
Updates for Structure Indexes

Raghav Kaushik∗ Philip Bohannon Jeffrey F Naughton Pradeep Shenoy∗

Univ. of Wisconsin Lucent Technologies Univ. of Wisconsin Univ. of Washington
Madison Bell Laboratories Madison Seattle

Abstract

The problem of indexing path queries
in semistructured/XML databases has re-
ceived considerable attention recently, and
several proposals have advocated the use of
structure indexes as supporting data struc-
tures for this problem. In this paper, we
investigate efficient update algorithms for
structure indexes. We study two kinds of
updates — the addition of a subgraph, in-
tended to represent the addition of a new
file to the database, and the addition of
an edge, to represent a small incremental
change. We focus on three instances of
structure indexes that are based on the no-
tion of graph bisimilarity. We propose al-
gorithms to update the bisimulation parti-
tion for both kinds of updates and show how
they extend to these indexes. Our experi-
ments on two real world data sets show that
our update algorithms are an order of mag-
nitude faster than dropping and rebuilding
the index. To the best of our knowledge,
no previous work has addressed updates for
structure indexes based on graph bisimilar-
ity.

1 Introduction

With the rapidly increasing popularity of XML for
data representation, there is a lot of interest in query
processing over data that conforms to a labeled-tree

∗Work done when author was visiting Bell Labs

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, re-
quires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

or labeled-graph data model. To summarize the
structure of such data in the absence of a schema
and to support path expression evaluation, novel
structural indexes [5, 10, 11] have been proposed for
semi-structured data. Unlike a schema, structure
indexes are not prescriptive and thus may change
with any update. Generalizations of these struc-
tures have gained increasing attention recently, as
flexible index structures for XML [6, 15, 16], and
size and performance issues in the original propos-
als have been addressed [16]. In addition, the ideas
behind these structure indexes have been used as
statistical synopses for estimating path expression
selectivity [2, 12].

Obviously, a significant part of implementing
these ideas in practice is keeping these indexes con-
sistent with the underlying data (without having to
rebuild them after each update). However, with the
exception of the Strong DataGuide (which is, in the
worst case, exponential in the size of the base data),
we are aware of no discussion of incremental update
algorithms for structure indexes. We observe that
the update problem for these structures has more
in common with path indexes than normal value in-
dexes, since the impact of a small update can be
arbitrarily large, in terms of the change in the size
of the index.

Several structure indexes are based on some vari-
ant of the notion of graph bisimilarity. In this pa-
per, we propose efficient update algorithms for the
bisimulation partition. In particular, we propose al-
gorithms for two classes of updates: 1) the addition
of a disjoint subgraph of data, intended to represent
the addition of a new file to a database, and 2) the
addition of an edge, to represent a small incremen-
tal change. We present experimental results on two
large, real-world data sets that show that these al-
gorithms are 50 to 80 times faster than rebuilding
the index.

We then discuss how these algorithms extend to
three representatives of structure indexes based on
bisimilarity as follows.



• 1-Index [10]: This is directly defined from the
graph bisimulation partition. It is designed to
cover simple path expressions.

• F&B-Index [15]: This index is also based
on bisimulation, but is extended to work for
branching path expressions (e.g. XPath expres-
sions).

• A(k)-index [16]: This is based on a variant of
the bisimulation concept and addresses size and
performance problems with the 1-Index. While
our algorithm to add a subgraph generalizes to
this case, the edge addition algorithm does not
directly apply.

Our success in extending the basic update algo-
rithms to these cases suggests that it will be broadly
applicable to new, but related, structures.

The rest of the paper is organized as follows.
Background material is presented in Section 2. Up-
date algorithms for the bisimulation partition are
discussed in Sections 3 and 4. This directly applies
to the 1-Index. Extensions to the F&B-Index and
the A(k)-index are discussed in Sections 5 and 6.
Section 7 reviews the results of our experimental
evaluation. We conclude in Section 8.

1.1 Related Work

The only known update algorithm in the context of
structure indexes is the algorithm proposed in [5]
which maintains the Strong DataGuide. The strong
DataGuide can be computed by interpreting the
data graph as a non-deterministic automaton and
obtaining an equivalent deterministic automaton [1].
All indexes we focus on in this paper, based on graph
bisimulation, are non-deterministic when thought of
as automata. As a result, the update algorithms for
the Strong DataGuide do not generalize directly to
apply in this context. To the best of our knowledge,
no previous work has addressed updates for struc-
ture indexes based on graph bisimilarity.

2 Background

For the purposes of this paper, the distinction be-
tween tree and non-tree edges, or idref edges is
not crucial. Hence, we model XML or other semi-
structured data as a directed, labeled graph G =
(VG, EG, root ,ΣG , label , oid , value). Each edge in
EG indicates an object-subobject or object-value re-
lationship. “Simple” nodes in VG have no outgoing
edges and are given a value via the value function.
Each node in VG is labeled with a string-literal from
ΣG via the label function and with a unique identi-
fier via the oid function, with simple objects given

the distinguished label, VALUE. There is a single
root element with the distinguished label, ROOT.
We note that our model differs little from other
semi-structured or XML data models [1, 4, 8]. When
we have a database with multiple XML documents,
the database consists of a single graph with an arti-
ficial root under which lie the graphs corresponding
to the individual files.

Example 1: Figure 1 shows a portion of a hypo-
thetical “metro-guide”, represented as a data graph.
In the figure, the numeric identifiers in nodes rep-
resent oid ’s. Such a guide could reasonably be built
from a collection of XML documents published by
businesses, civic groups and other interested par-
ties. Non-tree edges may be implemented with the
id/idref construct or XLink [3] syntax. Every
neighborhood points to the business and cultural ob-
jects physically located in it.

A structural summary for the data takes the form
of another labeled, directed graph. The idea is to
preserve all the paths in the data graph in the sum-
mary graph, while having far fewer nodes and edges.
In addition to other functions, structural summaries
can also be used as index graphs to aid in evaluating
path expressions. A structural summary can gen-
erally aid query answering by associating an extent
with each node in the summary to produce an in-
dex graph. If A is a node in an index graph, I(G),
then extI (A), the extent of A, is a subset of VG.
The index graph result of executing a path expres-
sion R on I(G) is the union of the extents of the
index nodes that match R. We require that the ex-
tent mapping be safe, that is, that the result of any
path expression R on G is contained in the result
of R on I(G). An index graph is said to be precise
if the converse holds. For example, an index graph
that is safe for simple path expressions has the prop-
erty that if l1.l2 . . . lk is a label path which matches
a path to node v in G, then there is some node A

in I(G) for which l1.l2 . . . lk matches a path to A

and v ∈ extI (A). Similarly, an index graph that is
precise for simple path expressions has the property
that if v ∈ ext I (A) and l1.l2 . . . lk is a valid label
path for A, then l1.l2 . . . lk is a valid label path for
v.

In general, any partition of the data nodes defines
an index graph where we (1) associate an index node
with every equivalence class, (2) define each index
node’s extent to be the equivalence class that formed
it and (3) add an edge from index node A to index
node B if there is an edge from some data node in
ext(A) to some data node in ext(B). Henceforth,
whenever we refer to an index graph obtained from



6

18

25

26

5

19

17

1615

hotel hotel

name name name name

1

2

3 4

7 8 9 10 11

12 13 14 22 24

"Sheraton"

ROOT

cultural

"Museum of
"6615887"

"Museum
"2319837"

cultural

museum museum

neighborhoodsbusiness

metro

neighborhood neighborhood

name phone name phone

cultural

attraction attraction21 23Natural History" of Art"

nearby nearby

20

hotels

"Hilton" "Northside" "Westside"

Figure 1: An example graph-structured database

a partition of the data nodes, we mean the above
construction. Thus, even a simple grouping of the
data nodes by label defines an index graph. All the
structure indexes we consider in this paper are in-
stances of index graphs.

We now introduce terminology about partitions
of data nodes. A partition P1 of the data nodes is
a refinement of another partition P2 if the following
condition holds: whenever two nodes are in the same
equivalence class in P1, they are in the same equiva-
lence class in P2 as well. If P1 is a refinement of P2,
then P2 is coarser than P1. We also talk about one
index graph being a refinement of another — this
refers to the corresponding partitions.

2.1 Bisimilarity

As mentioned earlier, all structure indexes we con-
sider are based on the notion of graph bisimilarity
which we now define.

Definition 1 A symmetric, binary relation ≈ on
VG is called a bisimulation if, for any two data nodes
u and v with u ≈ v, we have that

1. u and v have the same label, and

2. if u′ is a parent of u, then there is a parent v′

of v such that u′ ≈ v′, and vice-versa.

Two nodes u and v in G are said to be bisimilar,
denoted by u ≈b v, if there is some bisimulation ≈
such that u ≈ v.

For example, in Figure 1, objects 8 and 9 (the
hotel nodes) are bisimilar, while objects 21 and 23
(labeled attraction) are not, since 21 has a parent la-
beled nearby. By extension, objects 25 and 26 (the
nodes immediately below them, labeled cultural) are
also not bisimilar, since their unique parents are
non-bisimilar. An easy induction shows that if two
nodes are bisimilar, the set of in-coming paths into
them is the same.

The partition of VG induced by ≈b defines an in-
dex graph, referred to as Bisim(G) or simply “the
1-Index” in this paper1. Thus, there is a worst case
guarantee on the index size, since the 1-Index can
never be bigger than the data graph. Further, it can
be computed in time O(m lg n) where n is the num-
ber of nodes and m is the number of edges in the
data graph, using an algorithm proposed by Paige
and Tarjan [13], which we review in Section 4.3.

We next present the general problem of updat-
ing the bisimulation partition, which directly corre-
sponds to the 1-Index, and then extend the ideas to
the A(k)-index and the F&B-Index in later sections.

3 Subgraph Addition

Our view of the data is that of a set of XML files. In
this case, one natural class of updates is the addition
of a new file to the database. In our model, this

1The authors of [10] also consider the use of the similar-
ity relationship [9] for the 1-Index. We do not consider this
alternative due to inefficient construction algorithms for the
similarity relation – see [10] for details.



procedure subgraph-add(G,H)
//Graph H added under root of G

begin

1. Let I ← 1-Index of G

2. Compute the 1-Index of H. Let it be IH

3. Add IH as a subgraph under the root of I.
Let this graph be I ′

4. Treat I ′ as a data graph and compute its 1-Index.
Let it be Inew

5. Set the extents of the nodes of Inew by “blowing up”
the current extents

6. return Inew

end

Figure 2: Addition of a subgraph

corresponds to the addition of a subgraph under the
root.

Suppose we have a database of XML documents
on which the 1-Index is already built and a new
document is added to the database. Let us assume
that there are no inter-document references. We are
interested in finding the new 1-index without hav-
ing to recompute it from scratch. In this section,
we state a theorem that enables us to compute the
modified index from the old index and the index
computed on the new file — without having to look
at the whole of the current data.

Let the data graph corresponding to the database
before the addition of the new file be G, the 1-index
be IG and let the addition of the new file correspond
to the addition of a new subgraph H under the (ar-
tificial) root.

If we compute the 1-Index IH on the new file and
add IH as a subgraph under the root of IG, what we
have, I ′, is a refinement of the actual 1-Index, Inew .
The following theorem enables us to compute Inew

from I ′. The proof is attached in the appendix.

Theorem 1: Let G be a data graph. Let Bisim(G)
be the 1-Index constructed from the bisimulation re-
lation and Bisimref (G) be the index graph con-
structed from any refinement of Bisim(G). Then,
Bisim(Bisimref (G)) = Bisim(G). Here, graph
equality means isomorphism.

Thus, we have an algorithm to find the new 1-
Index without having to recompute it from scratch.
We sketch this algorithm in Figure 2. When we
compute Inew from I ′, the index extents have nodes
of I ′. Thus, in order to obtain the original data
nodes corresponding to an extent, we need to “blow
up” the nodes of I ′ with their respective extents
which consist of data nodes. Figure 3 illustrates
how this algorithm works. The dashed edges repre-
sent the addition of the new subgraph to the current
database.

Inew

G H

IIG H

Figure 3: Addition of subgraph - illustration

G new 1-Indexold 1-Index

2S1S ,1S 2S1S 2S

1

AC A2 3 4 5

B6 7

C A 3,4C A C

B 6 B B B

R RR 11

7 6,7

3,4 2,5 2,5

Figure 4: Example for expensive update

Let the number of nodes in IG, H and IH be
nIG, nH and nIH respectively, and the number of
edges be mIG, mH , mIH respectively. The time
taken by subgraph-add is O(mH log(nH) + (mIH +
mIG)log(nIH + nIG)). This is independent of the
size of G, i.e, the total size of the database. Instead,
it is dependent on the size of IG which is often much
smaller.

4 Edge Addition

We now present the edge insertion algorithm for the
bisimulation partition. An edge insertion represents
a small incremental change in the data.

4.1 Impact of an Edge Insertion

There is a crucial difference between updates to
structure indexes and traditional value indexes —
the impact of an update on a structure index can,
in general, be arbitrary. A small change in a graph
can trigger large changes in an index graph, a fact
we now illustrate with an example.

Example 2: Consider the data graph G in Fig-
ure 4. The two sub-trees S1 and S2 under the two



“B” nodes are identical. The 1-Index is shown adja-
cent to G. The numbers beside the nodes indicate the
extents. The 1-Index does not group nodes in S1 and
S2 since the two B-labeled nodes are not bisimilar
(one has a parent labeled C, the other does not), and
hence neither are corresponding descendants. Sup-
pose an edge is added between nodes 2(labeled C)
and 6(labeled B) (shown with the dotted edge) and
G changes to G′. Now, nodes 6 and 7 become bisim-
ilar and so, the two sub-trees get merged in the new
bisimulation based 1-Index. Thus, the size of the in-
dex graph reduces by about 50%, if the two sub-trees
S1 and S2 are large.

We now introduce our update algorithm. Let us
note here that the 1-Index is a precise index for sim-
ple path expressions (i.e, no branches), and so in this
section when we talk about precise index graphs, we
mean precise for simple path expressions.

Let data graph G be updated by adding an edge
from node u to node v. Let the modified data graph
be G′. Let the bisimulation based 1-index on G be
Bisim(G) and on G′ be Bisim(G′). The update
algorithm we propose, called propagate, begins by
taking Bisim(G) and outputs some refinement of
Bisim(G′), Bisimref (G′). The corresponding bi-
nary relations on the data nodes are denoted by
≈max

G′ and ≈ref . Notice that for query process-
ing, any refinement of the bisimulation partitioning
yields a precise index. Thus, Bisimref (G′) by itself
is precise. The actual bisimulation partitioning can
then be computed by using the special property of
the bisimulation relation stated in Theorem 1.

Further, if the refinement, Bisimref (G ′), is not
much larger than Bisim(G ′), a lazy approach can
be taken to index minimization since the refinement
maintains all the properties necessary for correct
functioning of the index graph. We will revisit this
point later.

While we discuss edge addition, our algorithm
generalizes to edge deletion as well.

4.2 Computation of a Refinement

This phase of the algorithm is based on an alterna-
tive definition of bisimilarity through the notion of
stability.

Definition 2 Given two sets of data graph nodes A

and B, A is said to be stable with respect to B if
either A is a subset of Succ(B) or A and Succ(B)
are disjoint. Here, Succ(B) denotes the successors
of the nodes in the set B, i.e, {v : ∃u ∈ B such that
there is an edge from u to v}.

Thus, if A and B are nodes in an index graph, A is
stable with respect to B, and there is an edge from

B to A, then every data graph node in the extent
of A has a parent in the extent of B. This property
is crucial for precision of an index graph. In the
above, when talking about stability of index nodes,
we actually refer to the stability of their extents. If
A is unstable with respect to B, we can stabilize it
by splitting A into two nodes A1 and A2 where the
extent of A1 is ext(A)∩Succ(ext(B)) and the extent
of A2 is ext(A) − ext(A1).

We call a partition of the nodes stable if, for every
pair of equivalence classes p1 and p2, p1 is stable
with respect to p2. The coarsest partitioning of the
nodes of a graph that 1) is constrained not to group
together nodes of different labels, and 2) is stable,
is the maximal bisimulation. In other words, any
stable partitioning of the data nodes is either equal
to or is a refinement of the maximal bisimulation.
This is the key observation used by this phase of the
propagate algorithm.

Now, the original bisimulation partitioning is sta-
ble. By adding an edge from u to v, the index node
containing v in its extent, I [v], may no longer be
stable with respect to I [u]. To resolve this, prop-
agate first checks if there is already an edge from
I [u] to I [v]. If so, the stability condition is ensured
and propagate returns. If not, it removes v from the
extent of I [v] and creates a new index node I ′ with
only v in its extent.

Now, the index nodes containing children of v

may not be stable with respect to the rest of the
index nodes. If this is indeed the case, the children
of v are pulled out of the index nodes containing
them and put into new index nodes. Here, if two
children of v were earlier bisimilar, propagate tries to
put them into the same index node. It then proceeds
to the grand-children of v and so on. This procedure
terminates when the current partition is stable. We
illustrate this with an example.

Example 3 Consider the data graph G shown in
Figure 5(a). Suppose an edge is added as shown by
the dotted line in the figure. Let the source node be
src and the destination node be dst. The old bisim-
ulation based 1-index is shown in Figure 5(b). For
clarity, the extents are not shown. The insertion of
this edge causes the index node labeled C to become
unstable, since only one of the C labeled nodes in G

has a parent labeled B.

Thus, the node labeled C splits and we obtain an
intermediate index graph as shown in Figure 5(c).
This split means that the index node with label D is
now unstable, and so needs to be split. During the
split of the index node labeled D, the two children of
dst can be kept together since they are still bisimilar.



R

A B

C C

D D D

E E

(a)
Data Graph

R

A B

C

D

E

(b)
Original 1-index

R

A B

C C

D

E

(c)
In the middle of propagate

R

A B

C C

D D

E E

(d)
Final 1-index

Figure 5: Execution of propagate on an example

propagate groups together data nodes by extent in
this manner whenever possible. The splits propagate
in this manner till the leaf level is reached. Thus,
the final index output by propagate is as shown in
Figure 5(d). In general, if the graph is strongly con-
nected, the termination condition is stability.

Note that in this example, the final 1-index obtained
after propagate happens to be the actual 1-index of
the updated data graph. This need not be true in
general.

To implement this efficiently, we use a variant
of the Paige-Tarjan (PT) algorithm for bisimulation
computation [13], which we review next.

4.3 Review of Bisimulation Computation

In order to explain our update algorithm, we need
to understand how the bisimilarity partition is com-
puted. The algorithm discussed below was proposed
by Paige and Tarjan [13].

Their algorithm maintains two partitions of the
data nodes, X and Q with the following invariants.

1. Q is a refinement of X

2. Q is stable w.r.t X

The details are shown in Figure 6. A
compound X block is an X partition such that it
is properly refined in Q. In each iteration, some
compound X block X is chosen. One of its com-
ponent Q partitions that has fewer than half of the
data nodes in X is chosen as splitter. The compound
X partition is replaced by its two parts, the split-
ter and the rest. Q is stabilized w.r.t this current
X partition. This process is repeated till X and Q

become the same. Notice that by maintaining the
above invariants, this termination condition ensures
that the resulting Q partitioning is stable. In fact,
it is the maximal bisimulation partitioning.

procedure compute bisim(graph G)
begin

1. Initialize Q by partitioning the data nodes by label
2. Initialize X to a single partition with all data nodes
3. Initialize compound X blocks appropriately
4. while there is a compound X block do

5. pick partition X ∈ X which is compound
6. pick partition Q ∈ Q contained in X and smaller

than half its size
7. replace X in X by Q and X −Q

8. stabilize Q w.r.t Q and X −Q

end

Figure 6: Bisimulation computation

The main performance gain in this algorithm
comes by picking a small Q partition to split Q.
By maintaining proper data structures, the above
algorithm can be implemented in O(m log n) (where
m is the number of edges in G and n is the number
of nodes).

4.4 Details of propagate

The propagate algorithm is summarized in Figure 7,
where the update is the addition of an edge between
data nodes u and v (in the direction u to v).

The algorithm works with partitions X and Q of
the data nodes, as described in section 4.3. How-
ever, these are initialized differently in the update
algorithm, as shown in the figure. The initialization
maintains the invariants needed for PT, which we



described in Section 4.3. Thus, when we run PT
with this initialization, we get a partitioning of the
data nodes that is stable, which is what we desire.
However, since the data structures needed by PT
are not materialized here, the internals of Step 4.4
are different. However, this algorithm does exploit
the “use the smaller half” feature of PT that helps
it converge fast to the final partition. Indeed, this
is one of the main reasons why we describe our al-
gorithm in terms of PT.

procedure propagate-brief(u,v)
//Edge added from u to v

begin

1. add an edge from u to v in the data graph
2. if there is already an edge between

I[u] and I[v] then

3. return;
4. Initialize X to be the old partitioning of nodes
5. Create a new index node I ′

6. Put v in the extent of I ′

7. Add an edge from I[u] to I ′

8. Initialize Q to be this partitioning of nodes
9. Run PT (lines 17 to 65 in Figure 8)
end

Figure 7: Summary of Propagate

PT handles how the nodes get repartitioned.
However, it does not deal with edge changes. In
our algorithm, we take edges also into account. The
detailed algorithm involving edges is shown in Fig-
ure 8. The notation “dnode” and “dedge” refer to
a data node and data edge respectively. Similarly,
“inode” and “iedge” refer to an index node and edge
respectively. The main thing we need to take care
of to maintain the edges is that when an index node
I is split by a splitter index node Isplit to give new
nodes I1 and I2, the in-coming edges into I1 and I2

are the same as those coming into I . In addition,
one of I1 and I2 will have an incoming edge from
Isplit. The out-edges of I1 and I2 will be set when
they are used as splitters (except if either of them
is empty, in which case, the out edges are the same
as that of I).

Theorem 2: The partition created by the procedure
propagate is stable, and hence is a refinement of the
actual bisimulation index.

Proof: If we can show that the initialization of X
and Q maintains the invariant that all Q-partitions
are stable with respect to all X partitions, then the
claim follows by the correctness of the original al-
gorithm. By construction, the index nodes in the
original index graph are mutually stable. Once the
update is performed, the index node containing v

procedure propagate(u,v) //Edge added from u to v
begin
1. if there is an edge from u to v then
2. return
3. else
4. add a dedge from u to v
5. if there is an iedge from I[u] to I[v] then
6. return
7. if I[v] has only v in its extent then
8. add an iedge from I[u] to I[v]
9. return

//Split I[v] into two by plucking v out of its extent
10. remove all outgoing iedges from I[v]
11. create new inode I ′ - put v in its extent
12. remove v from extent of I[v]
13. add in-iedges to I ′ from all parents of I[v]
14. add an in-iedge to I ′ from I[u]
15. initialize compound X blocks with a single inode-list consisting of

I[v] and I′

16. set I[v] = I ′

//Begin actual processing
17. while (compound X blocks is not empty) do
18. pick an arbitrary inode-list in compound X blocks — call it

splitter old list
19. pick an arbitrary inode from splitter old list that is less than half

the size of splitter old list — call it splitter
20. make a copy of the dnodes in this inode’s extent — call this set S

21. compute S′ = E(S) without duplicates
//Split with respect to S′

22. foreach node s in S′ do
23. if I[s] is not already split then

24. create new inode I ′

25. store a mapping from I[s] to I ′

26. add in-iedges to I ′ from all parents of I[s]
27. add an in-iedge to I ′ from splitter
28. if I[s] is in some inode-list then

29. add I′ to it
30. else

31. create new inode-list with I[s] and I ′ and add it to
compound X blocks

32. insert I[s] into a list of split inodes
33. put s in the extent of I ′ and set I[s] = I′

34. foreach inode I that was split do
35. remove it from the list of split inodes
36. let I′ be its split image
37. if the extent of I is empty then

38. add out-iedges from I ′ to each child of I
39. delete I (this includes deleting iedges to and from I)
40. delete I and I ′ from I’s inode-list
41. if this inode-list is empty then delete it
42. else
43. delete out-iedges from I

//Stabilize w.r.t the rest of nodes in splitter old list
44. foreach dnode s in S′ do
45. if s has a parent in splitter old list then
46. if I[s] is not already split then

47. create new inode I ′

48. store a mapping from I[s] to I ′

49. add in-iedges to I ′ from all parents of I[s]
50. if I[s] is in some inode-list then

51. add I′ to it
52. else

53. create new inode-list with I[s] and I ′ and add it to
compound X blocks

54. insert I[s] into a list of split inodes
55. put s in the extent of I ′ and set I[s] = I′

56. foreach inode I that was split do
57. remove it from the list of split inodes
58. let I′ be its split image
59. if the extent of I is empty then

60. add out-iedges from I ′ to each child of I
61. delete I (this includes deleting iedges to and from I)
62. delete I and I ′ from I’s inode-list
63. if this inode-list is empty then delete it
64. else
65. delete out-iedges from I
end

Figure 8: Propagate in Detail



may not be stable w.r.t. the index node containing
u. By placing v in a partition by itself, we guar-
antee that the Q partitions are stable w.r.t. the X
partitions. 2

4.5 Computation of the Final 1-index

To complete the update, we run a new bisimula-
tion computation, treating the nodes of the partition
computed by propagate as the nodes of a data graph.
Finally, these “nodes” are replaced by their extents
to create an index graph based on the generated
partition. Theorem 1 guarantees that the resulting
partition is, in fact, the maximal bisimulation of the
updated data graph.

However, in our experiments, as we will see in
Section 7, the size of the refined bisimulation after
the propagate is executed, differs by less than 5%
from the correct 1-Index.

Thus, in our implementation, we adopt a lazy up-
date scheme, where the recomputation of the accu-
rate bisimulation is done periodically. Note that by
doing this, we do not compromise the accuracy of
the bisimulation index since any refinement of the
bisimulation is also a precise index. This approach
also in some sense amortizes over all edge additions
and deletions when the change due each individual
update is small, which is usually the case as we show
later.

4.6 Analysis

We analyze the above algorithm along the following
lines — 1) how different is the refined index output
by propagate from the actual 1-Index (the difference
being measured by the number of nodes) and 2) how
expensive is propagate in the worst case, where the
cost is measured in terms of number of nodes and
edges touched in the data graph.

The refinement output by propagate can be very
different from the actual 1-Index. This difference in
number of nodes can be as large as O(n) where n is
the number of nodes in the data graph.

Consider for example, the data graph G (with
n nodes) shown in Figure 9. The two subtrees la-
beled s are identical. However, each node in s has a
distinct label. Consider the addition of the dashed
edge in the figure. The initial 1-Index is shown be-
side G. The node with label A which is numbered 2
is in the extent of the index node j. After the addi-
tion of this edge, it moves to the extent of i to yield
the final 1-Index. In particular, the subtree under
this node is untouched. However, propagate does
not realize this. Instead, it removes node 2 from its
extent and creates a separate index node for it. This

R

C B

A A A

D

R

C B

R

C B

A A A

I ref(G)

D D

B

A A

BC

1 2 3 i j

G 1-Index

D

S S S

D

SS

Figure 9: Worst case scenario for propagate

is propagated to all its descendants. Hence, propa-
gate finally yields the index graph marked Iref (G).
Thus, by varying s (say by increasing the depth),
we obtain a family of instances where Iref (G) has
n−O(1) nodes. Thus, Iref (G) has O(n) more nodes
than the correct 1-Index.

For the same example, the number of nodes and
edges touched by propagate is O(m + n) (where m

is the number of edges in G). However, in order
to change the initial 1-Index to obtain the final 1-
Index, O(1) operations are sufficient (move node 2
from the extent of j to that of i). Thus, this instance
is also a worst case instance for the performance of
propagate.

However, in our experiments, such cases do not
arise. In particular, the refinement output by propa-
gate is always within 5% of the correct 1-Index and,
the cost of adding an edge is relatively small, as
shown by the speedups we obtain, in Section 7.

5 Updates for Forward and Back-
ward Index

In order to handle branching path expressions,
structure indexes are constructed that group nodes
based both on in-coming and out-going paths. We
pick one representative in this family, the F&B-
Indexwhich is constructed directly from ideas de-
scribed in [1]. Although the F&B-Index faces the
problem of size explosion, it has some size-efficient
variants discussed in [15] and we believe that the in-
sights gained in an updating theF&B-Index will be
useful in updating these variants.

In order to ease exposition, for this section, we
assume that the data graph is edge-labeled. We note
that there is no loss of generality in this assumption.
Suppose there is an edge e from node u to node v

with label l in the data graph G. We define its
inverse edge e−1 to be an edge from node v to u with
new label l−1 corresponding to l. Let us consider the



procedure compute fb bisim(graph G)
begin

1. Initialize Q by partitioning the data nodes by the
set of in-coming normal and inverse edges

2. Initialize X to a single partition with all data nodes
3. Initialize compound X blocks appropriately
4. while there is a compound X block do

5. pick partition X ∈ X which is compound
6. pick partition Q ∈ Q contained in X and smaller

than half its size
7. replace X in X by Q and X −Q

8. stabilize Q w.r.t Q and X −Q

end

Figure 10: F&B-Index computation

following process.

1. For every (edge) label l, add a new label l−1.

2. For every edge e labeled l, add an inverse edge
e−1 with label l−1.

3. Compute the 1-Index on this modified graph.

The above is a structural summary that captures
information about paths both entering and leaving
nodes in the data graph, i.e. that captures informa-
tion about paths in both the forward and backward
direction. We obtain a partition of the data nodes
which can be used to define an index graph. This
is called the Forward and Backward-Index(F&B-
Index) [15].

A theorem analogous to Theorem 1 holds for the
F&B-Index as well. Since the proof is very similar
to the one for Theorem 1, we omit it.

Theorem 3: Let G be a data graph. Let FB(G) be
the F&B-Index and FBref (G) be the index graph
constructed from any refinement of FB(G). Then,
FB(FB ref (G)) = FB(G). Here, graph equality
means isomorphism.

Thus, when a subgraph is added to the database,
an approach similar to the 1-Index can be adopted
— suppose a subgraph H gets added to data graph
G, whose initial F&B-Index is IG. We compute the
F&B-Index for H (let it be called IH), then add IH

as a subgraph to IG to obtain I ′, compute the F&B-
Index on I ′ and “blow up” the extents to obtain the
final F&B-Index for the modified data graph.

For the case of an edge addition, we again start
off with the bisimulation update algorithm. While
the algorithm in Section 4 for updating the bisimula-
tion is for node-labeled graphs, essentially the same
algorithm applies to the addition of a labeled edge
to an edge-labeled graph. Now, the addition of a
single edge to the data graph G corresponds to the
addition of two edges to the modified graph Gmod

with inverse edges. Hence, the above algorithm can

procedure propagate-brief-fb(u,v,l)
//Edge added from u to v with label l

begin

1. add an edge from u to v in the data graph with
label l

2. if there is already an edge between I[u] and I[v]
with label l then

3. return;
4. Initialize X to be the old partitioning of nodes
5. Create new index nodes I ′ and I ′′

6. Put v in the extent of I ′ and u in the extent of I ′′

7. Add an edge from I ′′ to I ′ with label l

8. Initialize Q to be this partitioning of nodes
9. Run PT
end

Figure 11: Summary of Propagate for F&B-

Index

be extended to the update of the F&B-Index. The
key here is that while propagating splits, we prop-
agate them corresponding to the usual edges in the
graph and the inverse edges as well.

To understand the details, we show the Paige
Tarjan algorithm adapted to handle inverse edges
in Figure 10. We note that the definition of stabil-
ity needs to be modified slightly to account for edge
labels.

Definition 3 Given two sets of data graph nodes A

and B, A is said to be stable with respect to B if for
every edge label l either A is a subset of Succl(B) or
A and Succl(B) are disjoint. Here, Succl(B) refers
to the successors of the set B considering only edges
of label l.

We also note that we do not actually need to mate-
rialize the inverse edges to run this algorithm.

With this modified PT algorithm, the algorithm
in Figure 11 can be used to update the F&B-
Index when an edge is added. Although the notion
of precision in this case corresponds to branching
path expressions instead of simple path expressions,
the refinement output by propagate-brief-fb yields
an index graph that is precise for all branching path
expressions.

6 Updates for the A(k)-index

As noted in [16], the 1-Index can be big for some
data sets. To overcome this problem, the A(k)-
index was introduced. The idea here is to group
nodes based on their local structure instead of the
global path information. In particular, we group
nodes based on paths of length up to k. Formally,
this is based on the notion of k-bisimilarity.

Definition 4: ≈k (k-bisimilarity): This is defined
inductively.



1. For any two nodes, u and v, u ≈0 v iff u and v

have the same label.

2. Node u ≈k v iff u ≈k−1 v and for every par-
ent u′ of u, there is a parent v′ of v such that
u′ ≈k−1 v′, and vice versa.

Note that k-bisimilarity defines an equivalence re-
lation on the nodes of a graph. We call this the
k-bisimulation. We can obtain an index graph
from the k-bisimulation by creating an index node
for each equivalence class and associating the data
nodes in the class to the extent of the node. Edges
are added by a process similar to the one for the
1-Index, explained in Section 2. This index graph is
the A(k)-index.

As k increases, the partition induced by this
equivalence relation keeps getting refined until at
some point, it reaches a fixed point. The equiva-
lence relation associated with this fixed point can
be shown [9] to be the (maximal) bisimilarity rela-
tion from which Bisim(G) (the 1-Index) is derived.

While our subgraph addition algorithm extends
to the A(k)-index, the edge insertion algorithm does
not.

When a subgraph is added, the A(k)-index can be
updated in the same way as the 1-Index, through the
following theorem.

Theorem 4 : Let G be a data graph. Let k-
Bisim(G) be the A(k)-index constructed from the
k-bisimulation relation and k-Bisimref (G) be the
index graph constructed from any refinement of k-
Bisim(G). Then, k-Bisim(k-Bisimref(G)) = k-
Bisim(G). Here, graph equality means isomor-
phism.

In the case of an edge addition, the story with
the A(k)-index is different. First of all, unlike the
arbitrary impact of an update on the 1-Index, or
the F&B-Index, for the A(k)-index, the effect is only
local. More formally, we have the following [16].

Property 5: Let v, x, y be three nodes such that
the shortest path to x from v or to y from v contains
more than k edges. If an edge is added or deleted
going from a node u to v, this update does not affect
the k-bisimilarity relationship between x and y.

The propagate algorithm for the full bisimulation
cannot be directly extended for the k-bisimilarity
partition.

Suppose an edge is added from node u to node
v in the data graph. One algorithm that suggests
itself is the local variant of propagate — remove v

from its extent and propagate this to the descen-
dants of v who are within distance k. For example,

suppose k = 1. Consider child v1 of v. The propa-
gate algorithm for the full bisimulation will remove
v1 from its extent if some other node in the same ex-
tent is not a child of v. However, for the A(1)-index,
this condition is too strong — v1 needs to removed
from its extent only if there is some other node in
its extent that does not have a parent with the same
tag name(i.e. 0-bisimilar) as v. In general, v1 would
need to be removed only if it does not have a par-
ent that is (k − 1)-bisimilar to v. Since we do not
have the (k−1)-bisimilarity information with us, we
can only check for k-bisimilarity, and so would pes-
simistically remove v1 from its extent. While this
safe approach is likely to work well for small k, for
large k, it would cause a lot of unnecessary splits.

Thus, the propagate algorithm does not cleanly
generalize to the case of local bisimilarity. It is an
interesting area for future work.

7 Experimental Evaluation

Our update algorithms for the subgraph addition
case are provably better than recomputing the struc-
ture index. However, the propagate algorithm for
edge insertion could output the data graph in the
worst case, as discussed in Section 4.6. The goal
of our experiments is to investigate the behavior of
propagate on real world data.

7.1 Data

The experiments described in this section use XML
data drawn from two web sites supporting querying
and browsing of that data. The first source we use
is the Internet Movie Database (IMDB) [7], and the
second is the Open Directory Project (ODP) [14].
We now briefly describe these data sets and the
subsets we extracted for our experiments. To cre-
ate our IMDB dataset, we choose a small subset
of movies and all the people associated with these
movies. We then sample all movies associated with
the current set of people and add these movies and
their associated people to the database. This pro-
cess is repeated until the desired database size is
reached, then dangling pointers are removed. This
data graph has 190652 nodes.

The second source of semistructured data that we
use is the Open Directory Project [14] data. This
data is a hierarchical classification of topics and in-
ternet sites. We extract subsets of this data by
choosing a set of top-level topics, in this case “Shop-
ping”, “Home”, “Society”,and “Regional” forming
the “SHSR” data set. This data graph has 143242
nodes.



IMDB data

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

100 200 300 400 500

No. of Edges added

%
 c

h
an

g
e

ODP data

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

100 200 300 400 500

No. of Edges Added

%
 c

h
an

g
e

Figure 12: Lazy Update Effectiveness

7.2 Effectiveness of Lazy Approach

The updates consist of a sequence of idref edge
additions. The edges are chosen to be meaningful
edges: in fact we randomly select a subset of the
already present idref edges in the data, and delete
them. This resulting graph is used as the initial
data graph, and the deleted edges are added one at
a time.

The experiment consists of (a) adding an edge to
the data graph (b) using the propagate procedure to
compute the refinement of the updated index (c) us-
ing this as the index graph, and continuing to add
edges. The goal is to check the cumulative effect of
lazy updates on the index size.

Figure 12 shows the result of this experiment on
the two data sets. The X-axis shows the number of
edges added. The Y-axis shows a comparison be-
tween the size of the refinement computed by re-
peatedly calling propagate to handle the idref ad-
ditions, and the size of the accurate bisimulation
index after the same idref edges. This comparison
is performed by measuring the percentage increase.
As the graph shows, even a sequence of 500 edge
additions makes the refinement larger than the ex-
act index only by about 5% for both the data sets.
Further, the refinement can still be used for query
processing. Hence a lazy update algorithm is emi-
nently applicable in this scenario.

7.3 Performance

Data Speedup of propagate
IMDB 58.48
ODP 82.64

Table 1: Edge Insertion Performance

We also investigate the performance of the prop-
agate algorithm. This is compared to the option of

recomputing the bisimulation partition. The cost is
measured in terms of the response time. Table 1
shows this comparison. The numbers are averaged
over 20 edge insertions. For IMDB, propagate per-
forms about 58 times faster, while for ODP, it is 82
times faster. These numbers show that the worst
case scenarios described in Section 4.6 are not real-
ized in these data sets.

8 Conclusions

In this paper, we proposed algorithms to update
the graph bisimulation partition for two classes of
updates: 1) the addition of a disjoint subgraph of
data, intended to represent the addition of a new
file to a database; and 2) the addition of an edge,
to represent a small incremental change. We also
discussed how to extend these algorithms to three
of these structure indexes. Our experiments showed
that our incremental update algorithms are an or-
der of magnitude faster than recomputing the par-
tition. Our success in extending the basic update
algorithms to these cases suggests that it will be
broadly applicable to new, but related, structures.

There are several interesting directions for future
work.

• The propagate algorithm exhibits the worst case
behavior of producing the data graph. It would
be interesting to characterize these worst cases
and come up with efficient update algorithms
for special cases.

• While we propose update algorithms for the
bisimulation partition, as mentioned in Sec-
tion 6, the edge addition algorithm does not
directly generalize to the case of k-bisimilarity.
The problem of efficiently updating the k-
bisimilarity partition when an edge is added is
open.



References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on
the web: from relations to semistructured data and
XML. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, 1999.

[2] A. Aboulnaga, A. R. Alameldeen, and J. F.
Naughton. Estimating the selectivity of xml path
expressions for internet scale applications. In Pro-
ceedings of VLDB, 2001.

[3] S. DeRose, E. Maler, and D. Orchard. The
XLink standard. World Wide Web Consortium,
http://www.w3.org/TR/xquery, Nov. 1999.

[4] A. Deutsch, M. Fernández, D. Florescu, A. Levy,
and D. Suciu. A query language for XML. In
Proceedings of the Eighth World-Wide Web Con-
ference, 1999.

[5] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistruc-
tured databases. In Twenty-Third International
Conference on Very Large Data Bases, pages 436–
445, 1997.

[6] J.Min, C.Chung, and K.Shim. APEX: An adaptive
path index for xml data. In Proceedings of SIG-
MOD, 2002.

[7] The Internet Movie Database Ltd. Internet movie
database. ftp://www.imdb.com.

[8] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A database management
system for semistructured data. SIGMOD Record,
26(3), 1997.

[9] R. Milner. A Calculus for Communicating Pro-
cesses, volume 92 of Lecture Notes in Computer
Science. Springer Verlag, 1980.

[10] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT: 7th International Conference
on Database Theory, 1999.

[11] S. Nestorov, J. Ullman, J. Weiner, and
S. Chawathe. Representative objects: Concise rep-
resentations of semistructured, hierarchical data. In
Proceedings of the 13th International Conference on
Data Engineering (ICDE’97), pages 79–90. IEEE,
April 1997.

[12] N.Polyzotis and M.Garofalakis. Statistical synopses
for graph-structured data. In Proceedings of SIG-
MOD, 2002.

[13] R. Paige and R. E. Tarjan. Three partition re-
finement algorithms. SIAM Journal on Computing,
16(6):973–989, December 1987.

[14] Open Directory Project. DMOZ open directory
project. http://www.dmoz.org.

[15] R.Kaushik, P.Bohannon, J.F.Naughton, and
H.F.Korth. Covering indexes for branching path
queries. In Proceedings of SIGMOD, 2002.

[16] R.Kaushik, P.Shenoy, P.Bohannon, and E.Gudes.
Exploiting local similarity for efficient indexing of
paths in graph structured data. In Proceedings of
ICDE, 2002.

A Proofs

Proof of Theorem 1 The graph Bisim(Bisimref (G))
induces a partitioning of the nodes of G if we “blow up”
the extents to the graph nodes. It is easy to see that the
index graph obtained by this partitioning is the same as
Bisim(Bisimref (G)). Thus, all we have to show is that
this partitioning is the same as the Bisim(G) partition-
ing.

For this purpose, we make the following claim. Claim:
Let u and v be two nodes in G. Let Bisimref (u) and
Bisimref (v) be the two nodes in Bisimref (G) that have
u and v respectively in their extents. Then,

u ≈
max
G v iff Bisim

ref (u) ≈max
Bisimref (G) Bisim

ref (v)

⇒: Let u and v be bisimilar in G. We show
that Bisimref (u) and Bisimref (v) are bisimilar in
Bisimref (G) by producing a binary relation ≈′

ref on

the nodes of Bisimref (G) that is a bisimulation. equiv′

is defined as follows:

a ≈
max
G b⇒ Bisim

ref (a) ≈′

ref Bisim
ref (b)

Note that since Bisimref (G) is defined from a refine-
ment of the actual bisimulation, if Bisimref (a) ≈′

ref

Bisimref (b), then each node in the extent of
Bisimref (a) is bisimilar to every node in the extent of
Bisimref (b).

To show that equiv′ is a bisimulation, consider some
parent Bisimref (u′) of Bisimref (u), where u′ is a par-
ent of some u1 in the extent of Bisimref (u). Now, u1 is
bisimilar to v and so, there is some parent v′ of v such
that u′ is bisimilar to v′. Thus, Bisimref (v′) is a par-
ent of Bisimref (v) and is ≈′

ref to Bisimref (u′). Now

consider any parent Bisimref (v′′) of Bisimref (v). This
part is similar to the above and can be shown in the
same way.
⇐: We proceed as in the previous case by defining a
binary relation ≈′ on the nodes of G that we claim to
be a bisimulation.

a ≈
′

b iff Bisim
ref (a) ≈max

Bisimref (G) Bisim
ref (b)

Consider some parent u′ of u. Hence, Bisimref (u′) is a
parent of Bisimref (u). Since Bisimref (u) is bisimilar
to Bisimref (v), there is some parent Bisimref (v′′) of
Bisimref (v) (where v′′ is a parent of some v1 in the ex-
tent of Bisimref (v)) that is bisimilar to Bisimref (u′).
Now, since v and v1 are bisimilar, there is some par-
ent v′ of v that is bisimilar to v′′. Hence, by the
first part of the proof, Bisimref (v′′) is bisimilar to
Bisimref (v′). Hence, since bisimilarity is a transi-
tive relation, Bisimref (u′) is bisimilar to Bisimref (v′).
Hence, u′

≈
′ v′. Similarly, for any parent v′′′ of v, we

can produce some parent of u that is related to it by ≈′.
Thus, ≈′ is a bisimulation.2


