST(Q,R)

Table 3: K-NN algorithm to compute the exact K nearest
neighbors of a query time series Q using a multidimensional
index structure

We only move a sequence C from temp to result when
we are sure that it is one of the K nearest neighbors of Q.
That is to say, there exists no object E ∉ result such that
DTW(Q,E) < DTW(Q,C) and |result| < K. This second
condition is guaranteed by the exit condition in Line 7.
The first condition can be guaranteed as follows. Let I be
the set of PAA points retrieved thus far using the index
(i.e. I = temp ∪ result). If we can guarantee that ∀ C ∈
I, ∀ E ∉ I, LB_PAA(Q,C) ≤ DTW(Q,E), then the
condition “DTW(Q,C) ≤ top.dist” in Line 4 will ensure
that there exists no unexplored sequence E such that
DTW(Q, E) < DTW(Q,C).

By inserting the time series in temp (i.e. previously
seen objects) into result in increasing order of their
distances DTW(Q,C) (by keeping temp sorted by
DTW(Q,C)), we ensure that there exists no explored
object E such that DTW(Q, E) < DTW(Q,C).

The definitions of LB_Keogh, LB_PAA and
MINDIST proposed in this work are also needed for
answering range queries using a multidimensional index
structure. We can use a classic R-tree-style recursive
search algorithm. Since both MINDIST(Q,R) and
LB_PAA(Q,C) lower bound DTW(Q,C), the algorithm
shown in Table 4 is correct [11].

Algorithm RangeSearch(Q, ε, T)

1. if T is a non-leaf node
2. for each child U of T
3. if MINDIST(Q,R)≤ ε RangeSearch(Q, ε, U);
 // R is MBR of U
4. else // T is a leaf node

5. for each PAA poin in T t C
6. if LB_PAA(Q,C)≤ ε
7. Retrieve full sequence C from database;
8. if DTW(Q,C) ≤ ε Add C to result;

• To ensure true randomness where required, we use
random numbers created by a quantum mechanical
process [32].

• Although we also present results of an implemented
system, we present comprehensive results that are
completely of implementation (ie. page size, cache
size, etc). This is to guard against implementation
bias [18] and to allow and encourage independent
replication of our results.

 For simplicity and brevity we only show results for
nearest neighbor queries, however we obtained very
similar results for range queries. Because of the sheer
volume of experiments conducted, in this section we will
present graphics to summarize our findings and we will
reproduce the actual numbers in Appendix A.

Table 4: Range search algorithm to retrieve all the time
series within a range of ε from query time series Q. The
function is invoked as RangeSearch(Q, ε,
root_node_of_index)

5. Experimental Evaluation For all experiments we used the Sakoe-Chiba Band
with a width of 10% of n, since this appears to be the
most commonly used constraint in the literature [27, 29]. In this section we test our proposed approach with a

comprehensive set of experiments.
5.2 Comparison of lower bounding functions

5.1 Experimental Philosophy We begin our experiments with a comparison of the
tightness of the lower bounds for the three functions,
LB_Yi, LB_Kim and LB_Keogh. We define T as the ratio
of the estimated distance between two sequences over the
true distance between the same two sequences.

Previous experience in reimplementing and testing more
than a dozen different Euclidean time series indexing
techniques [18], suggests that many published results do
not generalize to real world datasets and conditions. We
therefore conducted the experiments in this paper with the
explicit goal of conducting the most comprehensive and
detailed set of time series indexing experiments ever
attempted. In particular we have taken the following steps
to insure the most meaningful and generalizable results.

nceDistaWarpTimeDynamicTrue
nceDistaWarpTimeDynamicofEstimateBoundLowerT = (15)

T is in the range [0,1], with the larger the better. To
estimate T for each of the 32 datasets we did the
following: We randomly extracted 50 sequences of length
256. We compared each sequence to the 49 others, using
the true DTW distance, and the three lower bounding
functions. For each dataset we report T as average ratio
from the 1,225 (50*49/2) comparisons made.

• Instead of testing on just one or two datasets as is
typical [2, 3, 5, 7, 8, 10, 12, 13, 16, 19, 23, 24, 25, 30
34], we tested all algorithms on 32 datasets. These
datasets cover the complete spectrum of stationary/
non-stationary, noisy/ smooth, cyclical/ non-cyclical,
symmetric/ asymmetric, etc. The data also represents
the many areas in which DTW is used, including
finance, medicine, biometrics, chemistry, astronomy,
robotics, networking and industry.

Figure 12 shows the results of the experiments. On 24
out of 32 datasets LB_Yi produces tighter bounds than
LB_Kim, and its average value is approximately 1.38
times larger. The most obvious result from the experiment
however is the dominance of LB_Keogh. It wins on every
dataset and its average value is approximately 3.11 times
larger than its nearest rival. Since the efficiency of
indexing has a (much) greater than linear dependence on
the tightness of the lower bounding function, these results
augur well for our approach.

• We designed our experiments to be completely
reproducible. We saved every random number, every
setting and all data, and have made them available on
a free CD Rom.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 LB_Kim

LB_Keogh

Figure 12: The mean value of T (tightness of lower bound) for the
three lower bounding functions under consideration, for 32 datasets from finance, medicine,
biometrics, chemistry, physics, astronomy, robotics, networking and industry. Appendix A contains a key to the datasets

LB_Keogh
LB_Yi
LB_Kim

LB_Yi

0
0.2
0.4
0.6
0.8
1.0

We choose to report results from a query length of
256, since this is about the mid range of queries reported
in the literature [5, 6, 33]. However we also experimented
with queries in the range of 32 to 1024. This range was
chosen to include the longest and shortest reported in the
literature [5, 23, 33]. All techniques perform better for
short queries, however while both LB_Kim and LB_Yi
degrade rapidly for longer queries, LB_Keogh stays
almost constant for longer queries. This effect was
observed on all datasets, for brevity we just present results
for the random walk dataset in Figure 13.

Figure 13: The effect of query length on the tightness of
lower bounds for the three techniques under consideration

5.3 Comparison of pruning power

To compare the pruning power of the three techniques
under consideration, we measure P, the fraction of the
database that does not require full computation of DTW
while still allowing use to guarantee that we have found
the nearest match to a 1-NN query.

databaseinobjectsofNumber
DTWfullrequirenotdothatobjectsofNumberP = (16)

To calculate P we do the following. From each of the
32 datasets we randomly extract 50 sequences of length
256. For each of the 50 sequences we do the following,
we separate out the sequence from the other 49 sequences.
We then find the nearest match to our withheld sequence
among the remaining 49 sequences using the sequential
scan algorithm of Table 2. We measure the number of
times we can use the linear-time lower bounding
functions to prune away the quadratic-time computation
of the full DTW algorithm. For fairness we visit the 49
sequences in the same order for each approach. The value

P reported is averaged over all 50 runs.
Note the value of P for any depends only on the data

and is completely independent of any implementation
choices, including spatial access method, buffer size,
computer language or hardware platform. A similar idea
for evaluating indexing schemes appears in [15].

The results are summarized in Figure 14. On 25 out of
32 datasets LB_Yi is more efficient at pruning than
LB_Kim, on average it was able to prune 1.53 times as
many items. Once again however, the most obvious result
is the dominance of LB_Keogh. It wins on every dataset
and was able to prune 3.95 times as many items as LB_Yi
and 6.06 times as many items as LB_Kim.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16 32 64 128 256 512 1024

LB_Keogh

LB_Yi

LB_Kim

Query Length

Ti
gh

tn
es

s o
f L

ow
er

 B
ou

nd
 T

 Note that while these results are powerful
implementation independent predictors of indexing
performance, they may actually be pessimistic. There are
two related reasons why. First, the sequential scan
algorithm of Table 2 is inefficient, as it visits the items
and calculates the DTW measures (where necessary) in a
predefined order. A more efficient implementation would
sort, and then visit the sequences, in ascending order of
the lower bounding distance. This of course, is essentially
what spatial indexing does.

The second reason why the results may be pessimistic
predictors of indexing performance is the relatively small
size of the datasets. We should expect the fraction of
pruned sequences to increase on larger datasets. The
reason is because the larger the dataset, the greater the
chance there is of a good match being found, and a good
match allows us to extract the maximum benefit from the
pruning conditional LB_dist < best_so_far in line 4 of
the algorithm. To demonstrate this effect we ran the same
experiment above on increasing larger subsets of the
random walk dataset. The results are shown in Figure 15.

0

0.2

0.4

0.6

0.8

1

4 8 16 32 64 128 512

LB_Keogh
LB Yi
LB Kim

Database Size (Number of objects)

Pr
un

in
g

Po
w

er
 P

Figure 15: The effect of database size on pruning power.
Note that as the size of the database increases we are able to
prune a larger fraction of the data

0
0.2
0.4
0.6
0.8
1.0

LB_Kim
LB_Yi
LB_Keogh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 LB_Kim

LB_Keogh
LB_YiFigure 14: The mean value of P (Pruning Power) for the

three lower bounding functions under consideration, for 32 datasets from finance, medicine,
biometrics, chemistry, physics, astronomy, robotics, networking and industry. Appendix A contains a key to the datasets

6. Discussion and Conclusions
5.4 Experiments on an implemented system

In one of the most referenced papers on time series
similarity ever published [2], the authors explicitly state,
“Dynamic time warping…cannot be speeded up by
indexing”. This sentiment has since been echoed in
several dozen other papers [6, 33]. How then have we
achieved the seemingly impossible? Firstly, we have only
considered the case where the two sequences are of the
same length. This is not really a limitation because the
user can always re-interpolate the query to any desired
length in O(n) time. Secondly, we can only index
sequences if we assume the warping path is constrained.
Once again we feel that this is not really a restriction since
virtually ever practitioner we are aware of reiterates the
absolute necessity of using constraints [3, 6, 27, 29, 30].

The 32 datasets used in the previous experiments illustrate
the dominance of the proposed approach on a wide variety
of datasets. However, most are not large enough by
themselves to warrant the title “Very Large Data Base”.
We therefore pooled all 32 datasets into a single dataset
that we call Mixed Bag (MB). In addition to this ultra
heterogeneous data, we created a very large database of
Random Walk data (RW II), since this is the most studied
dataset for indexing comparisons [5, 6, 17, 24, 25, 34] and
is, by contrast with the above, a very homogeneous
dataset. Details of these datasets appear in Appendix A.

We performed experiments on AMD Athlon 1.4 GHZ
processor, with 512 MB of physical memory and 57.2 GB
of secondary storage. The spatial access method used was
the R-Tree [14].

Our approach is particularly attractive since as a
special case (r is set to zero) it degenerates to Euclidean
indexing using PAA, an approach that has been shown by
two independent groups of researchers to be state of the
art in terms of efficiency and flexibility [17, 34].

To evaluate the performance of the proposed
technique we used the normalized CPU cost.

Definition: The Normalized CPU cost: The ratio
of average CPU time to execute a query using
the index to the average CPU time required to
perform a linear (sequential) scan. The
normalized cost of linear scan is 1.0.

There are several directions in which we intend to
extend this work. For example, we note that some
algorithms for matching 2 and 3 dimensional shapes are
very close analogues of the DTW algorithm, and thus may
benefit from a similar lower bounding function. Beating linear scan is nontrivial because it can take

advantage of sequential disk access, whereas any indexing
technique must make random disk accesses. It is generally
understood that random access is about ten times slower
than sequential access [15, 28, 31]. For fairness, we
allowed linear scan to utilize the lower bounding function
LB_Keogh.

Acknowledgements: Thanks to Kaushik Chakrabarti,
Dennis DeCoste, Sharad Mehrotra, Michalis Vlachos and
the VLDB reviewers for their useful comments.

References
Because there is no known exact indexing method for

LB_Yi, we could not include it in this experiment. We
originally included LB_Kim in the experiments, but found
that it never beat linear scan, we therefore decided to
exclude it from graphic presentation.

[1] Aach, J. and Church, G. (2001). Aligning gene expression
time series with time warping algorithms. Bioinformatics.
Volume 17, pp 495-508.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.
(1995). Fast similarity search in the presence of noise,
scaling, and translation in times-series databases. In Proc.
21st Int. Conf. on Very Large Databases, pp. 490-501.

We tested over a range of query lengths and
dimensionalities, but show just one typical result for
brevity. Figure 15 shows the normalized CPU cost of
linear scan and LB_Keogh, for queries of length 256, with
a 16 dimensional index, for increasingly large databases.

[3] Berndt, D. & Clifford, J. (1994) Using dynamic time
warping to find patterns in time series. AAAI-94 Workshop
on Knowledge Discovery in Databases. pp 229-248.

[4] Caiani, E.G., Porta, A., Baselli, G., Turiel, M.,
Muzzupappa, S., Pieruzzi, F., Crema, C., Malliani, A. &
Cerutti, S. (1998) Warped-average template technique to
track on a cycle-by-cycle basis the cardiac filling phases on
left ventricular volume. IEEE Computers in Cardiology.

0

0.2

0.4

0.6

0.8

1

29 210 211 212 213 214 215 216 217 218 219 220

N
or

m
al

iz
ed

 C
PU

 c
os

t

29 210 211 212 213 214 215 216 217 218 219 220

LS
LB_Keogh

LS

LB_Keogh

Random Walk II Mixed Bag

[5] Chan, K.P., Fu, A & Yu, C.(2002). Haar wavelets for
efficient similarity search of time-series: with and without
time warping. IEEE Transactions on Knowledge and Data
Engineering, to appear.

[6] Chu, S., Keogh, E., Hart, D., Pazzani, M (2002). Iterative
deepening dynamic time warping for time series. In Proc
2nd SIAM International Conference on Data Mining.

Figure 15: The normalized CPU cost of linear scan and
LB_Keogh, for queries of length 256, with a 16 dimensional
index, for increasingly large databases. Note that the X-axis
is in logarithmic scale, and denotes the number of items in
the database

[7] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth,
P. (1998). Rule discovery form time series. Proc. of the 4th
International Conference of Knowledge Discovery and
Data Mining. pp 16-22, AAAI Press.

[8] Debregeas, A. & Hebrail, G. (1998). Interactive
interpretation of Kohonen maps applied to curves. Proc. of
the 4th International Conference of Knowledge Discovery
and Data Mining. pp 179-183.

[25] Park, S., Chu, W., Yoon, J & Hsu, C. (2000). Efficient
searches for similar subsequences of different lengths in
sequence databases. In Proc. 16th IEEE Int'l Conf. on Data
Engineering, pp. 23-32.

[26] Park, S. (1999). Personal communication. [9] Diez, J. J. R. & Gonzalez, C. A. (2000). Applying boosting
to similarity literals for time series Classification. Multiple
Classifier Systems, 1st Inter’ Workshop. pp 210-219.

[27] Rabiner, L. & Juang, B. (1993). Fundamentals of speech
recognition. Englewood Cliffs, N.J, Prentice Hall.

[10] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series
databases. In Proc. ACM SIGMOD Conf., Minneapolis.

[28] Roussopoulos, N., Kelley, S. & Vincent, F. (1995).
Nearest neighbor queries. SIGMOD Conference. pp 71-79.

[29] Sakoe, H. & Chiba, S. (1978). Dynamic programming
algorithm optimization for spoken word recognition. IEEE
Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26.

[11] Faloutsos, C., Lin, K. (1995). FastMap: A fast algorithm
for indexing, data-mining and visualization of traditional
and multimedia datasets. SIGMOD Conf pp 163-174. [30] Schmill, M., Oates, T. & Cohen, P. (1999). Learned models

for continuous planning. In 7th International Workshop on
Artificial Intelligence and Statistics.

[12] Gavrila, D. M. & Davis,L. S.(1995). Towards 3-d model-
based tracking and recognition of human movement: a
multi-view approach. In International Workshop on
Automatic Face- and Gesture-Recognition.

[31] Seidl, T. & Kriegel, H. (1998). Optimal multi-step k-
nearest neighbor search. SIGMOD Conference. pp 154-165.

[13] Gollmer, K., & Posten, C. (1995) Detection of distorted
pattern using dynamic time warping algorithm and
application for supervision of bioprocesses. On-Line Fault
Detection and Supervision in Chemical Process Industries.

[32] Walker, J. (2001). HotBits: Genuine random numbers
generated by radioactive decay. www.fourmilab.ch/hotbits/

[33] Yi, B, K. Jagadish, H & Faloutsos (1998). Efficient
retrieval of similar time sequences under time warping. In
ICDE 98, pp 23-27. [14] Guttman, A. (1984). R-trees: A dynamic index structure for

spatial searching. In Proceedings ACM SIGMOD
Conference. pp 47-57. [34] Yi, B, K., & Faloutsos, C.(2000). Fast time sequence

indexing for arbitrary Lp norms. Proceedings of the 26st
Intl Conference on Very Large Databases. pp 385-394 . [15] Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E.

(1997). Towards an analysis of indexing schemes. 16th
ACM Symposium on Principles of Database Systems. Appendix A

[16] Kadous, M. W. (1999) Learning comprehensible
descriptions of multivariate time series. In Proc. of the 16th
International Machine Learning Conference.

T (Tightness of Lower Bound) P (Pruning Power) ID Name Size
LB_Kim LB_Yi LB_Keogh LB_Kim LB_Yi LB_Keogh

1 Sunspot 2,899 0.11 0.06 0.63 0.14 0.07 0.73
2 Power 35,040 0.12 0.13 0.73 0.27 0.32 0.80
3 ERP data 198,400 0.13 0.24 0.65 0.01 0.07 0.59
4 Spot Exrates 2,567 0.12 0.21 0.75 0.01 0.03 0.77
5 Shuttle 6,000 0.12 0.29 0.87 0.20 0.39 0.85
6 Water 6,573 0.22 0.36 0.66 0.05 0.24 0.64
7 Chaotic 1,800 0.18 0.19 0.50 0.09 0.16 0.43
8 Steamgen 38,400 0.11 0.22 0.81 0.00 0.11 0.82
9 Ocean 4,096 0.13 0.19 0.84 0.20 0.34 0.87
10 Tide 8,746 0.16 0.16 0.56 0.02 0.01 0.39
11 CSTR 22,500 0.13 0.25 0.71 0.04 0.09 0.75
12 Winding 17,500 0.17 0.29 0.51 0.03 0.04 0.19
13 Dryer2 5,202 0.15 0.25 0.62 0.01 0.07 0.46
14 Robot Arm 2,048 0.18 0.06 0.30 0.03 0.01 0.13
15 Ph Data 6,003 0.11 0.29 0.60 0.03 0.12 0.51
16 Power Plant 2,400 0.13 0.20 0.72 0.05 0.08 0.72
17 Evaporator 37,830 0.18 0.31 0.34 0.04 0.25 0.26
18 Ballbeam 2,000 0.12 0.15 0.65 0.20 0.21 0.63
19 Tongue 700 0.20 0.06 0.21 0.17 0.04 0.21
20 Fetal ECG 22,500 0.17 0.45 0.66 0.17 0.35 0.67
21 Balloon 4,002 0.18 0.22 0.55 0.09 0.12 0.33
22 Stand’ & Poor 17,610 0.13 0.10 0.71 0.06 0.04 0.75
23 Speech 1,020 0.16 0.11 0.53 0.14 0.04 0.69
24 Soil Temp 2,304 0.14 0.11 0.48 0.13 0.08 0.32
25 Wool 2,790 0.11 0.19 0.79 0.26 0.48 0.83
26 Infrasound 8,192 0.10 0.18 0.76 0.07 0.09 0.78
27 Network 18,000 0.14 0.18 0.55 0.00 0.01 0.38
28 EEG 11,264 0.14 0.08 0.44 0.01 0.01 0.16
29 Koski EEG 144,002 0.18 0.39 0.73 0.36 0.54 0.78
30 Buoy Sensor 55,964 0.17 0.20 0.61 0.03 0.06 0.38
31 Burst 9,382 0.10 0.15 0.77 0.09 0.12 0.76
32 Random Walk I 65,536 0.13 0.11 0.68 0.03 0.02 0.75

 Mean Value 0.144 0.199 0.622 0.094 0.144 0.572
MB Mixed Bag 763,270

RW Random Walk II 1,048,576

[17] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000)
Dimensionality reduction for fast similarity search in large
time series databases. Journal of Knowledge and
Information Systems. pp 263-286.

[18] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001)
Locally adaptive dimensionality reduction for indexing
large time series databases. In Proc of ACM SIGMOD
Conference on Management of Data, May. pp 151-162.

[19] Kim, S,. Park, S., & Chu, W. (2001). An Index-based
approach for similarity search supporting time warping in
large sequence databases. In Proc 17th International
Conference on Data Engineering, pp 607-614.

[20] Kollios, G., Vlachos, M. & Gunopulos, G. (2002).
Discovering similar multidimensional trajectories. In Proc
18th International Conference on Data Engineering.

[21] Korn, F., Jagadish, H & Faloutsos. C. (1997). Efficiently
supporting ad hoc queries in large datasets of time
sequences. In Proceedings of SIGMOD '97. pp 289-300.

[22] Kruskall, J. B. & Liberman, M. (1983). The symmetric
time warping algorithm: From continuous to discrete. In
Time Warps, String Edits and Macromolecules. Addison-
Wesley.

[23] Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of
similar subsequences in long sequence databases. In 3rd
IEEE Knowledge and Data Engineering Exchange
Workshop.

Table 5: The raw numbers obtained for the experiments
discussed in Sections 5.2 and 5.3. These numbers may be
visualized in Figures 12 and 14 respectively

[24] Park, S., Kim, S, & Chu, W. (2001). Segment-based
approach for subsequence searches in sequence databases.
In Proceedings of the 16th ACM Symposium on Applied
Computing, pp. 248-252, Las Vegas, NV, USA.

