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Abstract

Given that commercial search engines cover
billions of web pages, efficiently managing the
corresponding volumes of disk-resident data
needed to answer user queries quickly is a
formidable data manipulation challenge. We
present a general technique for efficiently car-
rying out large sets of simple transformation
or querying operations over external-memory
data tables. It greatly reduces the number
of performed disk accesses and seeks by max-
imizing the temporal locality of data access
and organizing most of the necessary disk ac-
cesses into long sequential reads or writes of
data that is reused many times while in mem-
ory. This technique is based on our expe-
rience from building a functionally complete
and fully operational web search engine called
Yuntis. As such, it is in particular well suited
for most data manipulation tasks in a modern
web search engine and is employed throughout
Yuntis. The key idea of this technique is co-
ordinated partitioning of related data tables
and corresponding partitioning and delayed
batched execution of the transformation and
querying operations that work with the data.
This data and processing partitioning is natu-
rally compatible with distributed data storage
and parallel execution on a cluster of worksta-
tions. Empirical measurements on the Yuntis
prototype demonstrate that our technique can
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improve the performance of external-memory
data preparation runs by a factor of 100 versus
a straightforward implementation.

1 Introduction

Web search engines such as AltaVista [3], Fast
Search [2] and Google [11] are an indispensable tool
for web surfers to access the information on the global
Web. In the past two years, we have been working
on the implementation of a full-scale web search en-
gine that is based on a more general and powerful re-
source ranking model [16, 17] than Google’s PageR-
ank [19]. During this effort, we found that the data
preparation process in a search engine poses a set of
different requirements than traditional database ap-
plications have, and thus deserves development of new
techniques to optimize its performance. This paper
reports the results of this investigation.

To answer user queries efficiently, search engines in
particular need to prepare an index, which is usually in
the form of an inverted index file. That is, to a first ap-
proximation it associates each keyword with the list of
pages in which the keyword appears. To construct an
inverted index, a search engine needs to collect pages
from the Web, parse them, assign an identifier to each
page, and put the identifier of each page into the hit
lists for all keywords that it contains. In this process,
various types of data structures other than the inverted
index itself need to be created. In addition more re-
cently developed search engines such as Google [11]
compute various scores for all web pages by perform-
ing a non-trivial iterative computation over the whole
web linkage graph. Because of the sheer data volume
involved, most of the data tables, including the in-
verted index and the data for page score computation,
can not fit into the main memory of the processing
servers: Modern search engines presently index over
two billion web pages [11] and manipulate terabytes
of data. As a result, use of efficient external-memory
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algorithms that minimize the disk access overhead and
use of parallel processing on clusters of workstations is
crucial for achieving acceptable performance for search
engine data preparation.

From a database system design standpoint, the key
difference between web search engines and standard
database systems is that the consistency requirement
in response to updates is much weaker for a search en-
gine. The general assumption of a search engine is that
keeping a larger and more recent snapshot of the Web
is more important than maintaining an absolute up-to-
date view of a (inevitably) smaller portion of the Web.
As a result, a search engine does not need to react to
page updates immediately, and is free to incorporate
them in any order as long as they are completed within
a period of time, such as few days.

From the implementation experience of the 124,000-
line Yuntis web search engine prototype, we have de-
rived a general implementation approach for external
data manipulation that we believe is equally appli-
cable to other data-intensive applications with simi-
lar data volume, processing, and performance require-
ments and properties. To reduce the disk access over-
head, we apply a data-driven processing principle to
minimize the I/O costs for external-memory data to all
major data preparation tasks in the search engine pro-
totype. That is, once we paid for I/O cost for a group
of external data items, we try to use them as much
as possible before they have to be vacated from RAM.
In addition we try to organize most of the necessary
disk I/O into a set of long sequential buffered reads
and writes instead of a larger set of smaller random ac-
cesses, that would incur a much greater number of disk
seeks. We achieve this by physically splitting in a coor-
dinated fashion closely related external data structures
into disjoint partition groups that are small enough to
fit into RAM. We also logically arrange all processing
performed on external data into a set of sequences of
simple procedures that only need data from one such
partition group. Then we organize the processing in
a batched way: The input data for procedures over
a data partition group is queued on disk. Then long
enough (if possible) queues are executed by sequen-
tially bringing the partition group’s data into and out
of RAM for the time the queued procedures are being
run. In addition we perform this data and processing
partitioning over a locally-connected cluster of shared-
nothing workstations to exploit inter-operation paral-
lelism. Use of an efficient non-preemptive uni-threaded
data-driven process model allows us to exploit applica-
tion concurrency inexpensively both at run and coding
time.

The rest of the paper is organized as follows. We re-
view related work in Section 2. Section 3 presents the
main distinguishing features of web search engines and
their common data manipulation pattern. In Section 4
we show how the data-driven processing technique ex-

ploits the data manipulation pattern for high perfor-
mance search engine data preparation. We illustrate
this technique with an example, discuss its various de-
sign issues, and describe how cluster of workstations
and an event-driven processing model can be used to
further improve the performance. We then report the
results of a performance evaluation study based on
the fully operational Yuntis search engine prototype
in Sections 5. Finally we conclude this paper with a
summary of major research contributions and an out-
line of future work.

2 Related Work

There has been a substantial amount of recent re-
search on the design and efficient implementation of
various features of web search engines. In particular,
Ribeiro-Neto, et al [20] described an inverted index
construction scheme carefully optimized for clustered
execution. Melink, et al [18] proposed a distributed in-
dex construction method, which applied explicit disk,
CPU, and network communication pipeline. Hirai,
et al [14] analyzed different design aspects of a repos-
itory system for generic web page storage, update,
and retrieval. Haveliwala [12] described a disk-efficient
non-distributed method to compute PageRank [19] for
large web linkage graphs. Stata, et al [22] showed a
design of how to construct a filtered database of “in-
teresting” words for all web pages. Bharat, et al [5]
described their experience building a server that con-
structs and queries a compact representation of for-
ward and backward linkage among a set of web pages.

The common property of these efforts is that each
concentrates on one or few search engine data prepara-
tion tasks and develops an efficient algorithm tailored
for them. On the other hand, not much open infor-
mation is available about detailed integrated design
of all processing tasks in a modern large-scale (com-
mercial) web search engine. Brin and Page [6] briefly
describe several design decisions made when building
the early prototype of the Google search engine [11].
The approach taken is loosely putting together algo-
rithms each explicitly optimized for its specific data
manipulation task.

In the area of disk access optimization there has
been work on disk data placement [24], smart disk
head scheduling [21], data replication on one or many
disks [1, 26] to reduce (read) seek times. These tech-
niques usually work at the disk driver or OS level and
can not automatically perform well in all cases. Disk
data prefetching schemes can only mask disk access
when the data processing time is larger than the I/O
time. Similarly, data striping or use of multiple inde-
pendent disks simply produces a virtual disk with bet-
ter seek and/or throughput parameters than the real
disks it is made of. Our technique is orthogonal, thus
complementary, as it works at the application level to
increase temporal access locality and proportion of se-



quential disk accesses.
The closest analogs of our approach are the batch

filtering technique [10] for bulk simultaneous searching
in an out-of-core DAG data structure from the area of
external-memory algorithms [23] and the data-driven
processing ideas for volume rendering of Yang and Chi-
ueh [25]. Both methods rely on reuse of data items
(pre)fetched from disk as much as possible by delay-
ing and performing all necessary processing on them
in one shot.

Our work focuses on the design of a general
method for efficient I/O-conscious bulk manipulation
of external-memory data structures. The method is
mechanically applied to improve performance of the
natural formulation of data manipulation algorithms,
eliminating the need to optimize each task individu-
ally. Thus, it can be easily used with all data prepa-
ration tasks within a modern web search engine in-
cluding text indexing, linkage construction, incremen-
tal graph score computation, and extraction of corpus
phrases and document key terms. We also believe that
the proposed approach similarly applies to other tasks
where large sets of updating and/or querying opera-
tions have to be executed efficiently over partitionable
external-memory data structures.

3 Data Preparation in Web Search En-
gines

To provide fast and accurate response to user queries,
web search engines [11, 3, 2] pre-compute various types
of data structures from the pages collected on the
Web [6, 4]. Examples include the inverted index, the
web page linkage graph, the list of URLs previously
visited, results of text classification, etc. Sometimes
one data structure is used together with another data
structure to improve the querying service efficiency.
For instance, page “quality” scores can be embedded
into the inverted indexes to filter out undesirable pages
early on [6].

3.1 Data Preparation Tasks

Data Acquisition When a web crawler gets a
URL, it needs to check if the URL has been already
visited. If not, the crawler marks it as “already vis-
ited” and schedules it to be crawled in the future. To
mark a URL, the crawler typically would store the
URL name string, allocate an internal identifier for it,
establish the mappings between the two, and add an
initial information record about the URL.

Standard Data Preprocessing To update the
inverted index of web pages, when the crawler knows
that a given word occurs in certain places of a crawled
web page after parsing it, it must determine the inter-
nal identifier of the word —possibly adding the nec-
essary records if the word appears for the first time—

and appropriately update the hit list for the word with
these word occurrences.

To build internal data structure about web page
linkage, when the crawler encounters a hyper-link from
one page to another, it must first locate the internal
identifier for each page’s URL, adding the new URLs
to the databases, and update the lists of forward and
backward links associated with the two URLs.

Score Computation Web page score (rank)
computation according to the PageRank method [19,
6], Hubs and Authorities approach [15], or the vot-
ing model [16, 17] is performed in multiple iterations.
At each iteration the algorithm usually goes through
all the pages. For a given page, the algorithm first re-
trieves the current score values of the page and the list
of pages that it points to and/or that point to it, and
then adjusts the score values of these pointed and/or
pointing pages, according to the page’s current score
values. Some statistical data such as the amount of
overall score changes between two consecutive itera-
tions are also usually computed.

These data preparation tasks constitute the bulk of
pre-query work in a typical web search engine. They
usually can be thought of as composed of execution
of simple procedures (of a relatively small number of
types) that each given some input data items read
and/or update some (parts of) certain records in few
data tables and possibly initiate execution of other
such procedures. The instances of each kind of these
procedures that have to be executed to make all search
engine data structures consistent as a whole after a
large batch of updates due to crawling usually touch
multiple times a substantial portion of the external
data tables they are working with.

3.2 Data Manipulation Approaches

Given that modern search engines cover over one bil-
lion of web pages [11], most types of data structures
web search engines are working with are in external
memory even for a relatively large cluster of modern
workstations.1 In some cases, even individual data
items such as lists of occurrences of frequent words
or lists of back-links to popular web pages do not
fit into RAM of affordable workstations. As a result
only linear-time and disk-aware data manipulation al-
gorithms can be used. The actual implementation of
these algorithms must have small associated constant
factors because, for instance, a performance difference
of only a factor of 100 will turn a reasonable task that
runs for a few days into an impossible job that would
have taken over a year to complete. In particular,
the implementation must avoid performing unneces-
sary disk accesses, especially seeks.

1 For example, basic information about each encountered
URL including its name can occupy 128 bytes on average in our
prototype. Thus, just this basic information about one billion
URLs will require around 128GB of storage.



A naive way to manipulate the data is to follow a
control-driven approach. That is, to perform most of
data updates as soon as it can be done. For example,
whenever a web page is collected, it is first parsed,
then the associated inverted index entries are modi-
fied, and other derived data structures such as web
page linkage graph are changed accordingly. In this
approach, each web page update may trigger a large
set of disk I/Os. In general, this control-driven ap-
proach, although conceptually simple and straightfor-
ward to implement, leads to very inefficient use of the
disk resource, because the data brought in by the disk
I/Os associated with the processing of one data modi-
fication cannot necessarily be reused by the processing
of subsequent updates.

One can somewhat improve the performance of
the control-driven approach by using (virtual striped)
disks with better characteristics [21], using more RAM
or fitting more data into RAM with smart encod-
ings [5, 22], or start moving away from the purely
control-driven computation by explicitly exploiting
data patterns and access locality that exists in a par-
ticular workload [13, 8], or abandon the control-driven
approach in favor of developing very task-specific al-
gorithms and data structures [12, 20, 6]. But these
methods either do not provide a radical performance
improvement or are hard to apply mechanically to a
wide set of data preparation tasks.

In light of the failing of the control-driven approach,
a data-driven approach is considered more appropri-
ate. In this case, we perform elementary manipulation
procedures over external-memory data only when the
data they need is (very likely to be) in main mem-
ory. This is achieved by delaying execution of pro-
cedures and batching their input into queues associ-
ated with external-memory regions the procedures are
going to work with. In addition, at some points in
time the system will bring into RAM these external-
memory data regions one by one and activate all the
procedures that have been queued on these data re-
gions. Thus, these data regions are reused multiple
times and the associated disk I/O overhead is amor-
tized over multiple operations — we strive to trigger
the computation on an external region only after a lot
of procedures have been queued to it. Essentially, a
data manipulation procedure is triggered by the avail-
ability of the data it needs in memory. Note that, in
addition to pure data-flow requirements there is usu-
ally still some higher-level control-flow scheduling to
be obeyed, for example, breadth-first crawling might
be required to be done not arbitrarily, but by frontiers
of new pages which are one link away from the set of
currently known pages.

This data-driven approach relies on batching the
procedures that require the same data and performing
them in one shot when the data is in memory. A well
known problem with operation batching is that it in-
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Figure 1: Data table structures used during web page
back-linkage construction process.

creases operation latency. Fortunately, the latency of
individual procedures is not a concern in the case of a
web search engine. The performance goal of a search
engine’s data preparation algorithm is not to complete
the data update with respect to each web page update
as quickly as possible, but to finish all the data up-
dates for large sets of crawled web pages as soon as
possible.

4 Data-Driven Data Manipulation

Let us start with a concrete example to illustrate
the typical processing flow for data preparation in
large-scale search engines, and then present the spe-
cific implementation technique we used to optimize the
external-memory data manipulation process.

4.1 An Example Scenario: Back-linkage Con-
struction

The goal of this task is to construct the backward link-
age information for a set of web pages. Assume that
we are working with the following data tables (see Fig-
ure 1):

UrlHash is a set of fixed-width URL name hash values
and internal URL identifiers (UIds) and is used for
locating data by a URL name. It is organized in
such a way that its records can be searched by
a hash value or added in O(n log n) (amortized)
time or less.

UrlName is a memory heap-like data table that holds
variable-width strings of URL names that can be
accessed by fixed-width pointers and is used to
store the URL names.

UrlLinks is a data table similar to UrlName and con-
tains lists of UIds for the pages that point to a
particular URL. This table represents the URL
linkage graph.

UrlInfo is an array of fixed-width URL information
records indexed by UIds, and in particular con-
tains pointers into UrlName and UrlLinks struc-
tures. This structure ties the others together and
maps a UId to all data stored about that URL.



Given the URL identifier of the linking page and the
URL of the linked page, the back-linkage construction
procedure

1. Searches UrlHash for a set of UIds with the same
hash value as that of the URL of the pointed page,

2. Verifies if any of these UIds really correspond to
the pointed page’s URL by reading and compar-
ing the URL names associated with these UIds by
following the pointers from UrlInfo to UrlName,

3. Creates a new UId and inserts appropriate new el-
ements into the tables if it could not find a match,
and

4. Adds the UId of the linking page to the UrlLinks
list of the linked page by following (and sometimes
updating) the UrlLinks pointer in the UrlInfo
entry.

The above procedure corresponds to the work for
one pair of linking and linked pages, and touches only
on the portions of these tables that are related to the
hash value of the linked page’s URL. Instead of exe-
cuting the above procedure as soon as it is possible
for each hyper-linked page pair, we choose to work on
many such page pairs in batches, trying to do it so
that once a piece of data table is brought into memory
from disk, it is reused as many times as possible. More
specifically, we partition the four data tables in a coor-
dinated fashion, so that each step in the above proce-
dure can proceed using the data from only one group
of data table partitions. In addition, when the data
table partition group that a procedure requires is not
memory-resident, the procedure will be attached to the
data table partition group and will get executed once
the data table partition group is available in memory.
Because we usually wait for multiple procedures to get
attached to a data table partition group before execut-
ing them, this data-driven approach enables batching
of procedures that require the same data table parti-
tion group, thus greatly decreasing the disk I/O cost.
Moreover, the disk access pattern is no longer dictated
by the control flow of the data manipulation algorithm.
As a result, most disk I/Os can be sequential accesses,
which further improves the disk bandwidth utilization.

Our data-driven approach is mainly oriented to-
wards optimizing disk reads and is not concerned with
disk writes because no synchronous disk writing of
small data items is required in search engine data
preparation. Hence, disk writing is left to standard file
cache management in the underlying operating system
as we use regular OS files for data storage. However,
explicit long sequential file writes occur frequently as
we will see shortly.

In the case of back-linkage construction, to apply
the data-driven processing approach we first split the
four data tables according to ranges of the hash val-
ues of the URLs whose information is placed into the
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Figure 2: Coordinated partitioning of related data ta-
bles and the input data for transformation procedure
batches over these data tables. Procedures in each
partition group need the data only from the table par-
titions of that group.

records of table partition groups — Figure 2 provides
a simplified illustration with UrlHash and UrlName
tables omitted. That is, UIds stored in partition i
of UrlHash refer to the records only in partition i
of UrlInfo, which in turn contains pointers only into
ith partitions of UrlName and UrlLinks. New data
table records are always created within a certain par-
tition group determined by the hash value of the URL
name, and existing records cannot move across parti-
tions once created. A portion of UId bits is used as the
partition number, while the remaining bits are used
for record identifiers within each partition. If pointers
into UrlName and UrlLinks are not stored anywhere
else except UrlInfo, then they can be partition-local,
otherwise their portion too has to be used for the par-
tition number. The number of partitions is such that
at the targeted data set size one partition of UrlHash,
UrlName, and UrlInfo can still fit into main memory
simultaneously, with enough space left for caching a
portion of a UrlLinks partition.2

Secondly, we introduce a new table UrlProc, which
is partitioned the same way as other tables but is orga-
nized as a queue of records containing URL identifiers

2We do not expect to hold a complete UrlLinks partition
in memory because individual link lists for few popular URLs
could be very large since the number of links follows the power-
law distribution [7].



and URL names of a hyper-linked page pair. When
a back-linkage procedure for a hyper-linked page pair
is ready to run, we do not start it immediately. In-
stead, we queue the input data into a UrlProc par-
tition based on the hash value of the linked URL in
the hope to batch the execution of multiple such pro-
cedures later on. When enough procedure input pairs
have been accumulated or when there is no other task
that can proceed, we execute all the procedures parti-
tion by partition: for a batch stored in the ith UrlProc
partition each procedure within is executed as follows.
We sequentially read into memory ith partitions of
UrlHash, UrlName, and UrlInfo. We then execute the
procedures whose input tuples are in the ith UrlProc
partition by sequentially reading in its contents. These
procedures operate only on the data in ith partitions
of UrlHash, UrlName, and UrlInfo, which are in mem-
ory, and on the data in the ith partition of UrlLinks.
With an appropriate organization of UrlLinks table
we will be mostly touching the cached heads and tails
of few link lists in UrlLinks during this execution of
procedures. After executing all the procedures asso-
ciated with ith UrlProc partition, we unload the re-
sulting modified partitions of UrlHash, UrlName, and
UrlInfo to disk by sequential writing, possibly after
performing some compression or clean-up operations
on them. In the case when there are many tables
like UrlProc that have enough buffered data, we can
execute the procedures for example table by table and
partition by partition within each table. The main re-
quirement is to execute the procedures one partition at
a time to take full advantage of the memory, preferably
doing it only when the input for enough procedures has
been accumulated, and keeping the size of all buffered
input data not too large.

4.2 Analysis of the Data-Driven Approach

4.2.1 Analytical Performance Analysis

Overhead The performance overhead of the data-
driven data manipulation approach lies in additional
packing, unpacking, reading, and writing of the input
data of the procedures whose execution is delayed and
batched. The CPU and disk I/O cost of this is linear
with respect to the number of procedures executed and
only sequential disk I/O is required for this. The table
partitioning adds only a small constant overhead to
direct each table’s access to the appropriate partition.

If we are forced to do very short batches of data
manipulation procedures to meet some overall compu-
tation dependencies, then we revert to the performance
of the control-driven strategy.

Benefits The main benefit of the proposed data-
driven strategy is that it guarantees in-memory access
for all data in one class of data tables and much im-
proved data access locality for the other tables during
the data preparation process. In addition, accesses to
the first class of data tables are serviced by sequential

disk reads and writes, hence utilizing the disk band-
width much more efficiently.

Assume that we have n = 3 data tables that hold
information about 500 million objects with d = 10GB
of data totally. There are m = 100MB of RAM avail-
able for data and file cache, and one disk with aver-
age seek time of s = 9msec and a sustainable data
transfer rate of r = 30MB/sec. Assume we need to
perform o = 50 million data manipulation procedures
each of which touches all three tables exactly once and
requires input data of size i = 100B per procedure on
the average.

Under a random access pattern, the control-driven
approach will lead to m/d = 1% file cache hit ratio.
Therefore each procedure will require (1−m/d)∗n∗s =
26.7msec time for disk seeks alone. If the data tables
are decomposed into d/m = 100 partitions, each of
which fits into RAM, then the total disk data transfer
requirement will be 2∗ i∗o+2∗d for writing and read-
ing of the procedures’ input data and the data tables.
Thus, the disk I/O time per procedure in the data-
driven approach will be only (2 ∗ i ∗ o + 2 ∗ d)/o/r =
0.02msec, which is more than 1300 times better. Here
we assume that each disk I/O in the data-driven ap-
proach is a sequential one and thus the disk seek delay
is negligible.

4.2.2 Optimization

Task-specific Optimizations Some task-specific
optimizations can be embedded into this general data-
driven strategy. For example, a locality-preserving
hash function that exploits existing data patterns,
such as high host locality of URLs that are close
in the linkage graph, can be used to achieve better
CPU and/or file cache utilization or to reduce intra-
cluster communication [8].3 Compact data encoding
can be applied to individual data table partitions be-
cause its construction and updating can be naturally
included during the loading and unloading of a data
table partition. We can also periodically perform com-
paction of external-memory partitions of data tables
like UrlLinks. When this compaction changes the
pointers needed to access the records in the compacted
partition, we can update these pointers without much
additional cost because they are typically stored only
in the respective partition of a data table like UrlInfo
and all the data needed for performing such updates
fits into main memory.

Exploiting Parallelism with a PC Cluster
Because each batch (partition) of data manipulation
procedures is independent of others, multiple batches

3The downside of this technique as our experience indicates
is that it might increase unevenness of processing load on dif-
ferent cluster nodes, thus reducing the effectiveness of using a
cluster. Also the benefits of this locality during crawling are
not significant because URLs from the same host are not neces-
sary crawled close in time when crawling is guided by estimated
importance of the pages [9].



can be executed in parallel on a shared-nothing clus-
ter of PCs connected with a high-speed local area net-
work. If the data table partitions associated with a
batch are placed on the same cluster node —see Fig-
ure 2, then the only additional cost of parallelism is
the intra-cluster communication overhead due to the
messages transferring the input data for procedures
that are to be executed on a node different from the
one where they were initiated. Since no result value
is needed to be returned for these messages, they do
not incur any significant synchronization delays among
the nodes, because synchronization by their comple-
tion might be needed only when we finish executing
all batches of the same type on a node. Other than
that, execution of the procedure batches can proceed
completely locally and independently on each node.

As the experimental data in Section 5.2 will show,
data partitioning based of object name hashing does
very well at dividing the work among cluster nodes
evenly (or proportionally to each node’s performance).
Thus, no dynamic re-balancing transfer of work and
data is usually required among cluster nodes to achieve
high utilization of the cluster as a whole.

Efficient Data-Driven Process Model To
maximize the CPU utilization efficiency, the data
manipulation is structured as non-blocking with re-
spect to the following I/O operations: transfer of in-
put data for procedures among cluster nodes, other
request/reply communication between search engine
components on (different) cluster nodes, HTTP com-
munication with web servers, and local disk reads
and writes. In addition, to exploit spare CPU cy-
cles we support execution of a large number of po-
tentially concurrent activities. This is achieved by
using one main control thread that performs de-
scriptor polling and user-level work scheduling, non-
preemptable small work units without I/O blocking,
non-blocking network and disk I/O, and call/call-
back interfaces for potentially blocking requests in-
stead of traditional call/return interfaces. This ap-
proach avoids the performance overheads associated
with threads: kernel scheduling, context switching,
stack and task data structures allocation, synchroniza-
tion, inter-thread communication, and thread safety
issues.

4.2.3 Discussion

Conditions for Application The three prerequi-
site conditions that allow the successful application of
the data-driven approach to data preparation in search
engines are that

• The scale of data table sizes needs to be known in
advance to determine the number of partitions.

• A good hash function that can decompose data
tables into approximately equally-sized partitions
must be used.

• Each type of data manipulation procedure must
use only the data from one partition group of data
tables that are all partitioned in the same way.

Our experiences show that the first two conditions
that guarantee that each data partition group will ac-
tually fit into the available memory are relatively easy
to meet. However, the third condition requires ad-
ditional attention. If a data manipulation procedure
does not satisfy this requirement, it needs to be “split”
into simpler ones that do satisfy this requirement. For
example, assume we also wish to construct forward
linkage information in UrlFLinks table in the same
way as backward linkage is filled into UrlLinks table
in the earlier example. Instead of augmenting the pre-
viously used data manipulation procedure, we have to
introduce a second data manipulation procedure and
a separate queue UrlFProc for its input tuples. Given
two UIds the new procedure adds the second one to
the list of forward links in the UrlFLinks record corre-
sponding to the first UId. This new data manipulation
procedure can be initiated as soon as the UId for the
linked document is known. The splitting of the aug-
mented version of the procedure into the new one and
the old one with initiation of the new one is needed
because updating forward linkage information touches
data for the linking URL only and can be done only
after the UId of the linked URL is known, whereas con-
struction of the backward linkage information touches
data for the linked URL only and determines its UId.
This splitting of computation procedures adds a small
level of additional overhead for enqueuing and dequeu-
ing of the input data for the additional types of pro-
cedures.

The extra condition for general applicability of the
data-driven approach to cases other than web search
engines is that the throughput performance of a large
volume of simple data transformation and/or querying
operations is to be optimized when these operations
work with external memory data sets without much
automatic access locality.

Universality An important property of the pro-
posed data-driven approach is that it does not place
any substantial restrictions on the structure of data ta-
bles and how they are stored on disk. The only require-
ment is that the partition number must be embedded
into the identifiers in the used object identifier address
space. Actually, the property of loading some table
partitions into main memory for the time they are ac-
tively accessed gives one an additional freedom of how
the data in these table partitions can be organized. A
demonstration of the universality of the data-driven
approach is that in certain cases it actually leads to
improved performance for a simple increment propa-
gation algorithm that operates on a memory-resident
sparse graph. The reason for this improvement is that
the approach enhances the access locality and thus
takes better advantage of CPU cache, in the same way
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Figure 3: Linear growth of handled data and work
performed in different workloads when data set size
grows.

as it can make more effective use of memory and OS
file cache to access disk-resident data.

5 Performance Evaluation

5.1 Implementation

We have embodied the techniques described in the
previous section in a fully operational search engine
prototype, Yuntis, which is implemented in C++ un-
der the Linux OS. The implementation consists of 871
files of 3.9MB total size (758KB when compressed
with gzip -9) that contain 124,000 lines of code in 163
logical modules.

The latest version of the prototype is accessible at
http://yuntis.ecsl.cs.sunysb.edu/. The largest cur-
rent data set is based on 9 millions of crawled web
pages. Yuntis utilizes a new model for assessing web
pages’ relevance and quality [16, 17], which subsumes
and improves on the Google’s model [6, 19]. The proto-
type is running on a cluster of four Linux PCs that are
connected via a 100Mb/sec full-duplex switch and each
have one Pentium III 650MHz CPU with 100MHz bus,
256MB of RAM, and use one EIDE Maxtor 98196H8
disk for data (9msec average seek time, 81GB capacity,
and 46.7MB/s maximal media transfer rate).4

The flexibility of the proposed implementation tech-
niques and the object orientation of our C++ imple-
mentation of communication and database primitives
allow us to experiment with adding or modifying dif-
ferent architectural features, data tables, and data pro-
cessing methods in the prototype quickly, while pro-
viding efficient network and I/O performance.

4Modern SCSI disks such as Maxtor Atlas 10K III only of-
fer reduced 4.5msec seek time and slightly higher media transfer
rate of 55MB/s for more than threefold price increase if we com-
pare one disk installations.
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Figure 4: CPU utilization and Performance when con-
structing hit lists for increasing data set sizes.
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Figure 5: CPU utilization and Performance when
querying URL scores for all hits for increasing data
set sizes.

5.2 Results and Analysis

We have performed a set of experiments demonstrat-
ing effectiveness of the proposed data-driven technique
of coordinated partitioning and batching for different
search engine data manipulation workloads. The ex-
periments show high CPU utilization and same high
performance level when handling data sets primarily
located either in RAM, or on disk. Direct compar-
ison with straightforward control-driven implementa-
tion shows significant performance improvements for
both RAM and external-memory data sets. Low-
level measurements of disk read requests indicate much
higher proportion of fast reads without seeks when our
data-driven technique is compared with the control-
driven one. Since our technique primarily works by
increasing access locality and reducing the number of
misses in RAM OS disk (and CPU) caches, the ab-
solute sizes of the data sets used in the experiments
are not as important for proving effectiveness of the
approach, as their sizes compared with the amount of

http://yuntis.ecsl.cs.sunysb.edu/
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Figure 6: CPU utilization and Performance when fill-
ing URL scores for all hits for increasing data set sizes.

RAM available for the OS disk cache.

5.2.1 Effectiveness of the Data-Driven Ap-
proach on Various Workloads

Figure 3 demonstrates essentially linear growth with
respect to the number of crawled web pages of the
total size of compressed web pages and the required
number of data transformation procedures in the three
different data manipulation workloads we have chosen.
Figures 4–6 provide the graphs for the total CPU uti-
lization percentage for the application and the OS, the
CPU utilization percentage for the application alone,
and the performance in terms of the number of pro-
cedures executed per second when running the three
workloads over increasingly larger sets of web pages.5
In all workloads the data tables are partitioned based
on hashing of the URL and word name strings into 64
and 128 partitions per each cluster node for URL- and
word-related data respectively.

The procedures of hit list construction workload
(see Figure 4) resolve a word name into its identifier
and add the information about its occurrences in one
document into its hit list, while adding the needed
records for newly encountered words. In this work-
load the performance somewhat reduces while CPU
utilization remains high due to the need for sequential
disk I/O when the workload’s data set becomes mainly
disk-resident. In the URL score querying workload on
Figure 5, each procedure gets a URL score value for
a particular URL identifier via an array lookup and
initiates execution of a hit list score filling procedure.
The latter step consists of batching the input data for
the procedures into an appropriate partition on disk
that might be on another cluster node. A procedure

5All data sets except the largest one are breadth-first crawls
of sunysb.edu domain starting from http://www.sunysb.edu.
The largest data sets is composed of a portion of pages refer-
enced from ODP directory at http://dmoz.org.

All reported data points are averages over the four cluster
nodes.
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Figure 7: Performance comparison between data- and
control-driven approaches when constructing hit lists
for different data set and RAM sizes.

of the hit list score filling workload from Figure 6 con-
sists simply of changing the score fields in an existing
hit list data structure that is accessed by addresses.
The performance decline for the last data point is due
to a peculiarity of the implementation used for the
measurement: At this data size the processes on some
cluster nodes sometimes had to receive and batch pro-
cedure input data from the other nodes, which took a
portion of CPU resources.

Each of the three workloads require an essentially
constant amount of CPU resources for OS tasks, but
the amount is different for different workloads. Re-
sults from Figure 5 show a higher level of OS CPU
resource usage than the other two workloads because
the former one requires much more intra-cluster net-
work communication and writing to disk.

The important conclusion is that for all three work-
loads we do not see any significant performance degra-
dation when the web page set grows to about 1.4 mil-
lion pages or 20GB of data in all tables, and we are us-
ing four cluster nodes each with about 128MB of RAM
for file cache. Also in all workloads the CPU utiliza-
tion percentage remains above 90% showing that the
disk I/O time is largely overlapped with computation.
This means that our technique works well at providing
an efficient way to access and manipulate large sets of
disk-resident data.

5.2.2 Comparison between Data-Driven and
Control-Driven Approaches

The data in Figures 7 and 8 contrasts the performance
characteristics of the hit list construction workload
when we change the amount of memory from 256MB
to 45MB and the number of partitions from 128 to 1
for each cluster node. Setting the number of partitions
to one per node effectively converts the data-driven ap-
proach into a control-driven one. The difference from
the pure control-driven approach is the small overhead
of enqueuing and dequeuing of procedures’ input data
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Figure 8: Total CPU utilization comparison between
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and the separation of all processing in time into dif-
ferent workloads. Since the procedures’ inputs are en-
queued and dequeued in the same order as they are
generated and there is no partitioning within each clus-
ter node, the resulting data access pattern corresponds
to the pure control-driven approach within each work-
load.

Figure 7 shows that reducing the amount of mem-
ory (thus making the data more disk-resident) does
not noticeably affect the performance of the data-
driven approach. Switching to the control-driven ap-
proach alone reduces the performance by a factor of 4.7
for 0.5M web pages. Since the CPU utilization per-
centage remains at 98% in this case, still not much
random disk accesses are needed. Therefore, the rea-
son for this performance drop is the increase in CPU
cache misses due to larger working sets, which are
though still mainly memory-resident. When we re-
duce the amount of RAM to 45M per node so that
the working sets become mainly disk-resident when
processing 0.5M web pages, the performance of the
control-driven approach further drops by a factor of 22
to 34 procedures/sec due to a substantial number of
non-sequential disk accesses issued, as evidenced by
the fact that the CPU utilization drops to 3.5% in this
case.

At one point the control-driven approach’s perfor-
mance is lowered to 20 procedures/sec when process-
ing 0.5M web pages using 45MB of RAM. This is
the theoretical minimum of performance for this work-
load, assuming that each procedure needs five 9-msec
disk seeks. In contrast, the data-driven approach is
able to sustain a 2800 procedures/sec performance rate
when handling 1.4M web pages, which is within a
factor of two of the peak performance rate of 5200
procedures/sec, when the entire data set is memory-
resident. Thus, for the hit list construction work-
load, the data-driven approach’s performance is at
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Figure 9: Disk reading latency comparison between
data- and control-driven approaches when construct-
ing hit lists.

least around 4.7∗22 = 103 times better compared with
the control-driven approach when the working set sub-
stantially exceeds the available system memory, and
around 4.7 times better when the working set mostly
fits into memory. One can obtain similar performance
improvement results for other workloads (possibly un-
der different data set or memory sizes), provided their
working set size under the control-driven execution ex-
ceeds the amount of available memory.

5.2.3 Disk Utilization Efficiency

The other advantage of the proposed data-driven ap-
proach is that its disk access pattern is more sequential
because the control flow then does not dictate the or-
der in which data blocks are to be fetched from the
disk. We have instrumented the IDE driver in the
Linux kernel to directly evaluate the degree to which
our data-driven technique avoids disk seeks when ma-
nipulating disk-resident data by measuring the time
taken by individual read requests to the IDE disk.
Figure 9 shows the histograms of the percentages of
IDE disk read requests that took different amount of
time to complete while performing the hit list con-
struction task on 0.5M web pages over a 4-node cluster
with 45MB of memory in each node. The data manip-
ulated in this workload is about 730MB per cluster
node, hence the processing is out-of-core.

The curve for the data-driven approach shows that
a majority of disk reads take a smaller amount of time
and thus are sequential. Although some disk seeks
are required for disk reads in this case, in particu-
lar because the OS may write out dirty pages as the
disk reads are on-going, the overall CPU utilization
percentage is still very high, around 94%. The curve
for the control-driven approach reflects, as expected,
much less sequentiality than for the data-driven ap-
proach.

Figures 7 and 9 conclusively demonstrate that the



data-driven approach not only has a much better
“reuse” factor for every disk block brought in, but
also requires less overhead per disk I/O. As a result,
the data-driven approach towards data preparation in
large-scale search engines can perform two orders of
magnitude better than the control-driven approach on
modern hardware for out-of-core data sets.

5.2.4 Scalability of Clustering Implementa-
tion

There are two aspects of clustering effectiveness: how
much are the communication and synchronization
overheads and how well the work is balanced among
the nodes. The data for URL score querying us-
ing our data-driven technique for the 1.4M docu-
ment collection shows that for such uniform work-
load which is both communication-intensive and disk
access-intensive our data-driven execution and com-
munication model can achieve over 92% CPU utiliza-
tion on every cluster node due to high parallelism
and weak synchronization requirements: In this work-
load the fractions of idle CPU time for the four clus-
ter nodes were 7.2%, 6.4%, 7.9%, and 4.1%; and
around 1.3% was used by the other processes on each
node. It is hard to single out cluster communication
costs, but the amount of cluster traffic for each node is
at most of the same order as its disk exchange traffic.
Data partitioning using simple hash functions over ob-
ject names is effective at providing partition sizes that
are much less diverse than the sizes of individual data
items in the partitions. As a result, the remaining
unevenness of resulting processing on different clus-
ter nodes leads to about 90% effectiveness of using a
4-node cluster versus 4-times faster execution on one
node for the three different workloads when handling
the 1.4M document collection.

6 Conclusion

Internet-scale search engines need to build various
types of data structures to efficiently support a large
number of user queries against a substantial portion
of the global Web. Preparation of this data poses a
unique engineering challenge because of the sheer vol-
ume of the external-memory data sets involved. The
key architectural requirement for data manipulation
in search engines thus is avoidance of random and/or
small disk I/O. Fortunately the nature of search engine
applications allows us to concentrate on improving the
throughput of large groups of modifications, not the
latency of individual updates.

In this paper, we described a data-driven technique
to organize data manipulation that triggers compu-
tation only when its required data is brought into
memory and amortizes the cost of disk I/O over large
groups of computation operations. We have analyzed
its applicability conditions, showing that it can be
easily used whenever we have large streams of reads

and/or updates that do not have to be executed imme-
diately and which operate on partitionable external-
memory data structures. Although conceptually sim-
ple, the technique is enormously powerful as it greatly
improves the disk and memory data access locality and
converts small/random disk I/Os into large/sequential
ones, as well as increases CPU throughput via higher
cache hit ratio. As a result, the efficiency of the data
preparation process is significantly improved: Our ex-
periments demonstrate that when the manipulated
data sets grow far beyond the memory size, the ex-
ecution performance improves by a factor around 100
for typical workloads compared with the straightfor-
ward control-driven execution model. In addition, our
technique naturally combines with clustering to ex-
ploit the parallelism manifested in data manipulation.
The experience of applying these techniques to all data
manipulations tasks in a comprehensive search engine
prototype Yuntis convinced us that these techniques
can be equally effective in other data-intensive Inter-
net applications with similar requirements.

To the best of our knowledge this is the first
open-literature description of an I/O-driven external-
memory manipulation technique of such universality
and effectiveness, its application to data preparation in
large-scale web search engines, and its detailed empir-
ical performance comparison with the control-driven
approach, which demonstrates its hundred-fold perfor-
mance advantage on a functionally complete and fully
operational search engine prototype Yuntis.

The future work includes selective use of asyn-
chronous disk I/O when and only when doing so ac-
tually outperforms the use of non-blocking disk I/O
with read-ahead by the OS. We also plan to inves-
tigate the tradeoffs of dynamic migration of process-
ing and/or data among cluster nodes to achieve better
overall cluster utilization.
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