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Abstract 

Personalization of e-services poses new chal-
lenges to database technology, demanding a 
powerful and flexible modeling technique for 
complex preferences. Preference queries have to 
be answered cooperatively by treating prefer-
ences as soft constraints, attempting a best possi-
ble match-making. We propose a strict partial 
order semantics for preferences, which closely 
matches people’s intuition. A variety of natural 
and of sophisticated preferences are covered by 
this model. We show how to inductively con-
struct complex preferences by means of various 
preference constructors. This model is the key to 
a new discipline called preference engineering 
and to a preference algebra. Given the Best-
Matches-Only (BMO) query model we investi-
gate how complex preference queries can be de-
composed into simpler ones, preparing the 
ground for divide & conquer algorithms. Stan-
dard SQL and XPATH can be extended seam-
lessly by such preferences (presented in detail in 
the companion paper [15]). We believe that this 
model is appropriate to extend database technol-
ogy towards effective support of personalization.  

1.  Introduction 
Preferences are everywhere in all our daily and business 
lives. Recently they are catching wide-spread attention in 
the software community ([1]), in particular in terms of 
personalization for e-services. Thus it becomes also a 
challenge for database technology to adequately cope with 

the many sophisticated aspects of preferences. Personal-
ization has different facets: There is the ‘exact world’, 
where user wishes can be satisfied completely or not at 
all. In this scenario user options are restricted to a pre-
defined set of fixed choices, e.g. for software configura-
tions according to user profiles. Database queries in this 
context are characterized by hard constraints, delivering 
exactly the dream objects if they are there and otherwise 
reject the user’s request. But there is also the ‘real world’, 
where personal preferences behave quite differently. Such 
preferences are understood in the sense of wishes: Wishes 
are free, but there is no guarantee that they can be satis-
fied at all times. In case of failure for a perfect match 
people are not always, but usually prepared to accept 
worse alternatives or to negotiate compromises. Thus 
preferences in the real world require a paradigm shift 
from exact matches towards a best possible match-
making, i.e. preferences are to be treated as soft con-
straints. Moreover, preferences in the real world cannot 
be treated in isolation. Instead there may be multi-criteria 
decision situations where even multiple interested parties 
are involved, e.g. in e-shopping where e-customers and e-
vendors have their own, maybe conflicting preferences. 
For a truly pervasive role of personalization these consid-
erations suggest that database query languages should 
support both worlds. But whereas the exact-match para-
digm been investigated in the database and Web context 
already by large amounts, leading to a bundle of success-
ful technologies (e.g. SQL, E/R-modeling, XML), the 
paradigm of preference-driven choices in the real world is 
lagging behind. 

Let us exemplify the unsatisfying state of the art by 
looking at those many SQL-based search engines of e-
shops, which cannot cope adequately with real user pref-
erences: All too often no or no reasonable answer is re-
turned though one has tried hard filling out query forms to 
match one’s personal preferences closely. Most probably, 
one has encountered answers before sounding like “no 
hotels, vehicles, flights, etc. could be found that matched 
your criteria; please try again with different choices”. The 
case of repeatedly receiving empty query results turns out 
to be extremely disappointing to the user, and it is even 
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more harmful for the e-merchant. Dictating the user to 
leave some entries in the query form unspecified often 
leads to another unpleasant extreme: an overloading with 
lots of mostly irrelevant information. There have been 
some approaches to cope with these deficiencies, notably 
in the context of cooperative database systems ([9, 21]). 
There the technique of query relaxation has been studied 
in order to deal with the empty result problem. Since 
many decades preferences have also played a big role in 
the economic and social sciences, in particular for multi-
attribute decision-making in operations research ([3, 12]). 
Machine learning and knowledge discovery ([19]) are 
further areas where preferences are under investigation. 
Each of these approaches and lines of research has ex-
plored some of the challenges put by preferences. 

However, a comprehensive solution that paves the 
way for a smooth and efficient integration of preferences 
with database technology has not yet been published. We 
think that a viable preference model for database systems 
should meet the following list of desiderata: 
 
(1) An intuitive semantics: Preferences must become first 
class citizens in the modeling process. This demands an 
intuitive understanding and declarative specification of 
preferences. A universal preference model should cover 
non-numerical as well as numerical ranking methods. 
(2) A concise mathematical foundation: This requirement 
goes without saying, but of course the mathematical foun-
dation must harmonize with the intuitive semantics. 
(3) A constructive and extensible preference model: Com-
plex preferences should be built up inductively from sim-
pler ones using an extensible repertoire of preference con-
structors. 
(4) Conflicts of preferences must not cause a system fail-
ure: Dynamic composition of complex preferences must 
be supported even in the presence of conflicts. A practical 
preference model should be able to live with conflicts, not 
to prohibit them or to fail if they occur.  
(5) Declarative preference query languages: Match-
making in the real world means bridging the gap between 
wishes and reality. This implies the need for a new query 
model other than the exact match model of declarative 
database query languages.  

 
Preference SQL (for details see [15]) and Preference 

XPATH ([17]) are representatives of the latter. A novel 
PREFERRING-clause allows the user to conveniently 
specify soft constraints reflecting complex preferences. 
For motivation consider this Preference SQL query: 
 
SELECT * FROM used_cars  
WHERE make = 'Opel' 
PREFERRING(category = 'cabrio' ELSE 
           category = 'roadster')  
  AND price AROUND 40000 
  AND HIGHEST(power)  
  AND mileage BETWEEN 20000, 30000; 

The rest of this paper is organized as follows: Sect. 2 
introduces the basics of preferences as strict partial orders. 
In Sect. 3 we present a powerful preference model as the 
key to preference engineering. Sect. 4 is concerned with 
the development of a preference algebra. Sect. 5  investi-
gates issues of preference queries under the BMO query 
model and provides decomposition algorithms for com-
plex preference queries. Practical aspects and related 
work are covered in Sect. 6. Sect. 7 summarizes our re-
sults and outlines ongoing work. All proofs are omitted 
here, but can be found in the extended version ([13]). 

2.  Preferences as strict partial orders 
Preferences in the real world show up in different forms 
as everybody is aware of. A careful examination of their 
nature reveals that they share a fundamental common 
principle. Let’s examine the daily life with its abundance 
of preferences coming from subjective feelings or other 
influences. In this familiar setting it turns out that people 
express their wishes frequently in terms like “I like A 
better than B“. This kind of preference modeling is uni-
versally applied and intuitively understood by everybody. 
In fact, every child learns to apply it from its earliest 
youth. Thinking of preferences in terms of ‘better-than’ 
has a very natural counterpart in mathematics: One can 
map them directly onto strict partial orders. People are 
intuitively used to deal with such preferences, in particu-
lar with those that are not expressed in terms of numerical 
scores. But there is also another part of real life which 
primarily is concerned with sophisticated economical or 
technical issues, where numbers do matter. One can easily 
recognize that numerical ranking can be subsumed under 
this semantics, too. Thus modeling preferences as strict 
partial orders holds great promises, which of course has 
been recognized at various opportunities in computer sci-
ence and other disciplines before. Here this key finding 
receives our undivided attention.  

A preference is formulated on a set of attribute names 
with an associated domain of values, which figuratively 
speaking is the ‘realm of wishes’. When combining pref-
erences P1 and P2, we decide that P1 and P2 may overlap 
on their attributes, allowing multiple preferences to coex-
ist on the same attributes. This generality is due to our 
design principle that conflicts of preferences must be al-
lowed in practice and must not be considered as a bug.  
 
Let A = {A1, A2,  …,  Ak} denote a non-empty set of at-
tribute names Ai associated with domains of values 
dom(Ai). Considering the order of components within a 
Cartesian product as irrelevant, we define: 
     dom(A) = dom({A1, A2, … , Ak}) 

    := dom(A1) × dom(A2) × … × dom(Ak) 
Note that this definition includes, e.g.,  the following: 
     If B = {A1, A2} and C =  {A2, A3}, 
     then dom(B ∪ C) = dom({A1, A2} ∪ {A2, A3}) 
                                  = dom(A1) × dom(A2) × dom(A3). 



Definition 1 Preference P = (A, <P)   

Given a set A of attribute names, a preference P is a strict 
partial order P = (A, <P), where <P ⊆ dom(A) × dom(A).  
 

Thus <P is irreflexive and transitive (which imply 
asymmetry). Important is this intended interpretation:  
   “x <P y” is interpreted as “I like y better than x”. 
 
Further:   range(<P) := {x ∈ dom(A) | ∃y ∈ dom(A):  
                                       (x, y) ∈ <P  or  (y, x) ∈ <P}. 
 

Since preferences reflect important aspects of the real 
world a good visual representation is essential. 

Definition 2 Better-than graph, quality notions 

In finite domains a preference P can be drawn as a di-
rected acyclic graph G, called the ‘better-than’ graph of 
P.1 Given G for P we define the following quality notions 
between values x, y in G: 

- x <P y, if y is predecessor of x in G. 
- Values in G without a predecessor are maximal ele-

ments of P (max(P)), being at level 1. 
- x is on level j, if the longest path from x to a maxi-

mal value has j-1 edges. 
- If there is no directed path between x and y in G, 

then x and y are unranked. 

Definition 3 Special cases of preferences 

a) P = (A, <P) is a chain preference, if for all x, y ∈ 
dom(A), x ≠ y:   x <P y  ∨  y <P x   

b) S↔  = (S,  ∅) is called anti-chain preference, given 
any set of values S. 

c) The dual preference Pδ = (A, <Pδ ) reverses the order 
on P:    x <P∂ y   iff   y <P x 

d) Given P = (A, <P), every S ⊆ dom(A) induces a sub-
set preference P⊆ = (S, <P⊆) , if for any x, y ∈ S:   

      x <P⊆  y   iff   x <P y 
 
Thus all values x of a chain preference P (also called 

total order) are ranked to all other values y. Any set S, 
including dom(A), can be converted into an anti-chain. 
Special subset preferences, called database preferences, 
will become important later on. 

3.  Preference engineering 
Complex wishes are abundant in daily private and busi-
ness life, even those concerning several attributes. Thus 
there is a high demand for a powerful and orthogonal 
framework that supports the accumulation of single pref-
erences into more complex ones. We present an inductive 
approach towards constructing complex preferences. This 
model will be the key towards a systematic preference 
engineering and for a preference algebra. 
                                                           
1 ‘Better-than’ graphs are also known as Hasse diagrams ([6]). 

3.1.  Inductive construction of preferences 
The goal is to provide intuitive and convenient ways to 
inductively construct a preference P = (A, <P).  To this 
end we specify P by a so-called preference term which 
fixes the attribute names A and the strict partial order <P. 
We distinguish between base preferences (our atomic 
preference terms) and compound preferences.  Since each 
preference term represents a strict partial order (which 
becomes clear later on), we identify it with a preference P. 

Definition 4 Preference term 

Given preference terms P1 and P2, P is a preference term 
iff  P is one of the following: 
(1) Any base preference:    P := baseprefi. 
(2) Any subset preference: P := P1⊆ 
(3) Any dual preference:    P := P1∂ 
(4) Any complex preference P gained by applying one  

of the following preference constructors: 
• Accumulating preference constructors: 

- Pareto accumulation:  P := P1 ⊗ P2 
- Prioritized accumulation: P := P1 & P2 
- Numerical accumulation: P := rankF(P1, P2) 

• Aggregating preference constructors: 
- Intersection aggregation:     P := P1 ♦ P2 
- Disjoint union aggregation: P := P1 + P2 
- Linear sum aggregation:      P := P1 ⊕ P2  

 
Both the set of base preferences and the set of com-

plex preference constructors can be enlarged whenever 
the application domain at hand has a frequent demand.  

3.2.  Base preference constructors 
Important from a preference engineering point is that we 
can provide base preference constructors, which in fact 
are  preference templates, whose proper instantiations 
yield base preferences. Practical experiences from [15] 
showed that the following repertoire is highly valuable for 
constructing powerful personalized search engines.  

Formally, a base preference constructor has one or 
more arguments, the first characterizing the attribute 
names A and the others the strict partial order <P, refer-
ring to A. We will provide both a formal and an intuitive 
definition together with a motivating example within a 
fictitious used_car application scenario. 

3.2.1.  Non-numerical base preferences  

a) POS preference:  POS(A, POS-set) 
P is a POS preference, if:  

          x <P y  iff  x∉ POS-set  ∧  y ∈ POS-set 
A desired value should be in a finite set of favorites 
POS-set ⊆ dom(A). If this infeasible, better than get-
ting nothing any other value from dom(A) is accept-
able. (This implies that all v ∈ POS-set are maximal, 
all v∉ POS-set are at level 2 and worse than all POS-
set values.) 



Used_car scenario: 
   POS(transmission, {automatic}) 
 
b) NEG preference: NEG(A, NEG-set) 

P is a NEG preference, if:  
       x <P y  iff  y∉ NEG-set ∧ x ∈ NEG-set 

A desired value should not be any from a finite set 
NEG-set of dislikes. If this is infeasible, any disliked 
value is acceptable. (This implies that all v∉ NEG-set 
are maximal, all v ∈ NEG-set are at level 2 and worse 
than all maximal values.) 

Used_car scenario:  NEG(make, {Ferrari}) 
 
c) POS/NEG preference: POS/NEG(A, POS-set; 

NEG-set) 
P is called POS/NEG preference, if: 
x <P y  iff  (x ∈ NEG-set  ∧  y∉ NEG-set)  ∨  

                   (x ∉ NEG-set ∧ x ∉ POS-set  ∧  y ∈ POS-set) 
A desired value should be one from a finite set of 
favorites. Otherwise it should not be any from a finite 
set of disjoint dislikes. If this is not feasible too, better 
than getting nothing any disliked value is acceptable. 

Used_car scenario: 
 POS/NEG(color, {yellow};{gray}) 

 
d) POS/POS preference:  POS/POS(A, POS1-set; 

POS2-set) 
P is called POS/POS preference, if: 
x <P y   iff   (x ∈ POS2-set  ∧  y ∈ POS1-set)  ∨ 

                  (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS2-set) ∨  
            (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS1-set) 

A desired value should be amongst a finite set POS1-
set. Otherwise it should be from a disjoint finite set of 
alternatives POS2-set. If this is not feasible too, better 
than getting nothing any other value is acceptable. 

Used_car scenario: 
  POS/POS(category,{cabrio};{roadster}) 
 

Any finite preference can be “handcrafted” by explic-
itly enumerating ‘better-than’ relationships. 

 
e) EXPLICIT preference: EXP(A, E-graph) 

Let E-graph = {(val1, val2), … } represent a finite 
acyclic ‘better-than’ graph, V be the set of all vali oc-
curring in E-graph. A strict partial order E = (V, <E) is 
induced as follows: 

- (vali, valj) ∈ E-graph implies  vali <E valj   
- vali <E valj   ∧  valj <E valk   imply    vali <E valk 

     P is an EXPLICIT preference, if:   
      x <P y  iff  x <E y ∨  (x ∉ range(<E) ∧ y ∈ range(<E)) 
Used_car scenario: 
     EXP(color, {(green, yellow), 
        (green, red), (yellow, white)}) 
 
Given dom(Color) = {white, red, yellow, green, brown, 
black}, the ‘better-than’ graph is this:  

     white          red        level 1 (maximal values)     
 
 

     yellow              level 2   
    
      
      green        level 3 

 
 
      brown    black        level 4  (other values)                               

3.2.2.  Numerical base preferences 

Now we focus on P = (A, <P), where dom(A) is some 
numerical data type, e.g. Decimal or Date, supporting a 
total comparison operator ‘<’ and a subtraction operator 
‘−’. Instead of the discrete level function above, we em-
ploy continuous distance functions defined on ‘<’ and ‘−’.  
 
a) AROUND preference:   AROUND(A, z) 

Given z ∈ dom(A), for all  v ∈ dom(A) we define: 
   distance(v, z) := abs(v − z)  

      P is called AROUND preference, if:  
         x <P y   iff   distance(x, z) > distance(y, z) 

The desired value should be z. If this is infeasible, 
values with shortest distance apart from z are accept-
able.  

Used_car scenario:  AROUND(price, 40000) 
Note that if distance(x, z) = distance(y, z) and x ≠ y, 

then x and y are unranked. 
 
b) BETWEEN preference: BETWEEN(A, [low, up]) 

Given [low, up] ∈ dom(A) × dom(A), we define for 
all  v ∈ dom(A):  

         distance(v, [low, up]) :=  
                if  v ∈ [low, up] then 0 else 
                if  v < low then low − v else  v − up 
      P is called BETWEEN preference, if:    x <P y  iff  

   distance(x, [low, up]) > distance(y, [low, up])  
A desired value should be between the bounds of an 
interval. If this is infeasible, values with  shortest dis-
tance apart from the interval boundaries will be ac-
ceptable.  

Used_car scenario: 
 BETWEEN(mileage, [20000, 30000]) 

 
c) LOWEST, HIGHEST preference: LOWEST(A),  

HIGHEST(A) 
      P is called LOWEST preference, if:  x <P y   iff   x > y 
      P is called HIGHEST preference, if: x <P y   iff   x < y 

A desired value should be as low (high) as possible.  
Used_car scenario:  HIGHEST(power) 
Note: LOWEST and HIGHEST preferences are chains. 
 

Now let’s revisit our introductory Preference SQL 
query. The preference term in the PREFERRING-clause 
specifies a Pareto accumulation as follows:  



POS/POS(category,{cabrio};{roadster})⊗
AROUND(price,40000) ⊗ HIGHEST(power) ⊗ 
BETWEEN(mileage,[20000, 30000]) 
 
d) SCORE preference:  SCORE(A, f) 

We assume a scoring function f: dom(A) → ℝ. Let ‘<’ 
be the familiar ‘less-than’ order on ℝ. 
P is called SCORE preference, if for x, y ∈ dom(A): 
      x <P y  iff  f(x) < f(y) 
In general no intuitive interpretation is available.  

3.3.  Complex preference constructors 
The true power of preference modeling comes with the 
advent of complex preference constructors.  

3.3.1.  Accumulating preference constructors  

Accumulating preference constructors (‘⊗’, ‘&’, ‘rankF’) 
combine preferences which may come from one or sev-
eral parties. The Pareto-optimality principle has been 
studied intensively for multi-attribute decision problems 
in the social and economic sciences. Here we define it for 
n = 2 preferences (generalizing it to n > 2 is obvious).  

Definition 5 Pareto preference:  P1⊗P2 

P1 and P2 are considered as equally important prefer-
ences. In order for x = (x1, x2) to being better than y = (y1, 
y2), it is not tolerable that x is worse than y in any xi: 
Given P1 = (A1, <P1) and P2 = (A2, <P2), for x, y ∈ 
dom(A1) × dom(A2) we define: 
   x <P1⊗P2 y   iff  (x1 <P1 y1  ∧  (x2 <P2 y2 ∨  x2 = y2)) ∨  

                 (x2 <P2 y2  ∧  (x1 <P1 y1 ∨  x1 = y1)) 
 
P = (A1 ∪ A2, <P1⊗P2) is called Pareto preference2. 
The maximal values of P are the Pareto-optimal set. 

Example 1    Pareto preference (disjoint attrib. names) 

For dom(A1) = dom(A2) = dom(A3) = integer and 
   P1 := AROUND(A1, 0),  
   P2 := LOWEST(A2),  P3 := HIGHEST(A3)  
   P4 = ({A1, A2, A3}, <P4) := (P1 ⊗ P2) ⊗ P3 
let’s study a subset preference of P4 for the following set: 
   R(A1, A2, A3) = {val1: (−5, 3, 4), val2: (−5, 4, 4), 
                     val3: (5, 1, 8), val4: (5, 6, 6), val5: (−6, 0, 6), 
                     val6: (−6, 0, 4), val7: (6, 2, 7)} 
 
The ‘better-than’ graph of P4 for subset R can e.g. be ob-
tained by performing exhaustive ‘better-than’ checks:  
 
    Level 1:     val1   val3            val5  
 
 
    Level 2:     val2   val4    val7        val6 

                                                                                                                     
2 Being a strict variant of the coordinate-wise order of Cartesian 
products ([6]), P is a strict partial order. 

Thus the Pareto-optimal set is {val1, val3, val5}. Note 
that for each of P1, P2 and P3 at least one maximal value 
appears in the Pareto-optimal set: 5 and −5 for P1, 0 for 
P2 and 8 for P3.            ☼ 

Example 2 Pareto preference (shared attribute names)  

   P5 := POS(Color, {green, yellow}), 
   P6 := NEG(Color, {red, green, blue, purple}), 
   P7 = (Color, <P7) := P5⊗P6, 
   S := {red, green, yellow, blue, black, purple}.  
The ‘better-than’ graph of P7 for subset S is this: 
 
    Level 1:             yellow     green    black 
 
 
    Level 2:       red   blue     purple  
 
Note that P5 and P6 agreed both on ‘yellow’ being maxi-
mal, whereas only P5 ranked ‘green’ as maximal and only 
P6 ranked ‘black’ as maximal. The result in P7 is a non-
discriminating compromise of both views.                   ☼    

Definition 6 Prioritized preference:  P1&P2 

P1 is considered more important than P2; P2 is respected 
only where P1 does not mind: 
Given P1 = (A1, <P1) and P2 = (A2, <P2), for x, y ∈ 
dom(A1) × dom(A2) we define: 
     x <P1&P2 y   iff   x1 <P1 y1 ∨  (x1 = y1  ∧   x2 <P2 y2) 
 
P = (A1∪A2, <P1&P2)  is a prioritized preference.3  

Example 3     Prioritization (disjoint attribute names) 

Let’s revisit Example 1, now studying: 
    P8  = ({A1, A2}, <P8) := P1&P2  
The ‘better-than’ graph of P8 for subset R is this: 
 
     Level 1:         val1                    val3   
      
       
     Level 2:         val2                    val4   
 
     
     Level 3:          val5     val6       val7                                 ☼ 
 

Numerical preferences build on SCORE preferences. 
The individual scores are accumulated into an overall 
score by applying a multi-attribute combining function F. 
We define it for n = 2; generalizing it to n > 2 is obvious. 
An intuitive interpretation is not available in general. 

Definition 7 Numerical preference:  rankF(P1, P2) 

Given P1 = SCORE(A1, f1), P2 = SCORE(A2, f2) and a 
combining function F: ℝ × ℝ → ℝ, for x, y ∈ dom(A1) × 
dom(A2) we define:   x  <rankF(P1, P2) y  iff  
                                    F(f1(x1), f2(x2)) < F(f1(y1), f2(y2)) 

 
3 It is a strict variant of the lexicographic order of Cartesian 
products ([6]), hence a strict partial order. 



P = (A1∪A2, <rankF(P1, P2)) is a numerical preference.  
 
Note that rankF is not an orthogonal preference con-

structor like ⊗ or &. It can only be applied to SCORE 
preferences. But vice versa, numerical preferences can be 
used as input to all other preference constructors. 

Example 4   Numerical preference (F as weighted sum) 

    P1 := SCORE(A1: Integer, f1), f1(x) := distance(x, 0) 
    P2 := SCORE(A2: Integer, f2), f2(x) := distance(x, −2) 
    P3 := rankF(P1, P2), F(x1, x2) := x1 + 2 ∗ x2 
    R(A1, A2) := {val1: (−5, 3), val2: (−5, 4), val3: (5, 1), 
                             val4: (5, 6), val5: (−6, 0), val6 : (−6, 0)} 
We evaluate f1 and f2 into a set Rankings, containing for 
each value of R its score vector for f1, f2 together with its 
combined F-ranking: 
    Rankings = {val1: ((5, 5), 15), val2: ((5, 6), 17), 
                         val3: ((5, 3), 11), val4: ((5, 8), 21), 
                         val5: ((6, 2), 10), val6: ((6, 2), 10)} 
The ‘better-than’ graph of P3 for subset R is not a chain: 
 val4 → val2 → val1→ val3→ {val5, val6} 
Observe that the maximal f1-value being 6 does not show 
up in the top performer val4, having scores (5, 8). In some 
sense this is like discriminating against P1.                    ☼ 

3.3.2.  Aggregating preference constructors  

Aggregating preference constructors (♦, +, ⊕) pursue a 
different, technical purpose. Intersection ‘♦’ and disjoint 
union ‘+’ assemble a preference P from separate pieces 
P1, P2, …, Pn, all acting on the same set of attributes. Vice 
versa, we will see later on how complex preferences can 
be decomposed  into ‘♦’ and ‘+’.  

Let’s call P1 = (A1, <P1) and P2 = (A2, <P2) disjoint 
preferences, if range(<P1) ∩ range(<P2) = ∅. 

Definition 8 Intersection, disjoint union preference 

Assume P1 = (A, <P1) and P2 = (A, <P2). 
a) P = (A, < P1♦P2) is an intersection preference, if: 
 x <P1♦P2 y   iff   x <P1 y  ∧  x <P2 y 
b) Given disjoint preferences P1 and P2, P = (A, 

<P1+P2) is called disjoint union preference, if: 
x <P1+P2 y    iff   x <P1 y  ∨   x <P2 y  

Definition 9 Linear sum preference 

Assume P1 = (A1, <P1), P2 = (A2, <P2) for single attrib-
utes A1 ≠ A2 and dom(A1) ∩ dom(A2) = ∅. Then P1 and 
P2 are disjoint preferences. For a new attribute name A let 
dom(A) := dom(A1) ∪ dom(A2).  
Then P = (A, <P1⊕P2)  is a  linear sum preference, if:    
       x <P1⊕P2 y   iff   x <P1 y  ∨   x <P2 y  ∨  
                                    (x ∈ dom(A2)  ∧  y ∈ dom(A1)) 
 

Linear sum ‘⊕’ can be viewed as a convenient design 
and proof method for base preference constructors. With 
the proper notion of  ‘other-values’ we can state: 

A POS-preference is the linear sum of the anti-chain on 
the POS-set with the anti-chain on the other values:  
 POS = POS-set↔ ⊕ other-values↔ 
Similarly we observe that: 
 POS/NEG = (POS-set↔ ⊕ other-values↔) ⊕ NEG-set↔  
 POS/POS = (POS1-set↔ ⊕ POS2-set↔) ⊕  other-values↔ 
 EXPLICIT = E ⊕ other-values↔  
              

At this point we can summarize all results stated so far 
as follows, referring back to Definition 4: 

Proposition 1  

Each preference term defines a  strict partial order 
preference. 

This theorem gives us the grand freedom to flexibly 
combine multiple preferences according to the specific 
requirements in an application situation. Let’s coin the 
notion of preference engineering and demonstrate its po-
tentials by a typical scenario from B2C e-commerce. 

Example 5     Preference engineering scenario 

Suppose that Julia wants to buy a used car for herself and 
her friend Leslie. Contemplating about her personal cus-
tomer preferences, she comes up with this wish list: 
     P1 := POS/POS(category, {cabrio};{roadster}) 
     P2 := POS(transmission,{automatic}) 
     P3 := AROUND(horsepower, 100) 
     P4 := LOWEST(price), P5 := NEG(color, {gray}) 
Then Julia decides about the relative importance of these 
single preferences:  
     Q1 = ({color, category, transmission, horsepower, 
                  price}, <Q1) := P5 & ((P1 ⊗ P2 ⊗ P3) & P4) 
Julia communicates her wish list Q1 to her car dealer Mi-
chael, who adds  domain knowledge P6 about cars:  
     P6 := HIGHEST(year-of-construction) 
Any piece of ontological knowledge can be entered at this 
stage. Because also vendors have their preferences, of 
course, Michael has another preference P7 of its own: 
     P7 := HIGHEST(commission) 
Since Michael is a fair play guy, the query he is going to 
issue against his used car database is this: 
     Q2 = ({color, category, transmission, horsepower, 
                 price, year-of-construction, commission}, <Q2) 
          :=  (Q1 & P6) & P7 = 
                ((P5 & ((P1 ⊗ P2 ⊗ P3) & P4)) & P6) & P7 
Note that when mixing customer with vendor preferences 
Michael had not to worry that potential conflicts would 
crash his used car e-shop. Just before Michael queries his 
car database against Q2 Leslie enters the scene. A discus-
sion with Julia reveals that she has a different color taste: 
     P8 := POS/NEG(color, {blue};{gray, red}) 
In addition, Leslie convinces Julia that money should mat-
ter as much as color. Consequently, Q1 adapted to these 
new preferences reads as follows: 
      Q1* = ({color, category, transmission, horsepower, 
                   price}, <Q1) := (P5⊗P8⊗P4) & (P1⊗P2⊗P3) 



Finally Michael poses Q2* … and the story might end that 
everybody is happy with the result.                    ☼ 

3.4.  Preference hierarchies 
Preference constructors C1 and C2 can be arranged in 
hierarchies. We call C1 a preference sub-constructor of 
C2 (C1 < C2), if the definition of C1 can be gained from 
the definition of C2 by some specializing constraints. 
 

• Hierarchy of non-num. base preference constructors: 
- POS/POS < EXPLICIT,  
       if E-graph = (POS1-set)↔ ⊕ (POS2-set) ↔  
- POS < POS/POS, if POS2-set = ∅ 
- POS < POS/NEG, if NEG-set = ∅ 
- NEG < POS/NEG, if POS-set = ∅ 

• Hierarchy of numerical base preference constructors: 
(‘N’ means ‘numeric’) 

- BETWEEN < SCORE, 
        if A is ‘N’ and f(x) = − distance(x, [low, up]) 
- AROUND < BETWEEN, if low = up 
- HIGHEST < SCORE, if A is ‘N’ and f(x) = x 
- LOWEST < SCORE, if A is ‘N’ and f(x) = −x 

 
  POS/NEG      EXPLICIT   SCORE   
             
 
  NEG          POS/POS   BETWEEN LOWEST HIGHEST          

      

POS               AROUND 
 

• Hierarchy of complex preference constructors:  
- ‘♦’ < ‘⊗’  
- Due to [5] not every preference constructor can 

be formulated as a sub-constructor of ‘rankF’. 
 
Since we have specialization by constraints, sub-

constructor hierarchies are taxonomic. Besides the usual 
advantages for object-oriented software engineering this 
also economizes proof efforts: Strict partial order seman-
tics must be verified only for top-level preference con-
structors. Further we assume the principle of constructor 
substitutability, i.e. instead of a requested constructor also 
a sub-constructor can be supplied. For instance, rankF(P1, 
P2) requires that P1 and P2 are SCORE preferences. In-
stead, we can e.g. also supply preferences P1 and P2 con-
structed by AROUND and HIGHEST, respectively. 

4.  A preference algebra 
Hard constraints are formulated by first order logic for-
mulas, which can be manipulated by Boolean algebra. On 
the other hand preferences, represented by preference 
terms,  are used to express soft constraints. Therefore it is 
desirable to develop a preference algebra that can prove 
laws amongst preference terms. The subsequent studies 
will also strengthen our previous propositions about the 

intuitive semantics of preference constructors. First we 
need a notion of  equivalence of preference terms. 

Definition 10 Equivalence of preference terms 

P1 = (A, <P1) and P2 = (A, <P2) are equivalent (P1 ≡ 
P2), if  for all x and y ∈ dom(A):   x  <P1  y  iff  x  <P2  y  
 

If P1 ≡ P2, then the preference terms P1 and P2 can be 
syntactically different, but the preferences represented by 
P1 and P2, resp., are actually the same.  

4.1. A collection of algebraic laws 
The next  proposition is covered already by [6]. 

Proposition 2     Commutative and associative laws 

a) P1 ⊗ P2 ≡ P2 ⊗ P1 
(P1 ⊗ P2) ⊗ P3  ≡ P1 ⊗ (P2 ⊗ P3) 

b)  (P1 & P2) & P3  ≡ P1 & (P2 & P3) 
c) P1♦ P2 ≡ P2 ♦ P1 

(P1♦ P2)♦ P3  ≡ P1♦ (P2 ♦ P3) 
d) P1 + P2  ≡ P2 + P1 

(P1 + P2) + P3  ≡ P1 + (P2 + P3) 
e) (P1 ⊕ P2) ⊕  P3  ≡ P1 ⊕  (P2 ⊕ P3) 

Proposition 3     Further laws for preference terms 

a) (S↔)∂   ≡  S↔ for any set S ,  (P∂)∂  ≡  P 
b) (P1⊕ P2)∂  ≡  P2∂  ⊕  P1∂             
c) HIGHEST ≡ LOWEST∂ 
d) POS∂  ≡  NEG,  

NEG∂   ≡  POS  if POS-set = NEG-set 
e) P ♦ P   ≡  P                      
f) P ♦ Pδ  ≡  P ♦ A↔  ≡  A↔   if  P = (A, <P) 
g) If P1 and P2 are chains, then  

P1 & P2 and P2 & P1 are chains. 
h) P & P   ≡  P & P∂   ≡  P             
i) P & A↔

  ≡ P     if P = (A, <P) 
j) A↔ & P   ≡  A↔   if P = (A, <P) 
k) P ⊗ P   ≡  P,  A↔ ⊗ P  ≡  A↔ & P   
l) P ⊗ A↔  ≡  P ⊗ P∂  ≡  A↔  if  P = (A, <P) 

  
These laws match our intuitive semantic expectations. 

E.g., let’s pick P ⊗ P∂  ≡  A↔: Since P and P∂ are equally 
important, in case of conflicts for values x and y none of 
them prevails, instead x and y remain unranked. Since P 
and P∂ are in conflict everywhere, the full domain be-
comes unranked, hence the anti-chain A↔.  

4.2.  Decomposition of ‘&’ and ‘⊗’  
The following “discrimination” theorem reflects the intui-
tive semantics of prioritized accumulation.  

Proposition 4     “Discrimination” theorem for P1&P2 

 (a)  P1&P2   ≡  P1  if  P1 = (A, <P1) and P2 = (A, <P2) 
 (b)  P1&P2   ≡  P1 + (A1↔&P2)    if A1 ∩ A2 = ∅    



For shared attributes P2 is completely dominated by 
P1. In the disjoint case P1 is more important than P2, 
because P2 is respected only inside groups of equal A1-
values, hence not disturbing P1’s ‘better-than’ decisions 
on A1. In this intuitive sense P1 discriminates against P2. 
From a different angle, ‘&’ can also be interpreted as a 
conditional preference: P2 becomes interesting only after 
P1 has happened. 

Now we state the important “non-discrimination” 
theorem for Pareto accumulation, which likewise nicely 
supports our intuitive semantics for P = P1 ⊗ P2.   

Proposition 5     “Non-discrimination” theorem  

            P1 ⊗ P2  ≡  (P1 & P2) ♦ (P2 & P1) 
 

P1 and P2 are indeed treated equally important by ‘⊗’, 
since both are given prime importance by ‘&’. Any aris-
ing conflict is resolved in a non-discriminating way by 
intersection ‘♦’. As a corollary we can state: 
     P1⊗P2  ≡  P1♦P2  if P1 = (A, <P1) and P2 = (A, <P2) 
Thus ‘♦‘ is a preference sub-constructor of ‘⊗‘. 

Example 6     “Non-discrimination” theorem 

    P1: = LOWEST(price), P2 := LOWEST(mileage)  
    P := ({price, mileage}, <P1⊗P2) 
We consider Car-DB from dom(Price) × dom(Mileage): 
  Car-DB = {val1: (40000, 15000), 
                     val2: (35000, 30000), val3: (20000, 10000), 
             val4: (15000, 35000), val5: (15000, 30000)} 
The ‘better-than’ graph of P =  P1⊗P2 for subset Car-DB 
is this (obtainable e.g. by exhaustive better-than tests): 
 
     Level 1:   val3   val5   
 
 
     Level 2:     val1  val2   val4 
 
On the other hand let’s determine (P1&P2) ♦ (P2&P1): 
The ‘better-than’ graph of P’ = P1&P2 for subset Car-DB 
yields a chain:   val5  →  val4  →  val3  →  val2  →  val1 
The corresponding ‘better-than graph’ of P’’ = P2&P1 
yields a chain:   val3  →  val1  →  val5  →  val2  →  val4 
The ‘better-than’ graph of P’♦ P’’ for subset Car-DB is 
the same as for P1⊗P2. Note that it matches exactly the 
set of ‘better-than’ relationships shared by P’ and P’’.    ☼ 

5.  Evaluation of preference queries 
In SQL databases life seems comparably simple. Queries 
against a relation R are formulated as hard constraints, 
leading to an all-or-nothing behavior: If the desired values 
are in R, you get exactly what you wanted, otherwise you 
get nothing at all. The latter deficiency is  the empty-result 
problem. The exact-match query model can become a real 
nuisance in many e/m-commerce applications. The other 
extreme happens, if  - being afraid of empty results - the 
query is built by disjunctive subqueries. Then one is fre-

quently inundated with lots of irrelevant query results. 
This is the notorious flooding-effect. 

The real world, where wishes are expressed as prefer-
ences, neither follows a simple all-or-nothing paradigm 
nor do people expect to be flooded with irrelevant values 
to choose from. Instead, a cooperative answer semantics 
is urgently needed. Whether preferences (i.e. wishes) can 
be satisfied and to what extent depends on the current 
status of the real world. Thus we have to perform a suit-
able  match-making between wishes and reality.  To this 
purpose we now define the so-called BMO query model. 

5.1.  The BMO query model 
Preferences are defined in terms of values from dom(A), 
representing the realm of wishes. In database applications 
we assume that the real world is mapped into appropriate 
instances which we call database sets. A database set R 
may, e.g., be a view or a base relation in SQL or a DTD-
instance in XML. Under the usual closed world assump-
tion database sets capture the currently valid or accessible 
state of the real world. Thus they are subsets of our do-
mains of values, hence they are subset preferences.  
 

Consider a database set R(B1, B2, …, Bm). Given A = 
{A1, A2,  …, Ak}, where each Aj denotes an attribute Bi 
from R,  let R[A] := R[A1, A2, … Ak] denote the projec-
tion π of R onto these k attributes. 

Definition 11 Database preference PR 

Let’s assume P = (A, <P), where A = {A1, A2,  …, Ak}.  
a) Each R[A] ⊆ dom(A) defines a subset preference, 

called a database preference and denoted by: 
                PR = (R[A], <P) 
b)  Tuple t ∈ R is a perfect match in a database set R, if:
  t[A] ∈ max(P)  ∧  t[A] ∈ R 
 
Comparing max(P), i.e. the dream objects of P, with the 
set max(PR), i.e. the best objects available in the real 
world, then there might be no overlap. But if so, we have 
a perfect match between wishes and reality. If t is a per-
fect match for P in R, then t[A] ∈ max(PR). But the con-
verse does not hold in general. Preference queries perform 
a match-making between the stated preferences (wishes) 
and the database preferences (reality). 

Definition 12 Declarative semantics of σ[P](R) 

Let’s assume P = (A, <P) and a database preference PR. 
We define a  preference query σ[P](R) declaratively as 
follows:    σ[P](R) = {t ∈ R | t[A] ∈ max(PR)} 
 
σ[P](R) evaluates P against a database set R by retrieving 
all maximal values from PR. Note that not all of them are 
necessarily perfect matches of P. Thus the principle of 
query relaxation is implicit in above definition. Further-
more, any non-maximal values of PR are excluded from 
the query result, hence can be considered as discarded on 



the fly. In this sense all best matching tuples – and only 
those – are retrieved by a preference query. Therefore we 
coin the term BMO query model (“Best Matches Only”). 

Example 7 BMO query model 

We revisit the sample explicit preference P of Sect. 3.2.1. 
e) and pose the query σ[P](R) for R(color) = {yellow, red, 
green, black}. The BMO result is: σ[P4](R) = {yellow, 
red}. Note that ‘red’ is a perfect match.                 ☼ 
 
As a straightforward, but important observation we state: 
     If P1 ≡ P2, then for all R:   σ[P1](R)  =  σ[P2](R) 
 

Besides preferences queries of the form σ[P](R) a 
variation will be needed frequently, which originates from 
an interesting interplay between grouping and anti-chains.  
Consider σ[A↔&P](R), where P = (B, <P).  
Since x <A↔&P y  iff  x1 = y1  ∧  x2 <P  y2 , we have: 
     t ∈ σ[A↔&P](R)   iff   
     ∀ v[A, B] ∈ R[A, B]: ¬(  t[A] = v[A]  ∧  t[B] <P v[B]) 
In operational terms this characterizes a grouping of R by 
equal A-values, evaluating for each group Gi of tuples the 
preference query σ[A↔&P](Gi). This motivates the fol-
lowing definition. 

Definition 13 σ[P groupby A](R) 

Given P = (B, <P) and a database preference PR, a prefer-
ence query with grouping σ[P groupby A](R) is defined 
as:   σ[P groupby A](R)  :=  σ[A↔&P](R)  
 

Compared to hard selection queries, preference que-
ries deviate from the logics behind hard selections: Pref-
erence queries behave non-monotonically.  

Example 8     Non-monotonicity of preference queries 

For Cars(Fuel_Economy, Insurance_Rating, Nickname) 
let’s consider:  
    P := HIGHEST(Fuel_Economy) ⊗ 
           HIGHEST(Insurance_Rating), 
We successively evaluate σ[P](Cars) for Cars as follows: 
   Cars = {(100, 3, frog), (50, 3, cat)}:      
 σ[P](Cars) = {(100, 3, frog)} 
   Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark)}:  
 σ[P](Cars) = {(100, 3, frog), (50, 10, shark)} 
   Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark), 
                (100,   10, turtle)}:  
              σ[P](Cars) = {(100, 10, turtle)}                       ☼ 
 

Though we added more and more tuples, the results of 
our preference queries did not exhibit a similar behavior. 
Instead of adapting to the size of Cars, σ[P](Cars) adapt-
ed to the quality of data. The explanation is intuitive: Be-
ing ‘better than’ is not a property of a single value, rather 
it concerns comparisons between pairs of values. There-
fore it is sensitive (holistic) to the quality of a collection 

of values, and not to its sheer quantity. Thus “quality in-
stead of quantity” is the name of the game for BMO. 

5.2.  Decomposition of ‘+’ and ‘♦’-queries 
A key challenge of preference query evaluation is to find 
efficient algorithms for complex preference constructors. 
For the scope of this paper we do not explicitly address 
efficiency issues, instead we provide fundamental decom-
position results that can form the basis for divide-and-
conquer approaches by  preference query optimizers. Our 
main goal here is to decompose Pareto preferences into 
‘+’ and ‘♦’, which in turn can be decomposed further.  

Proposition 6     σ[P1+P2](R)  =  σ[P1](R)  ∩  σ[P2](R) 

Next we need some technical definitions, given P = (A, 
<P) and a database preference PR. 

Definition 14 Nmax(PR),  P↑v,   YY(P1, P2)R 

a) The set of non-maximal values Nmax(PR) is defined 
as:     Nmax(PR)  :=  R[A] − max(PR) 

b) Given v ∈ dom(A), the ‘better than’ set of v in P is 
defined as:     P↑v  := {w ∈ dom(A): v <P w} 

c) YY(P1, P2)R := {t ∈ R : t[A] ∈ Nmax(P1R) ∩ 
                      Nmax(P2R)  ∧  P1↑t[A]  ∩  P2↑t[A]  =  ∅} 

Proposition 7     Decomposition of  ‘♦’-queries  

σ[P1♦P2](R)  =  σ[P1](R)  ∪  σ[P2](R)  ∪ YY(P1, P2)R 

5.3.  Decomposition of ‘&’-queries 

Now we investigate σ[P1&P2](R). Since P1&P2 ≡ P1 for 
shared attributes (Proposition 4 a) we assume A1 ∩ A2 = 
∅. The evaluation of prioritized preference queries can be 
done by grouping. 

Proposition 8     Decomposition of  ‘&’-queries 

   σ[P1&P2](R)  =  σ[P1](R)  ∩  σ[P2 groupby A1](R) 
   
As a corollary, we obtain: 
   σ[P1&P2](R)  =  σ[P2](σ[P1](R)) , if P1 is a chain  
Thus a cascade of preference queries is a special case of a 
prioritized preference query, if P1 is a chain. 

Example 9     Decomposition of a prioritized query 

We assume P1 := make↔ , P2 := AROUND(price, 40000) 
and a database set Cars(make, price, oid): 
  Cars = {(Audi, 40000, 1), (BMW, 35000, 2),  
                (VW, 20000, 3), (BMW, 50000, 4)} 
The informal query “For each make give me best offers 
with a price around 40000” translates into: 
  σ[P1&P2](Cars) = 
  σ[P1](Cars) ∩ σ[P2 groupby make](Cars) = 
  Cars ∩ {(Audi, 40000, 1), (BMW, 35000, 2), 
                (VW, 20000, 3)} = 
  {(Audi, 40000,1), (BMW,35000,2), (VW,20000,3)}    ☼ 



5.4.  Decomposition of ‘⊗’-queries 
Above results pave the ground for the main decomposi-
tion theorem for Pareto preference queries. 

Proposition 9     Decomposition of  ‘⊗’-queries 

    σ[P1⊗P2](R)   = 
        (σ[P1](R) ∩ σ[P2 groupby A1](R))  ∪  
        (σ[P2](R) ∩ σ[P1 groupby A2](R))  ∪ 
        YY(P1&P2, P2&P1)R  
 

This theorem re-enforces also our claim that ‘⊗’ treats 
P1 and P2 as equally important: 

- The first and 2nd term contains all maximal values 
of (P1&P2)R and (P2&P1)R, respectively. 

- The 3rd term contains values that are neither maxi-
mal in (P1&P2)R nor in (P2&P1)R. 

Note that if P1 or P2 is a chain, then cascade of prefer-
ences can be applied, too. 

Example 10     Evaluation of Pareto accumulation 

Let P1 := LOWEST(A), P2 := HIGHEST(A) and R(A) := 
{3, 6, 9}. We compute σ[P1⊗P2](R). From the corollary 
to Proposition 5 and Proposition 3c, f) we can state: 
   σ[P1⊗P2](R)   =  σ[P1♦P2](R)  =  σ[P1♦P1∂](R)  
                            =  σ[A↔](R)  =  R  
To countercheck, since both P1 and P2 are chains 
Proposition 9 specializes as follows: 
   σ[P1⊗P2](R)   =  σ[P2](σ[P1](R))  ∪   σ[P1](σ[P2](R)) 
                                 ∪  YY(P1&P2, P2&P1)R  
                            =  {3} ∪ {9} ∪ YY(P1&P2, P2&P1)R 
We have:   Nmax((P1&P2)R)  ∩  Nmax((P2&P1)R)  =  
                 {6, 9} ∩ {3, 6} = {6}  
Since  P1&P2↑6  ∩  P2&P1↑6  =  {3} ∩ {9} =  ∅, we get 
                 YY(P1&P2, P2&P1)R = {6} 
Thus:        σ[P1⊗P2](R)  =  {3} ∪ {9} ∪ {6} =  R         ☼ 

5.5.  Filter effect of Pareto queries 
Preference queries under BMO avoid both the empty-
result and the flooding effect. On  the other hand, search 
engines with an exact match query model struggle to 
combat those nuisances by offering patches like paramet-
ric search, which is a semi-automatic, repetitive attempt 
of query refinement, or by offering a so-called ‘expert 
mode’, being a Boolean query interface. However, this 
approach is known as inadequate for a long time ([24]). 

We want to study more closely the filter effectiveness 
of preference queries under a BMO semantics. For P = 
(A, <P) let the result size of σ[P](R) be defined as: 
      size(P, R) :=  card(πA(σ[P](R))  =  card(max(PR)) 

Definition 15 Strength of a preference filter 

Given P1 = (A, <P1) and P2 = (A, <P2), P1 is a stronger 
preference filter than P2 (P1→ P2), if: 
        size(P1, R) ≤ size(P2, R).  

Proposition 10   Filter strength of complex preferences 

a) P1+P2 → P1,  P1+P2 → P2 
b) P1 → P1♦P2,  P2 → P1♦P2 
c) P1&P2 → P1 
d) P1&P2 → P1⊗P2, P2&P1 → P1⊗P2 

 
Let’s interpret the filter effect of Pareto accumulation 

in a rough analogy to the Boolean ‘AND/OR’-
programming of search engines using an exact match 
query model. We can state: 

 
   P1⊗P2  ←  P1&P2  →  P1,  P1⊗P2  ←  P2&P1  →  P2 
 

From the point of view of P1 and P2, resp., forming 
P1&P2 and P2&P1 has stronger filter effects, hence re-
sembling ‘AND’ operations in the exact match query mo-
del. Continuing to form P1⊗P2  has a weaker filter effect, 
resembling ‘OR’ operations. Since BMO automatically 
adapts to the quality of a database set R, as a net effect we 
get an automatic ‘AND/OR’-like filter effect of Pareto 
accumulation. Thus BMO takes all this burden from the 
user by automatically finding best-matching answers. 

6.  Practical aspects and related work 
Now we show how our complex preference model fits 
into database and Internet practice.  

6.1.  Integration into SQL and XML 

6.1.1.  Theoretical foundations 

Declarative query languages under an exact query model, 
which includes object-relational SQL databases and XML 
databases, can be extended compatibly by strict partial 
order preferences under a BMO query model. The theory 
of subsumption lattices ([14, 20]), developed in the con-
text of Datalog_S, provides the formal backbone, guaran-
teeing both the existence of a model theory and of a corre-
sponding fixpoint theory. 

6.1.2.  Preference SQL 

Preference SQL (for details see [15]), whose product re-
lease was available already in 1999, has been the first 
instance of an extension of SQL by preferences as strict 
partial orders. It implements a plug-and-go application 
integration by a clever rewriting of Preference SQL que-
ries into SQL92-compliant code. Preference SQL is in 
commercial use as Preference Search cartridge for Inter-
shop e-commerce platforms. The preference model im-
plemented covers all previous base preference construc-
tors, Pareto accumulation  and cascading. Practical bench-
marks showed that typical result sizes of Pareto 
preferences under BMO query semantics ranged from a 
few to a few dozens, which is exactly what’s required in 
shopping situations ([16, 18]). 



6.1.3.  Preference XPATH 

Preference XPATH ([17]) is a query language to build 
personalized query engines in XML environments. It can 
be applied in other XML key technologies like XSLT, 
Xpointer or Xquery. XPATH is extended as follows:  
The production 
  LocationStep: axis nodetest predicate* 
is upgraded as:  
  LocationStep: axis 
        nodetest(predicate|preference)* 
To delimit a hard selection (i.e. predicate) XPATH 
uses ‘[‘ and ‘]‘. For soft selections (i.e. preference) 
‘#[’ and ‘]#’ are used. Here is a sample query: 
  /CARS/CAR  
    #[ (@fuel_economy)highest and 
      (@mileage)lowest prior to 
      (@color)in("black", "white")and 
      (@price)around 10000 ]# 
The equivalent preference term is as follows: 
  (HIGHEST(fuel_economy)⊗ LOWEST(mileage)) & 
  (POS(color, {black, white}) ⊗ AROUND(price, 10000)) 

6.1.4.  The ‘SKYLINE OF’ clause 

The ‘SKYLINE OF’ clause for SQL proposed in [4] is a 
restricted form of Pareto accumulation 
       P = P1 ⊗ P2 ⊗ … ⊗ Pn, 
where each Pi must be a  LOWEST or  HIGHEST prefer-
ence, hence a chain. Efficient evaluation algorithms have 
been given in [4] and [22]. 

6.2.  The ranked query model 
Soft constraints in the form of numerical preferences are 
in use today in many database and information retrieval 
applications.  In our model this amounts to preferences 
      P = rankF(SCORE(A1, f1), …, SCORE(An, fn)). 

Since rankF often yields chain preferences, a BMO 
query semantics would return exactly one best-matching 
object. This is a too small set to choose from in general. 
To get more alternative choices, the “top-k” query model 
is applied, returning k best-matching objects. This may 
amount to retrieve some non-maximal objects, too. 

One use is in multi-feature query engines, e.g. to 
support queries by image content on color, texture or 
shape. There is already the SQL/MM proposal for incor-
porating ranked multi-feature queries into SQL. Efficient 
algorithms (see e.g. [10, 7]) can be used to speed up the 
computation of rankF under the “top-k” semantics. The 
PREFER system ([11]) is an instance of this ranked query 
model, too. 

Another area are full-text search engines, where 
keywords can be understood as implicit SCORE prefer-
ences indicating their relevance. The combining function 
F for rankF is typically some scalar product using the co-
sine function, if the vector space model from information 
retrieval is used. SQL has been extended by text car-

tridges (extenders), implementing a top-k query model. 
The XXL prototype of [23] implements the top-k seman-
tics in the XML context. 

6.3.   Other frameworks 
The framework of Agrawal / Wimmers ([2]) falls some-
how between the implementations of Preference 
SQL/XPATH and that of ranked query models. To ex-
press an ‘I like x better than y’ semantics SCORE prefer-
ences are used as base preference constructors, requiring 
that suitable numerical scores must be readily at hand. As 
a preference constructor so-called combining forms are 
provided, which have a closure property. In this way pri-
oritization ‘&’ and numerical ranking ‘rankF’ can be pro-
grammed. However, no declarative semantics of prefer-
ence queries was given. Obviously the BMO query model 
can be a proper candidate, which can provide guidelines 
for an efficient implementation on top of a relational sys-
tem (which was left as an open research issue). 

The framework of Chomicki ([5]) emphasizes the view 
of preferences as strict partial orders, too, but defines 
preferences more generally as arbitrary logical formulas. 
He studies various classes of such formulas (intrin-
sic/extrinsic etc.) including prioritization as one prefer-
ence constructor, but no Pareto preferences. The seman-
tics of his winnow-operator coincides with our BMO 
query model. An embedding of preferences into relational 
query languages is proposed, but no practical implementa-
tions like Preference SQL / XPATH are given. 

7.  Summary and outlook 
We presented a rich preference model tailored for data-
base systems. Preferences as strict partial orders have an 
intuitive semantics; they may be subjective from daily life 
experiences, driven by personal intentions, or due to tech-
nical constraints. Our extensible preference model both 
unifies and extends existing approaches for non-numerical 
and numerical ranking and opens the door for a new dis-
cipline called preference engineering. Preferences as strict 
partial orders possess a Spartan formal basis being the key 
for a preference algebra, where many laws are valid that 
are valuable for preference query optimizers. We defined 
the declarative semantics of preference queries under the 
BMO query model, which can cope with the notorious 
empty-result and flooding problems of search engines. 
We also presented fundamental decomposition theorems 
for non-monotonic preference queries. Various portions of 
the presented preference model have already been proto-
typed or are in commercial use. Beyond the scope of this 
paper is the issue of efficiency of preference query 
evaluation, but [15] addresses several practical aspects. 

There are new challenging research issues that can 
now be tackled. For preference engineering the tradeoffs 
between numerical ranking and non-numerical prefer-
ences are to be explored. From a user modeling perspec-
tive a plurality of preference constructors looks nice. 



Whatever the choice is, a smooth integration of prefer-
ences into E/R- or UML modeling is highly desirable. On 
the other hand, a system implementor might prefer a lean 
choice, in the extreme case only rankF and SCORE pref-
erences. However, the discussion on preference sub-
constructor hierarchies showed that this is infeasible in 
general. Anyhow, due to the object-oriented taxonomy of 
preference hierarchies, more efficient sub-constructor 
implementations can be integrated easily on demand. An-
other area of increasing importance is preference mining. 
In particular for numerical preferences the issue of “where 
do all the numbers come from” matters a lot. The vastly 
increased preference modeling capabilities pose new chal-
lenges for mining algorithms from query log files, too. 

Current preference research under the motto ‘It’s a 
Preference World’ at the University of Augsburg includes 
the following projects: P-NEWS (funded by the German 
Research Society DFG) applies preference engineering to 
a digital library application. COSIMA2 ([8], funded by 
the Bavarian Research Partnership FORSIP) investigates 
preference-based e-negotiation. Moreover, a preference 
query optimizer, exploiting our preference algebra and 
decomposition theorems, is being developed. 
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