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Abstract

Skyline queries ask for a set of interesting
points from a potentially large set of data
points. If we are traveling, for instance, a
restaurant might be interesting if there is no
other restaurant which is nearer, cheaper,
and has better food. Skyline queries retrieve
all such interesting restaurants so that the
user can choose the most promising one. In
this paper, we present a new online algo-
rithm that computes the Skyline. Unlike
most existing algorithms that compute the
Skyline in a batch, this algorithm returns
the first results immediately, produces more
and more results continuously, and allows
the user to give preferences during the run-
ning time of the algorithm so that the user
can control what kind of results are pro-
duced next (e.g., rather cheap or rather near
restaurants).

1 Introduction

1.1 Skyline Queries

Recently, there has been a growing interest in so-
called Skyline queries [BKS01, TEO01]. The Skyline
of a set of points is defined as those points that are
not dominated by any other point. A point domi-
nates another point if it is as good or better in all
dimensions and better in at least one dimension.
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Figure 1: Skyline of hotels in Nassau (Bahamas)

The classic example is shown in Figure 1. The
figure shows the Skyline of hotels in Nassau (Ba-
hamas) which are supposed to be cheap and close
to the beach. The bold points (which are connected
in the graph) represent those hotels which are part
of the Skyline. The other hotels are not part of the
Skyline because they are dominated in terms of price
and distance to the beach by at least one hotel which
is part of the Skyline. Such a Skyline could be use-
ful, for instance, for a travel agency; it helps users
to get a big picture of the interesting options. From
the Skyline of hotels, the user can then choose the
most promising hotels and make further inquiries.

Skyline queries can also involve more than two
dimensions and they could depend on the current
position of a user. For instance, (mobile) users could
be interested in restaurants that are near, cheap, and
have good food (according to some rating system).
The distance is based on the current location of the
user. Again, the idea is to give the user the big
picture of interesting options and then let the user
make a decision. If the user moves on, the Skyline
should be re-computed continuously in order to give
the user a choice of interesting restaurants based on
the user’s new location.



Customer information systems such as travel
agencies or mobile city guides are one application
area for which Skyline queries are useful. Decision
support (i.e., business intelligence) is another area.
For instance, a Skyline query can be used in order to
determine customers who buy much and complain
little. Furthermore, the Skyline operation is very
useful for data visualization. With the help of the
Skyline, the outline of a geometric object can be
determined; in other words, the points of a geomet-
ric object that are visible from a certain perspective
can be determined using a Skyline query [BKS01].
Another application is distributed query optimiza-
tion: the set of interesting sites that are potentially
useful to carry out a distributed query can be deter-
mined using a Skyline query: those interesting sites
have high computing power and are close to the data
needed to execute the query.

There are several related problems: e.g., Top
N [CK97], nearest neighbor search [RKV95], convex
hull [PS85], the contour problem [McL74], or multi-
objective optimization [Ste86, PY01]. Depending on
the context, the Skyline is also referred to as the
pareto curve [PY01] or a maximum vector [KLP75].
A discussion of these related problems and their re-
lationship to Skyline queries is given in [BKS01].

1.2 Online Skyline Computation

It should have become clear that Skyline queries are
often used in interactive applications. In such ap-
plications, it is important that a Skyline algorithm
produces its first results quickly. On the other hand,
it is less important that all points (possibly thou-
sands) of the Skyline are produced: it is sufficient to
give the user a big picture. In a mobile environment,
this big picture of interesting points (e.g., restau-
rants) must be recomputed continuously, making it
even more important to compute a big picture fast
rather than munging on the complete result. These
observations motivate the need for an online algo-
rithm to compute the Skyline.

Unfortunately, most existing algorithms to com-
pute the Skyline work in a batch-oriented way.
These algorithms involve reading the whole data set
and return the first results (almost) at the end of
their running time. In addition, the running time
of these algorithms can be very high and there is
little hope to find better batch-oriented algorithms:
it can be shown that the best algorithm to com-
pute the full Skyline has a (worst-case) complexity
ofO(n(log n)d−2), with n the number of points in the
data set and d the number of dimensions [KLP75];
this is a higher complexity than sorting! An online
algorithm would probably take much longer than a
batch-oriented algorithm to produce the full Skyline,
but an online algorithm would produce a subset of

the Skyline very quickly. Adopting the criteria set
in the Control project [HAC+99], we demand the
following properties from an online algorithm:

1. The first results should be returned almost in-
stantaneously. It should be possible to give
guarantees that constrain the running time to
produce, say, the first 100 results.

2. The algorithm should produce more and more
results the longer the algorithm runs. Even-
tually (if given enough time), the algorithm
should produce the full Skyline.

3. The algorithm should only return points which
are part of the Skyline. In other words, the algo-
rithm should not return good points (e.g., good
restaurants) at the beginning and then replace
these good restaurants with better restaurants.

4. The algorithm should be fair. In other words,
the algorithm should not favor points that are
particularly good in one dimension, instead
it should continuously compute Skyline points
from the whole range.

5. The user should have control over the process.
In other words, it should be possible to make
preferences while the algorithm is running. Us-
ing a graphical user interface, the user should
be able to click on the screen and the algorithm
will return next points of the Skyline which are
near the point that the user has clicked on.

6. The algorithm should be universal with respect
to the type of Skyline queries and data sets.
It should also be based on standard technology
(i.e., indexes), and it should be easy to integrate
the algorithm into an existing database system.
For a given data set (e.g., hotels or restaurants)
one index should be enough to consider all di-
mensions that a user might find interesting.

1.3 Related Work

Kung et al. proposed the first Skyline algorithm
in [KLP75], referred to as the maximum vector prob-
lem. Kung’s algorithm is quite complex and based
on the divide & conquer principle. In the eighties
and nineties, a variety of different algorithms were
proposed for specific situations; e.g., algorithms to
compute very high dimensional Skylines [Mat91] and
parallel Skyline algorithms [SM88]. However, none
of these algorithms are applicable in situations in
which the data set does not fit into main memory.
Furthermore, all these algorithms work in a batch-
oriented way.

Börszönyi et al. extended Kung’s divide & con-
quer algorithm so that it works well for large



databases [BKS01]. They also proposed and eval-
uated several new Skyline algorithms. That work
showed that depending on the query, the character-
istics of the database, and the availability of main-
memory and I/O bandwidth, either a blockwise-
nested-loops algorithm or an extension of Kung’s
divide & conquer algorithm work best. Again, how-
ever, that paper only considered batch-oriented Sky-
line algorithms. In other words, the focus of that
work was to find good algorithms to compute the
full Skyline rather than finding algorithms that give
a big picture quickly.

Tan et al. proposed two progressive Skyline al-
gorithms [TEO01]. The first algorithm is based on
Bitmaps and the second algorithm is based on an
extension of B-trees. Both algorithms meet the first
three requirements for an online Skyline algorithm;
that is, they return Skyline points very quickly and
produce more and more results the longer they run.
However, neither of them meet requirements four
and five. As a result, it is possible (in fact very
likely!) that these algorithms return many cheap
hotels at the beginning and that interesting hotels
which are near the beach are only returned after
a significant amount of time. For the Bitmap al-
gorithm, the order in which Skyline points are re-
turned depends on the clustering of the data; for
the B-tree algorithm, the order in which points are
returned depends on the value distribution of the
data. (We will assess this aspect in our experiments
in Section 4.) Furthermore, neither algorithm al-
lows the user to give preferences in which order the
results are produced. As a result, both algorithms
are not advantageous in an interactive environment.
In addition, the applicability of the B-tree algorithm
is limited. The algorithm requires that a B-tree-like
index structure is constructed for every combination
of dimensions that a user might be interested in. For
instance, if the data set has five dimensions that are
frequently used as criteria in Skyline queries (e.g.,
price, distance to the beach, rating of rooms, rat-
ings of associated restaurants, and capacity), then
31 indexes need to be constructed. If ten dimen-
sions are potentially interesting, then 1023 indexes
are required which is clearly not feasible. There are
ways to extend the algorithm so that a single five (or
ten)-dimensional index would be sufficient [Tan01].
Applying such extensions, however, involves scan-
ning large portions of the database for each query
before returning the first query results so that the
extended algorithm violates our first requirement.
Furthermore, both the Bitmap and the B-tree algo-
rithm are not applicable in a mobile environment in
which properties like distance are functions that take
the current position of a user as a parameter; both
algorithms require that all interesting properties are
materialized in the database.

1.4 Overview

The remainder of this paper is organized as follows.
Section 2 presents the basic idea of our new online
algorithm and shows how it works in order to com-
pute two-dimensional Skylines. Section 3 generalizes
the idea and shows how higher-dimensional Skylines
can be computed. Section 4 describes the results
of our performance experiments. Section 5 contains
conclusions and suggestions for future work.

2 An Online Algorithm for Two-
dimensional Skylines

In this section, we will describe how our new online
algorithm works for two-dimensional Skyline queries,
such as the Skyline of hotels shown in Figure 1. In
the next section, we will generalize this algorithm to
higher-dimensional Skylines. For ease of presenta-
tion, we will make three simplifying assumptions.
First, we assume that all values are positive real
numbers (like distance or price). Second, we as-
sume that there are no duplicates in the data set
(e.g., no two hotels have the same price and dis-
tance to the beach). Third, we assume that we try
to find minimal points; in other words, we try to
find interesting points which are close to the origin
O = (0, 0). However, the techniques can be applied
naturally to all ordered domains (including the full
range of real numbers), to data sets with duplicates,
and to queries that ask for maxima in certain di-
mensions (e.g., quality of food). In order to deal
with maxima and/or negative numbers, we simply
need to find upper and lower bounds for each di-
mension in our data set. The techniques cannot be
applied to Skyline queries with DIFF annotations
which were also proposed in [BKS01]; dealing with
DIFF annotations is beyond the scope of this paper.

2.1 Basic Observations: The Relationship

Between NN and Skyline

Our algorithm is based on two fundamental obser-
vations that show that nearest neighbor search can
be applied in order to compute the Skyline.

Observation 1: Let f be an arbitrary monotonic
distance function (e.g., Euclidean distance). Let D
be our two-dimensional data set; each point in D
has an x and y field with x and y being positive
real numbers. Let n ∈ D be a nearest neighbor of
O = (0, 0) according to f . Then, n is in the Skyline
of D.

This observation can be easily proven by con-
tradiction. Let n = (xn, yn). Furthermore, assume
that n is not part of the Skyline. As a result, there
must be a point b = (xb, yb) that dominates n.
In other words, xb < xn and yb ≤ yn or xb ≤ xn



and yb < yn. Under these circumstances, however,
f(b, O) must be smaller than f(n, O) because f is a
monotonic distance function. This is a contradiction
to n being the nearest neighbor of O. As a result, n

must be part of the Skyline. �

Going back to Figure 1, it is quite easy to see that
this observation holds. If we use Euclidean distance
then the hotel that costs 80 Euros and has a distance
to the beach of 0.9 km is the nearest neighbor. This
hotel is clearly part of the Skyline. Obviously, this
observation also holds for higher-dimensional data
sets and higher-dimensional Skyline queries.

The second observation is an extension of the first
observation. It states that if the nearest neighbor
search is constrained using a region containing O,
then we can continue to conclude that all nearest
neighbors within that region are in the Skyline of
the whole data set.

A region is given by the coordinates of two diago-
nal points, a bottom-left point and a top-right point.
Using our simplifying assumption, the bottom-left
point is always O so that we can represent a region
by the coordinates of the top-right point.

Observation 2: Let f be an arbitrary monotonic
distance function. Let D be a two-dimensional data
set; each point in D has an x and y field with x and
y being positive real numbers. Let m = (xm, ym) be
a region, and let Dm be a subset of D such that Dm

contains all points of D with x < xm and y < ym.
Let n ∈ Dm be a nearest neighbor of the point O =
(0, 0) according to f . Then, n is in the Skyline of
D. (Naturally, n is also in the Skyline of Dm, using
Observation 1.)

The proof of this observation is almost identical
with the one of Observation 1. The only additional
step is to prove that the (imaginary) point b must
also be in the region, which is trivial based on the
transitivity of the < relation. �

Essentially, the second observation means that if
we partition the data set, then it is sufficient to look
for Skyline points using nearest neighbor search in
each region separately. This observation gives rise to
a divide & conquer algorithm using nearest neighbor
search.

2.2 The NN Algorithm for 2-dimensional
Skylines

We call our online algorithm the NN algorithm be-
cause it is based on nearest neighbor search. Before
dwelling into the details of this algorithm, we would
like to illustrate how it works using an example.

2.2.1 An Example

Consider again our hotel example of Figure 1. The
algorithm starts by searching for a nearest neighbor
of the point O in the data set using some mono-
tonic distance function. Following Observation 1,
this nearest neighbor is guaranteed to be part of the
Skyline and can be output to the user immediately.
Figure 2 shows the first nearest neighbor (as an as-
terisk) for the hotel database of Figure 1. Figure 2
also shows that we can divide the data space into
three regions using this point:

• Region 1 (depicted with a square in each cor-
ner) contains all points of the data set that have
a smaller y value than the nearest neighbor.
If (nx, ny) are the coordinates of the nearest
neighbor, then this region is constrained by the
following region: (∞, ny).

• Region 2 (depicted with a quarter of a circle
in each corner) contains all points of the data
set that have a smaller x value than the near-
est neighbor. This region is constrained by the
following region: (nx,∞).

• Region 3 (depicted with a triangle in each cor-
ner) contains all points of the data set that have
a greater x value and a greater y value than the
nearest neighbor.

Figure 2: First step of the algorithm

Clearly, all points in Region 3 are dominated by
the nearest neighbor so we need not investigate Re-
gion 3 any further. To compute more Skyline points,
we only need to investigate Regions 1 and 2. In or-
der to find a Skyline point in Regions 1 and 2, we
make use of Observation 2 and simply look for near-
est neighbors in those regions. Figure 3 shows how
this is done for Region 2. Within Region 2, we find
the second point of the Skyline by simply looking
for a nearest neighbor within that region; that is,
we constrain the search by looking only at points
of the data set with x < nx. (Note that the first
nearest neighbor is not in Region 2 so that the first
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Figure 3: Second step of the algorithm

nearest neighbor will not be considered again.) Us-
ing Observation 2, we can conclude that this second
nearest neighbor is definitely part of the Skyline and
can immediately be output.

As shown in Figure 3, the second nearest neigh-
bor subdivides Region 2 into three new regions: Re-
gion 2a, Region 2b, and Region 2c. Following the
same principle, we need not investigate Region 2c
and we can continue by investigating Regions 2a and
2b by looking for nearest neighbors in those regions.
If a region is empty, i.e. no nearest neighbor is found,
the region is not subdivided further (for instance,
Region 2a in Figure 3 is empty so that that region
will not be subdivided). In this way, the algorithm
continues until all Skyline points are retrieved, i.e.
no regions are left to be processed.

2.2.2 Algorithm Description

We are now ready to present the NN algorithm for
2-dimensional Skylines. The algorithm is shown in
Figure 4. The algorithm gets as input a data set
D and a monotonic distance function f . The algo-
rithm maintains a to-do list of regions, T . Using our
simplifying assumptions (all values are positive real
numbers), a region is defined by a two-dimensional
vector. At the beginning, the to-do list contains only
one region: (∞,∞), i.e., the whole data space. Ev-
ery time a new nearest neighbor is found for an entry
in the to-do list, the corresponding region is subdi-
vided into two smaller regions which are added to
the to-do list. This way, the partitioning goes on and
on until the new (smaller) regions are empty. The
algorithm terminates when the to-do list is empty.
If the to-do list grows too large, parts of it can be
demoted to secondary memory (i.e., disk); however,
we expect such cases to be extremely rare because
typically a few Skyline points are sufficient in order
to get a big picture so that the algorithm is stopped
before the to-do list floods the main memory.

At the heart of the algorithm is the bound-
edNNSearch function. This function takes as input
a point (in our case, O), a data set, D, a region,
(mx, my), and a distance function f . It computes

Input: Data set D
Distance function f (e.g., Euclidean distance)

/* Initialization: the whole data space needs to be
inspected */
T = {(∞,∞)}

/* Loop: iterate until all regions have been investigated */
WHILE (T 6= ∅) DO

(mx, my) = takeElement(T )
IF (∃ boundedNNSearch(O, D, (mx, my), f)) THEN

(nx, ny) = boundedNNSearch(O, D, (mx, my), f)
T = T ∪ {(nx, my), (mx, ny)}
OUTPUT n

END IF
END WHILE

Figure 4: The NN algorithm for 2-d Skyline queries

the nearest neighbor (nx, ny) ∈ D of O with the ad-
ditional constraint that this nearest neighbor must
be within the region. Fortunately, this function can
be computed very efficiently if the data set is in-
dexed using a multi-dimensional index such as an
R*-tree [BKSS90] or more modern data structures.
For instance, the branch and bound algorithm for
nearest neighbor search proposed in [RKV95] could
be used for this purpose. Such a multi-dimensional
index could also be used to evaluate other predicates
of the Skyline query (e.g., city = Nassau) and such
a multi-dimensional index could also be applied in
a mobile environment if the distance of the user to
the points in the data set is not materialized in the
data set.

2.3 Discussion

Before explaining how the algorithm works for
higher dimensional Skyline queries, we evaluate it
based on the six requirements stated in the intro-
duction.

1. With the help of a multi-dimensional index
structure such as an R*-tree, nearest neighbor
search is a cheap operation so that the NN al-
gorithm returns the first results almost instan-
taneously. In our performance experiments, we
always produced the first 10 results in a few sec-
onds, even for very complex Skyline queries that
involve ten dimensions. For queries that involve
less than six dimensions, the first results are
produced in fractions of a second. Due to the
curse of dimensionality, nearest neighbor search
can become an expensive operation for very
high-dimensional data. In practice, however, we
do not expect users to specify more than, say,
five dimensions as part of their Skyline queries;
in particular, in interactive environments. In
fact, we believe that Skyline queries that involve
two dimensions are the most common case.



2. Ultimately, the algorithm will explore all re-
gions and will find all points of the Skyline.

3. Considering the two observations mentioned at
the beginning of this section, all nearest neigh-
bors found by the NN algorithm are part of the
Skyline.

4. Fairness: The NN algorithm produces results
from the whole range of results very quickly.
We will demonstrate this property in Section 4.

5. Control: There are two ways in which the NN
algorithm can react to preferences specified by
the user, i.e., change the order in which query
results are returned. First, if a user clicks on a
particular point in the graphical user interface
during the running time of the algorithm, the
algorithm can adjust and process those regions
of the to-do list next that contain the point that
the user clicked on. Second, the distance func-
tion f is a parameter of the NN algorithm and
can be changed any time during the execution of
the algorithm. This property can be exploited
in the following way. At the beginning, the al-
gorithm starts with some default distance func-
tion; e.g., price + distance. If the user clicks on
the point (price = 200, distance = 100) (i.e.,
the user puts more emphasis on a short dis-
tance to the beach), then the distance function
is adjusted to price + 2 · distance. With ev-
ery interaction of the user, the distance function
can be adjusted accordingly. The Skyline points
returned before changing the distance function
remain valid as well as the to-do list . As a re-
sult, the NN algorithm can continue to produce
Skyline points using the new distance function
without any adaptions.

6. The NN algorithm is universal. As we will see
in the following section, it can be extended so
that it works for Skyline queries that involve
more than two dimensions. It can be applied
if the query involves additional predicates (in-
dexed and not indexed) and it can also be ap-
plied in the mobile application of the introduc-
tion. It is based on multi-dimensional index
structures that support nearest neighbor search
(e.g., R*-trees); such index structures provide
to a large extent scalability, dynamic updates,
and independence of the data distribution. If
the data set involves, say, five dimensions which
are potential criteria for Skyline queries, then a
single five-dimensional R*-tree will be sufficient
to execute all Skyline queries. As mentioned
earlier, for the interactive applications we have
in mind, these ordering criteria are known in
advance and there is a limited number of these

criteria in a typical application. Other dimen-
sions of the data set which are part of the Sky-
line query need not be indexed.

In summary, the NN algorithm fulfills all six require-
ments. However, there are two situations in which
the NN algorithm is not applicable: first, if the Sky-
line query involves a dimension which is not indexed;
and second, if the Skyline query involves large joins,
group-bys or other pipeline-breakers that must be
carried out before the Skyline operation. In both
of these situations, however, there is little hope to
find an effective online algorithm. The progressive
algorithms proposed in [TEO01] are not applica-
ble in these situations either. In these situations,
a batch-oriented algorithm such as those proposed
in [BKS01] must be used.

3 The NN Algorithm for d-
dimensional Skylines

In this section, we show how the NN algorithm
can be applied to Skyline queries that involve more
than two dimensions. Figure 5a shows a three-
dimensional data space and a nearest neighbor n in
that data space, n = (xn, yn, zn). Following the idea
presented in the previous section, the data space can
be partitioned into four regions: three regions that
need to be investigated in further steps of the algo-
rithm and one region that need not to be considered
because it contains only points which are dominated
by n. The three regions which need to be consid-
ered in further steps of the algorithm are defined as
follows: Region 1 (xn,∞,∞), Region 2 (∞, yn,∞),
Region 3 (∞,∞, zn). These three regions are de-
picted individually in Figures 5b to d.

(a) All 4 regions (b) Region 1

(c) Region 2 (d) Region 3

Figure 5: 3-d Skyline computation

Our two observations from Section 2.1 can be gen-
eralized to three and more dimensions: the proofs
are almost the same as in Section 2.1, just using d in-
stead of two-dimensional points and regions. Thus,
n is part of the Skyline and can be output immedi-
ately. Furthermore, the three regions can be inves-
tigated separately for further Skyline points; i.e., a
nearest neighbor in Region 1 is also part of the Sky-
line and can be output as soon as it is found. As



a result, the algorithm of Figure 4 can be applied
to d dimensional Skyline queries (d > 2) if it is ad-
justed to work with d dimensional points and if d

regions (rather than 2) are added to the to-do list
whenever a new nearest neighbor is found. There is
only one small subtlety that needs to be addressed.
The regions in a d dimensional data space (d > 2)
overlap in such a way that the same point of the
Skyline can be found twice or even more often—such
duplicates could not occur in the NN algorithm for
2-dimensional Skyline queries.

In order to see how such duplicates are produced,
let us go back to the example of Figure 5 and let us
look at point p. Assume that p is also part of the
Skyline—p is not dominated by n because it is better
in the y and z dimensions. As shown in Figures 5c
and 5d, p is contained in Region 2 and Region 3.
As a result, p will be produced by the NN algorithm
twice: once while processing Region 2 and once while
processing Region 3.

Duplicates seem to be a subtlety and there are
many alternative ways to carry out duplicate elim-
ination [BD83, Lar97]. However, such duplicates
can impact the performance of the NN algorithm
severely. In this section, we will present alterna-
tive ways to extend the NN algorithm in order to
deal with such duplicates. We study the tradeoffs of
these alternatives in Section 4.4.

3.1 Laisser-faire

The simplest approach to deal with duplicates is to
eliminate them as part of a post-processing step.
This duplicate elimination step can best be imple-
mented using a main-memory hash table. Whenever
the NN algorithm produces a nearest neighbor, that
nearest neighbor is probed with the hash table. If
the nearest neighbor is found in the hash table, it is
a duplicate and it is not output. Nevertheless, the
region must be subdivided and inspected for further
Skyline points. If the nearest neighbor is not found
in the hash table, the nearest neighbor is not a du-
plicate: as a consequence, it is recorded in the hash
table and output to the user or application. We refer
to this approach as laisser-faire.

Clearly, this laisser-faire approach is simple to
implement because it relies on standard ways (i.e.,
hashing) to eliminate duplicates [Lar97]. We be-
lieve that a main-memory hash table is sufficient be-
cause the purpose is to produce a few Skyline points
quickly. Alternatively, of course, an index on sec-
ondary storage (e.g., a B-tree) could be used in order
to carry out duplicate elimination. The big disad-
vantage of this algorithm is that it results in a great
deal of wasted work. Using this approach, it is pos-
sible that the NN algorithm makes little progress be-
cause it finds the same Skyline point several times; in

the worst case, a point is found d−1 times. Another
(potential) disadvantage of this approach is that real
duplicates (i.e., duplicates in the input data set) will
be filtered out by this duplicate elimination step; ac-
cording to the original definition of Skyline queries
in [BKS01], such two identical points in the input
data set should both be part of the Skyline. In or-
der to remedy this situation, we need to give each
point a unique identifier and take this identifier into
account during duplicate elimination.

3.2 Propagate

The alternative to eliminating duplicates after they
occur is to prevent duplicates before they occur. We
can do this by using a technique called propagation.

Propagation works as follows: Whenever the NN
algorithm finds a Skyline point, it scans the whole
to-do list in order to find those regions in the to-
do list that contain that point. We can remove
those regions from the to-do list and partition them
using that Skyline point. This is correct as only
points that are dominated by a Skyline point are
discarded by that operation. If a (main-memory)
multi-dimensional index structure is available, that
index structure can be used instead of a scan in or-
der to find all regions in the to-do list that contain
that point.

The big advantage of this technique is that it
completely avoids wasted work to find duplicates.
On the negative side, however, there is overhead to
search in the to-do list for regions every time a new
nearest neighbor has been found.

3.3 Merge

We now turn to a technique that can be used to
improve the laisser-faire and propagate approaches.
The idea is to merge (or even eliminate) regions of
the to-do list under certain circumstances.

The basic idea of merging is quite simple. As-
sume that two regions a = (a1, a2, . . . , ad) and
b = (b1, b2, . . . , bd) are in the to-do list. Essen-
tially, this means that we still need to look in both
of these areas for more Skyline points. Now, we
can merge these two regions into a single region:
a⊕ b = (max (a1, b1), max (a2, b2), . . . , max (ad, bd)).
Region a ⊕ b supersedes both regions; thus, we are
sure not to miss any points if we investigate a ⊕ b

only. A particular situation arises, if a supersedes b;
i.e., if a1 ≥ b1, a2 ≥ b2, . . . , and ad ≥ bd. In this
particular situation, a = a⊕b and thus b can be sim-
ply discarded from the to-do list. In this situation,
b can be discarded from the to-do list even if a has
already been processed and is not part of the to-do
list.

Merging reduces the size of the to-do list. On
the negative side, merging increases the size of the



regions. Furthermore, finding good candidates to
merge can become expensive. In addition, eliminat-
ing regions which are superseded by other regions
involves remembering regions after they have been
processed. Therefore, merging must be employed
with care. We propose the following heuristics to
make use of merging in the propagate and laisser-
faire approaches:

• Propagate: For the propagate approach, we pro-
pose to make no use of merging and only con-
sider the special case in which a region of the
to-do list can be discarded because it is super-
seded by another region.

• Laisser-faire: For the laisser-faire approach, we
propose to make use of merging whenever a du-
plicate is detected. That is, we only merge re-
gions if they were derived from the same Skyline
points. At the same time, we must be careful
not to merge a region with one of its ances-
tor regions—this restriction is necessary in or-
der to guarantee termination of the algorithm.
(For brevity, we do not discuss this restriction
and other heuristics in full detail and refer to a
forth-coming technical report.)

3.4 Fine-grained Partitioning

Another option to avoid duplicates is to partition
the regions in a way that they do not overlap. In
Figure 5, for instance, we could partition into 8 non-
overlapping regions of which 6 regions would be rel-
evant for further processing. Implementing this ap-
proach, however, results in a sharp growth of the
number of regions in the to-do list . Furthermore,
this approach involves a complex post-filtering step
in order to determine points of a region which are
dominated by points of another region. Therefore,
we did not pursue this approach any further.

3.5 Hybrid Approaches

Obviously, it is also possible to combine different ap-
proaches. As mentioned above, merge can be com-
bined with both the laisser-faire and the propagate
approach. Another option would be to start and
propagate duplicates until the to-do list has reached
a certain size; e.g., two hundred regions. Then, the
algorithm switches to laisser-faire because propaga-
tion might be too expensive for a large to-do list. We
will study such a hybrid approach in Section 4.4.

4 Performance Experiments

In this section, we study the performance tradeoffs
of the NN algorithm as compared to existing algo-
rithms to compute the Skyline. We use different
kinds of synthetic databases, thereby varying the

size of the database (number of points), the value
distribution, and the number of dimensions of the
points in the database. We study the running times
of the algorithms to compute the full Skyline as well
as the running times to compute the first results.

4.1 Experimental Environment

All experiments are carried out on a SUN Ultra 1
with a 167 MHz processor and 128 MB of main mem-
ory. The operating system is Solaris 8. The bench-
mark database, intermediate query results, and all
software is stored on a 17.1 GB IBM disk drive. The
programming language used to implement all algo-
rithms is C++. In all experiments, the size of the
main-memory buffer pool is constrained to be 10 per-
cent of the size of the database1.

As benchmark databases, we use the databases
proposed in [BKS01]. In other words, we study
databases of points with varying number of dimen-
sions. Each point is 100 bytes long and composed of
d doubles and a varchar field for padding (d being the
number of dimensions). We study databases with
100,000 points and with 1 million points. Points are
generated using one of the following three value dis-
tributions:

• corr: in a correlated database, points which are
good in one dimension tend to be good in other
dimensions, too. As a result, fairly few points
dominate many other points and the Skyline
of a correlated database is fairly small. As an
example, consider a database of students: stu-
dents who do well in philosophy often do well in
other areas, too.

• anti: in an anti-correlated database, points
which are good in one dimension are bad in at
least one other dimension. As a result, the Sky-
line of an anti-correlated database is typically
quite large. As an example, consider a database
of hotels: hotels which are close to the beach
tend to be expensive.

• indep: in an independent database, points are
generated using a uniform distribution. The
size of the Skyline of an independent data set
is somewhere in between of that of a correlated
and anti-correlated database.

Details of the three distributions can be found
in [BKS01]. We also studied the benchmark
databases that were used in the experiments pre-
sented in [TEO01]. These databases are based on
the same three distributions, but they use different

1As observed in [BKS01], the size of the main-memory
buffer pool impacts the performance of most Skyline algo-
rithms only marginally.



domains. For brevity, we will discuss the results of
those experiments only qualitatively in this paper.

In addition to the NN algorithm, we study the
performance of the algorithms proposed in [BKS01]
and [TEO01] as baselines. Specifically, we study the
following algorithm variants:

• NN: We use an R∗-tree [BKSS90] in order to
carry out nearest neighbor search. If not stated
otherwise, we use the propagate variant. We
study the tradeoffs of alternative NN variants
in a separate set of experiments (Section 4.4).

• D&C: Kung’s divide & conquer algorithm ex-
tended by m-way partitioning and “Early Sky-
line”, which has been shown to be the best vari-
ant of this algorithm in [BKS01].

• BNL: The block-nested-loops algorithm with
a self-organizing list, as proposed in [BKS01].
Again, this is the best variant of this family of
algorithms.

• Bitmap: The Bitmap algorithm as proposed
in [TEO01]. This algorithm scans the database
and uses bitmaps in order to detect whether
a point is part of the Skyline. Unfortunately,
this algorithm does not work for the benchmark
databases used in our experiments: the size of
the Bitmaps would be several hundreds of gi-
gabytes large. This approach is only viable if
all dimensions have a small domain (e.g. in-
tegers in the range of 0 to 100, as in the ex-
periments of [TEO01]). Therefore, we chose
to construct approximate bitmaps and imple-
ment the original Bitmap algorithm on top of
these approximate bitmaps. These approximate
bitmaps were constructed by mapping each dou-
ble to an integer in the range of 0 to 100. As
a result the approximate bitmaps are only a
couple of hundred kilobytes large and the algo-
rithm runs much faster in our experiments than
it would do in practice. Due to the approxima-
tion, the algorithm returns false positives; i.e.,
points which are not part of the Skyline. We
did not measure the running time to eliminate
such false positives in our experiments.

• B-tree: This is the second algorithm proposed
in [TEO01]. We used a light-weight implemen-
tation of this algorithm that does not require
the use of extended B-trees. This light-weight
implementation avoids overheads for travers-
ing the B-tree and therefore runs slightly faster
than the original algorithm. (In the original
proposal of [TEO01], the special B-tree vari-
ants are only required to carry out updates
efficiently, but not for calculating the Skyline
[Tan01].) We would like to reiterate that the

100,000 Points 1,000,000 Points
Anti Corr Indep Anti Corr Indep

Skyline 49 1 12 54 1 12

NN 0.57 0.02 0.20 0.69 0.02 0.50
BNL 1.77 1.65 1.68 17.16 16.24 16.07
D&C 2.63 2.56 2.63 28.65 28.53 28.50
Bitmap 6.09 0.84 1.40 57.12 12.23 17.90
B-tree 13.86 0.01 0.26 > 200 0.12 0.92

Table 1: Size of Skyline, Running Times [secs]
2-d, 100K and 1M points

B-tree algorithm is not universal and requires
a specific index for each kind of Skyline query.
To carry out the full set of experiments (with
10-dimensional data) we had to construct 1023
different indexes in order to study the B-tree
algorithm. On the other hand, one R∗-tree is
sufficient for the NN algorithm.

4.2 Two-dimensional Skyline Queries

Table 1 shows the running times to compute the
whole Skyline for the alternative algorithms for a
two-dimensional Skyline query in databases with
100,000 and 1 million points. Since the Skyline is
rather small, we measure the running times for re-
trieving the complete Skyline. The Skyline contains
49 points for the small anti-correlated database,
1 point for the small correlated database, and 12
points for the small independent database. For the
large databases, the sizes of the Skyline are as fol-
lows: 54 (anti), 1 (corr), and 12 (indep). Note that
the size of the Skyline does not necessarily grow with
the size of the database [BKST78].

We can observe that the NN algorithm is the
overall winner in this experiment. As mentioned
in Section 2, 2-dimensional Skylines are a particu-
larly good case for the NN algorithm. The BNL and
D&C algorithms show relatively poor performance
because both algorithms involve reading the whole
database, whereas the NN algorithm can use the R∗-
tree in order to quickly retrieve Skyline points. Like-
wise, the Bitmap algorithm must consider all points
of the database in order to compute the full Skyline.
Due to its particular logic to test whether a point
is part of the Skyline, the Bitmap algorithm per-
forms sometimes better and sometimes worse than
the BNL and D&C algorithms.

The B-tree algorithm performs well for the cor-
related and independent databases. However, it
shows very poor performance for the anti-correlated
databases. In this case, the B-tree algorithm must
also read (almost) the whole database in order to
compute the full Skyline because the termination
condition, the special trick of this algorithm, does
not apply until the very end in this particular data
distribution. Furthermore, the B-tree algorithm has
fairly high overheads for each point: it must compare
each point with all Skyline points found so far.



Comparing the running times for the small and
large databases, it can be seen that the NN algo-
rithm scales best. Its running time stays almost con-
stant, whereas the running times of the other algo-
rithms increase sharply. For the large database, we
had to stop the execution of the B-tree algorithm
for the anti-correlated database: after 200 seconds,
it had produced only 30 points (54 points are total).

We also carried out experiments with the
databases that were used in the performance experi-
ments of [TEO01]. In those experiments, the NN,
Bitmap, and B-tree algorithms ran faster. How-
ever, the general trends were the same: (1) The
NN algorithm was the clear overall winner. (2) The
Bitmap algorithm was in the same ball park as the
BNL and D&C algorithms. (3) The B-tree algorithm
showed good performance for the correlated and in-
dependent databases, but terrible performance for
the anti-correlated database.

Quality of Results

As mentioned earlier, the quality of the results is as
important as the response time for an online algo-
rithm. The user wants a big picture.

Figure 6a shows the full Skyline for the anti-
correlated database for d = 2. Figure 6b shows the
first 10 points returned by the NN algorithm (with-
out user interaction) and Figure 6c shows the first
10 points returned by the B-tree algorithm. It can
be seen that the NN algorithm gives a good big pic-
ture of the Skyline. It returns points which are fairly
good in all dimensions first. As mentioned in Sec-
tion 2.3, the NN algorithm could also adjust and
produce extreme points which are very good in cer-
tain dimensions, if the user wishes.

Figure 6c shows that the B-tree algorithm does
not help to produce a big picture quickly. The B-
tree algorithm returns extreme points first which are
good in one dimension. Adapting this experiment to
our hotel example, the B-tree algorithm returns five
hotels which are very cheap and five hotels which are
very close to the beach. It fails, however, to give the
user a good picture of the price/distance tradeoffs.
In addition, the user has no control!

The Bitmap algorithm scans the database and
uses bitmaps in order to detect whether a point is
part of the Skyline. Therefore, the clustering of the
database determines which points are returned first.
Again, the user has no control.

4.3 High-dimensional Skyline Queries

We now turn to an experiment that studies the be-
havior of the alternative algorithms for a five dimen-
sional Skyline using an anti-correlated data set with
1 million points. The size of the Skyline is very large
(35,947 points). Computing the full Skyline takes a

NN B-Tree Bitmap

Time for first
100 points [secs] 8.4 0.1 23.6
Response to User
Interaction [secs] 0.1 ∼ 300 ∼ 87
Skyline points returned
before user point found 0 15000 5117

Table 2: 5-d Anti-correlated, Large Database

long time, regardless what algorithm is used. As a
result, an online algorithm is particularly important
for interactive applications in this scenario: (1) to
select relevant points from the Skyline (rather than
flooding the user with results); (2) to give the first
answers quickly.

Table 2 shows the running times of the alter-
native algorithms to produce the first 100 Skyline
points. In addition, it shows how quickly the algo-
rithms can return points based on user preferences.
In this experiment, the B-tree algorithm produces
the results very quickly: it takes less than a second
to produce the first 100 Skyline points. This is not
surprising because this algorithm simply needs to
scan through the extended B-tree (that was specifi-
cally generated for this Skyline query, i.e. fixed di-
mensionality and a fixed origin) and return points
that are extremely good in one dimension; the NN
and Bitmap algorithms need to perform significantly
more logic. So, the B-tree algorithm is good in or-
der to return some results. However, if the user gives
preferences, the B-tree algorithm cannot adapt well,
even if the right index has been created. In this ex-
periment, we simulated a user that is interested in a
point that is good in all dimensions: using the B-tree
algorithm, it takes 300 seconds to find such a point
and more than 15,000 points need to be inspected
before such a point is returned. (If the user gives
more weight to certain dimensions, then the interac-
tivity is slightly improved.) In terms of interactivity,
the NN algorithm is the clear winner. Whenever a
user gives a preference, the NN algorithm adjusts
its distance function and returns the next point that
matches these preferences immediately: it only takes
0.1 seconds for the NN algorithm to adapt. In some
sense, the B-tree algorithm (blindly) scans through
the Skyline whereas the NN algorithm is able to (se-
lectively) pick points from the Skyline based on user
preferences. (Naturally, blindly scanning has less
overhead per point than selectively picking points.)

The Bitmap algorithm is not competitive in either
aspect. (1) It produces Skyline points at approxi-
mately the same rate as the NN algorithm. (2) It is
no match to the NN algorithm in terms of interac-
tivity because it produces Skyline points in a some-
what random order (based on the clustering of the
data). In this particular experiment, it happened
to take 87 seconds before it was able to return a
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Figure 6: Full and partial Skylines: 2-d, Anti-correlated 100K points

point that met the user preferences. For interactiv-
ity, the Bitmap algorithm could be improved using
multi-dimensional indexes in addition to Bitmaps;
however, the best way to do this extension would be
to implement the NN algorithm!

We carried out experiments with databases and
Skyline queries up to ten dimensions for all three
distributions and with small and large databases.
The results were always the same: For d < 4, the
NN algorithm is typically the winner in all respects,
regardless of the data distribution. For higher-
dimensional Skyline queries, the B-tree algorithm
produces results at a higher rate, but it always pro-
duces extreme points and it takes very long to pro-
duce points that are good in more than one dimen-
sion. The rate in which the Bitmap algorithm pro-
duces results is in the same ball park as that of the
NN algorithm, but the Bitmap algorithm lacks the
inter-activeness that the NN algorithm provides. For
high-dimensional Skyline queries, the D&C and BNL
algorithms are the best choices in order to compute
the full Skyline, but they are not appropriate in in-
teractive environments. For instance, it takes the
D&C algorithm 150 seconds and the BNL algorithm
even 3500 seconds before returning the first results
in the scenario of Table 2.

4.4 Comparing Algorithm Variants

We now turn to a discussion of the performance
tradeoffs of the variants of the NN algorithm for
Skyline queries of more than two dimensions. These
variants have been described in Section 3. Fig-
ure 7 shows the performance of four variants for
a 5-dimensional Skyline with an anti-correlated
database and 1 million points. We measured the
following variants:

• Laisser-faire: see Section 3.1

• Propagate: see Section 3.2

• Merge: laisser-faire and merge regions when-
ever a duplicate is found, see Section 3.3

• Hybrid: propagate to the first 20 % entries of
the to-do list . Duplicates that are not prevented
by the reduced propagation are handled with
the laisser-faire approach.

No index on the to-do list was used to find entries in
the to-do list for the propagate and hybrid variants.
Nevertheless, these two variants clearly outperform
the other variants. The merge and laisser-faire vari-
ants spend too much time on duplicates. On an av-
erage, four nearest neighbor searches need to be car-
ried out in order to find a new result. Clearly, the
propagate and hybrid variants would benefit greatly
from an index on the to-do list ; however, our ex-
periments (not shown) indicate that R*-trees or any
other common multi-dimensional index structure do
not work well for this purpose. Furthermore, the
performance of the hybrid variant can be improved
by tuning. In some experiments, the hybrid variant
performed better if only 10 %, rather than 20 %, of
the to-do list were scanned or if only a fixed num-
ber of entries of the to-do list was considered. All
these tuning approaches are beyond the scope of this
paper.
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5 Conclusion

Skyline queries are important for several database
applications, including customer information sys-
tems, decision support, and data visualization. In
this paper, we studied a new online algorithm to
compute Skyline queries. This algorithm is called
the NN algorithm because it is based on nearest
neighbor search, a well-studied database operation.
We compared this new algorithm to existing algo-
rithms that compute the Skyline in a batch and to
existing algorithms that work progressively.

In our performance experiments, we could not
identify a clear winner. All algorithms have their
particular virtues. Our new algorithm, the NN algo-
rithm, gives a big picture of the Skyline very quickly
in all situations. However, it is not always the best
choice if the full Skyline needs to be computed. In
addition to the raw performance, the algorithms dif-
fer significantly in other criteria. The NN algorithm
is the only algorithm that gives the user control over
the process and allows the user to give preferences.
The B-tree algorithm gives “extreme” points prefer-
ence (i.e., points good in one dimension) and returns
points which are good in many dimensions very late.
The Bitmap algorithm scans the database and uses
Bitmaps in order to detect whether a point is part
of the Skyline. As a result, the order in which the
points of the Skyline are returned is determined by
the clustering of the database. Furthermore, the ap-
plicability of the B-tree and Bitmap algorithms is
limited. Therefore, we strongly believe that the NN
algorithm will be the Skyline algorithm of choice for
interactive environments.

There are three main avenues for future work.
First, we plan to further improve the performance
of the NN algorithm by exploiting new techniques
for nearest neighbor search. Second, we would
like to investigate special-purpose main-memory
index structures in order to manage the to-do list
of the NN algorithm; initial experiments indicate
that existing techniques are not appropriate for
our purposes. Third, we would like to investigate
how the NN algorithm can be combined with other
algorithms. For instance, it would be possible to
use nearest neighbor search in order to partition
the data space and then use the block-nested-loops
algorithm in order to process each region. Such a
combined approach would give a big picture quickly
and it would continue to compute the full Skyline
efficiently.
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