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Abstract 
The problem of indexing time series has attracted 
much research interest in the database 
community. Most algorithms used to index time 
series utilize the Euclidean distance or some 
variation thereof. However is has been forcefully 
shown that the Euclidean distance is a very 
brittle distance measure. Dynamic Time Warping 
(DTW) is a much more robust distance measure 
for time series, allowing similar shapes to match 
even if they are out of phase in the time axis. 
Because of this flexibility, DTW is widely used 
in science, medicine, industry and finance.  
Unfortunately however, DTW does not obey the 
triangular inequality, and thus has resisted 
attempts at exact indexing. Instead, many 
researchers have introduced approximate 
indexing techniques, or abandoned the idea of 
indexing and concentrated on speeding up 
sequential search. In this work we introduce a 
novel technique for the exact indexing of DTW. 
We prove that our method guarantees no false 
dismissals and we demonstrate its vast 
superiority over all competing approaches in the 
largest and most comprehensive set of time 
series indexing experiments ever undertaken. 

1. Introduction 
The indexing of very large time series databases has 
attracted the attention of database community in recent 
years. The vast majority of work in this area has focused 
on indexing under the Euclidean distance metric [5, 10, 
17, 18, 21, 34]. However there is an increasing awareness 

that the Euclidean distance is a very brittle distance 
measure [6, 16, 20].    What is needed is a method that 
allows an elastic shifting of the time axis, to 
accommodate sequences which are similar, but out of 
phase, as shown in Figure 1. Just such a technique, based 
on dynamic programming, has long been known to the 
speech processing community [27, 29]. Berndt and 
Clifford introduced the technique, Dynamic Time 
Warping (DTW), to the database community [3]. 
Although they demonstrate the utility of the approach, 
they acknowledge that its resistance to indexing is a 
problem and that “…performance on very large databases 
may be a limitation”.  Despite this shortcoming of DTW, 
it is still widely used in various fields:  In bioinformatics, 
Aach and Church successfully applied DTW to RNA 
expression data [1].  In chemical engineering, it has been 
used for the synchronization and monitoring of batch 
processes in polymerization [13].  DTW has been 
successfully used to align biometric data, such as gait, 
signatures and even fingerprints [12]. Many researchers 
including Caiani et al. [4] have demonstrated the utility of 
DTW for ECG pattern matching.  Finally in robotics, 
Schmill et al. demonstrated a technique that utilizes DTW 
to cluster an agent’s sensory outputs [30].  
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Figure 1: Note that while the two sequences have an overall 
similar shape, they are not aligned in the time axis.  
Euclidean distance, which assumes the ith point in one 
sequence is aligned with the ith point in the other, will 
produce a pessimistic dissimilarity measure.  The nonlinear 
Dynamic Time Warped alignment allows a more intuitive 
distance measure to be calculated 



More than two-dozen techniques have been introduced 
to index time series under the Euclidean distance [5, 10, 
17, 18, 21, 34] (see [18] for a more comprehensive 
listing). In addition, several researchers have shown 
techniques to approximately index DTW [33], or 
introduced methods to reduce its demanding CPU time 
[6]. However only two researchers have claimed to have 
introduced an exact indexing technique for DTW [19, 23]. 
In the case of [23], the claim of no false dismissals was 
later retracted [24, 26]. We have carefully implemented 
only technique to correctly claim the ability to exactly 
index DTW, and the only other lower bounding 
approximation of DTW, for detailed comparison with our 
proposed approach.  

In contrast to the approaches above, we will prove the 
no false dismissal property of our approach and 
demonstrate its superiority with the most comprehensive 
set of time series indexing experiments ever undertaken. 
In particular, in terms of number and diversity of datasets, 
size of datasets, range of query lengths and indexing 
parameters, our experiments are one to two orders of 
magnitude larger that all previous papers combined. 

The rest of the paper is organized as follows. In 
Section 2 we will consider the utility of time series 
similarity search, review the DTW algorithm, and 
consider related work. In Section 3 we will introduce a 
novel lower bounding technique that tightly approximates 
the true DTW distance. Section 4 introduces a method 
that allows the exact indexing using our lower bounding 
function. In Section 5 we conduct an exhaustive empirical 
comparisons of our method with completing techniques. 
Finally in Section 6 we offer conclusions and suggestions 
for extensions.  

2. Background 
Similarity search in time series is useful in its own right as 
a tool for interactive exploration of very large databases, 
it is also a subroutine in many data mining applications 
including rule discovery [7], clustering [6, 8], and 
classification [9, 16]. The superiority of DTW over 
Euclidean distance for these tasks has been demonstrated 
by several authors [1, 6, 13, 20, 30, 33]. However for 
completeness, we include a simple experiment to illustrate 
the point. 

The most studied time series classification/clustering 
problem is the Cylinder-Bell-Funnel dataset [16], it a 
deceptively simple looking 3-class problem, Figure 2 
shows typical examples of each class. 
 

Cylinder Bell Funnel  
Figure 2: Typical examples from the Cylinder-Bell-Funnel 
dataset    

The problem has been attacked with sophisticated 
techniques including rule-base learners [16], boosting, 

Bayesian techniques, and decision trees. We performed a 
simple classification experiment on this dataset, using the 
1- nearest neighbour algorithm. Our dataset consists of ten 
instances of each class, and the classifier was evaluated 
using the “leaving-one-out” strategy. Since we had the 
luxury of unlimited data, we averaged the results over 
1,000 runs. The mean error rate for the Euclidean distance 
metric on the problem was 0.2734, but for DTW it was 
only 0.0269, an order of magnitude lower. This “off-the-
shelf” result is competitive with the highly tuned, 
sophisticated techniques enumerated above. The lower 
error rate came with a cost however; classification with 
DTW took approximately 230 times longer that with 
Euclidean distance. 

This result reiterates the utility of DTW and motivates 
the necessity of introducing techniques to index it.   

  C  A time series of length n   C = c1, c2,…, ci,…, cn. 
[ci : cj] A subsequence of C, beginning at ci and ending at cj   
C  A piecewise linear approximation of a time series. [17,34] 
DTW The Dynamic Time Warp distance measure 
LB_Kim The lowerbounding function introduced by Kim et al.  [19] 

LB_Yi The lowerbounding function introduced by Yi et al.  [33] 

LB_Keogh The lower bounding function introduced in this work 

Table 1: The basic notation used in this work 

2.2   Review of DTW 

Suppose we have two time series Q and C, of length n and 
m respectively, where: 

Q = q1,q2,…,qi,…,qn   (1) 
C = c1,c2,…,cj,…,cm   (2) 

To align two sequences using DTW, we construct an n-
by-m matrix where the (ith, jth) element of the matrix 
contains the distance d(qi,cj) between the two points qi 
and cj (i.e. d(qi,cj) = (qi - cj)2 ). Each matrix element (i,j) 
corresponds to the alignment between the points qi and cj. 
This is illustrated in Figure 3. A warping path W, is a 
contiguous (in the sense stated below) set of matrix 
elements that defines a mapping between Q and C. The kth 
element of W is defined as wk = (i,j)k so we have: 

W = w1, w2, …,wk,…,wK         max(m,n) ≤ K < m+n-1 (3) 
The warping path is typically subject to several 

constraints. 
• Boundary conditions: w1 = (1,1) and wK = (m,n), this 

requires the warping path to start and finish in 
diagonally opposite corner cells of the matrix.  

• Continuity: Given wk = (a,b) then wk-1 = (a',b') where 
a–a' ≤1 and b-b' ≤ 1. This restricts the allowable steps 
in the warping path to adjacent cells (including 
diagonally adjacent cells). 

• Monotonicity: Given wk = (a,b) then wk-1 = (a',b') 
where a–a' ≥ 0 and b-b' ≥ 0. This forces the points in 
W to be monotonically spaced in time.  



 
Figure 3:  A) Two sequences Q and C which are similar, but 
out of phase. B) To align the sequences we construct a 
warping matrix, and search for the optimal warping path, 
shown with solid squares. C) The resulting alignment 

There are exponentially many warping paths that 
satisfy the above conditions, however we are only 
interested in the path that minimizes the warping cost: 
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This path can be found using dynamic programming 
to evaluate the following recurrence which defines the 
cumulative distance γ(i,j) as the distance d(i,j) found in 
the current cell and the minimum of the cumulative 
distances of the adjacent elements:   
 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (5) 

The Euclidean distance between two sequences can be 
seen as a special case of DTW where the kth element of W 

is constrained such that wk = (i,j)k , i = j = k. Note that it is 
only defined in the special case where the two sequences 
have the same length. The time and space complexity of 
DTW is O(nm).  
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This review of DTW is necessarily brief; we refer the 
interested reader to [22, 27] for a more detailed treatment. 

2.3   Related work 

While there has been much work on indexing time series 
under the Euclidean metric [5, 10, 17, 18, 21, 34], there 
has been much less progress on indexing under DTW.  

Yi, Jagadish, and Faloutsos [33] introduced a 
technique for approximate indexing of DTW that utilizes 
their FastMap technique [11]. The idea is to embed the 
sequences into Euclidean space such that the distances 
between them are approximately preserved, then classic 
multi-dimensional index structures can be utilized [14]. In 
addition, they introduce a lower bounding function 
(described in more detail in Section 3.2) that can be used 
to prune some of the inevitable false hits their method will 
introduce. The method does produce an observed 
(maximum) speedup of 7.8 over sequential scanning. 
However this does have some limitations. First, it does 
allow false dismissals. Second, while the time to build the 
index is linear in M (the size of the database), it is actually 
O(Mn2), which quickly becomes intractable for very large 
databases and/or long sequences. 

Kim et al. introduced an exact algorithm for indexing 
of time series under DTW [19]. The method extracts four 
features from the sequences and organizes them in a 
multi-dimensional index structure. They introduce a lower 
bounding function (described in more detail in Section 
3.2) that is defined on the four features and thus guarantee 
no false dismissals. Although the work introduced the first 
technique for exact indexing under DTW, it suffers from 
several limitations. First the method only allows the 
extraction of exactly four features, and thus cannot take 
advantage of multi-dimensional index structures that scale 
well to higher dimensions. In addition, although four 
features are extracted, only one of them (determined at 
query time) is actually used in the lower bounding 
function, thus the lower bound is very loose, and many 
false alarms are generated, each of which will require 
evaluation with the quadratic-time DTW algorithm.  

In Park et al. [23] the authors demonstrate a DTW 
indexing technique which is based on a piecewise linear 
representation of the data. They “prove” that this method 
can guarantee no false dismissals. Unfortunately, the no 
false dismissals claim is incorrect. A candidate sequence 
in the database can differ from the query sequence by an 
arbitrarily small epsilon and still not be retrieved [26]. A 
later version of the paper did carry a disclaimer stating 
“…it is possible that a subsequence similar to a query in 
terms of the original time warping distance may not be 
included in the answer set in our approach” [24]. 
However this qualification understates the problem. 



Having tested the approach with 39,200 experiments on 
32 different datasets we found that the approach only 
returned the true best match to a 1-nearest neighbor query 
613 times. This result does not significantly differ from 
random chance. We therefore exclude this approach from 
further consideration.   

There are only two desirable properties of a lower 
bounding measure:  

• It must be fast to compute. Clearly a measure 
that takes as long to compute as the original 
measure is of little use. In our case we would like 
the time complexity to be at most linear in the 
length of the sequences. Another attempt at indexing DTW utilizes a suffix tree 

[25]. While the method is interesting, we do not include it 
in our empirical comparisons since the index size is one to 
two orders of magnitude larger than the data itself. Such 
enormous space overhead is simply untenable for very 
large databases. In any case, the claimed speed up is 
rather modest.  

• It must be a relatively tight lower bound. A 
function can achieve a trivial lower bound by 
always returning zero as the lower bound 
estimate. However, in order for the algorithm in 
Table 2 to be effective, we require a method that 
more tightly approximates the true DTW 
distance. Finally there has been some work in which attempts at 

indexing and/or lower bounding are abandoned and 
instead efforts are concentrated on fast approximation of 
the DTW distance using a lower resolution approximation 
of the data. The idea was introduced by [6] who use a 
piecewise linear approximation of the data. The method 
shows significant speedup with few false dismissals. A 
similar idea was suggested by [5]. Here the authors obtain 
the lower resolution of the data approximation with 
wavelets and use their approximate distance measure 
instead of Yi et al’s lower bounding measure, within the 
FastMap framework. The method improves the speedup 
of Yi et al’s work at the expense of introducing more false 
dismissals.  

 
While lower bounding functions for string edit, graph 

edit and tree edit distance have been studied extensively 
[22], there has been far less work on DTW, which is very 
similar in spirit to its discrete cousins. Below we will 
consider the existing DTW lower bounding techniques.     

3.2   Existing lower bounding measures 

To the best of our knowledge there are only two existing 
lower bounding functions available for DTW (Not 
including [23] which incorrectly claims to be lower 
bounding, or [25] which has a time complexity equal to 
the full algorithm).  While referring the interested reader 
to the original papers for detailed explanations, below we 
give a visual intuition and brief explanation of each.  3.   Lower bounding the DTW distance 

The lower bounding function introduced by Kim et al. 
[19] (hereafter known as LB_Kim), works by extracting a 
4-tuple feature vector from each sequence. The features 
are the first and last elements of the sequence, together 
with the maximum and minimum values. The maximum 
absolute difference of corresponding features is reported 
as the lower bound. Figure 4 illustrates the idea.  

In this section we explain the importance of lower 
bounding, and introduce our new lower bounding distance 
measure.  

3.1   The utility of lower bounding measures 

Time series similarity search under the Euclidean metric 
is heavily I/O bound, however similarity search under 
DTW is also very demanding in terms of CPU time. One 
way to address this problem is to use a fast lower 
bounding function to help prune sequences that could not 
possibly be a best match.  Table 2 gives the pseudocode 
for such an algorithm. 
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Algorithm Lower_Bounding_Sequential_Scan(Q)  
1. best_so_far = infinity; 
2. for all sequences in database 
3.  LB_dist = lower_bound_distance(Ci, Q); 
4.     if LB_dist < best_so_far 
5.         true_dist = DTW(Ci, Q); 
6.         if true_dist < best_so_far 
7.             best_so_far = true_dist; 
8.             index_of_best_match = i; 
9.         endif 
10.     endif 
11. endfor 

 
Figure 4: A visual intuition of the lower bounding measure 
introduced by Kim et al. The squared difference between the 
two sequence’s first (A), last (D), minimum (B) and 
maximum points (C) is returned as the lower bound   

The lower bounding function introduced by Yi et al. 
[33]. (hereafter referred to as LB_Yi) takes advantage of 
the observation that all the points in one sequence that are 
larger (smaller) than the maximum (minimum) of the 
other sequence must contribute at least the squared 

Table 2: An algorithm that uses a lower bounding 
distance measure to speed up the sequential scan 
search for the query Q 

 



difference of their value and the maximum (minimum) 
value of the other sequence to the final DTW distance.  
Figure 5 illustrates the idea. 

 
Figure 5: A visual intuition of the lower bounding measure 
introduced by Yi et al. The sum of the squared length of 
gray lines represent the minimum the corresponding points 
contribution to the overall DTW distance, and thus can be 
returned as the lower bounding measure   

3.3   Proposed lower bounding measure 

Before introducing our lower bounding technique we 
must review an additional detail of the DTW algorithm 
that we deliberately omitted until now. 

3.3.1   Global constraints on time warping 

In addition to the constraints on the warping path 
enumerated in Section 2.2, virtually all practitioners using 
DTW also constraint the warping path in a global sense 
by limiting how far it may stray from the diagonal [3]. 
The subset of matrix that the warping path is allowed to 
visit is called the warping window. Figure 6 illustrates 
two of the most frequently used global constraints, the 
Sakoe-Chiba Band and the Itakura Parallelogram [27, 29].  

 
Figure 6: Global constraints limit the scope of the warping 
path, restricting them to the gray areas. The two most 
common constraints in the literature are the Sakoe-Chiba 
Band and the Itakura Parallelogram 

There are several reasons for using global constraints, 
one of which is that they slightly speed up the DTW 
distance calculation.  However the most important reason 
is to prevent pathological warpings, where a relatively 
small section of one sequence maps onto a relatively large 
section of another. The importance of global constraints 
was documented by the originators of the DTW 

algorithm, who where exclusively interested in aligning 
speech patterns [29]. However, has been empirically 
confirmed in other settings, including finance, medicine, 
biometrics, chemistry, astronomy, robotics and industry.   
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As a motivating example consider the two sequences 
in Figure 1 which were used to illustrate DTW. The 
smooth peaks in each correspond to increase in demand 
for electrical power during weekdays. In the topmost 
sequence there is no peak on Monday because it was a 
national holiday, the same is true for Wednesday in the 
bottom sequence. In this domain, we may well decide that 
that it makes sense to allow warpings of up to one day, i.e. 
Monday may warp to Tuesday and Tuesday may warp to 
Wednesday etc, but more drastic warpings (i.e. Monday to 
Friday) should not be allowed. This constraint can easily 
be enforced by using a Sakoe-Chiba Band with a width 
equal to n/7. 

3.3.2   Proposed lower bounding measure 

We can view a global constraint as constraining the 
indices of the warping path wk = (i,j)k such that j-r ≤ i ≤ 
j+r where r is a term defining the reach, or allowed range 
of  warping, for a given point in a sequence. In the case of 
the Sakoe-Chiba Band r is independent of i, for the 
Itakura Parallelogram r is a function of i.  

We will use the term r to define two new sequences, U 
and L: 

 Ui = max(qi-r : qi+r)    (6) 
Li = min(qi-r : qi+r)  (7) 

U and L stand for Upper and Lower respectively, we 
can see why if we plot them together with the original 
sequence Q as in Figure 7. They form a bounding 
envelope that encloses Q from above and below. Note that 
although the Sakoe-Chiba Band is of constant width, the 
corresponding envelope generally is not of uniform 
thickness. In particular, the envelope is wider when the 
underlying query sequence is changing rapidly, and 
narrower when the query sequence plateaus.  
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Figure 7: An illustration of the sequences U and L, created 
for sequence Q (shown dotted). A was created using the 
Sakoe-Chiba Band and B using the Itakura Parallelogram 



Proof: We wish to prove An obvious but important property of U and L is the 
following: 
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    ∀i     Ui ≥  qi  ≥ Li      (8) 
Having defined U and L, we now use them to define a 

lower bounding measure for DTW.  Since the terms under radicals are positive, we can square 
both sides: 
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This function can be readily visualized as the 
Euclidean distance between the any part of the candidate 
matching sequence not falling within the envelope and the 
nearest (orthogonal) corresponding section of the 
envelope. Figure 8 illustrates the idea.  

From Eq. 3, we know that n ≤ K, so our strategy will be to 
show that every term in the left summation can be 
matched with some greater or equal term in the right 
summation.  
There are three cases to consider, for the moment we will 
just consider cases when ci > Ui. We want to show:  C   
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  (ci – Ui)2 ≤ wk       
  (ci – Ui)2 ≤ (ci – qj)2        By definition  (cf Section 2.2). 
  (ci – Ui) ≤ (ci – qj)            Since ci > Ui, we can take square roots  
        – Ui ≤ – qj                  Add  – ci  to both sides. 
           qj  ≤   Ui                  Add  Ui + qj  to both sides.  
           qj  ≤  max(qi-r:qi+r)  By definition,  Eq, 6.  
Since we have n = m, then j-r ≤ i ≤ j+r, ⇒ i-r ≤ j ≤ i+r, so 
we can rewrite the right hand side as 
           qj  ≤  max(qi-r, q(i+1)-r, qj,…, qi+r) 
If we remove all terms except qj from the RHS we are left with 
           qj  ≤  max(qj)          Which is obviously true. 
The case ci < Li yields to an similar argument. The final 
case is simple to show, since clearly  
          0 ≤ (ci – qj)2           Because (ci – qj)2 must be nonnegative 

Thus we have shown that each term on the left side is 
matched with an equal or larger term on the right side, our 
inequality holds, so LB_Keogh(Q,C) ≤ DTW(Q,C).■  
 

In the next section we will show how LB_Keogh can 
be indexed.  

Figure 8: An illustration of the lower bounding function 
LB_Keogh(Q,C). The original sequence Q (shown dotted), 
is enclosed in the bounding envelope of U and L. The 
squared sum of the distances from every part of the 
candidate sequence C not falling within the bounding 
envelope, to the nearest orthogonal edge of the bounding 
envelope is returned as the lower bound. Bounding envelope 
A was created using the Sakoe-Chiba Band and bounding 
envelope B using the Itakura Parallelogram 

4.   Indexing DTW 
Virtually all approaches to indexing time series under the 
Euclidean distance that guarantee no false dismissals use 
the GEMINI framework of Faloutsos et al. [5, 10, 17, 18, 
21, 34]. Using the GEMINI framework all one has to do is 
to choose a high level representation of the data and 
define a lower bounding measure on it. Many such 
representations have been suggested, including Fourier 
Transforms [11], Wavelets [5], Singular Value 
Decomposition [21], Adaptive Piecewise Constant 
Approximation [18] and a simple technique independently 
introduced by two authors called Piecewise Constant 
Approximation (PAA) [17, 34]. This technique is 
attractive because it is simple, intuitive and competitive 
with the other, more complex approaches. In this section 
we will show that PAA can be adapted to allow indexing 
under DTW. We begin with a brief review of PAA. 

Since the tightness of the bounds is proportional to the 
number and length of the gray hatch lines, we can see that 
in this example at least, that the Itakura Parallelogram 
provides a tighter bound than the Sakoe-Chiba Band, and 
both appear tighter than LB_Kim or LB_Yi in Figures 4 
and 5 respectively.  

We will now prove the claim of lower bounding. 
Proposition 1: For any two sequences Q and C of the 
same length n, for any global constraint on the warping 
path of the form j-r ≤ i ≤ j+r, the following inequality 
holds:     LB_Keogh(Q,C) ≤ DTW(Q,C)  



4.1   Piecewise Constant Approximation  

We have previously denoted a time series as C = c1,…, cn.  
We assume each sequence in our database is n units long. 
Let N be the dimensionality of the space we wish to index 
(1 ≤ N ≤ n). For convenience, we assume that N is a factor 
of n. This is not a requirement of our approach, however it 
does simplify notation.  

A time series C of length n can be represented in N 
dimensional space by a vector NccC ,,1 K= . The ith 

element of C is calculated by the following equation: 

∑
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 Simply stated, to reduce the time series from n 
dimensions to N dimensions, the data is divided into N 
equal sized “frames”. The mean value of the data falling 
within a frame is calculated and a vector of these values 
becomes the data reduced representation. The complicated 
subscripting in Eq. 10 just insures that the original 
sequence is divided into the correct number and size of 
frames.  The representation can best be visualized as an 
attempt to model the original time series with a linear 
combination of box basis functions as shown in Figure 9. 

 
Figure 9: The PAA representation can be readily visualized 
as an attempt to model a sequence with a linear combination 
of box basis functions. In this case, a sequence of length 256 
is reduced to 16 dimensions 
Given two original sequences Q and C, we can 

transform them into Q and C  using Eq. 10, and 
approximate their Euclidean distance by: 

( )∑ =
−≡

N

i iiN
n cqCQDR

1
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A proof that DR(Q , C ) lower bounds the true Euclidean 
distance is in [17] (A different proof appears in[34]). 

4.2   Modifying PAA to index time warped queries 

In Section 3 we introduced the lowering bounding 
function LB_Keogh, however calculating this function 

requires n values. Since n may be in the order of hundreds 
to thousands, and multi-dimensional index structures 
begin to degrade rapidly somewhere above 16 dimension 
[15, 31], we need a way to create a lower, N dimension 
version of the function, where N is a number that can be 
reasonably handled by a multi-dimensional index 
structure [14]. We also need this lower dimension version 
of the function to lower bound LB_Keogh (and therefore, 
by transitivity, DTW). 

We begin by creating special piecewise constant 
approximations of U and L, which we will denote U  and 

. Although they are piecewise constant approximations, 
the definitions of U  and differ from those we have 
seen in Eq. 10, in particular we have 

ˆ
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We can visualize U  and  as the piecewise constant 
functions which bound, without intersecting, U and L 
respectively. Figure 10 illustrates this intuition.  
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Figure 10: We can readily visualize U  and C  as the 
piecewise constant functions which bound, without 
intersecting, U and L respectively 

ˆ ˆ

We are now able to define the low dimension, lower 
bounding function, which we denote LB_PAA. Given a 
candidate sequence C, transformed to C  by Eq. 10, and a 
query sequence Q, with its companion PAA functions U  
and , the following function lower bounds LB_Keogh 
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The proof that LB_PAA(Q, C ) ≤ LB_Keogh(Q,C) is 
a straightforward but long extension of Proposition 1, we 
omit it for brevity.   

The final step necessary to allow indexing is to define 
a MINDIST(Q,R) function that returns a lower bounding 
measure of the distance between a query Q, and R, were R 
is a Minimum Bounding Rectangle (MBR).    

Suppose our index structure contains a leaf node U. 
Let R = (L, H) be the MBR associated with U where L = 
{l1, l2, …, lN} and H = {h1, h2, …, hN} are the lower and 
higher endpoints of the major diagonal of R. By 



definition, R is the smallest rectangle that spatially 
contains each PAA point Ncc ,,1 K=C  stored in U. 
Given the above, MINDIST(Q,R) is defined as: 
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This function is visualized in Figure 11.   

 
Figure 11: A) A representation of a Minimum Bounding 
rectangle (MBR). B) A subsection of the query shown in 
Figure 10, with its attendant functions U  and C . C) An 
illustration of the MINDIST function. The lengths of the 
arrow lines, squared, scaled by n/N, summed and square 
rooted, are returned as the minimum distance between Q and 
any sequence contained within R 

ˆ ˆ

Having defined LB_PAA and MINDIST(Q,R) we are 
now ready to introduce the K-Nearest Neighbor search 
algorithm. The basic algorithm is shown in Table 3, it is 
an optimization on the GEMINI K-NN algorithm [11] as 
suggested by [31], and is a modification of the algorithm 
used for indexing time series under the Euclidean metric 
in [18].  

A query KNNSearch(Q,K) with query sequence Q 
and desired number of neighbors K retrieves a set C of K 
time series such that for any two sequences C ∈  C, E ∉  
C, DTW(Q,C) ≤ DTW(Q,E). Like the classic K-NN 
algorithm [28], the algorithm in Table 3 uses a priority 
queue queue to visit nodes/objects in the index in the 
increasing order of their distances from Q in the indexed 
(i.e. PAA) space. The distance of an object (i.e. PAA 
point) C from Q is defined by LB_PAA(Q,C ) (cf. 
Section 4.2, Eq. 13) while the distance of a node U from 
Q is defined by the minimum distance MINDIST(Q,R) of 
the minimum bounding rectangle (MBR) R associated 
with U from Q. 

We begin by pushing the root node of the index into 
the queue (Line 1). The algorithm navigates the index by 
popping out the item from the top of queue at each step 

(Line 8). If the popped item is an PAA point C, we go to 
disk to retrieve the original time series C, and we compute 
its exact distance DWT(Q,C) from the query then insert it 
into a temporary list temp (Lines 9-11). If, on the other 
hand, the popped item is a node of the index structure, we 
compute the distance of each of its children from Q and 
push them into queue (Lines 12-17). 
Algorithm KNNSearch(Q,K) 
Variable queue: MinPriorityQueue; 
Variable list: temp; 
 
1. queue.push(root_node_of_index, 0); 
2. while not queue.IsEmpty() do 
3.   top = queue.Top(); 
4.   for each time series C in temp such that 

DTW(Q,C) ≤ top.dist 
5.   Remove C from temp; 
6.   Add C to result; 
7.   if |result| = K return result      ; 
8. queue.Pop(); 
9.  if top is an PAA point C 
10.   Retrieve full sequence C from database; 
11.    temp.insert(C, DTW(Q,C)); 
12. else if top is a leaf node 
13.   for each data item C in top 
14.     queue.push(C, LB_PAA(Q,C )); 
15. else        // top is a non-leaf node 
16.   for each child node U in top 
17.     queue.push(U, MINDIST(Q,R)) // R is 

 MBR associated with U. 
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C) 
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MINDIST(Q,R) 

Table 3: K-NN algorithm to compute the exact K nearest 
neighbors of a query time series Q using a multidimensional 
index structure 

We only move a sequence C from temp to result when 
we are sure that it is one of the K nearest neighbors of Q. 
That is to say, there exists no object E ∉ result such that 
DTW(Q,E) < DTW(Q,C) and |result| < K. This second 
condition is guaranteed by the exit condition in Line 7. 
The first condition can be guaranteed as follows. Let I be 
the set of PAA points retrieved thus far using the index 
(i.e. I = temp ∪ result).  If we can guarantee that ∀ C ∈  
I, ∀ E  ∉ I, LB_PAA(Q,C ) ≤ DTW(Q,E), then the 
condition “DTW(Q,C) ≤ top.dist” in Line 4 will ensure 
that there exists no unexplored sequence E such that 
DTW(Q, E) < DTW(Q,C).  

By inserting the time series in temp (i.e. previously 
seen objects) into result in increasing order of their 
distances DTW(Q,C) (by keeping temp sorted by 
DTW(Q,C)), we ensure that there exists no explored 
object E such that DTW(Q, E) < DTW(Q,C).   

The definitions of LB_Keogh, LB_PAA and 
MINDIST proposed in this work are also needed for 
answering range queries using a multidimensional index 
structure. We can use a classic R-tree-style recursive 
search algorithm. Since both MINDIST(Q,R) and 
LB_PAA(Q,C ) lower bound DTW(Q,C),  the algorithm 
shown in Table 4 is correct [11]. 

 
 



Algorithm RangeSearch(Q, ε, T) 
 
1. if T is a non-leaf node  
2. for each child U of T  
3. if MINDIST(Q,R)≤ ε     RangeSearch(Q, ε, U);  
                                // R is MBR of U 
4. else                   // T is a leaf node
      
5.   for each PAA poin in T t C 
6.     if LB_PAA(Q,C )≤ ε 
7.           Retrieve full sequence C from database; 
8.     if DTW(Q,C) ≤ ε  Add C to result; 

• To ensure true randomness where required, we use 
random numbers created by a quantum mechanical 
process [32].  

• Although we also present results of an implemented 
system, we present comprehensive results that are 
completely of implementation (ie. page size, cache 
size, etc). This is to guard against implementation 
bias [18] and to allow and encourage independent 
replication of our results. 

   For simplicity and brevity we only show results for 
nearest neighbor queries, however we obtained very 
similar results for range queries. Because of the sheer 
volume of experiments conducted, in this section we will 
present graphics to summarize our findings and we will 
reproduce the actual numbers in Appendix A.  

Table 4: Range search algorithm to retrieve all the time 
series within a range of ε from query time series Q. The 
function is invoked as RangeSearch(Q, ε, 
root_node_of_index) 

5.   Experimental Evaluation For all experiments we used the Sakoe-Chiba Band 
with a width of 10% of n, since this appears to be the 
most commonly used constraint in the literature [27, 29].  In this section we test our proposed approach with a 

comprehensive set of experiments.  
5.2   Comparison of lower bounding functions 

5.1   Experimental Philosophy  We begin our experiments with a comparison of the 
tightness of the lower bounds for the three functions, 
LB_Yi, LB_Kim and LB_Keogh. We define T as the ratio 
of the estimated distance between two sequences over the 
true distance between the same two sequences.   

Previous experience in reimplementing and testing more 
than a dozen different Euclidean time series indexing 
techniques [18], suggests that many published results do 
not generalize to real world datasets and conditions. We 
therefore conducted the experiments in this paper with the 
explicit goal of conducting the most comprehensive and 
detailed set of time series indexing experiments ever 
attempted. In particular we have taken the following steps 
to insure the most meaningful and generalizable results.  

nceDistaWarpTimeDynamicTrue
nceDistaWarpTimeDynamicofEstimateBoundLowerT =  (15) 

T is in the range [0,1], with the larger the better. To 
estimate T for each of the 32 datasets we did the 
following: We randomly extracted 50 sequences of length 
256. We compared each sequence to the 49 others, using 
the true DTW distance, and the three lower bounding 
functions. For each dataset we report T as average ratio 
from the 1,225 (50*49/2) comparisons made.  

• Instead of testing on just one or two datasets as is 
typical [2, 3, 5, 7, 8, 10, 12, 13, 16, 19, 23, 24, 25, 30 
34], we tested all algorithms on 32 datasets. These 
datasets cover the complete spectrum of stationary/ 
non-stationary, noisy/ smooth, cyclical/ non-cyclical, 
symmetric/ asymmetric, etc. The data also represents 
the many areas in which DTW is used, including 
finance, medicine, biometrics, chemistry, astronomy, 
robotics, networking and industry.    

Figure 12 shows the results of the experiments. On 24 
out of 32 datasets LB_Yi produces tighter bounds than 
LB_Kim, and its average value is approximately 1.38 
times larger. The most obvious result from the experiment 
however is the dominance of LB_Keogh. It wins on every 
dataset and its average value is approximately 3.11 times 
larger than its nearest rival. Since the efficiency of 
indexing has a (much) greater than linear dependence on 
the tightness of the lower bounding function, these results 
augur well for our approach.  

• We designed our experiments to be completely 
reproducible. We saved every random number, every 
setting and all data, and have made them available on 
a free CD Rom. 
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Figure 12: The mean value of T (tightness of lower bound) for the  
three lower bounding functions under consideration, for 32 datasets from finance, medicine,  
biometrics, chemistry, physics, astronomy, robotics, networking and industry. Appendix A contains a key to the datasets  
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We choose to report results from a query length of 
256, since this is about the mid range of queries reported 
in the literature [5, 6, 33]. However we also experimented 
with queries in the range of 32 to 1024. This range was 
chosen to include the longest and shortest reported in the 
literature [5, 23, 33]. All techniques perform better for 
short queries, however while both LB_Kim and LB_Yi 
degrade rapidly for longer queries, LB_Keogh stays 
almost constant for longer queries. This effect was 
observed on all datasets, for brevity we just present results 
for the random walk dataset in Figure 13. 

 

Figure 13: The effect of query length on the tightness of 
lower bounds for the three techniques under consideration 

5.3   Comparison of pruning power 

To compare the pruning power of the three techniques 
under consideration, we measure P, the fraction of the 
database that does not require full computation of DTW 
while still allowing use to guarantee that we have found 
the nearest match to a 1-NN query. 

databaseinobjectsofNumber
DTWfullrequirenotdothatobjectsofNumberP =   (16) 

To calculate P we do the following. From each of the 
32 datasets we randomly extract 50 sequences of length 
256. For each of the 50 sequences we do the following, 
we separate out the sequence from the other 49 sequences. 
We then find the nearest match to our withheld sequence 
among the remaining 49 sequences using the sequential 
scan algorithm of Table 2. We measure the number of 
times we can use the linear-time lower bounding 
functions to prune away the quadratic-time computation 
of the full DTW algorithm. For fairness we visit the 49 
sequences in the same order for each approach. The value 

P reported is averaged over all 50 runs.    
Note the value of P for any depends only on the data 

and is completely independent of any implementation 
choices, including spatial access method, buffer size, 
computer language or hardware platform. A similar idea 
for evaluating indexing schemes appears in [15].   

The results are summarized in Figure 14. On 25 out of 
32 datasets LB_Yi is more efficient at pruning than 
LB_Kim, on average it was able to prune 1.53 times as 
many items. Once again however, the most obvious result 
is the dominance of LB_Keogh. It wins on every dataset 
and was able to prune 3.95 times as many items as LB_Yi 
and 6.06 times as many items as LB_Kim. 
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   Note that while these results are powerful 
implementation independent predictors of indexing 
performance, they may actually be pessimistic. There are 
two related reasons why. First, the sequential scan 
algorithm of Table 2 is inefficient, as it visits the items 
and calculates the DTW measures (where necessary) in a 
predefined order. A more efficient implementation would 
sort, and then visit the sequences, in ascending order of 
the lower bounding distance. This of course, is essentially 
what spatial indexing does. 

The second reason why the results may be pessimistic 
predictors of indexing performance is the relatively small 
size of the datasets. We should expect the fraction of 
pruned sequences to increase on larger datasets. The 
reason is because the larger the dataset, the greater the 
chance there is of a good match being found, and a good 
match allows us to extract the maximum benefit from the 
pruning conditional LB_dist < best_so_far in line 4 of 
the algorithm. To demonstrate this effect we ran the same 
experiment above on increasing larger subsets of the 
random walk dataset. The results are shown in Figure 15. 
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Figure 15: The effect of database size on pruning power. 
Note that as the size of the database increases we are able to 
prune a larger fraction of the data  
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three lower bounding functions under consideration, for 32 datasets from finance, medicine,  
biometrics, chemistry, physics, astronomy, robotics, networking and industry. Appendix A contains a key to the datasets  



6.   Discussion and Conclusions  
5.4   Experiments on an implemented system 

In one of the most referenced papers on time series 
similarity ever published [2], the authors explicitly state, 
“Dynamic time warping…cannot be speeded up by 
indexing”. This sentiment has since been echoed in 
several dozen other papers [6, 33]. How then have we 
achieved the seemingly impossible?  Firstly, we have only 
considered the case where the two sequences are of the 
same length. This is not really a limitation because the 
user can always re-interpolate the query to any desired 
length in O(n) time. Secondly, we can only index 
sequences if we assume the warping path is constrained.  
Once again we feel that this is not really a restriction since 
virtually ever practitioner we are aware of reiterates the 
absolute necessity of using constraints [3, 6, 27, 29, 30]. 

The 32 datasets used in the previous experiments illustrate 
the dominance of the proposed approach on a wide variety 
of datasets. However, most are not large enough by 
themselves to warrant the title “Very Large Data Base”. 
We therefore pooled all 32 datasets into a single dataset 
that we call Mixed Bag (MB). In addition to this ultra 
heterogeneous data, we created a very large database of 
Random Walk data (RW II), since this is the most studied 
dataset for indexing comparisons [5, 6, 17, 24, 25, 34] and 
is, by contrast with the above, a very homogeneous 
dataset. Details of these datasets appear in Appendix A. 

We performed experiments on AMD Athlon 1.4 GHZ 
processor, with 512 MB of physical memory and 57.2 GB 
of secondary storage. The spatial access method used was 
the R-Tree [14].  

Our approach is particularly attractive since as a 
special case (r is set to zero) it degenerates to Euclidean 
indexing using PAA, an approach that has been shown by 
two independent groups of researchers to be state of the 
art in terms of efficiency and flexibility [17, 34].  

To evaluate the performance of the proposed 
technique we used the normalized CPU cost. 

Definition: The Normalized CPU cost: The ratio 
of average CPU time to execute a query using 
the index to the average CPU time required to 
perform a linear (sequential) scan. The 
normalized cost of linear scan is 1.0.  

There are several directions in which we intend to 
extend this work. For example, we note that some 
algorithms for matching 2 and 3 dimensional shapes are 
very close analogues of the DTW algorithm, and thus may 
benefit from a similar lower bounding function.  Beating linear scan is nontrivial because it can take 

advantage of sequential disk access, whereas any indexing 
technique must make random disk accesses. It is generally 
understood that random access is about ten times slower 
than sequential access [15, 28, 31]. For fairness, we 
allowed linear scan to utilize the lower bounding function 
LB_Keogh. 
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