
Foundations of Preferences in Database Systems

Werner Kießling

Institute of Computer Science
University of Augsburg

D-86159 Augsburg, Germany
 kiessling@informatik.uni-augsburg.de

Abstract

Personalization of e-services poses new chal-
lenges to database technology, demanding a
powerful and flexible modeling technique for
complex preferences. Preference queries have to
be answered cooperatively by treating prefer-
ences as soft constraints, attempting a best possi-
ble match-making. We propose a strict partial
order semantics for preferences, which closely
matches people’s intuition. A variety of natural
and of sophisticated preferences are covered by
this model. We show how to inductively con-
struct complex preferences by means of various
preference constructors. This model is the key to
a new discipline called preference engineering
and to a preference algebra. Given the Best-
Matches-Only (BMO) query model we investi-
gate how complex preference queries can be de-
composed into simpler ones, preparing the
ground for divide & conquer algorithms. Stan-
dard SQL and XPATH can be extended seam-
lessly by such preferences (presented in detail in
the companion paper [15]). We believe that this
model is appropriate to extend database technol-
ogy towards effective support of personalization.

1. Introduction
Preferences are everywhere in all our daily and business
lives. Recently they are catching wide-spread attention in
the software community ([1]), in particular in terms of
personalization for e-services. Thus it becomes also a
challenge for database technology to adequately cope with

the many sophisticated aspects of preferences. Personal-
ization has different facets: There is the ‘exact world’,
where user wishes can be satisfied completely or not at
all. In this scenario user options are restricted to a pre-
defined set of fixed choices, e.g. for software configura-
tions according to user profiles. Database queries in this
context are characterized by hard constraints, delivering
exactly the dream objects if they are there and otherwise
reject the user’s request. But there is also the ‘real world’,
where personal preferences behave quite differently. Such
preferences are understood in the sense of wishes: Wishes
are free, but there is no guarantee that they can be satis-
fied at all times. In case of failure for a perfect match
people are not always, but usually prepared to accept
worse alternatives or to negotiate compromises. Thus
preferences in the real world require a paradigm shift
from exact matches towards a best possible match-
making, i.e. preferences are to be treated as soft con-
straints. Moreover, preferences in the real world cannot
be treated in isolation. Instead there may be multi-criteria
decision situations where even multiple interested parties
are involved, e.g. in e-shopping where e-customers and e-
vendors have their own, maybe conflicting preferences.
For a truly pervasive role of personalization these consid-
erations suggest that database query languages should
support both worlds. But whereas the exact-match para-
digm been investigated in the database and Web context
already by large amounts, leading to a bundle of success-
ful technologies (e.g. SQL, E/R-modeling, XML), the
paradigm of preference-driven choices in the real world is
lagging behind.

Let us exemplify the unsatisfying state of the art by
looking at those many SQL-based search engines of e-
shops, which cannot cope adequately with real user pref-
erences: All too often no or no reasonable answer is re-
turned though one has tried hard filling out query forms to
match one’s personal preferences closely. Most probably,
one has encountered answers before sounding like “no
hotels, vehicles, flights, etc. could be found that matched
your criteria; please try again with different choices”. The
case of repeatedly receiving empty query results turns out
to be extremely disappointing to the user, and it is even

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

mailto:Email@small.medium.large

more harmful for the e-merchant. Dictating the user to
leave some entries in the query form unspecified often
leads to another unpleasant extreme: an overloading with
lots of mostly irrelevant information. There have been
some approaches to cope with these deficiencies, notably
in the context of cooperative database systems ([9, 21]).
There the technique of query relaxation has been studied
in order to deal with the empty result problem. Since
many decades preferences have also played a big role in
the economic and social sciences, in particular for multi-
attribute decision-making in operations research ([3, 12]).
Machine learning and knowledge discovery ([19]) are
further areas where preferences are under investigation.
Each of these approaches and lines of research has ex-
plored some of the challenges put by preferences.

However, a comprehensive solution that paves the
way for a smooth and efficient integration of preferences
with database technology has not yet been published. We
think that a viable preference model for database systems
should meet the following list of desiderata:

(1) An intuitive semantics: Preferences must become first
class citizens in the modeling process. This demands an
intuitive understanding and declarative specification of
preferences. A universal preference model should cover
non-numerical as well as numerical ranking methods.
(2) A concise mathematical foundation: This requirement
goes without saying, but of course the mathematical foun-
dation must harmonize with the intuitive semantics.
(3) A constructive and extensible preference model: Com-
plex preferences should be built up inductively from sim-
pler ones using an extensible repertoire of preference con-
structors.
(4) Conflicts of preferences must not cause a system fail-
ure: Dynamic composition of complex preferences must
be supported even in the presence of conflicts. A practical
preference model should be able to live with conflicts, not
to prohibit them or to fail if they occur.
(5) Declarative preference query languages: Match-
making in the real world means bridging the gap between
wishes and reality. This implies the need for a new query
model other than the exact match model of declarative
database query languages.

Preference SQL (for details see [15]) and Preference

XPATH ([17]) are representatives of the latter. A novel
PREFERRING-clause allows the user to conveniently
specify soft constraints reflecting complex preferences.
For motivation consider this Preference SQL query:

SELECT * FROM used_cars
WHERE make = 'Opel'
PREFERRING(category = 'cabrio' ELSE
 category = 'roadster')
 AND price AROUND 40000
 AND HIGHEST(power)
 AND mileage BETWEEN 20000, 30000;

The rest of this paper is organized as follows: Sect. 2
introduces the basics of preferences as strict partial orders.
In Sect. 3 we present a powerful preference model as the
key to preference engineering. Sect. 4 is concerned with
the development of a preference algebra. Sect. 5 investi-
gates issues of preference queries under the BMO query
model and provides decomposition algorithms for com-
plex preference queries. Practical aspects and related
work are covered in Sect. 6. Sect. 7 summarizes our re-
sults and outlines ongoing work. All proofs are omitted
here, but can be found in the extended version ([13]).

2. Preferences as strict partial orders
Preferences in the real world show up in different forms
as everybody is aware of. A careful examination of their
nature reveals that they share a fundamental common
principle. Let’s examine the daily life with its abundance
of preferences coming from subjective feelings or other
influences. In this familiar setting it turns out that people
express their wishes frequently in terms like “I like A
better than B“. This kind of preference modeling is uni-
versally applied and intuitively understood by everybody.
In fact, every child learns to apply it from its earliest
youth. Thinking of preferences in terms of ‘better-than’
has a very natural counterpart in mathematics: One can
map them directly onto strict partial orders. People are
intuitively used to deal with such preferences, in particu-
lar with those that are not expressed in terms of numerical
scores. But there is also another part of real life which
primarily is concerned with sophisticated economical or
technical issues, where numbers do matter. One can easily
recognize that numerical ranking can be subsumed under
this semantics, too. Thus modeling preferences as strict
partial orders holds great promises, which of course has
been recognized at various opportunities in computer sci-
ence and other disciplines before. Here this key finding
receives our undivided attention.

A preference is formulated on a set of attribute names
with an associated domain of values, which figuratively
speaking is the ‘realm of wishes’. When combining pref-
erences P1 and P2, we decide that P1 and P2 may overlap
on their attributes, allowing multiple preferences to coex-
ist on the same attributes. This generality is due to our
design principle that conflicts of preferences must be al-
lowed in practice and must not be considered as a bug.

Let A = {A1, A2, …, Ak} denote a non-empty set of at-
tribute names Ai associated with domains of values
dom(Ai). Considering the order of components within a
Cartesian product as irrelevant, we define:
 dom(A) = dom({A1, A2, … , Ak})

 := dom(A1) × dom(A2) × … × dom(Ak)
Note that this definition includes, e.g., the following:
 If B = {A1, A2} and C = {A2, A3},
 then dom(B ∪ C) = dom({A1, A2} ∪ {A2, A3})
 = dom(A1) × dom(A2) × dom(A3).

Definition 1 Preference P = (A, <P)

Given a set A of attribute names, a preference P is a strict
partial order P = (A, <P), where <P ⊆ dom(A) × dom(A).

Thus <P is irreflexive and transitive (which imply
asymmetry). Important is this intended interpretation:
 “x <P y” is interpreted as “I like y better than x”.

Further: range(<P) := {x ∈ dom(A) | ∃y ∈ dom(A):
 (x, y) ∈ <P or (y, x) ∈ <P}.

Since preferences reflect important aspects of the real
world a good visual representation is essential.

Definition 2 Better-than graph, quality notions

In finite domains a preference P can be drawn as a di-
rected acyclic graph G, called the ‘better-than’ graph of
P.1 Given G for P we define the following quality notions
between values x, y in G:

- x <P y, if y is predecessor of x in G.
- Values in G without a predecessor are maximal ele-

ments of P (max(P)), being at level 1.
- x is on level j, if the longest path from x to a maxi-

mal value has j-1 edges.
- If there is no directed path between x and y in G,

then x and y are unranked.

Definition 3 Special cases of preferences

a) P = (A, <P) is a chain preference, if for all x, y ∈
dom(A), x ≠ y: x <P y ∨ y <P x

b) S↔ = (S, ∅) is called anti-chain preference, given
any set of values S.

c) The dual preference Pδ = (A, <Pδ) reverses the order
on P: x <P∂ y iff y <P x

d) Given P = (A, <P), every S ⊆ dom(A) induces a sub-
set preference P⊆ = (S, <P⊆) , if for any x, y ∈ S:

 x <P⊆ y iff x <P y

Thus all values x of a chain preference P (also called

total order) are ranked to all other values y. Any set S,
including dom(A), can be converted into an anti-chain.
Special subset preferences, called database preferences,
will become important later on.

3. Preference engineering
Complex wishes are abundant in daily private and busi-
ness life, even those concerning several attributes. Thus
there is a high demand for a powerful and orthogonal
framework that supports the accumulation of single pref-
erences into more complex ones. We present an inductive
approach towards constructing complex preferences. This
model will be the key towards a systematic preference
engineering and for a preference algebra.

1 ‘Better-than’ graphs are also known as Hasse diagrams ([6]).

3.1. Inductive construction of preferences
The goal is to provide intuitive and convenient ways to
inductively construct a preference P = (A, <P). To this
end we specify P by a so-called preference term which
fixes the attribute names A and the strict partial order <P.
We distinguish between base preferences (our atomic
preference terms) and compound preferences. Since each
preference term represents a strict partial order (which
becomes clear later on), we identify it with a preference P.

Definition 4 Preference term

Given preference terms P1 and P2, P is a preference term
iff P is one of the following:
(1) Any base preference: P := baseprefi.
(2) Any subset preference: P := P1⊆
(3) Any dual preference: P := P1∂
(4) Any complex preference P gained by applying one

of the following preference constructors:
• Accumulating preference constructors:

- Pareto accumulation: P := P1 ⊗ P2
- Prioritized accumulation: P := P1 & P2
- Numerical accumulation: P := rankF(P1, P2)

• Aggregating preference constructors:
- Intersection aggregation: P := P1 ♦ P2
- Disjoint union aggregation: P := P1 + P2
- Linear sum aggregation: P := P1 ⊕ P2

Both the set of base preferences and the set of com-

plex preference constructors can be enlarged whenever
the application domain at hand has a frequent demand.

3.2. Base preference constructors
Important from a preference engineering point is that we
can provide base preference constructors, which in fact
are preference templates, whose proper instantiations
yield base preferences. Practical experiences from [15]
showed that the following repertoire is highly valuable for
constructing powerful personalized search engines.

Formally, a base preference constructor has one or
more arguments, the first characterizing the attribute
names A and the others the strict partial order <P, refer-
ring to A. We will provide both a formal and an intuitive
definition together with a motivating example within a
fictitious used_car application scenario.

3.2.1. Non-numerical base preferences

a) POS preference: POS(A, POS-set)
P is a POS preference, if:

 x <P y iff x∉ POS-set ∧ y ∈ POS-set
A desired value should be in a finite set of favorites
POS-set ⊆ dom(A). If this infeasible, better than get-
ting nothing any other value from dom(A) is accept-
able. (This implies that all v ∈ POS-set are maximal,
all v∉ POS-set are at level 2 and worse than all POS-
set values.)

Used_car scenario:
 POS(transmission, {automatic})

b) NEG preference: NEG(A, NEG-set)

P is a NEG preference, if:
 x <P y iff y∉ NEG-set ∧ x ∈ NEG-set

A desired value should not be any from a finite set
NEG-set of dislikes. If this is infeasible, any disliked
value is acceptable. (This implies that all v∉ NEG-set
are maximal, all v ∈ NEG-set are at level 2 and worse
than all maximal values.)

Used_car scenario: NEG(make, {Ferrari})

c) POS/NEG preference: POS/NEG(A, POS-set;

NEG-set)
P is called POS/NEG preference, if:
x <P y iff (x ∈ NEG-set ∧ y∉ NEG-set) ∨

 (x ∉ NEG-set ∧ x ∉ POS-set ∧ y ∈ POS-set)
A desired value should be one from a finite set of
favorites. Otherwise it should not be any from a finite
set of disjoint dislikes. If this is not feasible too, better
than getting nothing any disliked value is acceptable.

Used_car scenario:
 POS/NEG(color, {yellow};{gray})

d) POS/POS preference: POS/POS(A, POS1-set;

POS2-set)
P is called POS/POS preference, if:
x <P y iff (x ∈ POS2-set ∧ y ∈ POS1-set) ∨

 (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS2-set) ∨
 (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS1-set)

A desired value should be amongst a finite set POS1-
set. Otherwise it should be from a disjoint finite set of
alternatives POS2-set. If this is not feasible too, better
than getting nothing any other value is acceptable.

Used_car scenario:
 POS/POS(category,{cabrio};{roadster})

Any finite preference can be “handcrafted” by explic-
itly enumerating ‘better-than’ relationships.

e) EXPLICIT preference: EXP(A, E-graph)

Let E-graph = {(val1, val2), … } represent a finite
acyclic ‘better-than’ graph, V be the set of all vali oc-
curring in E-graph. A strict partial order E = (V, <E) is
induced as follows:

- (vali, valj) ∈ E-graph implies vali <E valj
- vali <E valj ∧ valj <E valk imply vali <E valk

 P is an EXPLICIT preference, if:
 x <P y iff x <E y ∨ (x ∉ range(<E) ∧ y ∈ range(<E))
Used_car scenario:
 EXP(color, {(green, yellow),
 (green, red), (yellow, white)})

Given dom(Color) = {white, red, yellow, green, brown,
black}, the ‘better-than’ graph is this:

 white red level 1 (maximal values)

 yellow level 2

 green level 3

 brown black level 4 (other values)

3.2.2. Numerical base preferences

Now we focus on P = (A, <P), where dom(A) is some
numerical data type, e.g. Decimal or Date, supporting a
total comparison operator ‘<’ and a subtraction operator
‘−’. Instead of the discrete level function above, we em-
ploy continuous distance functions defined on ‘<’ and ‘−’.

a) AROUND preference: AROUND(A, z)

Given z ∈ dom(A), for all v ∈ dom(A) we define:
 distance(v, z) := abs(v − z)

 P is called AROUND preference, if:
 x <P y iff distance(x, z) > distance(y, z)

The desired value should be z. If this is infeasible,
values with shortest distance apart from z are accept-
able.

Used_car scenario: AROUND(price, 40000)
Note that if distance(x, z) = distance(y, z) and x ≠ y,

then x and y are unranked.

b) BETWEEN preference: BETWEEN(A, [low, up])

Given [low, up] ∈ dom(A) × dom(A), we define for
all v ∈ dom(A):

 distance(v, [low, up]) :=
 if v ∈ [low, up] then 0 else
 if v < low then low − v else v − up
 P is called BETWEEN preference, if: x <P y iff

 distance(x, [low, up]) > distance(y, [low, up])
A desired value should be between the bounds of an
interval. If this is infeasible, values with shortest dis-
tance apart from the interval boundaries will be ac-
ceptable.

Used_car scenario:
 BETWEEN(mileage, [20000, 30000])

c) LOWEST, HIGHEST preference: LOWEST(A),

HIGHEST(A)
 P is called LOWEST preference, if: x <P y iff x > y
 P is called HIGHEST preference, if: x <P y iff x < y

A desired value should be as low (high) as possible.
Used_car scenario: HIGHEST(power)
Note: LOWEST and HIGHEST preferences are chains.

Now let’s revisit our introductory Preference SQL
query. The preference term in the PREFERRING-clause
specifies a Pareto accumulation as follows:

POS/POS(category,{cabrio};{roadster})⊗
AROUND(price,40000) ⊗ HIGHEST(power) ⊗
BETWEEN(mileage,[20000, 30000])

d) SCORE preference: SCORE(A, f)

We assume a scoring function f: dom(A) → ℝ. Let ‘<’
be the familiar ‘less-than’ order on ℝ.
P is called SCORE preference, if for x, y ∈ dom(A):
 x <P y iff f(x) < f(y)
In general no intuitive interpretation is available.

3.3. Complex preference constructors
The true power of preference modeling comes with the
advent of complex preference constructors.

3.3.1. Accumulating preference constructors

Accumulating preference constructors (‘⊗’, ‘&’, ‘rankF’)
combine preferences which may come from one or sev-
eral parties. The Pareto-optimality principle has been
studied intensively for multi-attribute decision problems
in the social and economic sciences. Here we define it for
n = 2 preferences (generalizing it to n > 2 is obvious).

Definition 5 Pareto preference: P1⊗P2

P1 and P2 are considered as equally important prefer-
ences. In order for x = (x1, x2) to being better than y = (y1,
y2), it is not tolerable that x is worse than y in any xi:
Given P1 = (A1, <P1) and P2 = (A2, <P2), for x, y ∈
dom(A1) × dom(A2) we define:
 x <P1⊗P2 y iff (x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨

 (x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

P = (A1 ∪ A2, <P1⊗P2) is called Pareto preference2.
The maximal values of P are the Pareto-optimal set.

Example 1 Pareto preference (disjoint attrib. names)

For dom(A1) = dom(A2) = dom(A3) = integer and
 P1 := AROUND(A1, 0),
 P2 := LOWEST(A2), P3 := HIGHEST(A3)
 P4 = ({A1, A2, A3}, <P4) := (P1 ⊗ P2) ⊗ P3
let’s study a subset preference of P4 for the following set:
 R(A1, A2, A3) = {val1: (−5, 3, 4), val2: (−5, 4, 4),
 val3: (5, 1, 8), val4: (5, 6, 6), val5: (−6, 0, 6),
 val6: (−6, 0, 4), val7: (6, 2, 7)}

The ‘better-than’ graph of P4 for subset R can e.g. be ob-
tained by performing exhaustive ‘better-than’ checks:

 Level 1: val1 val3 val5

 Level 2: val2 val4 val7 val6

2 Being a strict variant of the coordinate-wise order of Cartesian
products ([6]), P is a strict partial order.

Thus the Pareto-optimal set is {val1, val3, val5}. Note
that for each of P1, P2 and P3 at least one maximal value
appears in the Pareto-optimal set: 5 and −5 for P1, 0 for
P2 and 8 for P3. ☼

Example 2 Pareto preference (shared attribute names)

 P5 := POS(Color, {green, yellow}),
 P6 := NEG(Color, {red, green, blue, purple}),
 P7 = (Color, <P7) := P5⊗P6,
 S := {red, green, yellow, blue, black, purple}.
The ‘better-than’ graph of P7 for subset S is this:

 Level 1: yellow green black

 Level 2: red blue purple

Note that P5 and P6 agreed both on ‘yellow’ being maxi-
mal, whereas only P5 ranked ‘green’ as maximal and only
P6 ranked ‘black’ as maximal. The result in P7 is a non-
discriminating compromise of both views. ☼

Definition 6 Prioritized preference: P1&P2

P1 is considered more important than P2; P2 is respected
only where P1 does not mind:
Given P1 = (A1, <P1) and P2 = (A2, <P2), for x, y ∈
dom(A1) × dom(A2) we define:
 x <P1&P2 y iff x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2)

P = (A1∪A2, <P1&P2) is a prioritized preference.3

Example 3 Prioritization (disjoint attribute names)

Let’s revisit Example 1, now studying:
 P8 = ({A1, A2}, <P8) := P1&P2
The ‘better-than’ graph of P8 for subset R is this:

 Level 1: val1 val3

 Level 2: val2 val4

 Level 3: val5 val6 val7 ☼

Numerical preferences build on SCORE preferences.
The individual scores are accumulated into an overall
score by applying a multi-attribute combining function F.
We define it for n = 2; generalizing it to n > 2 is obvious.
An intuitive interpretation is not available in general.

Definition 7 Numerical preference: rankF(P1, P2)

Given P1 = SCORE(A1, f1), P2 = SCORE(A2, f2) and a
combining function F: ℝ × ℝ → ℝ, for x, y ∈ dom(A1) ×
dom(A2) we define: x <rankF(P1, P2) y iff
 F(f1(x1), f2(x2)) < F(f1(y1), f2(y2))

3 It is a strict variant of the lexicographic order of Cartesian
products ([6]), hence a strict partial order.

P = (A1∪A2, <rankF(P1, P2)) is a numerical preference.

Note that rankF is not an orthogonal preference con-

structor like ⊗ or &. It can only be applied to SCORE
preferences. But vice versa, numerical preferences can be
used as input to all other preference constructors.

Example 4 Numerical preference (F as weighted sum)

 P1 := SCORE(A1: Integer, f1), f1(x) := distance(x, 0)
 P2 := SCORE(A2: Integer, f2), f2(x) := distance(x, −2)
 P3 := rankF(P1, P2), F(x1, x2) := x1 + 2 ∗ x2
 R(A1, A2) := {val1: (−5, 3), val2: (−5, 4), val3: (5, 1),
 val4: (5, 6), val5: (−6, 0), val6 : (−6, 0)}
We evaluate f1 and f2 into a set Rankings, containing for
each value of R its score vector for f1, f2 together with its
combined F-ranking:
 Rankings = {val1: ((5, 5), 15), val2: ((5, 6), 17),
 val3: ((5, 3), 11), val4: ((5, 8), 21),
 val5: ((6, 2), 10), val6: ((6, 2), 10)}
The ‘better-than’ graph of P3 for subset R is not a chain:
 val4 → val2 → val1→ val3→ {val5, val6}
Observe that the maximal f1-value being 6 does not show
up in the top performer val4, having scores (5, 8). In some
sense this is like discriminating against P1. ☼

3.3.2. Aggregating preference constructors

Aggregating preference constructors (♦, +, ⊕) pursue a
different, technical purpose. Intersection ‘♦’ and disjoint
union ‘+’ assemble a preference P from separate pieces
P1, P2, …, Pn, all acting on the same set of attributes. Vice
versa, we will see later on how complex preferences can
be decomposed into ‘♦’ and ‘+’.

Let’s call P1 = (A1, <P1) and P2 = (A2, <P2) disjoint
preferences, if range(<P1) ∩ range(<P2) = ∅.

Definition 8 Intersection, disjoint union preference

Assume P1 = (A, <P1) and P2 = (A, <P2).
a) P = (A, < P1♦P2) is an intersection preference, if:
 x <P1♦P2 y iff x <P1 y ∧ x <P2 y
b) Given disjoint preferences P1 and P2, P = (A,

<P1+P2) is called disjoint union preference, if:
x <P1+P2 y iff x <P1 y ∨ x <P2 y

Definition 9 Linear sum preference

Assume P1 = (A1, <P1), P2 = (A2, <P2) for single attrib-
utes A1 ≠ A2 and dom(A1) ∩ dom(A2) = ∅. Then P1 and
P2 are disjoint preferences. For a new attribute name A let
dom(A) := dom(A1) ∪ dom(A2).
Then P = (A, <P1⊕P2) is a linear sum preference, if:
 x <P1⊕P2 y iff x <P1 y ∨ x <P2 y ∨
 (x ∈ dom(A2) ∧ y ∈ dom(A1))

Linear sum ‘⊕’ can be viewed as a convenient design
and proof method for base preference constructors. With
the proper notion of ‘other-values’ we can state:

A POS-preference is the linear sum of the anti-chain on
the POS-set with the anti-chain on the other values:
 POS = POS-set↔ ⊕ other-values↔
Similarly we observe that:
 POS/NEG = (POS-set↔ ⊕ other-values↔) ⊕ NEG-set↔
 POS/POS = (POS1-set↔ ⊕ POS2-set↔) ⊕ other-values↔
 EXPLICIT = E ⊕ other-values↔

At this point we can summarize all results stated so far
as follows, referring back to Definition 4:

Proposition 1

Each preference term defines a strict partial order
preference.

This theorem gives us the grand freedom to flexibly
combine multiple preferences according to the specific
requirements in an application situation. Let’s coin the
notion of preference engineering and demonstrate its po-
tentials by a typical scenario from B2C e-commerce.

Example 5 Preference engineering scenario

Suppose that Julia wants to buy a used car for herself and
her friend Leslie. Contemplating about her personal cus-
tomer preferences, she comes up with this wish list:
 P1 := POS/POS(category, {cabrio};{roadster})
 P2 := POS(transmission,{automatic})
 P3 := AROUND(horsepower, 100)
 P4 := LOWEST(price), P5 := NEG(color, {gray})
Then Julia decides about the relative importance of these
single preferences:
 Q1 = ({color, category, transmission, horsepower,
 price}, <Q1) := P5 & ((P1 ⊗ P2 ⊗ P3) & P4)
Julia communicates her wish list Q1 to her car dealer Mi-
chael, who adds domain knowledge P6 about cars:
 P6 := HIGHEST(year-of-construction)
Any piece of ontological knowledge can be entered at this
stage. Because also vendors have their preferences, of
course, Michael has another preference P7 of its own:
 P7 := HIGHEST(commission)
Since Michael is a fair play guy, the query he is going to
issue against his used car database is this:
 Q2 = ({color, category, transmission, horsepower,
 price, year-of-construction, commission}, <Q2)
 := (Q1 & P6) & P7 =
 ((P5 & ((P1 ⊗ P2 ⊗ P3) & P4)) & P6) & P7
Note that when mixing customer with vendor preferences
Michael had not to worry that potential conflicts would
crash his used car e-shop. Just before Michael queries his
car database against Q2 Leslie enters the scene. A discus-
sion with Julia reveals that she has a different color taste:
 P8 := POS/NEG(color, {blue};{gray, red})
In addition, Leslie convinces Julia that money should mat-
ter as much as color. Consequently, Q1 adapted to these
new preferences reads as follows:
 Q1* = ({color, category, transmission, horsepower,
 price}, <Q1) := (P5⊗P8⊗P4) & (P1⊗P2⊗P3)

Finally Michael poses Q2* … and the story might end that
everybody is happy with the result. ☼

3.4. Preference hierarchies
Preference constructors C1 and C2 can be arranged in
hierarchies. We call C1 a preference sub-constructor of
C2 (C1 < C2), if the definition of C1 can be gained from
the definition of C2 by some specializing constraints.

• Hierarchy of non-num. base preference constructors:
- POS/POS < EXPLICIT,
 if E-graph = (POS1-set)↔ ⊕ (POS2-set) ↔
- POS < POS/POS, if POS2-set = ∅
- POS < POS/NEG, if NEG-set = ∅
- NEG < POS/NEG, if POS-set = ∅

• Hierarchy of numerical base preference constructors:
(‘N’ means ‘numeric’)

- BETWEEN < SCORE,
 if A is ‘N’ and f(x) = − distance(x, [low, up])
- AROUND < BETWEEN, if low = up
- HIGHEST < SCORE, if A is ‘N’ and f(x) = x
- LOWEST < SCORE, if A is ‘N’ and f(x) = −x

 POS/NEG EXPLICIT SCORE

 NEG POS/POS BETWEEN LOWEST HIGHEST

POS AROUND

• Hierarchy of complex preference constructors:
- ‘♦’ < ‘⊗’
- Due to [5] not every preference constructor can

be formulated as a sub-constructor of ‘rankF’.

Since we have specialization by constraints, sub-

constructor hierarchies are taxonomic. Besides the usual
advantages for object-oriented software engineering this
also economizes proof efforts: Strict partial order seman-
tics must be verified only for top-level preference con-
structors. Further we assume the principle of constructor
substitutability, i.e. instead of a requested constructor also
a sub-constructor can be supplied. For instance, rankF(P1,
P2) requires that P1 and P2 are SCORE preferences. In-
stead, we can e.g. also supply preferences P1 and P2 con-
structed by AROUND and HIGHEST, respectively.

4. A preference algebra
Hard constraints are formulated by first order logic for-
mulas, which can be manipulated by Boolean algebra. On
the other hand preferences, represented by preference
terms, are used to express soft constraints. Therefore it is
desirable to develop a preference algebra that can prove
laws amongst preference terms. The subsequent studies
will also strengthen our previous propositions about the

intuitive semantics of preference constructors. First we
need a notion of equivalence of preference terms.

Definition 10 Equivalence of preference terms

P1 = (A, <P1) and P2 = (A, <P2) are equivalent (P1 ≡
P2), if for all x and y ∈ dom(A): x <P1 y iff x <P2 y

If P1 ≡ P2, then the preference terms P1 and P2 can be
syntactically different, but the preferences represented by
P1 and P2, resp., are actually the same.

4.1. A collection of algebraic laws
The next proposition is covered already by [6].

Proposition 2 Commutative and associative laws

a) P1 ⊗ P2 ≡ P2 ⊗ P1
(P1 ⊗ P2) ⊗ P3 ≡ P1 ⊗ (P2 ⊗ P3)

b) (P1 & P2) & P3 ≡ P1 & (P2 & P3)
c) P1♦ P2 ≡ P2 ♦ P1

(P1♦ P2)♦ P3 ≡ P1♦ (P2 ♦ P3)
d) P1 + P2 ≡ P2 + P1

(P1 + P2) + P3 ≡ P1 + (P2 + P3)
e) (P1 ⊕ P2) ⊕ P3 ≡ P1 ⊕ (P2 ⊕ P3)

Proposition 3 Further laws for preference terms

a) (S↔)∂ ≡ S↔ for any set S , (P∂)∂ ≡ P
b) (P1⊕ P2)∂ ≡ P2∂ ⊕ P1∂
c) HIGHEST ≡ LOWEST∂
d) POS∂ ≡ NEG,

NEG∂ ≡ POS if POS-set = NEG-set
e) P ♦ P ≡ P
f) P ♦ Pδ ≡ P ♦ A↔ ≡ A↔ if P = (A, <P)
g) If P1 and P2 are chains, then

P1 & P2 and P2 & P1 are chains.
h) P & P ≡ P & P∂ ≡ P
i) P & A↔

 ≡ P if P = (A, <P)
j) A↔ & P ≡ A↔ if P = (A, <P)
k) P ⊗ P ≡ P, A↔ ⊗ P ≡ A↔ & P
l) P ⊗ A↔ ≡ P ⊗ P∂ ≡ A↔ if P = (A, <P)

These laws match our intuitive semantic expectations.

E.g., let’s pick P ⊗ P∂ ≡ A↔: Since P and P∂ are equally
important, in case of conflicts for values x and y none of
them prevails, instead x and y remain unranked. Since P
and P∂ are in conflict everywhere, the full domain be-
comes unranked, hence the anti-chain A↔.

4.2. Decomposition of ‘&’ and ‘⊗’
The following “discrimination” theorem reflects the intui-
tive semantics of prioritized accumulation.

Proposition 4 “Discrimination” theorem for P1&P2

 (a) P1&P2 ≡ P1 if P1 = (A, <P1) and P2 = (A, <P2)
 (b) P1&P2 ≡ P1 + (A1↔&P2) if A1 ∩ A2 = ∅

For shared attributes P2 is completely dominated by
P1. In the disjoint case P1 is more important than P2,
because P2 is respected only inside groups of equal A1-
values, hence not disturbing P1’s ‘better-than’ decisions
on A1. In this intuitive sense P1 discriminates against P2.
From a different angle, ‘&’ can also be interpreted as a
conditional preference: P2 becomes interesting only after
P1 has happened.

Now we state the important “non-discrimination”
theorem for Pareto accumulation, which likewise nicely
supports our intuitive semantics for P = P1 ⊗ P2.

Proposition 5 “Non-discrimination” theorem

 P1 ⊗ P2 ≡ (P1 & P2) ♦ (P2 & P1)

P1 and P2 are indeed treated equally important by ‘⊗’,
since both are given prime importance by ‘&’. Any aris-
ing conflict is resolved in a non-discriminating way by
intersection ‘♦’. As a corollary we can state:
 P1⊗P2 ≡ P1♦P2 if P1 = (A, <P1) and P2 = (A, <P2)
Thus ‘♦‘ is a preference sub-constructor of ‘⊗‘.

Example 6 “Non-discrimination” theorem

 P1: = LOWEST(price), P2 := LOWEST(mileage)
 P := ({price, mileage}, <P1⊗P2)
We consider Car-DB from dom(Price) × dom(Mileage):
 Car-DB = {val1: (40000, 15000),
 val2: (35000, 30000), val3: (20000, 10000),
 val4: (15000, 35000), val5: (15000, 30000)}
The ‘better-than’ graph of P = P1⊗P2 for subset Car-DB
is this (obtainable e.g. by exhaustive better-than tests):

 Level 1: val3 val5

 Level 2: val1 val2 val4

On the other hand let’s determine (P1&P2) ♦ (P2&P1):
The ‘better-than’ graph of P’ = P1&P2 for subset Car-DB
yields a chain: val5 → val4 → val3 → val2 → val1
The corresponding ‘better-than graph’ of P’’ = P2&P1
yields a chain: val3 → val1 → val5 → val2 → val4
The ‘better-than’ graph of P’♦ P’’ for subset Car-DB is
the same as for P1⊗P2. Note that it matches exactly the
set of ‘better-than’ relationships shared by P’ and P’’. ☼

5. Evaluation of preference queries
In SQL databases life seems comparably simple. Queries
against a relation R are formulated as hard constraints,
leading to an all-or-nothing behavior: If the desired values
are in R, you get exactly what you wanted, otherwise you
get nothing at all. The latter deficiency is the empty-result
problem. The exact-match query model can become a real
nuisance in many e/m-commerce applications. The other
extreme happens, if - being afraid of empty results - the
query is built by disjunctive subqueries. Then one is fre-

quently inundated with lots of irrelevant query results.
This is the notorious flooding-effect.

The real world, where wishes are expressed as prefer-
ences, neither follows a simple all-or-nothing paradigm
nor do people expect to be flooded with irrelevant values
to choose from. Instead, a cooperative answer semantics
is urgently needed. Whether preferences (i.e. wishes) can
be satisfied and to what extent depends on the current
status of the real world. Thus we have to perform a suit-
able match-making between wishes and reality. To this
purpose we now define the so-called BMO query model.

5.1. The BMO query model
Preferences are defined in terms of values from dom(A),
representing the realm of wishes. In database applications
we assume that the real world is mapped into appropriate
instances which we call database sets. A database set R
may, e.g., be a view or a base relation in SQL or a DTD-
instance in XML. Under the usual closed world assump-
tion database sets capture the currently valid or accessible
state of the real world. Thus they are subsets of our do-
mains of values, hence they are subset preferences.

Consider a database set R(B1, B2, …, Bm). Given A =
{A1, A2, …, Ak}, where each Aj denotes an attribute Bi
from R, let R[A] := R[A1, A2, … Ak] denote the projec-
tion π of R onto these k attributes.

Definition 11 Database preference PR

Let’s assume P = (A, <P), where A = {A1, A2, …, Ak}.
a) Each R[A] ⊆ dom(A) defines a subset preference,

called a database preference and denoted by:
 PR = (R[A], <P)
b) Tuple t ∈ R is a perfect match in a database set R, if:
 t[A] ∈ max(P) ∧ t[A] ∈ R

Comparing max(P), i.e. the dream objects of P, with the
set max(PR), i.e. the best objects available in the real
world, then there might be no overlap. But if so, we have
a perfect match between wishes and reality. If t is a per-
fect match for P in R, then t[A] ∈ max(PR). But the con-
verse does not hold in general. Preference queries perform
a match-making between the stated preferences (wishes)
and the database preferences (reality).

Definition 12 Declarative semantics of σ[P](R)

Let’s assume P = (A, <P) and a database preference PR.
We define a preference query σ[P](R) declaratively as
follows: σ[P](R) = {t ∈ R | t[A] ∈ max(PR)}

σ[P](R) evaluates P against a database set R by retrieving
all maximal values from PR. Note that not all of them are
necessarily perfect matches of P. Thus the principle of
query relaxation is implicit in above definition. Further-
more, any non-maximal values of PR are excluded from
the query result, hence can be considered as discarded on

the fly. In this sense all best matching tuples – and only
those – are retrieved by a preference query. Therefore we
coin the term BMO query model (“Best Matches Only”).

Example 7 BMO query model

We revisit the sample explicit preference P of Sect. 3.2.1.
e) and pose the query σ[P](R) for R(color) = {yellow, red,
green, black}. The BMO result is: σ[P4](R) = {yellow,
red}. Note that ‘red’ is a perfect match. ☼

As a straightforward, but important observation we state:
 If P1 ≡ P2, then for all R: σ[P1](R) = σ[P2](R)

Besides preferences queries of the form σ[P](R) a
variation will be needed frequently, which originates from
an interesting interplay between grouping and anti-chains.
Consider σ[A↔&P](R), where P = (B, <P).
Since x <A↔&P y iff x1 = y1 ∧ x2 <P y2 , we have:
 t ∈ σ[A↔&P](R) iff
 ∀ v[A, B] ∈ R[A, B]: ¬(t[A] = v[A] ∧ t[B] <P v[B])
In operational terms this characterizes a grouping of R by
equal A-values, evaluating for each group Gi of tuples the
preference query σ[A↔&P](Gi). This motivates the fol-
lowing definition.

Definition 13 σ[P groupby A](R)

Given P = (B, <P) and a database preference PR, a prefer-
ence query with grouping σ[P groupby A](R) is defined
as: σ[P groupby A](R) := σ[A↔&P](R)

Compared to hard selection queries, preference que-
ries deviate from the logics behind hard selections: Pref-
erence queries behave non-monotonically.

Example 8 Non-monotonicity of preference queries

For Cars(Fuel_Economy, Insurance_Rating, Nickname)
let’s consider:
 P := HIGHEST(Fuel_Economy) ⊗
 HIGHEST(Insurance_Rating),
We successively evaluate σ[P](Cars) for Cars as follows:
 Cars = {(100, 3, frog), (50, 3, cat)}:
 σ[P](Cars) = {(100, 3, frog)}
 Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark)}:
 σ[P](Cars) = {(100, 3, frog), (50, 10, shark)}
 Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark),
 (100, 10, turtle)}:
 σ[P](Cars) = {(100, 10, turtle)} ☼

Though we added more and more tuples, the results of
our preference queries did not exhibit a similar behavior.
Instead of adapting to the size of Cars, σ[P](Cars) adapt-
ed to the quality of data. The explanation is intuitive: Be-
ing ‘better than’ is not a property of a single value, rather
it concerns comparisons between pairs of values. There-
fore it is sensitive (holistic) to the quality of a collection

of values, and not to its sheer quantity. Thus “quality in-
stead of quantity” is the name of the game for BMO.

5.2. Decomposition of ‘+’ and ‘♦’-queries
A key challenge of preference query evaluation is to find
efficient algorithms for complex preference constructors.
For the scope of this paper we do not explicitly address
efficiency issues, instead we provide fundamental decom-
position results that can form the basis for divide-and-
conquer approaches by preference query optimizers. Our
main goal here is to decompose Pareto preferences into
‘+’ and ‘♦’, which in turn can be decomposed further.

Proposition 6 σ[P1+P2](R) = σ[P1](R) ∩ σ[P2](R)

Next we need some technical definitions, given P = (A,
<P) and a database preference PR.

Definition 14 Nmax(PR), P↑v, YY(P1, P2)R

a) The set of non-maximal values Nmax(PR) is defined
as: Nmax(PR) := R[A] − max(PR)

b) Given v ∈ dom(A), the ‘better than’ set of v in P is
defined as: P↑v := {w ∈ dom(A): v <P w}

c) YY(P1, P2)R := {t ∈ R : t[A] ∈ Nmax(P1R) ∩
 Nmax(P2R) ∧ P1↑t[A] ∩ P2↑t[A] = ∅}

Proposition 7 Decomposition of ‘♦’-queries

σ[P1♦P2](R) = σ[P1](R) ∪ σ[P2](R) ∪ YY(P1, P2)R

5.3. Decomposition of ‘&’-queries

Now we investigate σ[P1&P2](R). Since P1&P2 ≡ P1 for
shared attributes (Proposition 4 a) we assume A1 ∩ A2 =
∅. The evaluation of prioritized preference queries can be
done by grouping.

Proposition 8 Decomposition of ‘&’-queries

 σ[P1&P2](R) = σ[P1](R) ∩ σ[P2 groupby A1](R)

As a corollary, we obtain:
 σ[P1&P2](R) = σ[P2](σ[P1](R)) , if P1 is a chain
Thus a cascade of preference queries is a special case of a
prioritized preference query, if P1 is a chain.

Example 9 Decomposition of a prioritized query

We assume P1 := make↔ , P2 := AROUND(price, 40000)
and a database set Cars(make, price, oid):
 Cars = {(Audi, 40000, 1), (BMW, 35000, 2),
 (VW, 20000, 3), (BMW, 50000, 4)}
The informal query “For each make give me best offers
with a price around 40000” translates into:
 σ[P1&P2](Cars) =
 σ[P1](Cars) ∩ σ[P2 groupby make](Cars) =
 Cars ∩ {(Audi, 40000, 1), (BMW, 35000, 2),
 (VW, 20000, 3)} =
 {(Audi, 40000,1), (BMW,35000,2), (VW,20000,3)} ☼

5.4. Decomposition of ‘⊗’-queries
Above results pave the ground for the main decomposi-
tion theorem for Pareto preference queries.

Proposition 9 Decomposition of ‘⊗’-queries

 σ[P1⊗P2](R) =
 (σ[P1](R) ∩ σ[P2 groupby A1](R)) ∪
 (σ[P2](R) ∩ σ[P1 groupby A2](R)) ∪
 YY(P1&P2, P2&P1)R

This theorem re-enforces also our claim that ‘⊗’ treats
P1 and P2 as equally important:

- The first and 2nd term contains all maximal values
of (P1&P2)R and (P2&P1)R, respectively.

- The 3rd term contains values that are neither maxi-
mal in (P1&P2)R nor in (P2&P1)R.

Note that if P1 or P2 is a chain, then cascade of prefer-
ences can be applied, too.

Example 10 Evaluation of Pareto accumulation

Let P1 := LOWEST(A), P2 := HIGHEST(A) and R(A) :=
{3, 6, 9}. We compute σ[P1⊗P2](R). From the corollary
to Proposition 5 and Proposition 3c, f) we can state:
 σ[P1⊗P2](R) = σ[P1♦P2](R) = σ[P1♦P1∂](R)
 = σ[A↔](R) = R
To countercheck, since both P1 and P2 are chains
Proposition 9 specializes as follows:
 σ[P1⊗P2](R) = σ[P2](σ[P1](R)) ∪ σ[P1](σ[P2](R))
 ∪ YY(P1&P2, P2&P1)R
 = {3} ∪ {9} ∪ YY(P1&P2, P2&P1)R
We have: Nmax((P1&P2)R) ∩ Nmax((P2&P1)R) =
 {6, 9} ∩ {3, 6} = {6}
Since P1&P2↑6 ∩ P2&P1↑6 = {3} ∩ {9} = ∅, we get
 YY(P1&P2, P2&P1)R = {6}
Thus: σ[P1⊗P2](R) = {3} ∪ {9} ∪ {6} = R ☼

5.5. Filter effect of Pareto queries
Preference queries under BMO avoid both the empty-
result and the flooding effect. On the other hand, search
engines with an exact match query model struggle to
combat those nuisances by offering patches like paramet-
ric search, which is a semi-automatic, repetitive attempt
of query refinement, or by offering a so-called ‘expert
mode’, being a Boolean query interface. However, this
approach is known as inadequate for a long time ([24]).

We want to study more closely the filter effectiveness
of preference queries under a BMO semantics. For P =
(A, <P) let the result size of σ[P](R) be defined as:
 size(P, R) := card(πA(σ[P](R)) = card(max(PR))

Definition 15 Strength of a preference filter

Given P1 = (A, <P1) and P2 = (A, <P2), P1 is a stronger
preference filter than P2 (P1→ P2), if:
 size(P1, R) ≤ size(P2, R).

Proposition 10 Filter strength of complex preferences

a) P1+P2 → P1, P1+P2 → P2
b) P1 → P1♦P2, P2 → P1♦P2
c) P1&P2 → P1
d) P1&P2 → P1⊗P2, P2&P1 → P1⊗P2

Let’s interpret the filter effect of Pareto accumulation

in a rough analogy to the Boolean ‘AND/OR’-
programming of search engines using an exact match
query model. We can state:

 P1⊗P2 ← P1&P2 → P1, P1⊗P2 ← P2&P1 → P2

From the point of view of P1 and P2, resp., forming
P1&P2 and P2&P1 has stronger filter effects, hence re-
sembling ‘AND’ operations in the exact match query mo-
del. Continuing to form P1⊗P2 has a weaker filter effect,
resembling ‘OR’ operations. Since BMO automatically
adapts to the quality of a database set R, as a net effect we
get an automatic ‘AND/OR’-like filter effect of Pareto
accumulation. Thus BMO takes all this burden from the
user by automatically finding best-matching answers.

6. Practical aspects and related work
Now we show how our complex preference model fits
into database and Internet practice.

6.1. Integration into SQL and XML

6.1.1. Theoretical foundations

Declarative query languages under an exact query model,
which includes object-relational SQL databases and XML
databases, can be extended compatibly by strict partial
order preferences under a BMO query model. The theory
of subsumption lattices ([14, 20]), developed in the con-
text of Datalog_S, provides the formal backbone, guaran-
teeing both the existence of a model theory and of a corre-
sponding fixpoint theory.

6.1.2. Preference SQL

Preference SQL (for details see [15]), whose product re-
lease was available already in 1999, has been the first
instance of an extension of SQL by preferences as strict
partial orders. It implements a plug-and-go application
integration by a clever rewriting of Preference SQL que-
ries into SQL92-compliant code. Preference SQL is in
commercial use as Preference Search cartridge for Inter-
shop e-commerce platforms. The preference model im-
plemented covers all previous base preference construc-
tors, Pareto accumulation and cascading. Practical bench-
marks showed that typical result sizes of Pareto
preferences under BMO query semantics ranged from a
few to a few dozens, which is exactly what’s required in
shopping situations ([16, 18]).

6.1.3. Preference XPATH

Preference XPATH ([17]) is a query language to build
personalized query engines in XML environments. It can
be applied in other XML key technologies like XSLT,
Xpointer or Xquery. XPATH is extended as follows:
The production
 LocationStep: axis nodetest predicate*
is upgraded as:
 LocationStep: axis
 nodetest(predicate|preference)*
To delimit a hard selection (i.e. predicate) XPATH
uses ‘[‘ and ‘]‘. For soft selections (i.e. preference)
‘#[’ and ‘]#’ are used. Here is a sample query:
 /CARS/CAR
 #[(@fuel_economy)highest and
 (@mileage)lowest prior to
 (@color)in("black", "white")and
 (@price)around 10000]#
The equivalent preference term is as follows:
 (HIGHEST(fuel_economy)⊗ LOWEST(mileage)) &
 (POS(color, {black, white}) ⊗ AROUND(price, 10000))

6.1.4. The ‘SKYLINE OF’ clause

The ‘SKYLINE OF’ clause for SQL proposed in [4] is a
restricted form of Pareto accumulation
 P = P1 ⊗ P2 ⊗ … ⊗ Pn,
where each Pi must be a LOWEST or HIGHEST prefer-
ence, hence a chain. Efficient evaluation algorithms have
been given in [4] and [22].

6.2. The ranked query model
Soft constraints in the form of numerical preferences are
in use today in many database and information retrieval
applications. In our model this amounts to preferences
 P = rankF(SCORE(A1, f1), …, SCORE(An, fn)).

Since rankF often yields chain preferences, a BMO
query semantics would return exactly one best-matching
object. This is a too small set to choose from in general.
To get more alternative choices, the “top-k” query model
is applied, returning k best-matching objects. This may
amount to retrieve some non-maximal objects, too.

One use is in multi-feature query engines, e.g. to
support queries by image content on color, texture or
shape. There is already the SQL/MM proposal for incor-
porating ranked multi-feature queries into SQL. Efficient
algorithms (see e.g. [10, 7]) can be used to speed up the
computation of rankF under the “top-k” semantics. The
PREFER system ([11]) is an instance of this ranked query
model, too.

Another area are full-text search engines, where
keywords can be understood as implicit SCORE prefer-
ences indicating their relevance. The combining function
F for rankF is typically some scalar product using the co-
sine function, if the vector space model from information
retrieval is used. SQL has been extended by text car-

tridges (extenders), implementing a top-k query model.
The XXL prototype of [23] implements the top-k seman-
tics in the XML context.

6.3. Other frameworks
The framework of Agrawal / Wimmers ([2]) falls some-
how between the implementations of Preference
SQL/XPATH and that of ranked query models. To ex-
press an ‘I like x better than y’ semantics SCORE prefer-
ences are used as base preference constructors, requiring
that suitable numerical scores must be readily at hand. As
a preference constructor so-called combining forms are
provided, which have a closure property. In this way pri-
oritization ‘&’ and numerical ranking ‘rankF’ can be pro-
grammed. However, no declarative semantics of prefer-
ence queries was given. Obviously the BMO query model
can be a proper candidate, which can provide guidelines
for an efficient implementation on top of a relational sys-
tem (which was left as an open research issue).

The framework of Chomicki ([5]) emphasizes the view
of preferences as strict partial orders, too, but defines
preferences more generally as arbitrary logical formulas.
He studies various classes of such formulas (intrin-
sic/extrinsic etc.) including prioritization as one prefer-
ence constructor, but no Pareto preferences. The seman-
tics of his winnow-operator coincides with our BMO
query model. An embedding of preferences into relational
query languages is proposed, but no practical implementa-
tions like Preference SQL / XPATH are given.

7. Summary and outlook
We presented a rich preference model tailored for data-
base systems. Preferences as strict partial orders have an
intuitive semantics; they may be subjective from daily life
experiences, driven by personal intentions, or due to tech-
nical constraints. Our extensible preference model both
unifies and extends existing approaches for non-numerical
and numerical ranking and opens the door for a new dis-
cipline called preference engineering. Preferences as strict
partial orders possess a Spartan formal basis being the key
for a preference algebra, where many laws are valid that
are valuable for preference query optimizers. We defined
the declarative semantics of preference queries under the
BMO query model, which can cope with the notorious
empty-result and flooding problems of search engines.
We also presented fundamental decomposition theorems
for non-monotonic preference queries. Various portions of
the presented preference model have already been proto-
typed or are in commercial use. Beyond the scope of this
paper is the issue of efficiency of preference query
evaluation, but [15] addresses several practical aspects.

There are new challenging research issues that can
now be tackled. For preference engineering the tradeoffs
between numerical ranking and non-numerical prefer-
ences are to be explored. From a user modeling perspec-
tive a plurality of preference constructors looks nice.

Whatever the choice is, a smooth integration of prefer-
ences into E/R- or UML modeling is highly desirable. On
the other hand, a system implementor might prefer a lean
choice, in the extreme case only rankF and SCORE pref-
erences. However, the discussion on preference sub-
constructor hierarchies showed that this is infeasible in
general. Anyhow, due to the object-oriented taxonomy of
preference hierarchies, more efficient sub-constructor
implementations can be integrated easily on demand. An-
other area of increasing importance is preference mining.
In particular for numerical preferences the issue of “where
do all the numbers come from” matters a lot. The vastly
increased preference modeling capabilities pose new chal-
lenges for mining algorithms from query log files, too.

Current preference research under the motto ‘It’s a
Preference World’ at the University of Augsburg includes
the following projects: P-NEWS (funded by the German
Research Society DFG) applies preference engineering to
a digital library application. COSIMA2 ([8], funded by
the Bavarian Research Partnership FORSIP) investigates
preference-based e-negotiation. Moreover, a preference
query optimizer, exploiting our preference algebra and
decomposition theorems, is being developed.

Acknowledgments:
I would like to thank T. Ehm, U. Güntzer and B. Möller
for valuable suggestions to improve the technical presen-
tation of this work.

Literature:
[1] Special issue of the Communications of the ACM on

Personalization, vol. 43, Aug. 2000.
[2] R. Agrawal, E. L. Wimmers: A Framework for Ex-

pressing and Combining Preferences. Proc. ACM
SIGMOD, May 2000, Dallas, pp. 297 - 306.

[3] K. Arrow: Rational Choice Functions and Order-
ings. Economica 26: pp. 121–127, 1959.

[4] S. Borzsonyi, D. Kossmann, K. Stocker: The Skyline
Operator. Proc. 17th Intern. Conf. On Data Engineer-
ing, Heidelberg, Germany, April 2001.

[5] J. Chomicki: Querying with Intrinsic Preferences.
Proc. Intern. Conf. on Advances in Database Tech-
nology (EDBT), Prague, March 2002, pp. 34-51.

[6] B.A. Davey, H.A. Priestley: Introduction to Lattices
and Order. Cambridge Mathematical Textbooks,
Cambridge University press, 1990.

[7] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation
Algorithms for Middleware. Proc. ACM PODS,
Santa Barbara, May 2001, pp.102 – 113.

[8] S. Fischer, W. Kießling, S. Holland, M. Fleder: The
COSIMA Prototype for Multi-Objective Bargaining,
First Intern. Joint Conf. on Autonomous Agents &
Multiagent Systems, Bologna, July 2002.

[9] T. Gaasterland, J. Lobo: Qualified Answers that Re-
flect User Needs and Preferences. Proc. VLDB
1994, Santiago de Chile.

[10] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing
Multi-Feature Queries for Image Databases. Proc.
VLDB 2000, Cairo, Egypt, Sept. 2000, pp. 419-428.

[11] V. Hristidis, N. Koudas, Y. Papakonstantinou :
PREFER : A System for the Efficient Execution of
Multi-parametric Ranked Queries. Proc. ACM SIG-
MOD, May 2001, Santa Barbara, pp. 259 - 269.

[12] R. Keeney, H. Raiffa: Decisions with Multiple Ob-
jectives: Preferences and Value Tradeoffs. Cam-
bridge University Press, UK, 1993.

[13] W. Kießling: Foundations of Preferences in Data-
base Systems. Technical Report 2001-8, Institute of
Computer Science, Univ. of Augsburg, Oct. 2001.

 (www.Informatik.Uni-Augsburg.de/forschung/
techBerichte/reports/2001-8.pdf)

[14] W. Kießling, U. Güntzer: Database Reasoning - A
Deductive Framework for Solving Large and Com-
plex Problems by means of Subsumption. Proc. 3rd
Workshop on Information Systems and Artificial In-
telligence, LNCS 777, pp. 118-138, Hamburg, 1994.

[15] W. Kießling, G. Köstler: Preference SQL − Design,
Implementation, Experiences. Proc. 28th Intern.
Conf. on Very Large Databases (VLDB), Hong
Kong, China, Aug. 2002, this volume.

[16] W. Kießling, S. Fischer, S. Holland, T. Ehm: Design
and Implementation of COSIMA - A Smart and
Speaking E-Sales Assistant. Proc. 3rd Intern. Work-
shop on Advanced Issues of E-Commerce and Web-
Based Inform. Syst., pp. 21-30, San Jose, June 2001.

[17] W. Kießling, B. Hafenrichter, S. Fischer, S. Holland:
Preference XPATH: A Query Language for E-
Commerce. Proc. 5th Intern. Konf. für Wirtschaftsin-
formatik, Augsburg, pp. 425-440, Sept. 2001.

[18] W. Kießling, S. Holland, S. Fischer, T. Ehm: CO-
SIMA - Your Smart, Speaking E-Salesperson. ACM
SIGMOD, Santa Barbara, May 2001, demo, p. 600.

[19] A. Kiss, J. Quinqueton: Multiagent Cooperative
Learning of User Preferences, 5th European Conf. on
Principles and Practice of Knowledge Discovery in
Databases (PKDD), Freiburg, Sept. 2001.

[20] G. Köstler, W. Kießling, H. Thöne, U. Güntzer: Fix-
point Iteration with Subsumption in Deductive Data-
bases. Journal of Intelligent Information Systems,
Vol. 4, pp. 123-148, Boston, USA, 1995.

[21] J. Minker: An Overview of Cooperative Answering
in Databases. Proc. 3rd Intern. Conf. on Flexible
Query Answering Systems, Springer LNCS 1495,
pp. 282-285, Roskilde, Denmark, 1998.

[22] K.-L. Tan, P.-K. Eng, B. C. Ooi: Efficient Progres-
sive Skyline Computation. Proc. 27th Intern. Conf. on
Very Large Datab., pp. 301-310, Rome, Sept. 2001.

[23] A. Theobald, G. Weikum: Adding Relevance to
XML. Proc. of the 3rd Intern. Workshop on the Web
and Databases, LNCS, Springer, 2000.

[24] J. Verhoeff, W. Goffmann, J. Belzer: Inefficiency of
the Use of Boolean Functions for Information Re-
trieval Systems, CACM, Dec. 1961, Vol. 4, No. 2.

