
Approximate Frequency Counts over Data Streams

Gurmeet Singh Manku
�

Stanford University
manku@cs.stanford.edu

Rajeev Motwani
�

Stanford University
rajeev@cs.stanford.edu

Abstract

We present algorithms for computing frequency
counts exceeding a user-specified threshold over
data streams. Our algorithms are simple and have
provably small memory footprints. Although the
output is approximate, the error is guaranteed not
to exceed a user-specified parameter. Our algo-
rithms can easily be deployed for streams of single-
ton items like those found in IP network monitor-
ing. We can also handle streams of variable sized
sets of items exemplified by a sequence of mar-
ket basket transactions at a retail store. For such
streams, we describe an optimized implementation
to compute frequent itemsets in a single pass.

1 Introduction

In several emerging applications, data takes the form
of continuous data streams, as opposed to finite stored
datasets. Examples include stock tickers, network traffic
measurements, web-server logs, click streams, data feeds
from sensor networks, and telecom call records. Stream
processing differs from computation over traditional stored
datasets in two important aspects: (a) the sheer volume of
a stream over its lifetime could be huge, and (b) queries re-
quire timely answers; response times should be small. As
a consequence, it is not possible to store the stream in its
entirety on secondary storage and scan it when a query ar-
rives. This motivates the design for summary data struc-
tures with small memory footprints that can support both
one-time and continuous queries.

�
Supported by NSF Grant IIS-0118173 and Stanford Graduate

Fellowship�
Supported by NSF Grant IIS-0118173, an Okawa Foundation Re-

search Grant, and grants from Microsoft and Veritas.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

An aggregate query that is widely applicable is
SELECT R.EventType, COUNT(*) FROM R GROUP BY
R.EventType, where relation R models a stream of
events with attribute R.EventType denoting the type of
event. In several applications, groups with very low
frequencies are uninteresting; the user is interested in
only those groups whose frequency exceeds a certain
threshold, usually expressed as a percentage of the size
of the relation seen so far. The modified query then
is SELECT R.EventType, COUNT(*) FROM R GROUP
BY R.EventType HAVING COUNT(*) > s |R| where
s is a user-specified percentage and |R| is the length of
stream seen so far.

A related aggregate query is over an input stream rela-
tion whose tuples are sets of items rather than individual
items. The goal is to compute all subsets of items, here-
after called itemsets, which occur in at least a fraction � of
the stream seen so far. This is far more challenging than
counting singleton tuples.

1.1 Motivating Examples

Here are four problems drawn from databases, data min-
ing, and computer networks, where frequency counts ex-
ceeding a user-specified threshold are computed.

1. An iceberg query [FSGM � 98] performs an aggregate
function over an attribute (or a set of attributes) of a
relation and eliminates those aggregate values that are
below some user-specified threshold.

2. Association rules [AS94] over a dataset consisting of
sets of items, require computation of frequent itemsets,
where an itemset is frequent if it occurs in at least a
user-specified fraction of the dataset.

3. Iceberg datacubes [BR99, HPDW01] compute only
those Group By’s of a CUBE operator whose aggre-
gate frequency exceeds a user-specified threshold.

4. Traffic measurement and accounting of IP packets re-
quires identification of flows that exceed a certain frac-
tion of total traffic [EV01].

Existing algorithms for iceberg queries, association
rules, and iceberg cubes have been optimized for finite
stored data. They compute exact results, attempting to
minimize the number of passes they make over the en-
tire dataset. The best algorithms take two passes. When

adapted to streams, where only one pass is allowed, and
results are always expected to be available with short re-
sponse times, these algorithms fail to provide any a pri-
ori guarantees on the quality of their output. In this paper,
we present algorithms for computing frequency counts in a
single pass with a priori error guarantees. Our algorithms
work for variable sized transactions. We can also compute
frequent sets of items in a single pass.

1.2 Offline Streams

In a data warehousing environment, bulk updates occur
at regular intervals of time, e.g., daily, weekly or monthly.
It is desirable that data structures storing aggregates like
frequent itemsets and iceberg cubes, be maintained incre-
mentally. A complete rescan of the entire database per up-
date is prohibitively costly for multi-terabyte warehouses.

We call the sequence of updates to warehouses or
backup devices an offline stream to distinguish it from on-
line streams like stock tickers, network measurements and
sensor data. Offline streams are characterized by regular
bulk arrivals. Queries over these streams are allowed to be
processed offline. However, there is not enough time to
scan the entire database whenever an update comes along.
These considerations motivate the design of summary data
structures [AGP99] that allow incremental maintenance.
These summaries should be significantly smaller than the
base datasets but need not necessarily fit in main memory.

Query processing over offline and online streams is sim-
ilar in that summary data structures need to be incremen-
tally maintained because it is not possible to rescan the en-
tire input. The difference lies in the time scale and the size
of updates.

We present the first truly incremental algorithm for
maintaining frequent itemsets in a data warehouse setting.
Our algorithm maintains a small summary structure and
does not require repeated rescans of the entire database.

1.3 Roadmap

In Section 2, we review applications that compute fre-
quent itemsets, identifying problems with existing ap-
proaches. In Section 3, we formally state the problem we
solve. In Section 4, we describe our algorithm for singleton
items. In Section 5, we describe how the basic algorithm
can be extended to handle sets of items. We also describe
our implementation in detail. In Section 6, we report our
experiments. Related work is presented in Section 7.

2 Frequency Counting Applications

In this section, we review existing algorithms for four
different applications, identifying shortcomings that sur-
face when we adapt them to stream scenarios.

2.1 Iceberg Queries

The idea behind Iceberg Queries[FSGM � 98] is to iden-
tify aggregates in a GROUP BY of a SQL query that exceed

a user-specified threshold � . A prototypical query on a re-
lation R(c1, c2, ����� , ck, rest) with threshold � is

SELECT c1, c2, ����� , ck, COUNT(rest)
FROM R
GROUP BY c1, c2, ����� , ck
HAVING COUNT(rest)

���

The parameter � is equivalent to s |R|where s is a per-
centage and |R| is the size of R. The algorithm presented
in [FSGM � 98] uses repeated hashing over multiple passes.
It builds upon the work of Park et al [PCY95]. The basic
idea is the following: In the first pass, a set of counters is
maintained. Each incoming item is hashed onto a counter
which is incremented. These counters are then compressed
into a bitmap, with a � denoting a large counter value. In
the second pass, exact frequencies for only those elements
are maintained which hash to a value whose correspond-
ing bitmap value is � . Variations and improvements of this
basic idea are explored in [FSGM � 98]

It is difficult to adapt this algorithm for streams because
at the end of the first pass, no frequencies are available.

2.2 Iceberg Cubes

Iceberg cubes [BR99, HPDW01] take Iceberg queries a
step further by proposing a variant of the CUBE operator
over a relation R(c1, c2, ����� , ck, X):

SELECT c1, c2, ����� , ck, COUNT(*), SUM(X)
FROM R
CUBE BY c1, c2, ����� , ck
HAVING COUNT(*)

���

The algorithms for iceberg cubes take at least � passes,
where � is the number of dimensions over which the cube
has to be computed. Our algorithms can be applied as a
preprocessing step to the problem of computing Iceberg
Cubes. If the clause SUM(X) is removed, our algorithm
can enable computation of approximate Iceberg Cubes in a
single pass. We are currently exploring the application of
our algorithms to Iceberg Cubes.

2.3 Frequent Itemsets and Association Rules

A transaction is defined to be a subset of items drawn
from � , the universe of all items. For a collection of trans-
actions, an itemset 	�
�� is said to have support � if 	
occurs as a subset in at least a fraction � of all transactions.
Association rules over a set of transactions are rules of the
form 	�
�� , where 	 and � are subsets of � such that
	�������� and 	���� has support exceeding a user-
specified threshold � . The confidence of a rule 	�
�� is
the value ������� �"!$#&%('*),+.-���������$!$#&%('/- . Usually, only those rules are pro-
duced whose confidence exceeds a user-specified thresh-
old.

The Apriori algorithm [AS94] was one of the first suc-
cessful solutions for Association Rules. The problem actu-
ally reduces to that of computing frequent itemsets. Once
frequent itemsets have been identified, identifying rules

whose confidence exceeds the stipulated confidence thresh-
old is straightforward.

The fastest algorithms to date employ two passes. One
of the first two-pass techniques was proposed by Savasere
et al [SON95] where the input is partitioned into chunks
that fit in main memory. The first pass computes a set of
candidate frequent itemsets. The second pass computes ex-
act supports for all candidates. It is not clear how this al-
gorithm can be adapted for streaming data since at the end
of the first pass, there are no guarantees on the accuracy of
frequency counts of candidates.

Another two pass approach is based on sam-
pling [Toi96]. Briefly, the idea is to produce a sample in
one pass, compute frequent itemsets along with a negative
border in main memory on the samples and verify the valid-
ity of the negative border. The negative border is defined by
a parameter � . There is a small probability that the negative
border is invalid, which happens when the frequency count
of a highly-frequent element in the sample is less than its
true frequency count over the entire dataset by more than � .
It can be shown that if we want this probability to be less
than some value

�
, the size of the sample should be at least������	��

� ������� , for some constant ����� .

Toivonen’s algorithm provides strong but probabilistic
guarantees on the accuracy of its frequency counts. The
scheme can indeed be adapted for data streams by using
reservoir sampling [Vit85]. However, there are two prob-
lems: (a) false negatives occur because the error in fre-
quency counts is two-sided; and, (b) for small values of � ,
the number of samples is enormous, e.g., if � ����� ����� � , we
need over ����� million samples. The second problem might
be ameliorated by employing concise samples, an idea first
studied by Gibbons and Matias [GM98]. Essentially, re-
peated occurrences of an element can be compressed into
an (element, count) pair. Adapting concise samples to han-
dle variable-sized transactions would amount to designing
a data structure similar to FP-Trees [HPY00], which would
have to be readjusted periodically as frequencies of sin-
gleton items change. This idea has not been explored by
the data mining community yet. Still, the problem of false
negatives in Toivonen’s approach remains. Our algorithms
never produce false negatives.

CARMA [Hid99] is another two-pass algorithm that
gives loose guarantees on the quality of output it produces
at the end of the first pass. An upper and lower bound on
the frequency of each itemset is displayed to the user con-
tinuously. However, there is no guarantee that the sizes of
these intervals are small. CARMA provides interval infor-
mation on a best-effort basis with the goal of providing the
user with coarse feedback while it is running.

Online/incremental maintenance of association rules for
offline streams in data warehouses is an important practical
problem. We provide the first solution that is guaranteed to
require no more than one pass over the entire database.

2.4 Network Flow Identification

Measurement and monitoring of network traffic is re-
quired for management of complex Internet backbones.
Such measurement is essential for short-term monitoring
(hot spot and denial-of-service attack detection), longer
term traffic engineering (rerouting traffic and upgrading
selected links), and accounting (usage based pricing).
Identifying flows in network traffic is important for all
these applications. A flow is defined as a sequence of
transport layer (TCP/UDP) packets that share the same
source+destination addresses.

Estan and Verghese [EV01] recently proposed algo-
rithms for identifying flows that exceed a certain threshold,
say ��� . Their algorithms are a combination of repeated
hashing and sampling, similar to those for Iceberg Queries.
Our algorithm is directly applicable to the problem of net-
work flow identification. It beats the algorithm in [EV01]
in terms of space requirements.

3 Problem Definition

In this section, we describe our notation, our definition
of approximation, and the goals of our algorithms.

Our algorithm will accept two user-specified parame-
ters: a support threshold ��� � �! � � , and an error parameter� � � �� �� � such that �#" � . Let $ denote the current length
of the stream, i.e., the number of tuples seen so far. In some
applications, a tuple is treated as a single item. In others, it
denotes a set of items. We will use the term item(set) as a
short-hand for item or itemset.

At any point of time, our algorithm can be asked to pro-
duce a list of item(set)s along with their estimated frequen-
cies. The answers produced by our algorithm will have the
following guarantees:

1. All item(set)s whose true frequency exceeds ��$ are
output. There are no false negatives.

2. No item(set) whose true frequency is less than � �&% � � $
is output.

3. Estimated frequencies are less than the true frequencies
by at most � $.

Imagine a user who is interested in identifying all items
whose frequency is at least ���(�'� of the entire stream seen
so far. Then � �(�!� ��� . The user is free to set � to what-
ever she feels is a comfortable margin of error. As a rule
of thumb, she could set � to one-tenth or one-twentieth
the value of � and use our algorithm. Let us assume she
chooses � �)�!� � �'� (one-tenth of �). As per Property � ,
all elements with frequency exceeding ���*���(�'� will be
output; there will be no false negatives. As per Property+

, no element with frequency below �!� ��,-� will be output.
This leaves elements with frequencies between �!� ��,-� and
�!� ��� . These might or might not form part of the output.
Those that make their way to the output are false positives.
Further, as per property . , all individual frequencies are
less than their true frequencies by at most �!� � ��� .

The approximation in our algorithms has two aspects:

(a) high frequency false positives, and (b) small errors in
individual frequencies. Both kinds of errors are tolerable in
the applications outlined in Section 2. We say that an algo-
rithm maintains an � -deficient synopsis if its output satisfies
the aforementioned properties.

Our goal is to devise algorithms to support � -deficient
synopses using as little main memory as possible.

4 Algorithms for Frequent Items

In this section, we describe algorithms for computing � -
deficient synopses for singleton items. Extensions to sets
of items will be described in Section 5. We actually de-
vised two algorithms for frequency counts. Both provide
the approximation guarantees outlined in Section 3. The
first algorithm, Sticky Sampling, is probabilistic. It fails
to provide correct answers with a miniscule probability of
failure. The second algorithm, Lossy Counting, is deter-
ministic. Interestingly, we experimentally show that Lossy
Counting performs better in practice, although it has a the-
oretically worse worst-case bound.

4.1 Sticky Sampling Algorithm

In this section, we describe a sampling based algorithm
for computing an � -deficient synopsis over a data stream
of singleton items. The algorithm is probabilistic and is
said to fail if any of the three properties in Section 3 is not
satisfied. The user specifies three parameters: support � ,
error � and probability of failure

�
.

Our data structure
�

is a set of entries of the form ��� �� � ,
where � estimates the frequency of an element � belonging
to the stream. Initially,

�
is empty, and the sampling rate �

is set to � . Sampling an element with rate � means that we
select the element with probability

�
! . For each incoming

element � , if an entry for � already exists in
�

, we incre-
ment the corresponding frequency � ; otherwise, we sample
the element with rate � . If this element is selected by sam-
pling, we add an entry ��� � � to

�
; otherwise, we ignore �

and move on to the next element in the stream.
The sampling rate � varies over the lifetime of a stream

as follows: Let � � � � � ��

� �
��� ��� � �

. The first
+ � elements

are sampled at rate � � � , the next
+ � elements are sam-

pled at rate � � +
, the next �	� elements are sampled at rate� �
� , and so on. Whenever the sampling rate changes,

we also scan entries in
�

, and update them as follows: For
each entry ��� �� � , we repeatedly toss an unbiased coin until
the coin toss is successful, diminishing � by one for every
unsuccessful outcome; if � becomes � during this process,
we delete the entry from

�
. The number of unsuccessful

coin tosses follows a geometric distribution. Its value can
be efficiently computed [Vit85]. Effectively, we have trans-
formed

�
to exactly the state it would have been in, had we

been sampling with the new rate from the very beginning.
When a user requests a list of items with threshold � , we

output those entries in
�

where �
� � � % � � $.

Theorem 4.1 Sticky Sampling computes an � -deficient
synopsis with probability at least � % �

using at most� � � ��
 � �
��� �������

expected number of entries.

Proof: The first
+ � elements find their way into

�
. When

the sampling rate is ��� +
, we have $ ������������� , for some�������(�� �� � . It follows that
�
! � #� .

Any error in the frequency count of an element � cor-
responds to a sequence of unsuccessful coin tosses during
the first few occurrences of � . The length of this sequence
follows a geometric distribution. The probability that this
length exceeds � $ is at most � � % �

!
� � �

, which is less than
� � % #� � � � � , which in turn is less than � � � # .

The number of elements with frequency at least � is no
more than

�
� . Therefore, the probability that the estimate

for any of them is deficient by � $, is at most ����� �� . The
probability of failure should be at most

�
. This yields �!�� � � ��
 � �

��� �������
. Since the space requirements are

+ � , the
space bound follows. "

We call our algorithm Sticky Sampling because
�

sweeps over the stream like a magnet, attracting all ele-
ments which already have an entry in

�
. Note that the

space complexity for Sticky Sampling is independent of $,
the current length of the stream. The idea of maintaining
counts of samples was first presented by Gibbons and Ma-
tias [GM98], who used it to compress their samples and
solve the Top-k problem where the � most frequent items
need to be identified. Our algorithm is different in that the
sampling rate � increases logarithmically proportional to
the size of the stream, and that we guarantee to produce all
items whose frequency exceeds � , not just the top � .

4.2 Lossy Counting Algorithm

In this section, we describe a deterministic algorithm
that computes frequency counts over a stream of single
item transactions, satisfying the guarantees outlined in Sec-
tion 3 using at most

� � � ��

� � $ � space where $ denotes the
current length of the stream. The user specifies two param-
eters: support � and error � . This algorithm performs better
than Sticky Sampling in practice although theoretically, its
worst-case space complexity is worse.

Definitions: The incoming stream is conceptually di-
vided into buckets of width #��%$ � �'& transactions each.
Buckets are labeled with bucket ids, starting from � . We
denote the current bucket id by (� � ! ! �*) # , whose value is$ � + & . For an element � , we denote its true frequency in
the stream seen so far by � � . Note that � and # are fixed
while $, (� � ! ! �*) # and � � are running variables whose val-
ues change as the stream progresses.

Our data structure , is a set of entries of the form
��� �� �- � , where � is an element in the stream, � is an inte-
ger representing its estimated frequency, and - is the max-
imum possible error in � .

Algorithm: Initially, , is empty. Whenever a new ele-
ment � arrives, we first lookup , to see whether an entry for� already exists or not. If the lookup succeeds, we update

the entry by incrementing its frequency � by one. Other-
wise, we create a new entry of the form ��� ��� �(� � !$! �*) # % � � .
We also prune , by deleting some of its entries at bucket
boundaries, i.e., whenever $ � ��� � � # . The rule for
deletion is simple: an entry ��� �� �- � is deleted if ��� -��(� � ! ! �*) # . When a user requests a list of items with thresh-
old � , we output those entries in

�
where � � � � % � � $.

For an entry ��� �� �- � , � represents the exact frequency
count of � ever since this entry was inserted into , . The
value of - assigned to a new entry is the maximum num-
ber of times � could have occurred in the first (� � !$! �*) # % �
buckets. This value is exactly (� � ! ! �*) # % � . Once an entry
is inserted into , , its - value remains unchanged.

Lemma 4.1 Whenever deletions occur, (� � ! ! ��) # � � $.

Lemma 4.2 Whenever an entry ��� �� �- � gets deleted,� � ��(� � ! ! �*) # .
Proof: We prove by induction. Base case: (� � !$! �*) # � � .
An entry ��� �� �- � is deleted only if � � � , which is also
its true frequency � � . Thus, � � � (� � !$! �*) # .Induction step: Consider an entry ��� �� �- � that gets
deleted for some (� � ! ! ��) # � � . This entry was inserted
when bucket - � � was being processed. An entry for �
could possibly have been deleted as late as the time when
bucket - became full. By induction, the true frequency of� when that deletion occurred was no more than - . Further,� is the true frequency of � ever since it was inserted. It fol-
lows that � � , the true frequency of � in buckets � through(� � ! ! �*) # , is at most � � - . Combined with the deletion rule
that ��� -�� (� � ! ! ��) # , we get � � ��(� � ! ! ��) # . "
Lemma 4.3 If � does not appear in , , then � � � � $.

Proof: If the Lemma is true for an element � whenever it
gets deleted, i.e., when $ � ��� � � # , it is true for all
other $ also. From Lemma 4.2 and Lemma 4.1, we infer
that � � � � $ whenever it gets deleted. "
Lemma 4.4 If ��� �� �- � � , , then ��� � � ��� � � $.

Proof: If - � � , � � � � . Otherwise, � was possibly
deleted sometimes in the first - buckets. From Lemma
4.2, we infer that the exact frequency of � when the last
such deletion took place, is at most - . Therefore, � � �� ��- . Since -�� (� � !$! �*) # % �	� � $, we conclude that�
� � � � � � � $. "

Consider elements whose true frequency exceeds � $.
There cannot be more than

� � such elements. Lemma 4.3
shows that all of them have entries in , . Lemma 4.4 further
shows that the estimated frequencies of all such elements
are accurate to within � $. Thus, , correctly maintains
an � -deficient synopsis. The next theorem shows that the
number of low frequency elements (which occur less than� $ times) is not too large.

Theorem 4.2 Lossy Counting computes an � -deficient syn-
opsis using at most

� � � ��
 � � $ � entries.

Proof: Let � � (� � !$! �*) # be the current bucket id. For each� � �(��
��� , let ��� denote the number of entries in , whose
bucket id is � % � � � . The element corresponding to such an
entry must occur at least

�
times in buckets � % � � � through

� ; otherwise, it would have been deleted. Since the size of
each bucket is # , we get the following constraints:��

��� �
� � � ���	# � ��� � � �� + � ���&
� � (1)

We claim that��
��� �

�����
��

��� �
� � ��� � � �� + �� � �� �� � (2)

We prove Inequality (2) by induction. The base case
��� � follows from Inequality (1) directly. Assume
that Inequality (2) is true for � ���� + �� � �& � % � . We
will show that it is true for � �!� as well. Adding In-
equality (1) for � �"� to � % � instances of Inequal-
ity (2) (one each for

�
varying from � to � % �) gives

us # � ��� � � � � �$# �
��� � � � �%#

�
��� � � � �'&(&)& �*# � ������ � � � �

� # � # �
��� �

+
� � #

�
��� �

+
� �*&(&(& � #�� ������ �

+
� . Upon rear-

rangement, we get � # � ��� � �����+� #
� # � ������ � % � � � -
+

� which
then readily simplifies to Inequality (2) for � �,� , thereby
completing the induction step.
Since - ,.- �/#10��� � � � , from Inequality 2, we get - ,.-2�
0��� �

+
� � � � � ��
 � � � � � ��
 � � $ � "

If we make the assumption that in real world datasets,
elements with very low frequency (at most

� ��) tend to oc-
cur more or less uniformly at random, then Lossy Count-
ing requires no more than 3 � space, as proved in the Ap-
pendix. We note that the IBM test data generator for data
mining [AS94] for generating synthetic datasets for associ-
ation rules, indeed chooses low frequency items uniformly
randomly from a fixed distribution.

4.3 Sticky Sampling vs Lossy Counting

In this section, we compare Sticky Sampling and Lossy
Counting. We show that Lossy Counting performs signifi-
cantly better for streams with random arrival distributions.

A glance at Theorems 4.1 and 4.2 suggests that Sticky
Sampling should require constant space, while Lossy
Counting should require space that grows logarithmically
with $, the length of the stream. However, these theorems
do not tell the whole story because they bound worst-case
space complexities. For Sticky Sampling, the worst case
amounts to a sequence with no duplicates, arriving in any
order. For Lossy Counting, the worst case corresponds to a
rather pathological sequence that we suspect would almost
never occur in practice. We now show that if the arrival or-
der of the elements is uniformly random, Lossy Counting
is superior by a large factor.

We studied two streams. One had no duplicates. The
other was highly skewed and followed the Zipfian distri-
bution. Most streams in practice would be somewhere in

between in terms of their frequency distributions. For both
streams, we assumed uniformly random arrival order.

Table 1 compares the two algorithms for varying values
of � . The value of � is consistently chosen to be one-tenth of

� . Worst case space complexities are obtained by plugging
values into Theorems 4.1 and 4.2.

SS LC SS LC SS LC� � worst worst Zipf Zipf Uniq Uniq

0.1% 1.0% 27K 9K 6K 419 27K 1K
0.05% 0.5% 58K 17K 11K 709 58K 2K
0.01% 0.1% 322K 69K 37K 2K 322K 10K
0.005% 0.05% 672K 124K 62K 4K 672K 20K

Table 1: Memory requirements in terms of number of entries. LC de-

notes Lossy Counting. SS denotes Sticky Sampling. Worst denotes worst-

case bound. Zipf denotes Zipfian distribution with parameter
��� ���

. Uniq

denotes a stream with no duplicates. Length of stream ��� �	��

. Proba-

bility of failure �
� �	�����
.

Figure 1 shows the amount of space required for the two
streams as a function of $, with support � � ��� , error � �
�!� ��� , and probability of failure

� � ��� ��� . The kinks in the
curve for Sticky Sampling correspond to re-sampling. They
are � ��
 ��� � + � units apart on the X-axis. For kinks for Lossy
Counting correspond to bucket boundaries when deletions
occur.

0

5000

10000

15000

20000

25000

30000

2 3 4 5 6 7

N
o

of
 e

nt
rie

s

Log10 of Stream length N

Comparison of Memory Requirements

Sticky Sampling (Uniq)
Sticky Sampling (Zipf)
Lossy Counting (Uniq)
Lossy Counting (Zipf)

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

N
o

of
 e

nt
rie

s

Stream length N

Memory Requirement Profile for Lossy Counting

Lossy Counting (Uniq)
Lossy Counting (Zipf)

Figure 1: Memory requirements in terms of number of entries for sup-

port ��� ���
, error ��� �������

, probability of failure ��� �	� ���
. Zipf

denotes a Zipfian distribution with parameter
��� ���

. Uniq denotes a stream

with no duplicates. The bottom figure magnifies a section of the barely

visible lines in the upper graph.

Sticky Sampling performs worse because of its ten-
dency to remember every unique element that gets sam-
pled. Lossy Counting, on the other hand, is good at prun-
ing low frequency elements quickly; only high frequency
elements survive. For highly skewed data, both algorithms
require much less space than their worst-case bounds.

4.4 Comparison with Alternative Approaches

A well-known technique for estimating frequency
counts employs uniform random sampling. If the sample
size is at least

�� � � ��
 �� , the relative frequency of any single
element is accurate to within a fraction � , with probability
at least �&% � . This basic idea was used by Toivonen [Toi96]
to devise a sampling algorithm for association rules. Sticky
Sampling beats this approach by roughly a factor of

� � .
Another algorithm for maintaining � -deficient synopsis

can employ � -approximate quantiles [MRL99]. The key
idea is that an element with frequency exceeding � will
recur several times if � is small relative to � . It follows
that if we set � � � �! � , and compute � � -approximate his-
tograms, high frequency elements can be deduced to within
an error of � . Using the algorithm due to Greenwald and
Khanna [GK01], the worst-case space requirement would
be

���� � ��
 � + � $ � , worse than that for Lossy Counting, as
per Theorem 4.2. Also, it is not obvious how quantile algo-
rithms can be efficiently extended to handle variable-sized
sets of items, a problem we consider in Section 5.

We recently learned about an as yet unpublished algo-
rithm [KPS02] for identifying elements whose frequency
exceeds a fraction � of the stream. The algorithm com-
putes exact counts in two passes. However, the essential
ideas can be used to maintain an � -deficient synopsis us-
ing exactly

� � space. In the first pass, the algorithm main-
tains

� � elements along with their counters. Initially, all
counters are free. Whenever a new element arrives, we
check if a counter for this element exists. If so, we sim-
ply increment it. Otherwise, if a counter is free, it is as-
signed to this element with initial value � . If all counters
are in use, we repeatedly diminish all

� � counters by � un-
til some counter becomes free, i.e., its value drops to zero.
Thereafter, we assign the newly arrived element a counter
with initial value � . This algorithm works for streams of
singleton items. However, there does not appear to be a
straightforward adaptation to the scenario where a stream
of variable-sized transactions is being analyzed and the dis-
tribution of transaction sizes is not known. Moreover, if the
input stream is Zipfian, the number of elements exceed-
ing the threshold � is significantly smaller than

� � . Table 1
shows that Lossy Counting actually takes much less than

� �
space. For example, with � ����� � ��� , roughly

+ ����� entries
suffice, which is only

+ �-� of
� � . The skew in the frequen-

cies is even more when we consider the problem of iden-
tifying frequent sets of items in Section 5. For example,
assume that all transactions are known to have a fixed size
� and that frequent subsets of size . are being computed.
An adaptation of algorithm [KPS02] would maintain

� �#"%$&!'
counters. Lossy Counting would require significantly less
space, as experiments in Section 6 show.

5 Frequent Sets of Items
– From Theory to Practice

In this section, we develop a Lossy Counting based al-
gorithm for computing frequency counts over streams that

consist of sets of items. This section is less theoretical in
nature than the preceding one. The focus is on system-level
issues and implementation artifices for optimizing memory
and speed.

5.1 Frequent Itemsets Algorithm

The input to the algorithm is a stream of transactions
where each transaction is a set of items drawn from � . We
denote the current length of this stream by $. The user
specifies two parameters: support � , and error � . The chal-
lenge lies in handling variable sized transactions and avoid-
ing explicit enumeration of all subsets of any transaction.

Our data structure , is a set of entries of the form
� � � � �� �- � , where � � � is a subset of items, � is an inte-
ger representing its approximate frequency, and - is the
maximum possible error in � . Initially, , is empty.

Imagine dividing the incoming transaction stream into
buckets, where each bucket consists of # � $ � �'& transac-
tions. Buckets are labeled with bucket ids, starting from
� . We denote the current bucket id by (� � ! ! ��) # . We do
not process the input stream transaction by transaction. In-
stead, we try to fill available main memory with as many
transactions as possible, and then process such a batch of
transactions together. This is where the algorithm differs
from that presented in Section 4.2. Over time, the amount
of main memory available might increase/decrease. Let

�
denote the number of buckets in main memory in the cur-
rent batch being processed. We update , as follows:
� UPDATE SET: For each entry � � � � �� �- � � , , up-

date � by counting the occurrences of � � � in the current
batch. If the updated entry satisfies � � - � (� � !$! �*) # ,we delete this entry.

� NEW SET: If a set � � � has frequency � � �
in the

current batch and � � � does not occur in , , create a new
entry � � � � �� �(� � ! ! �*) # % � �

.

It is easy to see that every set � � � whose true fre-
quency � � � # � � $, has an entry in , . Also, if an entry
� � � � �� �- � � , , then, the true frequency � � � # satisfies the
inequality �
��� � � # � � � - . When a user requests a list of
items with threshold � , we output those entries in , where�
� � � % � � $.

It is important that
�

be a large number. The reason
is that any subset of � that occurs

� � � times or more,
contributes an entry to , . For a smaller

�
, more spurious

subsets find their way into , .
In the next section, we show how , can be represented

compactly and how UPDATE SET and NEW SET can be
implemented efficiently.

5.2 Data Structures

Our implementation has three modules: BUFFER, TRIE,
and SETGEN. BUFFER repeatedly reads in a batch of trans-
actions into available main memory. TRIE maintains the
data structure , described earlier. SETGEN operates on
the current batch of transactions. It enumerates subsets of
these transactions along with their frequencies. Together

with TRIE, it implements the UPDATE SET and NEW SET

operations. The challenge lies in designing a space efficient
representation of TRIE and a fast algorithm for SETGEN

that avoids generating all possible subsets of itemsets.

Buffer: This module repeatedly reads in a batch of
transactions into available main memory. Transactions are
sets of item-id’s. They are laid out one after the other in a
big array. A bitmap is used to remember transaction bound-
aries. A bit per per item-id denotes whether this item-id is
the last member of some transaction or not. After reading
in a batch, BUFFER sorts each transaction by its item-id’s.

Trie: This module maintains the data structure , out-
lined in Section 5.1. Conceptually, it is a forest (a set of
trees) consisting of labeled nodes. Labels are of the form� � � ��� � �
 �� �- �� ����� �	� , where

� � ��� � � is an item-id, � is its
estimated frequency, - is the maximum possible error in � ,
and � ����� � is the distance of this node from the root of the
tree it belongs to. The root nodes have level � . The level of
any other node is one more than that of its parent. The chil-
dren of any node are ordered by their item-id’s. The root
nodes in the forest are also ordered by item-id’s. A node
in the tree represents an itemset consisting of item-id’s in
that node and all its ancestors. There is a � to � mapping
between entries in , and nodes in TRIE.

Tries are used by several Association Rules algorithms.
Hash tries [AS94] are a popular choice. Usual implemen-
tations of , as a trie would require pointers and variable-
sized memory segments (because the number of children of
a node changes over time).

Our TRIE is different from traditional implementations.
Since tries are the bottleneck as far as space is con-
cerned, we designed them to be as compact as possi-
ble. We maintain TRIE as an array of entries of the
form

� � � ��� � �
 �� �- �� ��� � �	� corresponding to the pre-order
traversal of the underlying trees. Note that this is equiva-
lent to a lexicographic ordering of the subsets it encodes.
There are no pointers from any node to its children or its
siblings. The � �
��� � ’s compactly encode the underlying tree
structure. Our representation is okay because tries are al-
ways scanned sequentially, as we show later.

SetGen: This module generates subsets of item-id’s
along with their frequencies in the current batch of trans-
actions in lexicographic order. Not all possible subsets
need to be generated. A glance at the description of UP-
DATE SET and NEW SET operations reveals that a subset
must be enumerated iff either it occurs in TRIE or its fre-
quency in the current batch exceeds

�
. SETGEN uses the

following pruning rule:

If a subset � does not make its way into TRIE af-
ter application of both UPDATE SET and NEW SET,
then no supersets of � should be considered.

This is similar to the Apriori pruning rule. We describe an
efficient implementation of SETGEN in greater detail later.

Overall Algorithm

BUFFER repeatedly fills available main memory with as

many transactions as possible, and sorts them. SETGEN

operates on the current batch of transactions. It generates
sets of itemsets along with their frequency counts in lexi-
cographic order. It limits the number of subsets using the
pruning rule. Together, TRIE and SETGEN implement the
UPDATE SET and NEW SET operations. In the end, TRIE

stores the updated data structure , , and BUFFER gets ready
to read in the next batch.

5.3 Efficient Implementations

Buffer: If item-id’s are successive integers from � thru
- � - , and if � is small enough (say, less than � million), we
maintain exact frequency counts for singleton sets. If - � - �
��� � , we need an array of size only ��� � � � . When ex-
act frequency counts are maintained, BUFFER first prunes
away those item-id’s whose frequency is less than � $, and
then sorts the transactions. Note that $ is the length of the
stream up to and including the current batch of transactions.

Trie: As SETGEN generates its sequence of sets and as-
sociated frequencies, TRIE needs to be updated. Adding
or deleting TRIE nodes in situ is made difficult by the fact
that TRIE is a compact array. However, we take advantage
of the fact that the sets produced by SETGEN (and there-
fore, the sequence of additions and deletions) are lexico-
graphically ordered. Recall that our compact TRIE stores
its constituent subsets in their lexicographic order. This lets
SETGEN and TRIE work hand in hand.

We maintain TRIE not as one huge array, but as a set
of fairly large-sized chunks of memory. Instead of modify-
ing the original trie, we create a new TRIE afresh. Chunks
from the old TRIE are freed as soon as they are not re-
quired. Thus, the overhead of maintaining two Tries is not
significant. By the time SETGEN finishes, the chunks of
the original trie have been completely discarded.

For finite streams, an important TRIE optimization per-
tains to the last batch of transactions when the value of

�
,

the number of buckets in BUFFER, could be small. Instead
of applying the rules in Section 5.1, we prune nodes in the
trie more aggressively by setting the threshold for deletion
to ��� instead of (� � ! ! �*) # � � � . This is because the lower
frequency nodes do not contribute to the final output.

SetGen: This module is the bottleneck in terms of time
for our algorithm. Optimizing it has made it fairly complex.
We describe the salient features of our implementation.

SETGEN employs a priority queue called Heap which
initially contains pointers to smallest item-id’s of all trans-
actions in BUFFER. Duplicate members (pointers pointing
to the same item-id) are maintained together and they con-
stitute a single entry in Heap. In fact, we chain all the point-
ers together, deriving the space for this chain from BUFFER

itself. When an item-id in BUFFER is inserted into Heap,
the � -byte integer used to represent an item-id is converted
into a � -byte pointer. When a heap entry is removed, the
pointers are restored back to item-id’s.

SETGEN repeatedly processes the smallest item-id in
Heap to generate singleton sets. If this singleton belongs

to TRIE after UPDATE SET and NEW SET rules have been
applied, we try to generate the next set in lexicographic se-
quence by extending the current singleton set. This is done
by invoking SETGEN recursively with a new heap created
out of successors of the pointers to item-id’s just removed
and processed. The successors of an item-id is the item-id
following it in its transaction. Last item-id’s of transactions
have no successors. When the recursive call returns, the
smallest entry in Heap is removed and all successors of the
currently smallest item-id are added to Heap by following
the chain of pointers described earlier.

5.4 System Issues and Optimizations

BUFFER scans the incoming stream by memory map-
ping the input file. This saves time by getting rid of double
copying of file blocks. The UNIX system call for mem-
ory mapping files is mmap(). The accompanying mad-
vise() interface allows a process to inform the operating
systems of its intent to read the file sequentially. We used
the standard qsort() to sort transactions. The time taken
to read and sort transactions pales in comparison with the
time taken by SETGEN, obviating the need for a custom
sort routine. Threading SETGEN and BUFFER does not
help because SETGEN is significantly slower.

Tries are written and read sequentially. They are oper-
ational when BUFFER is being processed by SETGEN. At
this time, the disk is idle. Further, the rate at which tries
are scanned (read/written) is much smaller than the rate at
which sequential disk I/O can be done. It is indeed possible
to maintain TRIE on disk without any loss in performance.
This has two important advantages:

(a) The size of a trie is not limited by the size of main
memory available, as is the case with other algorithms.
This means that our algorithm can function even when
the amount of main memory available is quite small.

(b) Since most available memory can be devoted to
BUFFER, we can work with smaller values of � than
other algorithms can handle. This is a big win.

TRIE is currently implemented as a pair of anony-
mous memory mapped segments. They can be associated
with actual files, if the user so desires. Since tries are
read/written sequentially, as against being accessed ran-
domly, it is possible to compress/decompress it on the fly
as sections of it are read/written to disk. Our current im-
plementation does not attempt any compression; we use
four int’s for node labels. Writing TRIE to disk violates a
pedantic definition of single-pass algorithms. However, we
should note that the term single-pass is meaningful only for
disk-bound applications. Our program is cpu-bound.

Memory requirements for Heap are modest. Available
main memory is consumed primarily by BUFFER, assum-
ing TRIE are on disk. Our implementation allows the user
to specify the size of BUFFER.

5.5 Novel Features of our Technique

Our implementation differs from Apriori and its variants
in one important aspect: there is no candidate generation
phase. Apriori first finds all frequent itemsets of size � be-
fore finding frequent itemsets of size � � � . This amounts
to a breadth first search of the frequent itemsets on a lattice.
Our algorithm carries out a depth first search. Incidentally,
BUC [BR99] also uses repeated depth first traversals for
Iceberg Cube computation. However, it makes � passes
over the entire data where � is the number of dimensions in
the cube.

The idea of using compact disk-based tries is novel. It
allows us to compute frequent itemsets under low memory
conditions. It also enables our algorithm to handle smaller
values of support threshold than previously possible.

6 Experimental Results

We experimented with two kinds of datasets: streams of
market-basket transactions, and text document sequences.

6.1 Frequent Itemsets over Streams of Transactions

Our experiments were carried out on the IBM test data
generator [AS94]. We study two data-streams of size � mil-
lion transactions each. One has an average transaction size
of � � with average large itemset size of � . The other has av-
erage transaction size � � and average large itemset size � .
Following the conventions set forth in [AS94], the names of
the datasets are � ���!� �	�
�(� ������� and � � � � ���!� ��������� , where
the three numbers denote the average transaction size (�),
the average large itemset size (�) and the number of trans-
actions respectively. Items were drawn from a universe of
� � ����� unique items. The raw sizes of the two streams
were ��, MB and ��, MB respectively. All experiments were
carried out on a ,�.�. ���
	

Pentium III processor running
Linux Kernel version 2.2.16.

In our experiments, we always fix � � �!� � � (one-tenth
of �). Moreover, the amount of main memory required by
our programs is dominated by BUFFER, whose size is stipu-
lated by the user. We are then left with four parameters that
we study in our experiments: support � , number of transac-
tions $, size of BUFFER, and total time taken. We measure
wall clock time.

In Figure 2, we plot times taken by our algorithm for
values of support � ranging from ���(�'� to ��� , and BUFFER

size ranging from � MB to �	� MB. The leftmost graphs
show how decreasing � leads to increases in running time.

The kinks in the middle graphs in Figure 2 have an in-
teresting explanation. The graphs plot running time for
varying BUFFER sizes. For a fixed value of support � ,
the running time sometimes increases as BUFFER size in-
creases. This happens due to a TRIE optimization we de-
scribed in Section 5.3. For finite streams, when the last
batch of transactions is being processed, the threshold is
raised to � $. This leads to considerable savings in the run-
ning time of the last batch. In Figure 2, when BUFFER

size is
+ � � � , the input is split into only two (almost equal

sized) batches. As BUFFER size increases, the first batch
increases in size, leading to an increase in running time. Fi-
nally, when BUFFER size reaches ��� MB, it is big enough to
accommodate the entire input as one batch, which is rapidly
processed. This leads to a sharp decrease in running time.
Increasing BUFFER size further has no effect on running
time.

The rightmost graphs in Figure 2 show that the running
time is linearly proportional to the length of the stream. The
curve flattens in the end as processing the last batch is faster
owing to the TRIE optimization mentioned in Section 5.3.

The disk bandwidth required to read the input file was
always less than � MBps. This is a very low rate when com-
pared with modern day disks. A single high performance
SCSI disk can deliver between

+ � and ����� MBps. This
confirms that frequent itemset computation is cpu bound.

An interesting fact that emerged from our experiments
was that the error in the output was almost zero. Over ,�,��
of the itemsets reported in the output had ��� error. This
happens because a highly frequent itemset invariably oc-
curs within the first batch of transactions. Once it enters
our data structure, it is very unlikely to get deleted. There
are rarely any false positives for the same reason (the fre-
quencies of all elements in the range � � % � �

�
are also

accurate). This suggests that we might be able to set � to
a higher value and still get accurate results. A higher error
rate might be observed in highly skewed data or if global
data characteristics change, e.g. if the stream is sorted.

Comparison with Apriori

For comparison with the well known Apriori Algo-
rithm [AS94], we down-loaded a publicly available pack-
age written by Christian Borgelt

�
. It is a pretty fast im-

plementation of Apriori using prefix trees and is used in
a commercial data mining package. Since the version of
Linux we used did not support mallinfo, we re-linked
Borgelt’s program with the widely available dlmalloc
library by Doug Lea

�
. We invoked mallinfo just before

program termination to figure out its memory requirements.

Our algorithm Our algorithm
Apriori with 4MB Buffer with 44MB Buffer

Support Time Memory Time Memory Time Memory
0.001 99 s 81.96 MB 111 s 12.49 MB 27 s 45.16 MB
0.002 25 s 53.34 MB 94 s 9.92 MB 15 s 45.02 MB
0.004 14 s 48.09 MB 65 s 7.20 MB 8 s 45.00 MB
0.006 13 s 47.87 MB 46 s 6.03 MB 6 s 44.98 MB
0.008 13 s 47.86 MB 34 s 5.53 MB 4 s 44.95 MB
0.010 14 s 47.86 MB 26 s 5.22 MB 4 s 44.93 MB

Table 2: Performance comparison for � � �!� �	�
�(� �������
which has � � transactions over � ��� unique items with
average transaction size � � .

In Table 2, we compare Apriori with our algorithm for
the dataset � � �!� �	�
�(� ������� , varying support from ���(�'� to
��� ��� . Error � was set at � ��� of � . We ran our algo-
rithm twice, first with BUFFER set to � MB, and then, with
�
http://fuzzy.cs.uni-magdeburg.de/˜borgelt/

software.html

http://g.oswego.edu/dl/html/malloc.html

0

20

40

60

80

100

120

0 0.002 0.004 0.006 0.008 0.01

Tim
e t

ak
en

 in
 se

co
nd

s

Support threshold s

Varying Buffer Sizes and Support s

Buffer = 4 MB
Buffer = 16 MB
Buffer = 28 MB
Buffer = 40 MB

0

20

40

60

80

100

120

0 10 20 30 40 50

Tim
e t

ak
en

 in
 se

co
nd

s

Buffer size in MBytes

Varying Support s and Buffer Sizes

Support = 0.001
Support = 0.002
Support = 0.004
Support = 0.008

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

Tim
e t

ak
en

 in
 se

co
nd

s

Length of stream in Thousands

Time taken as stream progresses

Support 0.001
Support 0.002
Support 0.004

(a) Times taken for IBM test dataset � ����� ����� ��������� with ����� items. No of transactions $ was � million.

0

100

200

300

400

500

600

700

800

900

1000

0 0.002 0.004 0.006 0.008 0.01

Tim
e t

ak
en

 in
 se

co
nd

s

Support threshold s

Varying Buffer Sizes and Support s

Buffer = 4 MB
Buffer = 16 MB
Buffer = 28 MB
Buffer = 40 MB

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

Tim
e t

ak
en

 in
 se

co
nd

s

Buffer size in MBytes

Varying Support s and Buffer Sizes

Support = 0.001
Support = 0.002
Support = 0.004
Support = 0.008

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 9001000

Tim
e t

ak
en

 in
 se

co
nd

s

Length of stream in Thousands

Time taken as stream progresses

Support 0.001
Support 0.002
Support 0.004

(b) Times taken for IBM test dataset � � � � �����(� ������� with ����� items. No of transactions $ was � million.

Figure 2: Experimental results for our algorithm over IBM test datasets.

0

200

400

600

800

1000

1200

0.004 0.008 0.012 0.016 0.02

Tim
e t

ak
en

 in
 se

co
nd

s

Support threshold s

Varying Buffer Sizes and Support s

Buffer = 8 MB
Buffer = 12 MB
Buffer = 16 MB
Buffer = 20 MB

0

200

400

600

800

1000

1200

0 5 10 15 20

Tim
e t

ak
en

 in
 se

co
nd

s

Buffer size in MBytes

Varying Support s and Buffer Sizes

Support = 0.005
Support = 0.007
Support = 0.010
Support = 0.015
Support = 0.020

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90

Tim
e t

ak
en

 in
 se

co
nd

s

Length of stream in Thousands

Time taken as stream progresses

Support 0.010
Support 0.015
Support 0.020

(a) Times taken for frequent word-pairs in 100K web pages.

0

500

1000

1500

2000

0 0.004 0.008 0.012 0.016 0.02

Tim
e t

ak
en

 in
 se

co
nd

s

Support threshold s

Varying Buffer Sizes and Support s

Buffer = 6 MB
Buffer = 14 MB
Buffer = 22 MB
Buffer = 30 MB

0

500

1000

1500

2000

0 5 10 15 20 25 30

Tim
e t

ak
en

 in
 se

co
nd

s

Buffer size in MBytes

Varying Support s and Buffer Sizes

Support = 0.004
Support = 0.008
Support = 0.012
Support = 0.016
Support = 0.020

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800

Tim
e t

ak
en

 in
 se

co
nd

s

Length of stream in Thousands

Time taken as stream progresses

Support 0.004
Support 0.012
Support 0.020

(b) Times taken for frequent word-pairs in 800K Reuters documents

Figure 3: Times taken for Iceberg Queries over Web pages and Reuters articles.

BUFFER set to �	� MB. The table shows the total memory
required by the two programs. For our program, this in-
cludes the maximum cost of HEAP and TRIE, during run-
time. As the value of support � increases, the memory re-
quired by TRIE decreases. This is because there are fewer
itemsets with higher support. The size of the TRIE also
decreases when BUFFER changes from � MB to ��� MB.
This is because the value of

�
(see Section 5.1) increases.

Therefore, there are fewer low frequency subsets (with fre-
quency less than �) that creep into the trie. It is interesting
to observe that with BUFFER set to a small value, � MB,
our algorithm was able to compute all frequent itemsets us-
ing much less memory than Apriori but more time. With
BUFFER size �	� MB, the entire input fits in main memory.
Our program beats Apriori be a factor of

+
to . showing

that our main memory implementation is much faster.

6.2 Iceberg Queries

An iceberg query studied in [FSGM � 98] was the iden-
tification of all pairs of words in a repository of �����! �����
web documents which occur at least � � � ��� times to-
gether. Note that the relation

�
for this query is not explic-

itly materialized. This query is equivalent to identifying all
word pairs that occur in at least � � ��� � � of all documents.
We ran this query over two different datasets.

The first dataset was a collection of ������ ����� web pages
crawled by WebBase, a web crawler developed at Stanford
University [HRGMP00]. Words in each document were
identified. Common stop-words [SB88] were removed.
The resulting input file was

� � MB. Experiments for this
dataset were carried out on a 933 MHz Pentium III ma-
chine running Linux Kernel version 2.2.16.

The second dataset was the well-known Reuters news-
wire dataset, containing ������ ����� news articles. The input
file resulting from this dataset after removing stop-words
was roughly

+ � � MB. Experiments for this dataset were
carried out on a 700 MHz Pentium III machine running
Linux Kernel version 2.2.16.

We study the interplay of $, the length of the stream, � ,
the support, time taken, and the size of BUFFER in Figure 3.
The overall shape of the graphs is very similar to those for
frequent itemsets over the IBM test datasets that we studied
in the previous section.

For the sake of comparison with the algorithm presented
in the original Iceberg Queries paper [FSGM � 98], we ran
our program over � ���� ����� web documents with support

� � �!� � � . This settings corresponds to the first query
studied in [FSGM � 98] (see Figure

�
in their paper). We

ran our program on exactly the same machine, a 200 MHz
Sun Ultra/II with 256 MB RAM running SunOS 5.6. We
fixed BUFFER at � � MB. Our program processed the in-
put in � batches, producing .�,��� ����� frequent word pairs.
BUFFER, Heap and auxiliary data structures required

+ �
MB. The maximum size of a trie was ����� MB. Our program
took � � ��� seconds to complete. Fang et al [FSGM � 98] re-
port that the same query required over �'����� seconds using
roughly .�� MB main memory. Our algorithm is faster.

An interesting duality emerges between our approach
and that of the algorithm in [FSGM � 98]. Our program
scans the input just once, but repeatedly scans a temporary
file on disk (the memory mapped TRIE). The Iceberg algo-
rithm scans the input multiple times, but uses no temporary
storage. The advantage in our approach is that it does not
require a lookahead into the data stream.

7 Related and Future Work
Problems related to frequency counting that have been

studied in the context of data streams include approximate
frequency moments [AMS96], �

�
differences [FKSV99],

distinct values estimation [FM85, WVZT90], bit count-
ing [DGIM02], and top-k queries [GM98, CCFC02].
Algorithms over data streams that pertain to aggrega-
tion include approximate quantiles [MRL99, GK01], V-
optimal histograms [GKS01b], wavelet based aggregate
queries [GKMS01, MVW00], and correlated aggregate
queries [GKS01a].

We are currently exploring the application of our basic
techniques to sliding windows, data cubes, and two-pass
algorithms for frequent itemsets.

8 Conclusions
We proposed novel algorithms for computing approx-

imate frequency counts of elements in a data stream. Our
algorithms require provably small main memory footprints.
The problem of identifying frequent elements is at the heart
of several important problems: iceberg queries, frequent
itemsets, association rules, and packet flow identification.
We can now solve each of them over streaming data.

We also described a highly optimized implementation
for identifying frequent itemsets. In general, our algorithm
produces approximate results. However, for the datasets we
studied, our algorithm runs in one pass and produces exact
results, beating previous algorithms in terms of time.

Our frequent itemsets algorithm can handle smaller val-
ues of support threshold than previously possible. It re-
mains practical even in environments with moderate main
memory. We believe that our algorithm provides a practi-
cal solution to the problem of maintaining association rules
incrementally in a warehouse setting.

References
[AGP99] S. ACHARYA, P. B. GIBBONS, AND V. POOSALA. Aqua:

A fast decision support system using approximate query
answers. In Proc. of 25th Intl. Conf. on Very Large Data
Bases, pages 754–755, 1999.

[AMS96] N. ALON, Y. MATIAS, AND M. SZEGEDY. The space
complexity of approximating the frequency moments. In
Proc. of 28th Annual ACM Symp. on Theory of Computing,
pages 20–29, May 1996.

[AS94] R. AGRAWAL AND R. SRIKANT. Fast algorithms for min-
ing association rules. In Proc. of 20th Intl. Conf. on Very
Large Data Bases, pages 487–499, 1994.

[BR99] K. BEYER AND R. RAMAKRISHNAN. Bottom-up compu-
tation of sparse and iceberg cubes. In Proc. of 1999 ACM
SIGMOD, pages 359–370, 1999.

[CCFC02] M. CHARIKAR, K. CHEN, AND M. FARACH-COLTON.
Finding frequent items in data streams. In Proc. 29th Intl.
Colloq. on Automata, Languages and Programming, 2002.

[DGIM02] M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI.
Maintaining stream statistics over sliding windows. In
Proc. of 13th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, January 2002.

[EV01] C. ESTAN AND G. VERGHESE. New directions in traffic
measurement and accounting. In ACM SIGCOMM Internet
Measurement Workshop, November 2001.

[FKSV99] J. FEIGENBAUM, S. KANNAN, M. STRAUSS, AND

M. VISWANATHAN. An approximate l1-difference algo-
rithm for massive data streams. In Proc. of 40th Annual
Symp. on Foundations of Computer Science, pages 501–
511, 1999.

[FM85] P. FLAJOLET AND G. N. MARTIN. Probabilistic counting
algorithms. J. of Comp. and Sys. Sci, 31:182–209, 1985.

[FSGM
�

98] M. FANG, N. SHIVAKUMAR, H. GARCIA-MOLINA,
R. MOTWANI, AND J. ULLMAN. Computing iceberg
queries efficiently. In Proc. of 24th Intl. Conf. on Very
Large Data Bases, pages 299–310, 1998.

[GK01] M. GREENWALD AND S. KHANNA. Space-efficient online
computation of quantile summaries. In Proc. of 2001 ACM
SIGMOD, pages 58–66, 2001.

[GKMS01] A. C. GILBERT, Y. KOTIDIS, S. MUTHUKRISHNAN, AND

M. STRAUSS. Surfing wavelets on streams: One-pass sum-
maries for approximate aggregate queries. In Proc. of 27th
Intl. Conf. on Very Large Data Bases, 2001.

[GKS01a] J. GEHRKE, F. KORN, AND D. SRIVASTAVA. On comput-
ing correlated aggregates over continual data streams. In
Proc. of 2001 ACM SIGMOD, pages 13–24, 2001.

[GKS01b] S. GUHA, N. KOUDAS, AND K. SHIM. Data-streams and
histograms. In Proc. of 33rd Annual ACM Symp. on Theory
of Computing, pages 471–475, July 2001.

[GM98] P. B. GIBBONS AND Y. MATIAS. New sampling-based
summary statistics for improving approximate query an-
swers. In Proc. of 1998 ACM SIGMOD, pages 331–342,
1998.

[Hid99] C. HIDBER. Online association rule mining. In Proc. of
1999 ACM SIGMOD, pages 145–156, 1999.

[HPDW01] J. HAN, J. PEI, G. DONG, AND K. WANG. Efficient com-
putation of iceberg cubes with complex measures. In Proc.
of 2001 ACM SIGMOD, pages 1–12, 2001.

[HPY00] J. HAN, J. PEI, AND Y. YIN. Mining frequent patterns
without candidate generation. In Proc. of 2000 ACM SIG-
MOD, pages 1–12, 2000.

[HRGMP00] J. HIRAI, S. RAGHAVAN, H. GARCIA-MOLINA, AND

A. PAEPCKE. Webbase: A repository of web pages. Com-
puter Networks, 33:277–293, 2000.

[KPS02] R. KARP, C. PAPADIMITRIOU, AND S. SHENKER. – Per-
sonal Communication, 2002.

[MR95] R. MOTWANI AND P. RAGHAVAN. Randomized Algo-
rithms. Cambridge University Press, 1 edition, 1995.

[MRL99] G. S. MANKU, S. RAJAGOPALAN, AND B. G. LIND-
SAY. Random sampling techniques for space efficient on-
line computation of order statistics of large datasets. In
Proc. of 1999 ACM SIGMOD, pages 251–262, 1999.

[MVW00] Y. MATIAS, J. S. VITTER, AND M. WANG. Dynamic
maintenance of wavelet-based histograms. In Proc. of
26th Intl. Conf. on Very Large Data Bases, pages 101–110,
2000.

[PCY95] J. S. PARK, M. S. CHEN, AND P. S. YU. An effective
hash based algorithm for mining association rules. In Proc.
of 1995 ACM SIGMOD, pages 175–186, 1995.

[SB88] G. SALTON AND C. BUCKLEY. Term-weighting ap-
proaches in automatic text retrieval. Information Process-
ing and Management, 24(1), 1988.

[SON95] A. SAVASERE, E. OMIECINSKI, AND S. B. NAVATHE.
An efficient algorithm for mining association rules in large
databases. In Proc. of 21st Intl. Conf. on Very Large Data
Bases, pages 432–444, 1995.

[Toi96] H. TOIVONEN. Sampling large database for association
rules. In Proc. of 22nd Intl. Conf. on Very Large Data
Bases, pages 134–145, 1996.

[Vit85] J S VITTER. Random Sampling with a Reservoir. ACM
Tran. Math. Software, 11(1):37–57, 1985.

[WVZT90] K.-Y. WHANG, B. T. VANDER-ZANDEN, AND H. M.
TAYLOR. A linear-time probabilistic counting algorithm
for database applications. ACM Trans. on Database Sys-
tems, 15(2):208–229, 1990.

APPENDIX

Theorem A-1 For Lossy Counting, if stream elements are
drawn independently from a fixed probability distribution,� ��- , - ��� 3 � .
Proof: For an element � , let � � be the probability with
which it is chosen to be the next element in the stream.
Consider elements with � � � �� . The number of entries
contributed by these elements are no more than

� � . More-
over, all members of the last bucket might contribute an
entry each to , . There are no more than

� � such entries.
The remaining entries in , have elements with � � �

��
which were inserted before the current bucket and survived
the last deletion phase as well. We will show that there
are fewer than

� � such entries. This would prove the bound
claimed in the lemma.

Let � � (� � ! ! �*) # be the current bucket id. For
� �+ �� ����
� , let � � denote the number of entries in , with- � � % �

and � � �
�� . Consider an element � that con-

tributes to � � . The arrival of remaining elements in buckets
� % � � � through � can be looked upon as a sequence of
Poisson trials with probability � � . Let 	 denote the num-
ber of successful trials, i.e., the number of remaining occur-
rences of element � . Since there are at most # � � % � � trials,
we get

� � 	�� � � � # � � % � � � � ���� . For � to contribute
to � � , we require that 	 � � % � . Chernoff bound tech-
niques (See Theorem 4.1 in [MR95]) yield the inequality� � � 	 � � � � � � � � 	 ��� � � � �% � �

�
-
��� � �
	

�
'
�

for any
� ��� . If

we write � � � � � � � 	�� � � % � , we get
� � � . Therefore,� � � 	 � � % � � � ��� � � 	 � ' �

� ��� � � ��
 �
Thus

� � � � ��� � � � �� � ��
 � . It follows that
� � # 0��� � � � ���

0��� � � � � � � � � � # 0��� � � �� � �

 � � �
 �� % � ��� �
 � - �
� � . "

The theorem is true even if the positions of the high fre-
quency elements are chosen by an adversary; only the low
frequency elements are required to be drawn from some
fixed distribution.

