
Optimizing Result Prefetching in Web Search Engines

with Segmented Indices
Extended Abstract

Ronny Lempel Shlomo Moran

Department of Computer Science
The Technion,

Haifa 32000, Israel
email: frlempel,morang@cs.technion.ac.il

Abstract

We study the process in which search engines
with segmented indices serve queries. In par-
ticular, we investigate the number of result
pages which search engines should prepare
during the query processing phase.

Search engine users have been observed to
browse through very few pages of results for
queries which they submit. This behavior of
users suggests that prefetching many results
upon processing an initial query is not e�-
cient, since most of the prefetched results will
not be requested by the user who initiated the
search. However, a policy which abandons re-
sult prefetching in favor of retrieving just the
�rst page of search results might not make op-
timal use of system resources as well.

We argue that for a certain behavior of users,
engines should prefetch a constant number
of result pages per query. We de�ne a con-
crete query processing model for search en-
gines with segmented indices, and analyze the
cost of such prefetching policies. Based on
these costs, we show how to determine the
constant which optimizes the prefetching pol-
icy. Our results are mostly applicable to local
index partitions of the inverted �les, but are
also applicable to processing of short queries
in global index architectures.
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1 Introduction

The sheer size of the WWW and the e�orts of search
engines to index signi�cant portions of it [14] have
caused many search engines to partition their inverted
index of the Web into several disjoint segments (par-
tial indices). The partitioning of the index impacts the
manner in which the engines process queries. Most en-
gines also use some form of query result caching, where
results of queries that were served are cached for some
time. In particular, query results may be prefetched

in anticipation of user requests. Such scenarios occurs
when the engine retrieves (for a certain query) more
results than will initially be returned to the user.

We examine e�cient prefetching policies for search
engines. These policies depend on the architecture of
the search engine (which, in turn, a�ects its query pro-
cessing scheme) and on the behavior patterns of search
engine users.

1.1 Search Engine Users

Users submit queries to search engines. From a user's
point of view, an engine answers each query with a
linked set of ranked result pages, typically with 10 re-
sults per page. All users browse the �rst page of results
(the results deemed by the engine's ranking scheme to
be the most relevant to the query), and some scan ad-
ditional result pages, usually in the natural order in
which those pages are presented.

Three studies have analyzed the manner in which
users query search engines and view result pages: a
study by Jansen et al. [7], based on 51; 473 queries
submitted to the search engine Excite1; a study by
Markatos [15], based on about a million queries sub-
mitted to Excite; and a study by Silverstein et al.
[19], based on about a billion queries submitted to the
search engine AltaVista2. Three �ndings which these
studies share are particularly relevant to this work:

1http://www.excite.com/
2http://www.altavista.com/



� The queries submitted to WWW search engines
are very short, averaging less than 2:4 terms per
query, with over half of the queries containing just
one or two terms. These results were reported by
both [19] and [7]. While the two studies de�ne
query terms somewhat di�erently, the reported
term counts may be loosely interpreted as the
number of words per query.

� Users browse through very few result pages. The
mentioned studies di�er in the reported distribu-
tion of page views, but agree that at least 58% of
the users view only the �rst page (the top-10 re-
sults), and that no more than 12% of users browse
through more than 3 result pages.

� The number of distinct information needs of users
is very large, as can be seen from the huge variety
of queries submitted to search engines. However,
popular queries are repeated many times, and the
25 most popular queries account for over 1% of all
queries submitted to the engines.

1.2 Caching and Prefetching of SearchResults

It is commonly believed that all major search en-
gines perform some sort of search result caching and
prefetching. Caching of results was noted in Brin
and Page's description of the prototype of the search
engine Google3[3] as an important optimization tech-
nique of search engines. Markatos [15] demonstrated
that caching search results can lead to hit ratios of
close to 30%.

In addition to storing results that were requested
by users in the cache, search engines may also prefetch
results that they predict to be requested shortly. An
immediate example is prefetching the second page of
results whenever a new query is submitted by a user.
Since studies [19, 7] indicate that the second page of
results is requested shortly after a new query is submit-
ted in at least 15% of cases, search engines may prepare
and cache two (or more) result pages per query.

1.3 Index Structure and Query Processing

Models

Inverted indices, or inverted lists/�les, are regarded
as the most widely applied indexing technique [18, 8,
20, 17, 16], and are believed to be used by the major
search engines. As search engines index hundreds of
millions of Web pages [14], the size of their inverted
indices is measured in terabytes.

Ribeiro-Neto and Barbosa [17] mention three hard-
ware con�gurations that can handle large digital li-
braries: a powerful central machine, a parallel ma-
chine, or a high-speed network of machines (worksta-
tions and high end desktops). However, when consid-
ering the size of the indices which search engines main-

3http://www.google.com/

tain, the growth rate of the Web and the large number
of queries which search engines answer each day, using
a network of machines is considered to be the most
cost-e�ective and scalable architecture [6, 17]. Such
networks operate in a shared-nothing memory organi-
zation [18] where each machine has its own processing
power (one or several CPUs), its own memory and its
own secondary storage. The machines communicate
by passing messages via the high speed network that
connects them.

There are two well-studied schemes of partitioning
an inverted index across several machines:

� Global index organization. In this scheme, the in-
verted index is partitioned by terms. Each ma-
chine holds posting lists for a distinct set of terms
(the terms may be partitioned by lexicographic
order, for example). The posting list for term t

holds entries for all documents that include t.

� Local index organization. In this scheme, the in-
verted index is partitioned by documents. Each
machine is responsible for indexing a distinct set
of documents, and will hold posting lists for all
terms that appeared in its set of documents.

Some works, such as those by Ribeiro-Neto and
Barbosa [17] and Tomasic and Garcia-Molina [20]
have compared the (run-time) e�ciency of the above
schemes. Parallel generation of a global index has been
studied in [18], while a system which crawls the Web
and builds a distributed local index was presented in
[16]. Cahoon et al. [4] evaluated the computational
performance of local indices under a variety of work-
loads, and Hawking [6] examined scalability issues of
local index organizations. The prototype of Google
was reported as using global index partitioning [3].

Many of the above mentioned works [4, 18, 6, 17,
20] describe essentially the same model for processing
queries in systems with segmented indices:

� User queries arrive to a certain designated ma-
chine, which we will call the Query Integrator, or
QI. This machine was called home site in [20], cen-
tral broker in [18] and [17], user interface (or UIF)
in [6] and connection server in [4].

� The QI issues each query to the separate index
segments, in a manner which depends on the par-
titioning scheme of the index. With local index
partitioning, the QI will send the query (as sub-
mitted by the user) to all segments. With global
index partitioning, the QI sends each segment a
partial query consisting only of the set of terms
whose posting lists are stored in the segment.

� The QI waits for the relevant segments to return
their result sets, and merges these result sets with
respect to the system's ranking scheme. Again,



the two index partitioning schemes imply di�erent
merge operations.

With local index partitioning, it is usually as-
sumed that each segment has the ability to cal-
culate the global score of each document in its
local index with respect to all queries. Since the
result sets that are returned by di�erent segments
are disjoint, merging the various result sets is
straightforward.

With global index partitioning, each (relevant)
segment returns a ranked document list that may
overlap lists returned by other segments, and
where each score reects only the score of the
document with respect to the partial query which
that segment received. The QI may need to per-
form set operations on the partial result sets (for
queries containing boolean operators), and might
need to weigh the scores returned from each seg-
ment di�erently (for example, according to the
di�erent idf values of the terms in each partial
query).

� The QI returns the merged results to the users.

We consider a cache-augmented process, in which the
QI maintains a query-result cache. Upon receiving a
query from a user, the QI �rst checks if the cache
contains results for that query. If so, the cached re-
sults are returned to the user, without forwarding the
query to any of the segments. If the query cannot be
answered from the cache, the QI processes the query
as described above, and upon completion, caches the
merged results4.

1.4 This work

When considering the query processing model de-
scribed above in the context of Web search engines,
we note that merged results are returned to users in
small batches (typically 10 at a time), in decreasing
order of relevance (as ranked by the search engine).
The QI, however, may prepare more results than are
to populate the �rst batch, and cache them for future
use. This raises the issue of optimizing the number
of prefetched results in systems where the cost of pro-
cessing uncached queries increases with the number of
results that are fetched: prefetching a large number
of results per query will be costly at �rst, but may
pay o� should the user request additional batches of
results (since these will already be cached). Note that
with the cost of prefetching we also associate the cache
space that is occupied by the prefetched results. As-
suming a �xed-size cache, increasing the number of
prefetched results per query may decrease the number
of queries whose results can be simultaneously cached.

4The maintenanceof the cache is not considered in this work.
In particular, we do not examine how cached entries are replaced
or how the freshness of the results is maintained.

This may lead to lower cache hit ratios, and to an
increase in the load of the engine.

Another issue arising from the query processing
model, is the relationship between the number of re-
sults which the QI decides to prefetch per query, and
the number of results which it should ask of each seg-
ment. As an example, consider an engine which uses
local partitioning into m segments, and whose policy
is to prefetch n results per query. How many top re-
sults (denoted by l) should the QI collect from each
segment for each query? It may happen that all of
the top results reside on a particular segment. There-
fore, in order to be certain that indeed all top n re-
sults are obtained, it is necessary to collect the top-n
results of each segment (setting l = n). However, as-
suming that documents are partitioned randomly and
independently into the segments, the QI may be able
to collect considerably less results from each segment
and still, with very high probability, obtain all of the
top-n results. Thus, when optimizing the number of
prefetched results n, the behavior of l with respect to
n must also be considered.

The tradeo� between the amount (and cost) of re-
sult prefetching and the possibility of serving subse-
quent queries from the cache is the main topic of this
paper. As popular search engines process millions of
queries every day, e�cient prefetching policies can help
reduce both the hardware requirements and the re-
sponse time of the engines.

The rest of this paper is organized as follows. Sec-
tion 2 formally presents the problems studied and the
notations used throughout this paper (the notations
are summarized there in Table 1). We model both the
search engine's query service process and the users' be-
havior. We then de�ne the cost of prefetching a given
number of results in terms of a cost function which is
analyzed and optimized in later sections. Section 3
presents an algorithm which optimizes the prefetch
cost function for two special cases. The �rst case deals
with inverted indices that �t on a single machine. This
single machine scenario also models serving single-
term queries (which are quite common on the Web)
with a globally-partitioned index. The second special
case deals with a scenario when the engine guarantees
that the users receive absolutely optimal results, using
worst-case assumptions on the distribution of relevant
documents in local-index partitions. The main body
of work is contained in Section 4, which presents al-
gorithms that solve and approximately solve the opti-
mization problem for locally partitioned indices with
an arbitrary number of segments, among which the
documents are randomly distributed. Sections 5 tack-
les the combinatorial problem of setting the number of
results which should be retrieved from each segment in
order to provide quality merged results to the users.
Section 6 discusses the practical impact that our re-
sults may have on search engine engineering. Conclu-



sions and suggestions for future research are brought
in Section 7.

2 Notations and Formal Model

2.1 The User

Our work requires a model for the way search engine
users view result pages of their searches. Two studies
[19, 7] have reported on several aspects of such user be-
havior by examining the query logs of search engines.
To our purposes, the analysis of AltaVista's log [19]
did not report in su�cient detail the exact distribu-
tion of result pages views (citing percentages of users
viewing 1; 2 and 3 pages only). In addition, the statis-
tics reported in that paper only considered requests
for additional results which arrived within 5 minutes
of the previous request made by the same user. The
study of Excite's users [7] brings a more elaborate dis-
tribution of result page views per query. 58% of the
page views were of the �rst result page, 19% of the
views were of the second result page, and the views
of result pages 3-9 (21:3% of the views) conformed to
a Geometric distribution with a parameter between
0:288 and 0:427.

We chose to model the number of result pages which
users view per query as a Geometric random variable
u � G(1 � p). According to this model, users view re-
sult pages in their natural order, and the probability of
a user viewing exactly result pages 1; : : : ; k (not view-
ing result pages k+1 and beyond) equals (1� p)pk�1.
In other words, upon viewing a result page, the user
requests the next page with probability p.

An important property of the Geometric distribu-
tion is the fact that it is memoryless:

Pr(u � s + t j u � s) = pt 8s; t 2 IN

Assume that the complexity of retrieving ranked re-
sults is also \memoryless", meaning that the com-
plexity of retrieving the results that rank in places
n; n+ 1; : : : ; n+ (k � 1) depends only on the number
of results retrieved, k. As we will see, this assump-
tion holds when the identity of the result that ranks
in place n� 1 is known. Then, the memoryless behav-
ior of the users and the memoryless cost of retrieval
implies that the optimal number of result pages ropt
that should be prefetched for a query is independent
of the number of result pages requested so far: any
time a query cannot be served from the cache, the QI
should prepare the next ropt result pages.

2.2 The Index Architecture and the Complex-

ity of Processing Queries

The model to which we refer in most of this paper is
that of a local index partitioning scheme in a shared-

nothing network. The index is partitioned among m

segments. We assume that documents (URLs) are par-
titioned into segments by a random process which as-
signs each document to a segment according to the
uniform distribution, and independently of all other
documents. Such a partitioning can be achieved by
hashing every URL into a �xed-size document ID, and
mapping these IDs into segments. Such a scheme was
mentioned in [1] in the context of building URL repos-
itories, and the same technique can be applied when
assigning pages to the segments of an inverted index.
Since the number of documents considered is in the
hundreds of millions while m is considerably smaller
(much less than the square root of the number of doc-
uments), the segments will contain roughly the same
number of documents (with high probability). The
query processing model is as described in Section 1.3.
Throughout the discussion we consider the processing
of a \broad topic" query that matches C documents in
each segment, where C is much larger than the number
of the results a user will actually browse.

Let A denote the number of results which the engine
presents in each result page (a typical value is A = 10).
Since results should be prefetched in page units, the
number of prefetched results per query should be a
multiple of A. In what follows we examine the cost
of prefetching n = rA results per query, so that in
subsequent sections we will be able to optimize the
value of r - the number of prefetched result pages. We
will denote a user's query by a pair (t; k), where t is
the search topic and k � 1 is the (ordinal) number
of result page requested. A query can either start a
search of a new topic (and then k = 1), or ask for
additional results in an existing search (k > 1). The
following discussion addresses both query types.

Preliminaries

Upon receiving a query (t; k) which cannot be an-
swered from the cache, the QI needs to fetch n results
for t. The �rst task is to set the value of l, the number
of results to retrieve from each of the m segments.

Let B(n) denote the set of n documents that the
engine should ideally retrieve for the query: the n doc-
uments that attain the best scores for t (according to
the engine's ranking function), out of all documents
that have not been retrieved for queries (t; k0); k0 < k.
Let R(l;m) denote the set of documents that will be
retrieved for the query t when each of the m segments
returns its l most relevant (and previously unretrieved)
matches for t. Ideally,R(l;m) would contain B(n), but
ensuring that means setting l to equal n. 5 Instead, we
assume that the engine employs the following quality
policy, based on a probability q: The QI sets the value
of l with respect to n such that

Pr[B(n) � R(l;m)] � q

5This special case is discussed in Section 3.



In other words, the QI should collect enough (previ-
ously unretrieved) quality results from each segment so
that with probability q, the top-n retrieved results will
indeed be the best n (previously unretrieved) results
for t in the entire index. The relationship between n
and l will be studied in Section 5. For the time being,
it su�ces to note that by the assumption that docu-
ments are uniformly distributed among the segments,
the above probability depends only on the values of
n;m and l, and is independent of the topic t.

Let ~lq(n;m) denote the minimal number of docu-
ments which should be retrieved by each of the m seg-
ments so that the quality criterion is satis�ed:

~lq(n;m)
4
= minf l j Pr[B(n) � R(l;m)] � qg

Collecting results

The QI sends each segment the topic t and a request
for its ~lq(n;m) top results for the query. Whenever
k > 1 (this is not the �rst batch of results to be re-
trieved for t), segment i also receives si(t; k � 1), the
score of the lowest ranking document that it had con-
tributed to the results of (t; 1); : : : ; (t; k�1). 6 We now
estimate the cost of serving such requests. By our
assumption, the query matches C documents in each
segment, where C is much larger than the number of
results users will actually browse through, and conse-
quently is much larger than ~lq(n;m) (since ~lq(n;m) is
bounded by n, and n is bounded by the number of
results that users browse through). We assume that
identifying the C-sized set of candidate documents can
be done in a time that is linear in C. This assumption
holds for the inverted index structure when the number
of query terms is very small, as is the case with broad
topic queries on the Web (see Section 1.1). Recall that
each segment receives the score of the lowest ranking
document that it has retrieved so far for the query, and
can thus discard previously retrieved results from the
set of candidates. The top-scoring ~lq(n;m) documents
of the remaining candidates are then found. Each seg-
ment will thus spend �(C +~lq(n;m) logC) processing

steps (per query) in order to return ~lq(n;m) sorted
results to the QI.

Merging results

The QI receives m sorted result sets of length ~lq(n;m).

Reading and bu�ering these sets takes �(m~lq (n;m))
operations. It then partially merges the results until
it identi�es the top n = rA retrieved results that will
populate the r result pages. By using Tree Selection

Sorting [12] with the m sorted result lists hanging from
the leaves of the tree, the merge can be accomplished
in time �(2m + n logm). The overall complexity of

this step is thus �(m~lq(n;m) + 2m + n logm).

6We assume that the results of the query (t; k � 1) are still
cached when the query (t; k) arrives.

Caching results

The r result pages are cached, and the �rst of
those pages is returned to the user. The m scores
s1(t; k); : : : ; sm(t; k) are also noted. The overall space
complexity is thus �(rA +m).

The complexity of the query processing model

Our model requires two messages to be passed be-
tween the QI and each of the segments: the QI sends
the query to each segment, and each segment returns
~lq(n;m) results to the QI. The total number of re-

sults received by the QI is m~lq(n;m), and this amount
of data impacts its time complexity. Had we allowed
more rounds of communication, we could have man-
aged by sending the QI only m + (n � 1) results,
lowering the complexity of the merge step above to
�(m + n + n logm). We chose not do so since mini-
mizing communication rounds between machines (even
at the expense of sending larger messages) is likely to
improve performance in distributed computations [6].

Note that the complexity of the retrieval model de-
scribed above is indeed \memoryless" (see discussion
in Section 2.1). The model implies the following com-
putational loads on the various resources of the engine,
when following a policy of prefetching r result pages
per query:

� The QI performs �(m~lq(rA;m) + 2m+ rA logm)
computation steps.

� Each index segment performs �(C +
~lq(rA;m) logC) computations.

� The cache space required is �(rA+m).

Additionally, we introduce two non-negative coe�-
cients � and � which will allow us to assign di�erent
weights to the three resources which are consumed dur-
ing query processing. Speci�cally, � will multiply the
computations of the QI and � will multiply the cache
space required 7. Tuning the values of � and � can
emphasize memory (cache) limitations, computational
bottlenecks (the QI vs. the segments) and response
time per query. More on this in Section 6.2.

We are now ready to formulateW (r), the expected
cost (or work) of a policy which prefetches r pages
for geometric users with parameter p. Result pages
ir+1; ir+2; : : : ; (i+1)r will be termed as the i'th batch
of result pages. For ease of notation, we introduce

lq(r;m)
4
= ~lq(rA;m).

7The computational loads were expressed using the �(�) no-
tation. For concreteness and simplicity, we will consider the
given expressions as the exact complexities. This allows us to
avoid tedious notations, and does not a�ect the ensuing analysis
(and results) of the paper.



W (r) = Caching overhead +
1X
i=1

[ Pr(preparing batch i) �

(batch preparation complexity) ]

= �(Ar +m) +
1X
i=0

pir[C + lq(r;m) logC +

�(rA logm +mlq(r;m) + 2m)]

= �(Ar +m) +
C + lq(r;m) logC

1� pr
+

�(rA logm +mlq(r;m) + 2m)

1� pr

Rearranging the terms, and ignoring the constant ad-
ditive term �m (which does not depend on r and will
not a�ect the optimization of W (r)), we get

W (r) = �Ar +

(C + 2�m) + (logC + �m)lq(r;m) + (�A logm)r

1� pr

To ease the notation, we de�ne the following con-
stants: a = �A; b = (C + 2�m); c = (logC + �m)
and d = �A logm. With this notation,

W (r) = ar +
b+ clq(r;m) + dr

1� pr

C, the number of documents per segment which match
a query, is typically a large number, while A andm are
typically much smaller. Thus, when the proportional-
ity constants � and � are both about 1, typical values
of b are large (tens of thousands and beyond), while
a; c; d are relatively small (typically less than 100).
Our mission: Given an m-way locally segmented

index, geometric-p users and some quality criterion q,
determine ropt, an integral value of r which minimizes
W (r). In doing so, determine lq(ropt;m). The QI will
then prepare ropt result pages whenever a query can-
not be answered from the cache, asking each of the
m segments to retrieve its top lq(ropt;m) results (that
score below a certain threshold) for the query being
processed. We will strive to obtain exact or almost
exact values of ropt and lq(ropt;m).

3 Simple Special Cases

In this section we show that the problem for a single
segment (m = 1) and the problem for multiple seg-
ments with q = 1 behave similarly, and in both cases
ropt can be found in �(log ropt) steps.

� When the index is stored in a single segment, we
can ignore the terms in the complexity function
W (r) which deal with the merging of results from

Symbol Denotes
a shorthand for �A
b shorthand for (C + 2�m)
c shorthand for (logC + �m)
d shorthand for �A logm
m number of segments in index
p probability of viewing result page k when viewing

page k� 1
q quality criterion of QI
r number of result pages to fetch
ropt optimal integral value of r
A number of results per result page
C number of relevant results per segment
W (r) work required for fetching r result pages per query
lq(r;m) number of results to fetch from each segment so that

the best rA results are collected with probability

at least q; equals ~lq(rA;m)
� multiplies the computations of the QI in W (r)
� multiplies the required caching space in W (r)

Table 1: summary of notations

di�erent segments (namely the terms involving
�). In addition, lq(r; 1) = rA regardless of q's
value. Thus, W (r) becomes:

W (r) = ar +
C + (A logC)r

1� pr

Note that when an index is partitioned globally
(each segment holds posting lists for a distinct
set of terms), single-term queries are e�ectively
queries to a single segment as described above.
Studies [19, 7] indicate that the percentage of
single-term queries on the Web is quite large
(25%� 30%).

� For the case where q = 1 we again have l1(r;m) =
rA, and the complexity function W (r) takes the
following form:

W (r) = ar +
b+ (cA+ d)r

1� pr

Both cases imply a complexity function of the form

W (r) = ar +
b0 + d0r

1� pr
; b0; d0 > 0

The derivative of W (r) is negative at zero and in-
creases for all r > 0. Therefore, W (r) (for positive val-
ues of r) decreases at �rst until reaching its (unique)
minimal value, and then increases. Relying on this
behavior, an optimal integral value of r (ropt) can be
found by applying the following procedure:

1. Find the minimal natural number n such that
W (2n) < W (2n+1).

2. Find an optimal value of r, using binary search,
in the range 2n�1; : : : ; 2n+1.

Since n will not exceed 1 + dlog ropte, the complexity
of �nding ropt is �(log ropt).



4 Solution for an m-way Segmented
Local Index

In this section we study the problem of setting the op-
timal value of r given the quality criterion q (q < 1),
the engine's architecture parameters A;C and m, and
the complexity parameters � and �. Subsection 4.1
presents an algorithm for determining the optimal
value of r, which minimizes the retrieval complexity
function W (r). Subsection 4.2 presents an approxi-
mation algorithm, which �nds a value of r for which
W (r) is approximately optimal.

4.1 Optimizing r in Indices With m Segments

First, recall the complexity function from Section 2.2:

W (r) = ar +
b+ clq(r;m) + dr

1� pr

Clearly, the behavior of W (r) depends on the be-
havior of lq(r;m). While we will show how to pre-
cisely calculate lq(r;m) in Section 5, for the purpose
of this subsection it su�ces to note that if r0 � r then
lq(r0;m) � lq(r;m).

In order to facilitate the search for ropt, we now set
forth to �nd, for every value of r, an upper bound on
the set f�r j W (�r) � W (r)g8.

De�nition 1 A function g(r) will be called W -

restrictive if for all r0 � g(r), W (r0) > W (r).

For example, g1(r)
4
= W (r)

a
is W -restrictive, since for

all r0 � g1(r), we have W (r0) > ar0 � ag1(r) = W (r).
Consequently, ropt is not larger than g1(1).

We will use W -restrictive functions to bound our
search space for ropt. For this we now seek a W -
restrictive function that is better than g1, providing
tighter bounds on the size of the search space. The
following Proposition is proved in the full version of
this paper:

Proposition 1 The function

g(r) = r +
pr(b+ clq(r;m) + dr)

(1 � pr)(a + d)

is W -restrictive.

Note that the above function reects all the architec-
tural parameters of the search engine's index, and also
the user's behavior (represented by p) and the desired
quality criterion q.

Figure 1 displays AlgorithmOP for setting the opti-
mal value of r. All of the steps except the calculation
of lq(r;m) in 2(a) are trivial; that calculation is the
topic of Section 5. The correctness of the algorithm
follows from the W -restrictiveness of g(r) (Proposi-
tion 1), since we do not need to iterate through values
of r for which W (r) is known to be higher than values
we have already seen.

8Since limr!1W (r) = 1, the set f�r j W (�r) � W (r)g is
�nite for all r.

1. Initializations: Wmin  W (1) ; ropt  1 ;
limit 1 ; r 2.

2. While r < limit:

(a) Calculate l = lq(r;m), and use the value to
set W  W (r) ; g  g(r).

(b) If limit> g: limit g.

(c) If W < Wmin: Wmin  W ; ropt  r.

(d) r  r + 1

3. print ropt.

Figure 1: Algorithm OP for optimizing the prefetch policy

The complexity of the algorithm

Algorithm OP needs to be executed relatively few
times, when con�guring the prefetching policy of the
search engine (see discussion in Section 6.2). There-
fore, its own complexity does not impact the perfor-
mance of the engine. Nevertheless, we now prove that
its running time is polynomial. We do so by bound-
ing rmax, the maximal number of iterations which OP
may require throughout its course. For this, let

� =
a + d

b+ cA+ d

Note that by our assumptions on the relative values
of a; b; c and d (see Section 2.2), � is a small constant.
Since lq(1;m) � A, we have that g(1) � 1 + p

(1�p)� is

a bound on the number of iterations. Thus, rmax is
bounded by 1+ 2p

1�p whenever � � 0:5, and by 1+ 1
1�p

whenever p � � . Next, we bound rmax when p > �
and � < 0:5.

Lemma 1 rmax � 3
l
log �
logp

m
whenever p > � ; � < 1

2 .

Proof: Let r =
l
log �
log p

m
. Then, since 1 > p > � , r > 1

and pr = 2r log p � 2log � = � . Thus,

g(r) = r +
pr

(1� pr)

b+ clq(r;m) + dr

a+ d

� r +
�

(1� � )

b+ clq(r;m) + dr

a+ d

� r +
�

(1� � )

b+ crA + dr

a+ d

(since obviously lq(r;m) � rA)

< r +
�

(1� � )

r

�
=

2� �

1� �
r � 3r = 3

�
log �

log p

�

To complete the analysis of the complexity of al-
gorithm OP for �nding ropt, we show in Section 5



that calculating the values of lq(r;m) for all r 2
f1; : : : ; rmaxg requires O(m2A2r2max) steps (regardless
of the value of q). Since we have already bounded
rmax by simple functions of m; p and � , bounds on the
complexity of the algorithm follow.

Table 2 brings sample results of the algorithm. For
every combination ofm and p, ropt and ractmax (the high-
est value of r for which W (r) was actually calculated
during execution) are shown. Figure 2 plots W (r) as
a function of r, as calculated during the algorithm for
three values of m with p = 0:5. For all displayed
results, we used q = 0:99; � = � = 1; A = 10 and
C = 213.

mnp 0:3 0:5 0:7
5 4(5) 7(9) 11(15)
25 4(5) 6(8) 12(14)
50 4(5) 6(8) 10(13)

Table 2: ropt(ractmax) values as a function of m and p

4.2 Approximating the Optimal Solution

In the previous subsection we have shown how to de-
termine ropt, the number of pages which minimizes the
complexity function W (r). However, if we are willing
to settle for nearly optimal solutions, namely �nding

values of r for which W (ropt)
W (r) � 1 � � for small values

of �, we can use the following algorithm:

1. Let rmax
4
=
l
log �
logp

m
.

2. Find the value of r in the range f1; : : : ; rmaxg

which minimizes W (r).

Note that rmax depends on the user's behavior (as
modeled by p) but is independent of the engine's ar-
chitecture and quality policy (which are modeled by
a; b; c; d and q). Furthermore, the above algorithm
is applicable to any work function ~W (r) such that

(1� pr) ~W (r) is an increasing function of r. Note that
W (r) satis�es this condition, since

(1� pr)W (r) = (1� pr)ar + b+ clq(r;m) + dr

where a; b; c; d are positive constants, and the functions
(1� pr); lq(r;m) are nondecreasing functions of r.

The correctness of the approximation algorithm re-
lies on the following Proposition.

Proposition 2 Let W (r) be any positive function

such that (1 � pr)W (r) is an increasing function of

r. Let r; t 2 IN such that
W (t)
W (r) �

1
1�pt . Then, for all

r0 � t, W (r0) > W (r).

Proof: Since (1� pt)W (t) � W (r), we have for r0 � t

W (r0) > (1� pr
0

)W (r0) � (1� pt)W (t) � W (r)

Corollary 1 Let 0 < s < t. Then W (s) < W (t)
(1�ps) .

Proof: Since (1� pr)W (r) increases with r, we get

W (s) <
W (s)

(1� pt)
<

W (t)

(1� ps)

Corollary 2 For all s,

minfW (1); : : : ;W (s)g <
W (ropt)

1� ps

Proof: If 1 � ropt � s, the claim holds. Otherwise, the
result is implied by Corollary 1, with t = ropt.

Substituting s = rmax = d log �log pe in the last Corol-

lary yields the approximation algorithm:

minfW (1); : : : ;W (s)g <
W (ropt)

1� pd
log �

log p
e

=
W (ropt)

1� 2logpd
log �

log p
e
<

W (ropt)

1� �

Table 3 shows the values of rmax for p =
0:1; 0:2; : : :; 0:9 and � = 0:1; 0:01 and 0:001. As men-
tioned earlier, calculating the values of lq(r;m) for
all r 2 f1; : : : ; rmaxg requires O(m2A2r2max) compu-
tational steps, and thus the time complexity of the

approximation algorithm is O(m2A2
l
log �
logp

m2
).

Finally, we note that the results of this subsec-
tion may be used in practice to improve the running
time of Algorithm OP (�gure 1), by checking (between
steps 2(b) and 2(c)) whether W

Wmin
� 1

1�pr , and set-

ting limit r if so (thus terminating the algorithm).
Proposition 2 asserts that all future iterations with
larger values of r will result in greater values of W (r),
and so OP can safely terminate and output the current
value of ropt.

5 Calculating lq(r;m)

This section brings recursive formulae with which
lq(r;m) can be calculated in a time which is polyno-
mial in m; r and A.

We model the distribution of the top results in the

segments by the following random process: n
4
= rA

di�erent balls (the top results for a query) are thrown
randomly and independently into m di�erent cells
(the segments), where ni balls are inserted to cell i
(
Pm

i=1 ni = n). We model the querying process by
taking minfl; nig balls from cell i for i = 1; : : : ;m.
Denote by en;m;l the number of excess balls that re-
main in the cells after the querying process is com-
pleted. In Section 5.1 we calculate the probability that
en;m;l = 0. This corresponds to the case where no cell



Figure 2: W (r) as a function of r, for m = 5; 25 and 50 (p = 0:5)

�np 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9
0:1 1 2 2 3 4 5 7 11 22
0:01 2 3 4 6 7 10 13 21 44
0:001 3 5 6 8 10 14 20 31 66

Table 3: rmax as a function of p and �

contains more than l balls, so that the QI indeed man-
aged to collect the top n results from the segments. In
the full version of this work we also calculate the prob-
ability that en;m;l = k. This corresponds to the case
where the QI managed to collect just n� k of the top
n results. We study this case since the QI may choose
to employ a relaxed quality policy, requiring that with
high probability, most (but not necessarily all) of the
top results are returned to the user. Subsection 5.2
briey reviews previous work on related issues.

We �rst present a rough bound on lq(r;m) which
may su�ce when precise calculations are not essen-
tial. Clearly, n

m
is a lower bound on lq(r;m) for all

q > 0. We show that for q = 1� 1
2�
, lq(r;m) need not

be larger than maxfd� + logme; d2en
m
eg 9:

The probability that exactly i of the n results are

inserted to a given segment is
�
n
i

� �
1
m

�i �
1� 1

m

�m�i
.

Since
�
n
i

�
�
�
ne
i

�i
,

�
n

i

�
(
1

m
)i(1�

1

m
)n�i < (

ne

i
)i(

1

m
)i = (

ne

mi
)i :

9Sharper (known) asymptotic bounds on lq(r;m) are dis-
cussed in Section 5.2.

Hence, the probability that more than ` results are
inserted into a given segment is bounded by

nX
i=`+1

(
ne

mi
)i <

1X
i=`+1

(
ne

m`
)i = (

ne

m`
)`

ne
m`

1� ne
m`

Whenever ` � maxf(� + logm; 2en
m
g, this last expres-

sion is bounded from above by
�
1
2

��+logm
= 1

m2�
.

Thus, by the union bound, the probability that at least
one of the m segments contains more than ` results is
smaller than 1

2�
. The results follow.

5.1 Precise Calculation of lq(r;m)

We now turn to the precise calculation of lq(r;m). For
this we will calculate the probability

P (n;m; l) = Pr[en;m;l = 0] ;

the probability of throwing n di�erent balls into m
di�erent cells so that no cell contains more than l balls.

The size of the problem space is mn. We will ac-
tually be counting N (n;m; l), the number of ways to
throw n di�erent balls into m di�erent cells so that no



mnr 1 2 3 4 5 6 7 8 9 10 11 12
5 6 10 13 16 19 22 24 27 30 32 35 37
25 4 5 6 7 8 9 10 10 11 12 13 13
50 3 4 5 5 6 6 7 8 8 8 9 9

Table 4: lq(r;m) for q = 0:99; A = 10 and various values of r and m

cell contains more than l balls, and then

P (n;m; l) = N (n;m; l)=mn

The following recursive formulae may be used to cal-
culate the N (n;m; l) values:

N (n+ 1;m; l) = m �

l�1X
j=0

�
n

j

�
N (n� j;m� 1; l)

N (n;m+ 1; l) =
lX

j=0

�
n

j

�
N (n � j;m; l)

However, the recursion that most naturally �ts in Al-
gorithm OP from Section 4.1 is:
N (n;m; l) =

mX
j=0

�
m

j

��
n

l; : : : ; l; n� jl

�
N (n� jl;m � j; l � 1)

First, we choose some j cells to have exactly l balls.
We then choose the balls to populate those cells (the
multinomial coe�cient has j l-terms). The remaining
n�jl balls are distributed to the remainingm�j cells,
with each such cell collecting no more than l� 1 balls.

As r grows in subsequent iterations OP, so will the
value of lq(r;m). This recursion naturally uses results
of N (n;m; l) from previous iterations in later itera-
tions. As for the initial values:

1. For all m; l, N (0;m; l) = 1.
Whenever n > 0, N (n; 0; l) = N (n;m; 0) = 0.

2. For all n > 0;m > 0:

� Whenever l < d n
m
e; N (n;m; l) = 0.

� N (n;m; d n
m
e) =

�
m

k

�
n!

d n
m
ekb n

m
cm�k ,

where k
4
= n mod m.

Denoting by nmax
4
= rmaxA the value of n in the last

iteration of OP (and by lmax the value of l found in
that iteration), the total time spent calculating values
of lq(r;m) is �(nmaxm

2lmax) = O(n
2
maxm

2). Table 4
shows sample values of lq(r;m).

5.2 Previous Work

The stochastic properties of the process which ran-
domly throws n balls into m cells have been studied
extensively. Two good references are [13] and [10].

Among the properties studied was the distribution of
the maximum number of balls in a cell, which we will
denote by L(n;m). For example, for n � m (more
balls than cells), L(n;m) = �( lnm

ln d1+m
n
lnme +

n
m
) with

probability 1 � o(1) [5]. When n = m, L(n;m) be-
haves asymptotically as (1+o(1)) ln n

ln lnn with probabil-
ity 1 � o(1) [2]. In [13], the distribution of L(n;m)
is examined with regard to the behavior of the ratio

n
m lnm as n;m ! 1. Separate results are obtained
for the three cases n

m lnm ! 0; n
m lnm ! � > 0; and

n
m lnm !1. In [9] it was shown that the distribution
of L(n;m) may be approximated by the the distribu-
tion of

n �max
sjPm

j=1 sj
;

where each sj is an independent �2 variable with
2(n�1)

m
degrees of freedom.

6 From Theory to Practice

This section attempts to bridge the gap between the-
ory and practice by highlighting the possible practical
implications of our model and results.

6.1 The Complexity Function W (r)

We �rst revisit two assumptions we have made while
formalizingW (r) (Section 2). These assumptions per-
tain to the manner by which users view result pages
and to the memoryless query processing scheme.

1. \Users view search result pages according to a
memoryless geometric process". While this as-
sumption is extremely simplistic, the studies cited
in Section 2.1 indicate that it might reasonably
approximate the aggregate behavior of users.

2. \When a request for result page k arrives, result
page k� 1 is still cached". We used this assump-
tion to send each segment the score of the lowest
result it had contributed to page k � 1. This, in
turn, allowed us to formulate a memoryless query
processing scheme. While ignoring cache man-
agement issues in this work, the following consid-
eration justi�es the intuition behind this assump-
tion: the aim of any policy that prefetches r pages
(numbered k; : : : ; k+ r�1) when processing a re-
quest for result page k of some query, is to rapidly
answer (from the cache) subsequent requests for
pages k + 1; : : : ; k + r � 1 of that query. Thus,
the prefetching policy implicitly assumes that the



life expectancy of cached entries will allow page
k + r � 1 to be cached until it is requested. In
other words, every policy that prefetches r pages
assumes that pages will be cached long enough for
r�1 subsequent requests. We require pages to be
cached for r subsequent requests.

The above assumptions allowed us to formulate an ex-
act complexity function to our concrete query process-
ing model. At the end of Section 2.2, the complexity
function was abbreviated to the form

W (r) = ar +
b+ clq(r;m) + dr

1� pr
:

We claim that this abbreviated form (and our results)
can accommodate any retrieval model that incurs the
following costs when prefetching r pages:

� Cache space that is linear in r, the number of
prefetched result pages.

� Retrieval complexity that is the sum of (1) a term
that depends on the query's breadth (number of
matching results), (2) a term that is linear in
lq(r;m), and (3) a term that is linear in r.

Thus, our results may apply to index structures and
query processing schemes that di�er from our model.
Furthermore, the results of Section 4.2 apply to any

complexity function ~W (r) where (1�pr) ~W (r) is an in-
creasing function of r. Finally, the results of Section 5,
where we determined the number of results that should
be retrieved from each segment (lq(r;m)), are applica-
ble to any search engine that uses a locally segmented
index in which documents are partitioned uniformly
and independently.

6.2 Implementing a Prefetching Policy

Implementing a prefetching policy for engines with lo-
cally segmented indices in the framework of this re-
search requires the following two preprocessing steps:

� Setting the parameters: an approximate value of p
is derived from analyzing the engine's query logs,
the parameter q is set according to the quality
policy, and the values of �; � are set according to
the engine's resources. Systems with small caches
should set � to a high value; when the QI is heav-
ily loaded, � should be set to a high value; etc.

� For a range of query breadths (a range of values
for the parameter C), an algorithm (either opti-
mizing or approximating ropt) is executed. The QI
and each segment are then loaded with tables con-
taining the values of ropt(C) and lq(ropt(C);m) for
values of C in the range.

Upon receiving a query t, each segment estimates that
query's breadth (the value of Ct that corresponds to
t). This can be done in two ways:

� Many local index implementations incorporate
global term statistics in each segment in order to
facilitate term-based scoring [1]. These statistics
may help estimating the breadth of certain types
of queries.

� By our assumption, each of the m segment con-
tain approximately the same number of results for
broad topic queries (when C � m). Thus, a seg-
ment can process the query, and use the number
of matches it �nds as an estimate of C.

After estimating Ct, the segment forwards lq(ropt(Ct))
results to the QI, which merges the retrieved results
to produce ropt(Ct) result pages.

7 Conclusions and Future Work

This work examined how search engines should
prefetch search results for user queries. We started
by presenting a concrete query processing model for
search engines with locally segmented inverted indices.
We argued that for a model which assumes that the
number of result pages that users view is distributed
geometrically, the optimal engine policy is to prefetch
a constant number of result pages r. We expressed
the computational cost of a policy that prefetches r

pages, and suggested an algorithm for �nding the op-
timal value of r (which minimizes the expected cost).
We also suggested how to �nd values of r which imply
policies whose cost is approximately optimal.

Several extensions of this work are the following:

� The model presented in this paper ignores over-
laps in the information needs of di�erent users.
We did not consider, for example, that popular
queries may be submitted by multiple users dur-
ing a short time span, increasing the probability of
at least one user requesting additional results. By
taking query popularity into account, we may �nd
that popular queries warrant more result prefetch-
ing than rare queries do.

� This work did not address cache replacement poli-
cies; in particular, we did not suggest which result
pages should be removed from the cache upon
prefetching results for a new query. As noted
in [11] (in the context of bu�ering of posting
lists), knowledge of the access patterns to the
query cache should be considered when setting
the replacement policy. For example, users usu-
ally browse result pages in their natural order.
Thus, assuming that the �rst two result pages of
some query are cached and that one of them must
be evicted, it seems natural to remove the sec-
ond page of results (and not the �rst, as an LRU
policy might suggest).

� Most of the results in this paper are applicable
to locally segmented indices. Only single-term



queries to global indices are considered. Addi-
tional research is required in order to extend our
results to multi-term queries to global indices.
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