
Comparing Data Streams Using Hamming Norms
(How to Zero In)

Graham Cormode
csrcp@warwick.ac.uk

Mayur Datar
datar@cs.stanford.edu

Piotr Indyk
indyk@lcs.mit.edu

S. Muthukrishnan
muthu@research.att.com

Abstract

Massive data streams are now fundamental to
many data processing applications. For exam-
ple, Internet routers produce large scale diagnostic
data streams. Such streams are rarely stored in tra-
ditional databases, and instead must be processed
“on the fly” as they are produced. Similarly, sen-
sor networks produce multiple data streams of ob-
servations from their sensors. There is growing
focus on manipulating data streams, and hence,
there is a need to identify basic operations of in-
terest in managing data streams, and to support
them efficiently.

We propose computation of the Hamming norm
as a basic operation of interest. The Hamming
norm formalises ideas that are used throughout
data processing. When applied to a single stream,
the Hamming norm gives the number of distinct
items that are present in that data stream, which
is a statistic of great interest in databases. When
applied to a pair of streams, the Hamming norm
gives an important measure of (dis)similarity: the
number of unequal item counts in the two streams.
Hamming norms have many uses in comparing
data streams.

We present a novel approximation technique for
estimating the Hamming norm for massive data
streams; this relies on what we call the “l0 sketch”
and we prove its accuracy. We test our approx-
imation method on a large quantity of synthetic
and real stream data, and show that the estimation
is accurate to within a few percentage points.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

Data streams are now fundamental to many data processing
applications. For example, telecommunication network el-
ements such as switches and routers periodically generate
records of their traffic — telephone calls, Internet packet
and flow traces — which are data streams [3, 22, 33]. At-
mospheric observations — weather measurements, light-
ning stroke data and satellite imagery — also produce mul-
tiple data streams [34, 39]. Emerging sensor networks pro-
duce many streams of observations, for example highway
traffic conditions [31, 37]. Sources of data streams — large
scale transactions, web clicks, ticker tape updates of stock
quotes, toll booth observations — are ubiquitous in daily
life.

For many applications that produce data streams, it is
useful to visualize the underlying data seen so far or under-
lying state of the system as a very high dimensional vec-
tor (note that in most cases the vector isnot explicitly rep-
resented or materialized). For example, if we consider a
data stream created by network flows that originate from a
source IP address, the state at any timet can be visualized
as a vectora = a1 . . . an that is indexed by the destination
IP address. The entry along each dimension (ai) represents
the total number of flows that were observed between the
given source IP address and the destination IP addressai.
The input is usually presented in the order it arrives (rather
than sorted on any attribute), and consists of updates only.
For instance, in the example above we may not receive data
sorted on the destination IP address and each data element
would represent an additional flow along an arbitrary desti-
nation IP address. Formally, each update toa is represented
by a pair(i, dk), which is interpreted as “add the valuedk
to thei-th coordinate”. Thus at any timet, the value ofai is
the sum ofdk ’s that were added to theith coordinate. The
sequence of updates we see on the stream therefore implic-
itly representsa. Thus we calla the (implicit) state vector
of the data stream.

Data stream processing entails a special constraint. De-
spite the exponential growth in the capacity of storage de-

vices, it not common for such streams to be stored. Nor is
it desirable or helpful to store them, since the cost of any
simple processing — even just sorting the data — would
be too great. The main challenge in handling data streams
is to perform necessary computations “on the fly” using a
small amount of storage, while maintaining low total run-
ning time.

Since there is growing focus on manipulating data
streams, the database and data processing infrastructure
needed to handle stream data is now being investigated.
Also, there is a need to identify basic operations of in-
terest in managing data streams, and to support them ef-
ficiently. The database community has just begun to in-
vestigate the challenges involved [2, 4, 23] complement-
ing the efforts emerging in the other communities — algo-
rithms [12, 14, 25, 26, 28], networking [3], physical sci-
ences [39], and elsewhere.

In this paper, we proposeHamming norm computation
as a basic operation of interest for data stream processing.
Consider a data stream with state vectora. TheHamming
norm of vectora, written |a|H , is the number of valuesi
for whichai 6= 0. That is,|a|H = |{i|ai 6= 0}|.

There are two compelling reasons for proposing Ham-
ming norms. First, in the special case wherea represents
a vector of counts, similar to our earlier example,|a|H is
the number of distinct items in the data stream; computing
|a|H on a stream is equivalent to maintaining the number of
distinct values in a database relation in the presence of in-
serts and deletes to it. As such, this is an important problem
in traditional databases. Second, when we apply Hamming
norm to two (or more) data streams, we get very interesting
measures. For two streams that represent state vectorsa
andb respectively, we may consider the Hamming norm of
the sum of the vectors or their difference. The Hamming
norm of the sum|a+ b|H = |{i|(ai + bi) 6= 0} represents
the union of the two streams. The Hamming norm of the
difference|a−b|H = |{i|ai 6= bi}| = |{i|(ai−bi) 6= 0} is
the number of dimensions in which they differ. Both these
parameters are of fundamental interest. We will see a few
of the large number of uses for the Hamming norm in more
detail in Section 2.

Our contributions are as follows.

1. We initiate the study of Hamming norm computations
for data streams.

2. We present a novel algorithm for calculating a very
small summary for any data stream (what we call the
l0 sketch) such that the Hamming norm of that stream
can be found up to a user-specified approximation fac-
tor (with high probability) using only thel0 sketches.
This is the first known algorithm for the problem of
Hamming norm computation. For the special case of
estimating the number of distinct items, algorithms are
known to exist and we demonstrate that our algorithm
can outperform them. Our algorithm has following
properties.

• The approximation factor is a priori guaranteed

to be1 ± ε, and the sketch requires only space
O(1/ε2). Note that this is of constant size for a
fixed fractionε and is independent of the size of
the data stream of the signal.

• The l0 sketches can be maintained efficiently in
presence of a stream consisting of dynamic up-
dates. We can estimate Hamming norms without
requiring to rescan the entire relation even under
an arbitrary mixture of additions and deletions.

• The l0 sketches can be computed separately and
then combined in a number of ways: they can
be added or subtracted to find the union or dif-
ference of the corresponding streams. Hamming
norm information can be computed in time pro-
portional to the size of thel0 sketch, which is
effectively constant. This procedure is therefore
fast, much faster than sampling.

• The l0 sketch is an embedding of the Hamming
norm into a very small number of dimensions.
As suchl0 sketches can be used to answer near-
est neighbors and other proximity and similar-
ity queries amongst data streams for Hamming
norms.

3. Our other contribution is to perform a thorough set
of experiments with both synthetic data and real Net-
Flow data drawn from a large ISP, demonstrating the
power of thel0 sketches on computing various Ham-
ming norms. We show experiments where we estimate
Hamming norms accurately, correct to within a few
percentage points of the correct answer. For this we
use a working space of only 8Kb and handle datasets
of tens of megabytes, and we can fix this working
space while scaling up to gigabytes of data and larger
size with the same accuracy guarantees. For finding
the Hamming norm of a single stream, which corre-
sponds to the maintenance of the number of distinct el-
ements under insertions and deletions to the databases,
our solution is more accurate than existing methods.
For multiple general data streams where both inser-
tions and deletions are allowed to occur arbitrarily
within both streams, we present the first known so-
lutions for union and difference problems.

The approach ofl0 sketches to approximate Hamming
norms allows us to zero-in to estimate distinct values and
differences in massive data streams using a very small sum-
mary structure. We motivate Hamming norms in more de-
tail in Section 2 and discuss previous work in Section 3. We
present preliminaries in Section 4 and our solution in Sec-
tion 5. The results of experimental evaluations are shown
in Section 6 and conclusions given in Section 7.

2 Motivating Hamming Norms of
Data Streams

We will motivate Hamming norms in more detail by con-
sidering two applications.

2.1 Maintaining distinct values in
traditional databases

The Hamming norm of a stream1 is of large interest in it-
self. It follows from the definition above that this quantity
is precisely the number of distinct items in the stream. For
example, leta be a stream representing any attribute of a
given database, soai is the number of tuples in the database
with value i in the attribute of interest. Computing the
Hamming norm ofa provides the number of distinct values
of that attribute taken by the tuples. This is a foundational
problem. We consider a traditional database table which is
subject to a sequence of insertions and deletions of rows.
It is of importance to query optimization and otherwise to
know the number of distinct values that each attribute of
the table assumes. The importance of this problem is high-
lighted in [6]: “A principled choice of an execution plan
by an optimizer heavily depends on the availability of sta-
tistical summaries like histograms and the number distinct
values in a column for the tables referenced in the query.”
Distinct values are also of importance in statistics and sci-
entific computing (see [19, 20, 27]). Unfortunately, it is
provably impossible to approximate this statistic without
looking at a large fraction of the database (eg via sampling)
[6]. Our algorithm avoids this problem bymaintainingthe
desired statistics under database updates, so that we never
have tocomputeit from scratch.

2.2 Monitoring and Auditing Network
Databases

Network managers view information from multiple data
stream sources. Routers periodically send traffic informa-
tion: traces of IP packets and IP flows (which are aggre-
gated IP packet flows) [33]; there are management rou-
tine updates: SNMP traps, card/interface/link status up-
dates, route reachability via pings and other alarms [24];
configuration information: topology and various routing ta-
bles [3]. Network managers need ways to take this continu-
ous stream of diagnostic information and extract meaning-
ful information. The infrastructure for collecting this infor-
mation is often error-prone because of unreliable transfer
(typically UDP and not TCP is used for data collection);
network elements fail (links go down); configuration tables
have errors; and data is incomplete (not all network ele-
ments might be configured to provide diagnostic data).

Continuous monitoring tools are needed to audit differ-
ent data sources to ensure their integrity. This calls for

1To simplify the exposition, here and in the remainder of this paper we
will write “a norm of a stream” instead of “a norm of the implicit state
vector of a stream”.

“slicing and dicing” different data streams and corroborat-
ing them with alternate data sources. We give three ex-
amples of how this can be accomplished by computing the
Hamming distance between data streams.

1. Let ai be the number oftransit IP packets sent from
IP addressi that enter a part of the network, andbi be
the number of IP packets that exit that part fromi. We
would like to determine the Hamming Distance be-
tween these counts to find out how many transit flows
are losing packets within this part of the network.

2. There are published methods for constructing flows
from IP packet traces. We can take traces of IP pack-
ets, aggregate them, and generate a flow log from this.
This can then be compared with the flows generated
by routers [10, 33], to spot discrepancies in the net-
work.

3. Denial of Service attacks involve flooding a network
with a large number of requests from spoofed IP ad-
dresses. Since these addresses are faked, responses
are not acknowledged. So the Hamming difference
between a vector of addresses which issued requests
and those which sent acknowledgements will be high
in this situation [32]. The Hamming norm of the dif-
ference between these two vectors provides a quick
check for the presence of sustained Denial of Service
attacks and other network abnormality, and could be
incorporated into network monitoring toolkits.

There are many other potential applications of Ham-
ming norm computation such as in database auditing and
data cleaning. Data cleaning requires finding columns that
are mostly similar [11]; the Hamming norm of columns in a
table can quickly identify such candidates, even if the rows
are arranged in different orders. It is beyond the scope of
this paper to go into detail on all these applications, so we
do not elaborate further on them.

3 Prior Work

3.1 Work on Data Streams and Sketches

Previous work on data streams has addressed problems of
finding approximately thel2 (Euclidean) norm and thel1
norm of massive vectors whose entries are listed in an ar-
bitrary order [1, 14, 28]. We study a related problem, of
finding the Hamming norm of a vector, and the Hamming
distance between pairs of vectors. No previous results were
known for these problems, in their general form as stated
here. As mentioned in the introduction, our algorithms are
based on the technique calledsketching. The basic idea is
to represent the whole dataset using only very small amount
of space, while preserving important information. When
combined with data streams, then these sketches must be
produced online as the data arrives.

The sketching technique has its roots in the field of
mathematics called functional analysis [30]. We consider

in particular the application of sketching to approximatelp
norms of the data. Thelp norm of a vectora is equal to

||a||p = (
∑
i |ai|p)

1
p

Sketching was first applied to tracking approximate size of
a self-join of a relation in [1]; in our language, this corre-
sponds to maintaining thel2 norm of the vector represented
by a stream. The technique of Alon, Matias and Szegedy
[1] was later generalized by Indyk [28] to maintain thelp
norm of the stream vector for anyp ∈ (0, 2]. In the context
of databases, the group of techniques covered by the um-
brella term “sketching” have been applied to finding repre-
sentative trends in massive one and multidimensional time
series data [9, 29]. They have also been applied to multidi-
mensional histograms [38] and data cleaning [11]. But our
concept ofl0 sketch is a novel approach to estimating the
Hamming norm andl0 sketches have not been used previ-
ously in the literature.

Besides comparing multiple streams there has been
work on the problem of one pass clustering of data
streams [26]. There has been a lot of work in computing
over data streams for purposes such as set resemblance,
data mining, creating histograms and so on [8, 13, 25]. Par-
ticularly relevant is some recent work [19, 21], which study
the problem of finding the size of the union of two streams.
Here, the streams define multisets of elements, and it is
the size of the union of the supporting sets that is of in-
terest. Their method is only applicable to streams which
consist solely of inserts — they fail when deletions are al-
lowed. The method we present solves this problem when
both insertions and deletions are allowed to occur arbitrar-
ily within both streams.

3.2 Maintaining Distinct Elements
Estimates

There have been two main styles of approach to counting
distinct elements: these are sampling based, and synopsis
based. Sampling attempts to do a small amount of prob-
ing of a complete list of the items in an attempt to find
how many distinct values there are [5, 6, 7, 27]. However
sampling based approaches are known to be inaccurate and
substantial lower bounds on the sample size required have
been shown [6], proving that a large fraction of the data
must be sampled. The alternative paradigm consists of syn-
opsis based approaches which keep a small summary of the
stream, and update this every time an item is added or re-
moved. We focus on these synopsis methods, since they
can work in our data streams model, whereas sampling is
not suited to dynamic modification of the data. The most
widely applicable synopsis method is that of Flajolet and
Martin [17, 18], which we describe in outline to enable
comparison with our algorithm.

The algorithm is shown in Figure 1. The crucial part is
the set ofm hash functionshashj , which map item val-
ues onto the range[1 . . . log n]. hashj is designed so that
the probabilityPr[hashj(i) = `] = 2−`. Intuitively this

initialise c[1, 1] . . . c[m, log n] = 0
for all tuples (i, dk) do

for j = 1 to m do
c[j, hashj(i)] = c[j, hashj(i)] + dk

for j = 1 to m do
for k = logn downto 1 do

if c[j, k] = 0 then
minzero = k

total = total +minzero
return(1.2928× 2total/m)

Figure 1: The Flajolet-Martin algorithm for computing the
Hamming norm of a stream

procedure works because if the probability that any item is
mapped onto counter̀is 2−`, then if there ared non-zero
entries in the vector, then we expectd/2 to be mapped to
the first entry,d/4 to be mapped to the second, and so on
until there are none expected in the(log2 d)th. Several rep-
etitions of this procedure are done independently, and the
result scaled by an appropriate factor (1.2928).

Theorem 3.1 Theorem 2 of [17].
This procedure gives an unbiased estimate of the number
of distinct values that are seen in a stream.

This solves the problem of finding the number of distinct
values in a stream of values, which as we know it is the
Hamming norm of that stream. However, this method fails
to find the Hamming norm of general vectors since it relies
on the input conforming to certain conditions: the result
is not defined if the implicit vectora has any entries that
are negative. This can lead to decreasing a counter below
zero, or to producing an estimate of the number of distinct
elements that is highly inaccurate. In particular then, this
method cannot be used to find the Hamming norm of the
difference of two streams,|a− b|H .

3.3 Database work on Network Monitoring

Database issues in network monitoring are beginning to get
explored. Specific data processing problems in network-
ing databases have been studied such as constructing traffic
matrices [16]. The database architecture necessary for pro-
cessing multiple configuration and data files arising in net-
works has been discussed in [3, 15]. In the specific case of
sensor network data streams, a system architecture has been
presented in [31]. At least two different philosophies seem
to exist for dealing with network traffic data streams: one
is to appropriately sample to decrease them to manageable
size and to collate them in massive data warehouses [15],
and the other is to deploy a database infrastructure where
querying and summarization can be pushed to network ele-
ments and processing is distributed (for example [10, 22]).
However, we are not aware of any prior work using the
Hamming norm in this context.

4 Preliminaries

4.1 Data Stream Model

We assume a very general, abstracted model of data streams
where our input arrives as a stream of data values,(i, dk).
This indicates that we should add the integerdk to the count
for itemi. Clearly, we can accommodate subtractions by al-
lowing dk to be negative. Update operations have the effect
that each tuple(i, dk) causesai ← ai + dk. The accumu-
lation of all these pieces of information defines the implicit
vector,a such thatai = l means that over all tuples for
item i the total of thedk ’s is l.

An important factor is any restrictions on how the infor-
mation in the stream arrives. For the most part, we expect
the data to arrive in no particular order, since it is unreal-
istic to expect it to be sorted. Another question is whether
every attribute value will be seen at most once, or whether
there can be multiple such data items spread out arbitrarily
within the stream. Here, we assume the most general case,
that the data arrives unordered and the same value can ap-
pear multiple times within the stream. This is termed the
unordered, unaggregated model(cash register) in [23].

The processing of massive data streams requires the use
of a more restricted model of computation. In this model,
we must process a stream of data, with the demand that
each item in the stream must be processed completely and
then discarded before the next is received. It is not possible
to backtrack on the stream, so once a data item has been
seen it cannot be retrieved unless it is explicitly stored in
the working space. For a method in this model to be use-
ful in practice, it must therefore use an amount of working
space much smaller than the total size of the data, and also
process each item rapidly. There has been a great deal of
interest in processing data streams recently, see for exam-
ple [4, 31].

Example. We consider the following stream of IP flows
as <source,dest > pairs: <10.0.0.59,10.0.0.21>,

<10.0.0.105,10.0.0.109>, <10.0.0.59,10.0.0.21>,

<10.0.0.105,10.0.0.17>, <10.0.0.59,10.0.0.105>,

<10.0.0.252,10.0.0.253>

In this example, we see that the same source address
appears many times throughout the stream, and the same
pair can appear more than once. In a realistic setting, IP
address pairs can come in arbitrary order (and are drawn
from a space of(232)2 possible pairs).

4.2 Stable Distributions

A vital part of our solution is the use of what are known
as stable distributions. Various statistical distributions are
said to bestable, with a stability parameterp. Distributions
with stability parameterp have the following property: If
random variablesX1, X2 . . . Xl have stable distributions
with stability parameterp, thena1X1 + a2X2 . . . alXl is
distributed as(

∑
i |ai|p)1/pX0, whereX0 is also a random

variable withp stable distribution. This property will let

us use the stable distributions to computelp norms. For
example, the Gaussian distribution is stable with stability
parameter 2, and the Cauchy distribution is stable with pa-
rameter 1. See for example [35] for more details of stable
distributions.

5 Our Hamming Norm
Computation

We first show the algorithm for computing a sketch to ap-
proximate the Hamming norm of a single stream. We then
show how this can be easily extended to compute norms of
combinations (union and differences) of streams.

5.1 The Hamming Norm of a Stream

We can now state our main theorem about computing this
norm.

Theorem 5.1 We can compute asketch, sk(a) of a stream
a that requires spaceO(1/ε2 · log 1/δ). This allows ap-
proximation of the Hamming norm within a factor of1± ε
of the true answer with probability1− δ. Processing each
new item and computing the Hamming norm ofa both take
time linear in the size of the sketch, i.e.O(1) for fixedε and
δ.

The proof of this claim requires several steps. We first
show howlp norms can be used to approximate Hamming
norms, and then show how this can be implemented within
the space bounds.

Reduction to lp norms

Theorem 5.2 The Hamming norm|a|H can be approxi-
mated by finding thelp norm of the vectora for sufficiently
small p (0 < p ≤ ε/ logU) provided we have an up-
per bound(U) on the size of each entry in the vector, so
∀i.|ai| < U .

Proof. We provide another mathematical definition for the
Hamming norm which is crucial for our algorithms. We
want to find|{i|ai 6= 0}|. Observe that|ai|0 = 1 if ai 6= 0;
we can define|ai|0 = 0 for ai = 0. Thus, the Hamming
norm of a vectora is given by

∑
i |ai|0. This is similar to

the definition of thelp norm of a vector given in Section 3.1.
We must definel0 =

∑
i |ai|0 = |a|H . Hence thel0 norm

as defined here is our Hamming norm, and we refer to our
sketches asl0 sketches.

We show that thel0 norm of a vector can be well-
approximated by(lp)p if we takep > 0 small enough. We
consider

∑
i |ai|p = (lp)p for a small value ofp (p > 0).

If, for all i we have that|ai| ≤ U for some upper boundU ,
then

|a|H =
∑
i

|ai|0 ≤
∑
i

|ai|p ≤
∑
i

Up|ai|0

≤ Up
∑
i

|ai|0 ≤ (1 + ε)
∑
i

|ai|0 = (1 + ε)|a|H

We use the fact thatai is an integer and∀i|ai| ≤ U . The
last inequality follows fromUp ≤ (1 + ε) if we setp ≤
log(1 + ε)/ logU ≈ ε/ log(U).

Creating the l0 sketchWe define anl0 sketchvectorsk(a)
with dimensionm (m will be specified shortly) as follows:
sk(a) is the dot productxT · a (wherex is a matrix of
valuesxi,j), so

sk(a)j =
n∑
i=1

xi,jai

Eachxi,j is drawn independently from a random stable
distribution with parameterp, with p as small as possible.
Here1 ≤ i ≤ n, and1 ≤ j ≤ m; n is the dimension of the
underlying vectora, andm is the dimension of the sketch
vector. According to Section 4.2, each entry ofsk(a) is
distributed as(

∑
i |ai|p)1/pX, whereX is random variable

chosen from ap-stable distribution. We will usesk(a) as
our approximation of thel0 norm. In particular, we use this
sketch to find

∑
i |ai|p for 0 < p ≤ ε/ logU , from which

we can approximate the Hamming norm up to a(1 + ε)
factor. By construction, we can use anysk(a)j to estimate
the (lp)p =

∑
i |ai|p. We combine these values to get a

good estimator for the(lp)p by taking the median of all
entries|sk(a)j |p.

Lemma 5.1

(1− ε)p medianj |sk(a)j |p ≤ median |X0|p(
∑
i |ai|p)

≤ (1 + ε)p medianj |sk(a)j |p

with probability1− δ if m = O(1/ε2 · log 1/δ), whereX0

is a random variable withp-stable distribution.

The proof of this theorem follows from the results in
[28]. Theorems 5.2 and Lemma 5.1 tell us that this tech-
nique (for a small enough value ofp) will estimate the
Hamming norm with guaranteed quality and fidelity.

Practical aspects for streaming data We now list the
additional modifications to this procedure to produce a
streaming algorithm with low space requirements.

1. Maintaining the sketch under updatesThel0 sketch
is initially the zero vector, since this is the sketch of
an empty stream. We can then build the sketch pro-
gressively as each item in the data stream is received.
Our update procedure on receiving tuple(i, dk) is as
follows: we adddk timesxi,j to each entrysk(a)j
(1 ≤ j ≤ m) in the sketch. That is,

∀1 ≤ j ≤ m : sk(a)j ← sk(a)j + dkxi,j

Clearly, this procedure ensures that at any point, the
sketch is indeed the dot product of the vectora with
x, as required.

2. Reducing Space RequirementsTo complete the
proof of Theorem 5.1 we need to show that this tech-
nique can be implemented in small space. So we do
not wish to precompute and store all the valuesxi,j .
To do so would consume much more space than sim-
ply recording eachai from which the number of dis-
tinct items could be easily found. Instead, we will
generatexi,j when it is needed. Note thatxi,j may
be needed several times during the course of the algo-
rithm, and must take the same value each time. We
can achieve this by using pseudo-random generators
for the generation of the values from the stable dis-
tributions. In other words, we will use standard tech-
niques to generate a sequence of pseudo-random num-
bers from a seed value (see for example [36]). We
will use i to seed a pseudo-random number generator
random(). We will then use the stream of pseudo-
random numbers generated byrandom() to generate
a sequence ofp-stable distributed random variables
xi,1, xi,2, . . . xi,m. This ensures thatxi,j takes the
same value each time it is used, since we use the same
seedi each time, but that it still has the properties of
being drawn from ap-stable distribution. Results in
[28] assure us that we can use random number gener-
ators in place of a true source of randomness with out
any fear of loss of quality of the results.

3. Generating values from Stable Distributions We
need to be able to generate values from a stable dis-
tribution with a very small stability parameterp. This
can be done using standard methods such as those
described in [35]. These take uniform random num-
bers r1, r2 drawn from the range[0 . . . 1] and out-
put a value drawn from a stable distribution with pa-
rameterp. This is much like the Box-Muller pro-
cedure for drawing values from the Normal distri-
bution. We denote this transform as a (determinis-
tic) functionstable(r1, r2, p) computable in constant
time. This function is defined as follows: first, we
computeθ = π(r1 − 1

2). Then

stable(1/2+θ/π, r2, p) =
sin pθ

cos1/p θ

(
cos(θ(1− p))
− ln r2

) 1−p
p

To use the result of Lemma 5.1, we need to find
median |X0|p, the median of absolute values from a
stable distribution with parameterp. We can do this
in advance using numeric methods and then scale by
this constant factor to find the desired result, denoted
scalefactor(p) in our algorithm.

This then gives the algorithm for maintaining a sketch
for computing the Hamming norm: see Figure 2. There
are two basic parts: the sketch is updated based on every
item encountered in the stream; the approximation of thel0
norm is found by returning the median value of the abso-
lute values of the sketch vector, scaled appropriately. The
algorithm in Figure 2 implements the method we have de-
scribed, and concludes the proof of Theorem 5.1.

initialise sk[1 . . .m] = 0.0
for all tuples (i, dk) do

initialise random with i
for j = 1 to m do
r1 = random()
r2 = random()
sk[j] = sk[j] + dk ∗ stable(r1, r2, p)

for j = 1 to m do
sk[j] = absolute(sk[j])p

return medianj(sk[j]) ∗ scalefactor(p)

Figure 2: Algorithm to approximate the Hamming norm

5.2 Computing Norms of Multiple Streams

With relatively little modification, the above method can be
used to find the union or difference of two or more streams.

Theorem 5.3 The Hamming difference,|a − b|H can be
computed using sketches of sizeO(1/ε2 log 1/δ). The dif-
ference is then approximated within a factor of1 ± ε with
probability1− δ.

Proof. The Hamming distance between two streams can
be computed using just the Hamming norm, since it is equal
to |{i|ai 6= bi}| = |{i|(ai − bi) 6= 0}| = |a− b|H . Hence
we need to findsk(a−b) As seen before, the sketchsk(a)
is the result of the dot product of the induced vectora with
the matrix of valuesxi,j . Sosk(a−b) = sk(a)−sk(b) fol-
lows immediately from the fact that the dot product is a lin-
ear function. Therefore, to find the approximate Hamming
distance between two streams we have the following simple
procedure: (1) Find sketches for each stream individually
as before (2) Compute a new sketch assk(a)− sk(b). (3)
Find the Hamming norm of this compound sketch as de-
scribed above, by finding the median value.

Theorem 5.4 The Hamming norm of the union of multiple
streams,|a + b + . . . |H can be computed using sketches
of sizeO(1/ε2 log 1/δ). The norm is then approximated
within a factor of1± ε with probability1− δ.

This also results from the linearity of the dot product
function, in the same way to the above proof. It follows that
the union of multiple streamsa, b . . . = a + b + . . . and
so a sketch for this can be computed assk(a+ b+ . . .) =
sk(a) + sk(b) + This in particular allows the compu-
tation of the number of distinct elements over several sep-
arate streams, without overcounting any elements common
to two or more of the streams.

6 Experiments

We implemented our method of using stable distributions
to approximate the Hamming norm of a stream and Ham-
ming norm of two or more streams. We also implemented
Probabilistic Counting as described in Section 3.2 for ap-
proximating the number of distinct elements, since this is

the method that comes closest to being able to compute
the Hamming norm of a sequence. This allows us to test
how well our methods perform for the two main motivat-
ing applications: counting the number of distinct items in a
stream, and comparing streams of network data.

6.1 Implementation Issues

For computing with stable distributions, we implemented
the method of [35] to generate stable distributions
with arbitrary stability parameters. The transformation
stable(r1, r2, p) takes two values drawn from a uniform
[0, 1] distribution (r1, r2) and outputs a value drawn from a
stable distribution with parameterp.

Ideally, we set the stability parameterp of the stable
distribution to be as low as possible, to approximate as
well as possible the actual Hamming norm. However, as
p gets closer to zero, the values generated from stable dis-
tributions get significantly larger, gradually exceeding the
range of floating point representation. Through experimen-
tation, we found the smallest value ofp that did not gener-
ate floating point overflow was0.02. Hence we setp to
this value, and empirically found the median of the sta-
ble distribution as generated by this procedure, which is
1.425 = scalefactor(0.02). This median is used in the
scaling of the result to get the approximation of the Ham-
ming norm. Note that usingp = 0.02 means that, even if
everydistinct element occurs a million times, then the con-
tribution by every distinct element to the Hamming norm
will be (106)0.02 = 1.318, so this gives a worst case over-
estimate of 32%. This could be a large source of error,
although even this level of error is likely to be acceptable
for many applications. In fact we shall see that most of our
experiments show an error of much less than 10%.

Experimental Environment Experiments were run on a
Sun Enterprise Server on one of its UltraSparc 400MHz
processors. To test our methods, we used a mixture of
synthetic data generated by random statistical distributions,
and real data from network monitoring tools. For this,
we obtained 26Mb of streaming NetFlow data [33], from
an AT&T network. We performed a series of experi-
ments, firstly to compare the accuracy of using sketches
against existing methods for counting the number of dis-
tinct elements. We started by comparing our approach with
the probabilistic counting algorithm for the insertions-only
case (i.e., no deletions). We then investigated the prob-
lem for streams where both insertions and deletions were
allowed. Next we ran experiments on the more general
situations presented by Network data with streams whose
entries in the implicit vectors are allowed to be negative.
As mentioned earlier, probabilistic counting techniques can
fail dramatically when presented with this situation. Fi-
nally, we ran experiments for computing the Hamming dis-
tance between network data streams and on the union of
multiple data streams. We used only the stable distribu-
tions method, since this is the only method which is able to
solve this problem using very small working space in the

0.5 1 2 4 8 16 32

0

5

10

15

20

25

30

Hamming Norm of a Sequence
 of Inserts and Deletes

FM85 Error Sketch Error

Size of summary (Kb)

%
 E

rr
or

20938 31754 40188 48571 54372 60176 65657

0

2.5

5

7.5

10

12.5

Hamming Norm of Real Data

FM85 Error Sketch Error

Correct answer

%
 E

rr
or

Figure 3: Testing performance on finding the Hamming Norm

data streams model.

For our experiments, the main measurement that
we gathered is how close the approximation was to
the correct value. This was done by using ex-
act methods to find the correct answer (exact), and
then comparing this to the approximation (approx).
Then a percentage error was calculated simply as
(max(exact, approx)/min(exact, approx)−1)×100%.

Timing IssuesUnder our initial implementation, the time
cost of using stable distributions against using probabilistic
counting was quite high — a factor of about six or seven
times, although still only a few milliseconds per item. The
time can be much reduced at the cost of some extra space
usage. This is due to the fact that the majority of the pro-
cessing time is in creating the values of the stable distribu-
tion using a transformation from uniform random variables.
By creating a look-up table for computing a stable distribu-
tion with a fixed stability parameter we avoid this process-
ing time. This table is indexed by values from a uniform
distribution, and a value interpolated from the values in the
table. This is analogous to printed statistical tables which
allow finding values from, for example, the Normal Dis-
tribution. Clearly there is a compromise between the table
size and fidelity of the interpolated values to the true stable
distribution. The extra space cost could be shared, if there
are multiple concurrent computations to find the Hamming
norm of several different data streams (for example, multi-
ple attributes in a database table). This approach would also
be suitable for use in embedded monitoring systems, since
the method only requires simple arithmetic operations and
a small amount of writable memory. A compromise solu-
tion is to use a cache to store the random variables corre-
sponding to some recently encountered attribute values. If
there is locality in the attribute values then cache misses
will be small.

6.2 Results of Hamming Norm Experiments

Hamming Norm of Network Data We first examined
finding the Hamming norm of the sequence of IP addresses,
to find out how many distinct hosts were active. We used
exact methods to be able to find the error ratio. We in-
creased the number of items examined from the stream, and
looked at between 100,000 and 700,000 items in 100,000
increments. The results presented on the left of Figure 3
show that there were between 20,000 and 70,000 distinct
IP addresses in the stream. Both probabilistic counting and
sketches were used, given a workspace of 8Kb. Again, us-
ing sketches is highly competitive with probabilistic count-
ing, and is on the whole more reliable, with an expected
error of close to 5% against probabilistic counting, which
is nearer to 10%.

This should also be compared against sampling based
methods as reported in [19], where the error ratio was fre-
quently in excess of 200%. This shows that for comparable
amounts of space usage, the two methods are competitive
with each other for counting distinct items. The worst case
for the l0 sketch occurs when the number of distinct el-
ements is very low (high skew), and here exact methods
could be used with small additional space requirements.

Streams based on sequences of inserts and deletesOur
second experiment tested how the methods worked on more
dynamic data, with a mixture of insertions and deletions. It
also tested how much they depend on the amount of work-
ing space. We created a sequence of insertions and dele-
tions of items, to simulate addition and removal of records
from a database table. This was done by inserting an el-
ement with one probability,p1, and removing an element
with probability p2, while ensuring that for each element
i, the number of such elements seen was never less than
zero. Again, 100,000 transactions were carried out to test
the implementation.

We ran a sequence of experiments, varying the amount
of working space allocated to the counting programs, from

5428

8928

11839

14336

16611

18525

20380

22144

23733

0

1

2

3

4

5

6

7

8

9

10

 Hamming Distance of Real Data

Correct Answer

%
 E

rr
or

Figure 4: Testing performance for Network Monitoring

0.5Kb, up to 32Kb. The results are shown on the right of
Figure 3. The first observation is that the results outdo
what we would expect from our theoretical limits from
Theorem—5.1. Even with only 1Kb of working space, the
sketching procedure using stable distributions was able to
compute a very accurate approximation, correct to within
a few percentage points. It is important to note thatl0
sketches were able to nearly equal or better the fidelity of
probabilistic counting in every case, and also offer addi-
tional functionality. Although in this example the quality
of the result does not improve as more working space is
made available for it, we claim that this is due to the algo-
rithm being fortunate in small space, since these procedures
are in their nature strongly probabilistic. Certainly, with a
workspace of only a few kilobytes, we can be sure of a
result which is highly likely to be within a few percentage
points of the correct answer. This is more than good enough
for most of the applications we have already mentioned.

Hamming norm of unrestricted streams We generated
a set of synthetic data to test the method’s performance on
the more general problems presented by Network data. The
main purpose of the next experiment was to highlight that
existing methods are unable to cope with many data sets.
Zipf distributions with a variety of skewness parameters
were used. Additionally, when a value was generated, a
coin was tossed: with probability12 the transaction is an in-
sertion of that element, and with probability1

2 it is a dele-
tion of that element. The results are presented on the left
of Figure 4. When we compare the results of probabilistic
counting on this sequence to the Hamming norm of the in-
duced vector, we see massive disparity. The error fraction
ranges from 20% to 400% depending on the skew of the
distribution, and it is on the uniform distribution on which
this procedure performs the worst. On the other hand, us-
ing sketches gives a result which is consistently close to
the correct answer, and in the same region of error as the
previous experiments. Probabilistic counting is only com-
petitive at computing the Hamming norm for distributions

of high skew. This is when the number of non-zero entries
is low (less than 100), and so it could be computed exactly
without difficulty.

Hamming Distance between Network StreamsOur sec-
ond experiment on network data was to investigate finding
the Hamming distance (dissimilarity) between two streams.
This we did by construction, to observe the effect as the
Hamming distance increased. We fixed one stream, then
constructed a new stream by merging this stream with a
second. With probabilityp we took itemi from the first
stream, and with probability1− p we took itemi from the
second, for 100,000 items. We then created sketches for
both streams and found their difference using sketches of
size 8Kb. The results are shown in the right hand chart of
Figure 4 as we varied the probability from 0.1 to 0.9. Here,
it was not possible to compare to existing approximation
methods, since no other method is able to find the Ham-
ming distance between streams.

The performance of sketching shows high fidelity. Here,
the answers are all within 7% of the true answer, and the
trend is for the quality to improve as the size of the Ham-
ming distance between the streams increases. This is be-
cause the worst performance of sketches for this problem is
observed when the number of different items is low (when
the norm is low). Hence sketches are shown to be good
tools for this network monitoring task.

Union of Multiple Data Streams Finally, we tested
the stated properties of summing sketches to merge data
streams. We again used real network data, and for each
experiment we split a stream of 100,000 values into a num-
ber of pieces. A sketch for each piece was computed
separately, and then these sketches combined, and com-
pared against the result found when a single sketch was
computed. The results found confirm the result of The-
orem 5.4 completely: perhaps remarkably, no matter how
many pieces the stream is split into (2, 5, 10, 20, 50 or 100),
the final result is exactly the same. In this case, the norm
was approximated as 18745.07, an error of 3.96% from the

real value. We might have been concerned that round off
errors from floating point arithmetic could cause discrep-
ancies between the answers, but this turns out not to be the
case.

7 Concluding Remarks

We have proposed the computation of the Hamming norm
of a stream as a basic operation of interest. Computing
the Hamming norm of a single stream is a generalisation
of the problem of maintenance of the number of distinct
values in a database under insertions and deletions, which
is of fundamental interest. The Hamming norm of two (or
more) streams gives the size of their union or the number
of places where they differ, depending on whether the norm
is computed on the sum of the streams or the difference re-
spectively. Both these estimations are of great interest as
well. In spite of its importance, no algorithms were previ-
ously known for computing the Hamming Norm.

We presented a novel and efficient algorithm for com-
puting the “l0 sketch” for any data stream such that its
Hamming norm can be estimated to an arbitrarily small fac-
tor using only the sketches. The sketches are very small in
size and can be computed in a distributed manner. They
can be added to obtain the sketch of the merged stream or
subtracted to obtain the sketch of the “difference stream”.
Their size and accuracy does not depend upon the data dis-
tribution. Our experiments with real network flow data
demonstrate the powerful accuracy of our algorithm, which
outperformed existing methods (where applicable) signifi-
cantly.

Our Hamming norm estimation technique is more gen-
eral than is needed in the applications described. For exam-
ple, we can allow entries in the implicit vector to become
non-integral. Also, our solution will work even if some
entries become negative which can occur in certain situa-
tions. New applications may arise in the future where these
features will find greater use.

The “sketch” we compute for estimating Hamming
norms is suitable for indexing. That is, once we have com-
puted the short “sketches” for data streams, we can clus-
ter, perform similarity and other proximity searches on the
streams usingonly the sketches. This is a powerful feature
which will be desirable in emerging stream databases.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency
moments.JCSS: Journal of Computer and System
Sciences, 58, 1999.

[2] Amazon project.http://www.cs.cornell.edu/
database/amazon/amazon.htm

[3] S. Babu, L. Subramanian, and J. Widom. A data
stream management system for network traffic

management. InProceedings of Workshop on
Network-Related Data Management, 2001.

[4] S. Babu and J. Widom. Continuous queries over data
streams.ACM Sigmod Record, 30(3):109–120, 2001.

[5] J. Bunge and M. Fitzpatrick. Estimating the number
of species: A review.Journal of the American
Statistical Association, 88(421):364, 1993.

[6] M. Charikar, S. Chaudhuri, R. Motwani, and V. R.
Narasayya. Towards estimation error guarantees for
distinct values. InProceedings of the Nineteenth
Symposium on Principles of Database Systems,
pages 268–279, 2000.

[7] S. Chaudhuri, R. Motwani, and V. Narasayya.
Random sampling for histogram construction: How
much is enough?Proceedings of the ACM SIGMOD
International Conference on Management of Data,
27(2):436–447, 1998.

[8] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding
interesting associations without support pruning. In
Proceedings of 16th International Conference on
Data Engineering, pages 489–500, 2000.

[9] G. Cormode, P. Indyk, N. Koudas, and
S. Muthukrishnan. Fast mining of tabular data via
approximate distance computations. InProceedings
of the International Conference on Data
Engineering, 2002.

[10] C. Cranor, L. Gao, T. Johnson, and O. Spatscheck.
Gigascope: High performance network monitoring
with an SQL interface. InProceedings of the ACM
SIGMOD International Conference on Management
of Data, 2002.

[11] P. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structures or how
to build a data quality browser. InProceedings of the
ACM SIGMOD International Conference on
Management of Data, 2002.

[12] DIMACS workshop on streaming data analysis and
mining; and DIMACS workshop on sublinear
algorithms. Center for Discrete Mathematics and
Computer Science,
http://dimacs.rutgers.edu/Workshops/

[13] P. Domingos, G. Hulten, and L. Spencer. Mining
time-changing data streams. InProceedings of the
7th International Conference on Knowledge
Discovery and Data Mining, 2001.

[14] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximateL1-difference
algorithm for massive data streams. InProceedings
of the 40th Annual Symposium on Foundations of
Computer Science, pages 501–511, 1999.

[15] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
and J. Rexford. Netscope: Traffic engineering for IP
networks.IEEE Network Magazine, pages 11–19,
2000.

[16] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True. Deriving traffic demands for
operational IP networks: Methodology and
experience.IEEE/ACM Transactions on Networking,
pages 265–279, 2001.

[17] P. Flajolet and G. N. Martin. Probabilistic counting.
In 24th Annual Symposium on Foundations of
Computer Science, pages 76–82, 1983.

[18] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for database applications.Journal of
Computer and System Sciences, 31:182–209, 1985.

[19] P. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In 27th International Conference on Very Large
Databases, 2001.

[20] P. Gibbons and Y. Matias. Synopsis structures for
massive data sets.DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, A,
1999.

[21] P. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In
Proceedings of the 13th ACM Symposium on Parallel
Algorithms and Architectures, 2001.

[22] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. QuickSAND: Quick summary and
analysis of network data. Technical Report 2001-43,
DIMACS, 2001.

[23] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In
Proceedings of 27th International Conference on
Very Large Data Bases, 2001.

[24] M. Grossglauser, N. Koudas, Y. Park, and A. Varriot.
Falcon: Fault management via alarm warehousing
and mining. InProceedings of Workshop on
Network-Related Data Management, 2001.

[25] S. Guha, N. Koudas, and K. Shim. Data streams and
histograms. InProceedings of Symposium on Theory
of Computing, pages 471–475, 2001.

[26] S. Guha, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams. In
Proceedings of 41st Annual Symposium on
Foundations of Computer Science, 2000.

[27] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct

values of an attribute. InProceedings of the 21st
International Conference on Very Large Databases,
pages 311–322, 1995.

[28] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream
computation. InProceedings of the 40th Symposium
on Foundations of Computer Science, 2000.

[29] P. Indyk, N. Koudas, and S. Muthukrishnan.
Identifying representative trends in massive time
series data sets using sketches. InProceedings of the
26th International Conference on Very Large
Databases, pages 363–372, 2000.

[30] W.B. Johnson and J. Lindenstrauss. Extensions of
Lipshitz mapping into Hilbert space.Contemporary
Mathematics, 26:189–206, 1984.

[31] S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. InProceedings of 18th International
Conference on Data Engineering, 2002.

[32] D. Moore, G. M. Voelker, and S. Savage. Inferring
Internet denial of service activity. InProceedings of
the Usenix Security Symposium, 2001.

[33] Cisco NetFlow. More details at
http://www.cisco.com/warp/public/732/
Tech/netflow/

[34] NOAA. National Oceanic and Atmospheric
Administration, U.S. National Weather Service.
http://www.nws.noaa.gov/ .

[35] J. Nolan. Stable distributions. Available from
http://academic2.american.edu/ ∼jpnolan/
stable/chap1.ps

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery.Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
2nd edition, 1992.

[37] California PATH Smart-AHS. More details at
http://path.berkeley.edu/SMART-
AHS/index.html

[38] N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Multidimensional dynamic histograms. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002.

[39] Unidata. Atmospheric data repository.
http://www.unidata.ucar.edu/

