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Abstract

Query optimization is a computationally inten-
sive process, especially for complex queries. We
present here a tool, called PLASTIC, that can be
used by query optimizers to amortize the opti-
mization cost. Our scheme groups similar queries
into clusters and uses the optimizer-generated
plan for the cluster representative to execute all
future queries assigned to the cluster. Query simi-
larity is evaluated based on a comparison of query
structures and the associated table schemas and
statistics, and a classifier is employed for efficient
cluster assignments. Experiments with a variety
of queries on a commercial optimizer show that
PLASTIC predicts the correct plan choice in most
cases, thereby providing significantly improved
query optimization times. Further, when errors
are made, the additional execution cost incurred
due to the sub-optimal plan choices is marginal.

1 Introduction
Query optimization is well-known to be a computationally
intensive process since a combinatorially large set of alter-
natives have to be considered and evaluated in order to find
an efficient access plan for the query [16]. This is espe-
cially so for the complex queries that are typical in current
data warehousing and mining applications, as exemplified
by the TPC-H decision support benchmark [1].

The inherent cost of query optimization is compounded
by the fact that typically each new query that is submitted
to the database system is optimized afresh. In this paper,
we present a value-addition tool for query optimizers that
amortizes the cost of query optimization through the reuse
of plans generated for earlier queries. Specifically, the tool
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stores a database of plans1 and attempts to assign one of
these plans to the new query with the expectation that the
selected plan would be the same as that generated by the
optimizer; only if no suitable assignment can be found is
the optimization process actually carried out and the newly-
generated plan is added to the plan database for future use.

Our tool, called PLASTIC (PLAn Selection Through
Incremental Clustering), has been developed for the rela-
tional database framework and is based on the following
approach: First, we define a query feature vector com-
prised of information that can be determined from the query
and from the catalogs of the RDBMS. This information in-
cludes both overall structural features such as the number
of tables and joins in the query, as well as table-specific fea-
tures such as the presence of indexes on query attributes,
the number of predicates in which the table is involved,
and the size of the table. Next, we define a similarity func-
tion that takes a pair of query feature vectors as input and
quantitatively computes their separation in feature space. A
threshold value for this separation is used to decide whether
or not the two queries are similar.

Then, using this similarity definition, query clusters are
dynamically formed in an incremental manner, with the
distance threshold determining the maximum stretch of the
cluster. Each cluster has a representative for whom the ex-
ecution plan, as determined by the optimizer, is persistently
stored. This plan is used to execute all future queries that
are assigned to the cluster. Finally, when a sufficient num-
ber of clusters have been formed, a classifier is constructed
on the clusters to support efficient identification of the clus-
ter to which a new query may belong, thereby also deter-
mining its execution plan. In our current implementation of
PLASTIC, a leader algorithm [9] is used to determine clus-
ter representatives, and a decision-tree [12] is constructed
for classification purposes.

A critical feature of our definition of similarity among
queries is that it is determined, as mentioned above, based
on their feature vectors. An alternative approach could
have been to first submit a large set of queries to an op-
timizer and then group those queries for which the same
plan is generated by the optimizer. However, the problem
with this approach is that there may be queries which are

1As explained later, it is plan templates that are actually stored.



very different in feature space but the optimizer may gen-
erate the same plan for them. This means that classifying a
new query to a cluster may entail the expensive process of
comparing against all the queries present in the cluster.

With our approach, however, since all queries in a clus-
ter are similar in feature space, a single query can become
the representative of the cluster, and therefore only one
distance computation is required to check whether a new
query belongs to the cluster. In short, we cluster queries in
the feature space such that all the queries in a cluster have
matching plans in the plan space. This reduces the com-
plexity of classification from ���� to ����, where � is
the number of queries and � is the number of clusters. A
fallout of our approach is that more than one cluster may
map to the same execution plan. That is, there is an � � �
relationship from the cluster space to the plan space. While
this may appear redundant at first sight, the advantage is
that it facilitates more accurate assignments of queries to
clusters. Further, the redundancy can be easily minimized,
as explained later in the paper.

The efficacy of our tool can be evaluated with respect
to a variety of metrics: Firstly, its accuracy in terms of
correctly anticipating the plan choice that would have been
made by the optimizer for the same query. Secondly, its ef-
ficiency in terms of the time taken to select a plan as com-
pared to the time taken by the optimizer to generate the
plan. Thirdly, its error penalty in terms of the potential
increase in query execution time that is incurred in those
cases where the tool makes a plan choice different from
that of the optimizer. Lastly, its space overhead in terms of
the size of the plan cache.

In terms of the above performance framework, we
would ideally like the tool to have high accuracy, high ef-
ficiency, low error penalty, and low space overhead. To
evaluate this quantitatively, we have conducted a detailed
performance study of PLASTIC with regard to the DB2
(Universal Database Version 7.0) optimizer against a vari-
ety of queries including a representative set from the TPC-
H benchmark. We make two simplifying assumptions in
our study: Firstly, we assume that the system state is con-
stant and therefore resource-related issues such as buffer
allocation or disk clustering are not considered. Secondly,
we restrict our attention to pure SPJ queries. Under these
conditions, our experimental results indicate that PLASTIC
achieves over 90 percent accuracy, an order of magnitude
improvement in efficiency, an error penalty of less than 10
percent, and a low space overhead.

To the best of our knowledge, the work described here
represents the first research initiative on clustering-based
plan selection.

2 Problem Motivation and Framework

We wish to come up with a system for clustering queries
efficiently in a manner such that, with an acceptably high
probability, the query execution plans chosen by our sys-
tem match the plans that would be chosen by the optimizer
for the same queries. To motivate this objective, consider

Figure 1: Plan Diagram for Q2’

query template Q2’ shown below, which is a simplified ver-
sion of query Q2 from the TPC-H benchmark (the nested
sub-query and group-by operations have been removed).

Query 2’:

select
s_acctbal, s_name, n_name, p_partkey,
p_mfgr, s_address, s_phone, s_comment

from
part p, supplier s, partsupp ps,
nation n, region r

where
p_partkey = ps_partkey and
s_suppkey = ps_suppkey and
p_size = :1 and p_type like :2 and
s_nationkey = n_nationkey and
n_regionkey = r_regionkey and
r_name = :3 and ps_supplycost = :4

Here, the :1 through :4 are “bind variables” that are
replaced by constants in an actual query. For this query
template, we show in Figure 1 a sample plan diagram ob-
tained on the DB2 optimizer by varying the selectivities of
tables PARTSUPP and PART in the query, keeping the rest
of the query parameters constant. The plan diagram shows
which plan is selected by DB2 for each pairwise combina-
tion of selection predicate selectivities. Note that there are
a total of 12 different plans, with Plan 1 and Plan 2 covering
the majority of the space.

Consider Plan 1 – if we know apriori that a newly-
arrived query can be mapped to this region, we can assign
Plan 1 to the new query. To realize this practically, PLAS-
TIC divides the query space into clusters, with every cluster
represented by a particular query that belongs to the clus-
ter. The clustering technique ensures that the same plan
assignment holds for all queries falling into the space rep-
resented by a particular cluster. This is shown pictorially
in Figure 2, where the clusters are the semi-elliptical struc-
tures (the explanation for the cluster shapes is given later in
Section 5).



Figure 2: Clusters in the Plan Diagram for Q2’

A variety of design issues need to be addressed to ef-
ficiently achieve the desired clustering. These issues can
be briefly stated as: (a) query representation: what are the
features used to represent a query? (b) query similarity:
when can two queries be called similar? (c) query cluster-
ing: what mechanism is to be used for clustering similar
queries? (d) cluster size: what should be the size of each
cluster? and (e) query classification: how are new queries
classified into the given set of clusters?

We address these issues in the remainder of this paper.
For ease of exposition, we first define the following basic
set of concepts:

Query Template: A query template represents a query in
which some or all of the constants have been replaced
by bind variables. For example, each of the queries Q1
through Q22 of the TPC-H benchmark can be consid-
ered as a query template.

Query Template Space:This is the set of different
queries that can be instantiated from a query template
by assigning different values to the bind variables in
the query template.

Plan Diagram for a Query Template: The Plan Diagram
for a query template is an enumeration of the plans
chosen by the optimizer over all points in the associ-
ated query template space. The number of dimensions
of the plan diagram is equal to the number of tables of
the query template that have selection predicates on
them. Figure 1 is an example of a two-dimensional
plan diagram with bind variables corresponding to the
PART and PARTSUPP tables.

Plan Template: A plan template is a query plan wherein
all the database operators (e.g. TABLESCAN, SORT,
MERGE-JOIN) are retained but the specific values of
the inputs to these operators such as the table and at-
tribute names have been replaced by variables.

Two query plans are said to match if their plan tem-
plates are the same.
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Figure 3: The PLASTIC Architecture

Query Cluster and Radius: A cluster of queries is de-
fined as a set of queries that are similar as per a pre-
defined similarity metric. The radius of the cluster is
the maximum distance of any element from the center
of the cluster. While the center could be defined in a
variety of ways – for example, as the centroid of the
cluster, here we use the position of the cluster repre-
sentative to represent the center.

3 System Overview

We now present an overview of the PLASTIC architecture,
whose block-level diagram is shown in Figure 3. In this
picture, the solid lines show the sequence of operations
in the situation where a matching cluster is found, while
the dashed lines represent the converse situation where no
match is available.

The query given to the system is first parsed by the
Feature Vector Extractor which also accesses the system
catalogs and obtains the information required to produce
the feature vector. The SimilarityCheck module takes this
feature vector and establishes whether it has a sufficiently
close match with any of the cluster representatives in the
Query Cluster Database. To hasten the process of cluster
identification, the module may construct a classifier, such
as a decision tree or a bayesian network, on the clusters.

If a match is found, the plan template for the match-
ing cluster representative is accessed from the Plan Tem-
plate Database. As mentioned earlier, a plan template
has database operators but does not have the specific val-
ues of the inputs to these operators. These missing values
are filled in by the Plan Generator module based on the
specifics of the input query.

On the other hand, if no matching cluster is found
(dashed lines in Figure 3), then the Query Optimizer is in-
voked in the traditional way and the plan it generates is
used for executing the query. This plan is also passed to
the Plan Template Generator which converts the plan into
its abstract operational representation and stores it in the
Plan Template Database. For efficiency reasons, the plans
may be stored in the form of signatures. Concurrently, the
feature vector of the query is stored in the Query Cluster
Database. Periodically, the cluster database may be reor-
ganized to suit constraints such as a memory budget or a



ceiling on the the number of clusters. For example, it may
be decided to purge the feature vectors and plan templates
of “outlier” queries that rarely result in matches with the
current query workload.

The detailed functioning of the modules described
above are discussed in the following sections.

4 Query Representation
We start off by addressing the issue of query representa-
tion since the appropriate choice of features forms the core
of any clustering approach. Note that we are constrained
to use only features that can be extracted directly from the
inputs to the query optimizer, namely the query and the
metadata from the system catalogs, but not any intermedi-
ate computation since otherwise we might wind up repeat-
ing the optimization exercise.

The specific features we choose are divided into two
classes: Structural, which are determined from the the
query and associated schema-related meta-data, and Statis-
tical, which are determined from the table statistics avail-
able in the system catalogs. These features, which are de-
scribed in the remainder of this section, were arrived at
after an extensive study of the characteristics of the plans
generated by the DB2 optimizer over a broad spectrum of
queries.

4.1 Structural Features

We will use Figure 4 to motivate and explain some of the
structural features. This figure shows two graphs which
represent two different queries on six tables each. In these
graphs, the nodes �, �, . . . , � and � , �, . . . , � represent
the tables and the lines between them represent the join
predicates relating them. (The distinction between the full
and dashed line types is explained later in this section.) The
structural features are the following:

Degree of a Table (DT): This is the number of join pred-
icates in which a particular table is involved. For ex-
ample, the degree of table 	 in Figure 4(a) is �. This
feature is included since it plays a role in positioning
the table within the join tree in the access plan of the
corresponding query.
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Figure 4: Degree Graphs

Degree-Sequence of a Query (DS):This is a (derived)
compound feature that is based on the DT feature –

specifically, it is a non-increasing vector composed of
the DTs of all the tables involved in the query. For ex-
ample, the DS for both the queries shown in Figure 4
is (3, 2, 1, 1, 1, 1).

Join Predicate Index Counts (JIC): A join predicate is
said to have an index characteristic of 0, 1 or 2, de-
pending on whether there are 0, 1 or 2 indexed at-
tributes, respectively, in the join predicate. For each
query, a count of the number of join predicates, with
respect to each characteristic value, is evaluated since
these counts help to determine whether an index can
be used for the join.

Predicate Counts of a Table (PC):A predicate can be, as
per the definition in the System R optimizer [15], ei-
ther SARGable or Non-SARGable, the primary differ-
ence being that the former can be evaluated through
indexes, whereas the latter is incapable of using these
access structures. For example, 
 � �� is an SAR-
Gable predicate while 
 �� �� is not.

For each table involved in the query and for each pred-
icate type, we maintain the count of the number of
such predicates operating on the table. The reason for
including this feature is that an index on a table can be
used only if the associated predicate is SARGable. In
Figure 4, the dashed lines represent SARGable pred-
icates while the solid ones represent non-SARGAble
predicates. Therefore, the type counts for table 	 are
(2, 1), implying that there are two SARGable pred-
icate and one Non-SARGable predicate that will be
evaluated on this table.

Index Flag of a Table (IF): An Index Flag is associated
with every table and is set if all the selection pred-
icates and projections on that table can be evaluated
through a single common index. In this situation the
optimizer can construct a plan that reads only the in-
dex and not the table itself.

4.2 Statistical Features

We now move on to the features that are based on the statis-
tics available in the system catalogs:

Table Size (TS): It is a measure of the total size of a table
and is computed as the product of the cardinality of
the table and the average length of the tuples present
in the table.

Effective Table Size (ETS): This is the effective size of
each table participating in a join. It is calculated by
estimating, through the statistics present in the sys-
tem catalogs, the impact of pushing down all the pro-
jections and selections on this table that appear in the
query.

Putting all of the above together, our complete query
feature vector definition is as shown in Table 1. For ease of
understanding, we have separated the features into Global



Feature Description
Global Features

�� Number of tables participating in the query
�� Degree sequence of query
��� Total number of join predicates
��������� Number of Join Predicates with index

characteristics of 0, 1 and 2, respectively
��	
�� Number of SARGable predicates
��	
�� Number of non-SARGable predicates

Table Features
��� Degree of table ��
��� Boolean indicating index-only access to ��
��	
��� Number of SARGable predicates on table ��
��	
��� Number of non-SARGable predicates on ��
���������� Number of Join Predicates of index

characteristic 0, 1 and 2 involving ��
��� Size of ��
���� (estimated) Effective size of ��

Table 1: Query Feature Vector

Features, which are query-wide values, and Table Features,
which are relevant to individual tables.

4.2.1 Example Feature Vector

Consider the query

select A.a1, B.b2
from A, B
where A.a1 = B.b1

where indexes are present for the attributes � and �� of
tables A and B, respectively. The feature vector for this
query is shown in Table 2. Note here that the index flag is
set for table A since all attributes related to A – in this case,
� – are accessible through the index. However, this flag
is not set for table B since the �� projection attribute is not
accessible through the �� index. But, if we had happened to
have a multi-attribute index ���� ��� on table B, then the in-
dex flag would also have been set true for B. Note also that
the ETS values for A and B are the same as their TS values
because there are no selection predicates on either table.
We do not estimate selectivities for join predicates because
for that a join order should be apriori known and this infor-
mation is only available from the optimization process.

5 Establishing Similarity
We now move on to the next issue of determining when two
queries are said to be similar. Given our goal of clustering
queries in such a way that the access plan for all queries
in the cluster is the same, a straightforward answer to this
query would be “Two queries are similar if the optimizer
generates the same plan template for both of them”. How-
ever, this is not a practically useful definition because, as
mentioned earlier, optimizers map several different kinds
of queries to the same plan template, resulting in extremely
heterogeneous clusters that cannot be easily characterized.
For example, consider the following two queries on the
TPC-H table PART:

Global Feature Value
�� 2
�� (1,1)
��� 1
��� �0,0,1�
��	
�� 1
��	
�� 0

Table Feature Table A Table B
��� 1 1
��� 1 0
��	
��� 1 1
��	
��� 0 0
���� �0,0,1� �0,0,1�
��� 200000 100000
���� 200000 100000

Table 2: Example Query Feature Vector

select * from part

and

select p brand, p name, p mfgr
from part
where p size = 4 and p brand = ’Brand#15’

The DB2 optimizer generates the same plan template for
both these queries although a visual inspection shows them
to be quite different in both syntax and semantics. The rea-
son for choosing the same plan is that the amount of data
that is required to be processed is estimated to be similar in
the two cases.

To avoid the above problem, we take a different ap-
proach in PLASTIC. That is, we try to establish a notion of
similarity that facilitates both (a) efficient classification of
new queries, and (b) that the plan chosen by the optimizer
for the queries within a cluster is the same in the majority
of the cases. Our approach, hereafter referred to as the
SIMCHECK algorithm, is described in detail below.

5.1 The SIMCHECK Algorithm

The SIMCHECK algorithm, whose pseudocode is shown
in Figure 5, takes as input two query feature vectors and
outputs a boolean value indicating whether or not they are
similar. The algorithm operates in two phases, “Feature
Vector Comparisons” and “Mapping Tables”. In the first
phase, the feature vectors are compared for equality on the
number of tables, the sum of the table degrees, and the sum
of the join index and predicate counts. Only if there is
equality on all these structural features is the second phase
invoked, otherwise the queries are deemed to be dis-similar.
The equality check is done first in order to identify dis-
similar queries as early and as simply as possible. For ex-
ample, it is obvious that if the number of tables in the two
queries do not match, then their plans will also necessar-
ily have to be different. Such structural feature checks are
used as an effective mechanism for stopping unproductive
matching at an early stage.



SIMCHECK (��� ��)
// Check that Queries have same number of Tables

1. IF NT(Q1) != NT(Q2) RETURN (Not Similar);
// Match Query Level Semantics

2. IF DS(Q1) = DS(Q2) AND
NJP(Q1) = NJP(Q2) AND
PCsarg(Q1)+PCnsarg(Q1) = PCsarg(Q2)+PCnsarg(Q2)

GO TO Line 4 ;
3. RETURN (Not Similar);

//—– Find the Best Mapping between Tables —–
4. FOR every group � of tables with the same degree

�� � � �
� � �

�
� � ����

�
� �� � ��

�� � � �
� � �

�
� � ����

�
� �� � ��

find the mapping of compatible tables
between �� and �� that has the minimum
aggregate distance, ����	�� , with respect to
the pairwise table distance function

��	�����
�
� � �

�
� � �

������
�
�
���

�

�
���������

�
�
����

�

�
�

�	
����
�
���

�

�
�

//—– Compute Distance between Queries —–
5. ���
���	� �

�
���

����	��
6. IF ���
���	� � ����	���� RETURN (Not Similar);
7. RETURN (Similar);

Figure 5: The SIMCHECK Algorithm

In the Mapping Tables phase, we attempt to establish the
closest possible one-to-one correspondence between the ta-
bles of the two queries. The tables are mapped to each other
in order to check whether it is possible for the optimizer to
use similar plans for accessing the mapped tables. The first
step in this process is to determine the sets of compatible
tables. For every possible pair of compatible tables, SIM-
CHECK checks whether their original and (estimated) ef-
fective sizes are comparable through the use of a distance
function. If the outcome of the distance computations is
less than a threshold value which is an algorithmic param-
eter, the queries are said to be similar. The notion of com-
patibility and the distance function are elucidated below.

5.1.1 Table Compatibility

We define two tables to be compatible if the degrees, join
index counts and predicate counts are the same for both
tables. The rationale for this notion of compatibility is ex-
plained below.

Let us first consider predicate counts. The predicate
count for table 	 in Figure 4(a) is (2, 1) since there are
two SARGable predicates and one non-SARGable predi-
cate. Similarly, for table � in Figure 4(b), the predicate
count is (1, 2), and by our definition the tables are not com-
patible. This makes intuitive sense when viewed in light
of the fact that if a predicate on a table is not SARGable,
an optimizer cannot use an index to access that table. Thus,
plans can change considerably even if the two queries differ
on only a single table with respect to this criteria.

A similar and stronger argument holds for join index
counts. If indexes are available for a join predicate in one

query and not in the other, it is very likely that the plans for
the two queries will not match. This is because if both the
attributes in a join predicate are indexed and the selectivi-
ties of the tables are high then it is possible to choose a plan
involving an index join. Similarly, if one of the attributes
is indexed then the optimizer may choose to index on one
table and fetch (table scan) on the other.

Note that even if the join index counts and predicate
counts for two queries match, the plans chosen by the op-
timizer may differ as there are other statistical factors such
as the table sizes that affect plan choices. These factors are
captured in the distance function discussed next.

5.1.2 The Query Distance Function

After compatible tables are identified, SIMCHECK tries
to establish valid one-to-one mappings between the sets of
compatible tables. These mappings are then compared us-
ing their original and estimated effective sizes, through a
distance function ��������

�
�� �

�
� �, where � �

� and � �
� are the

tables whose distance is to be computed, with � �
� denoting

the ��� table of the first query which is to be mapped with
� �
� , the ��� table of the second query. The larger the dis-

tance, the lesser the similarity. In terms of the statistical
features described in Section 4.2, the distance function is
given as:

��������
�
�� �

�
� � �

������
�
�
����

�
���������

�
�
�����

�
�

�	
����
�
���

�

�
�

Here, �� and �� are weighting factors (with �� � �� �
�) that serve to calibrate the importance of the associated
terms in the above equation.

Note that ������ � � and thus ����, the sum of the dis-
tances of all the table pairs for a particular mapping, is
bounded above by the total number of tables in the query.
When there are multiple mappings possible between the ta-
bles of two queries, the mapping with the minimum value
of ���� is chosen. For queries to be considered similar, ����
should be less than a particular user-defined Threshold.

The ������ function essentially computes the separation
between two tables in terms of their TS and ETS values
with respect to the query. The reason that we are consid-
ering not only the cardinalities of the join input tables but
also their tuple sizes is because the choice of query plans
depends on the total amount of data that has to be fetched
and stored in the buffers – that is, the length of the pro-
jected attributes has a direct impact on plan choice even if
all other parameters are the same. The numerator is nor-
malized by the maximum of the sizes of the two relations
in order to keep the value of the function bounded between
0 and 1. Another feature of the distance function is that it
is symmetrical, as can be readily seen from the formula.

Typically, �� is set higher than ��. This is because the
impact of the table size on the plan choice is usually much
more than that of the effective table size. The threshold
is a parameter that decides how “tight” we want the sim-
ilarity to be, that is, it determines the cluster radius. The
smaller this value, the lesser the chance of errors, but the
more expensive it becomes to do query classification due



to the increased number of clusters. The weights, �� and
��, and the Threshold are currently evaluated empirically,
but in our future work we plan to investigate automated
mechanisms for setting these parameters.

5.1.3 Complexity of Mapping

Mapping tables between two queries can turn out to be an
expensive task. This is because the complexity of any such
algorithm is ���	� where � is the number of tables involved
in the query. SIMCHECK is optimized for reducing this
time complexity by grouping the tables into sets of tables
having the same degree. Specifically, if Q1 and Q2 have N
tables that are divided by a partition ��� ��� � � � � �� based on
their degrees, then we reduce the problem from an N:N sce-
nario to matching individual groups. Thus, the complexity
of the algorithm now becomes ����	���	���	� ������	�
which in the average case is far less than O(n!). For exam-
ple, for the query represented in Figure 4 (a), the degree-
based partitions would be ��E�,�F�,�A,B,C,D�� and the
cost of mapping it to the query in Figure 4 (b) with par-
tition ��U�,�T�,�P,Q,R,S�� is 4!+1!+1!, which is consid-
erably less than the 6! cost of a global mapping strategy.
Further, the fact that only compatible table pairs are chosen
for mapping further reduces the amount of computation.

5.2 Effectiveness of the Algorithm

We now present a few sample scenarios that highlight the
effectiveness of our algorithm. Consider the following set
of simple queries, QA, QA’ and QA”, operating on the
TPC-H tables NATION and REGION:

QA:

select * from nation, region
where n nationkey=r regionkey

QA’:

select n nationkey from nation, region
where n nationkey=r regionkey

QA”:

select n comment, r comment
from nation, region

The QA and QA’ queries appear very similar syntactically
but when given to the DB2 optimizer, they produce rather
different execution plans. For QA the plan chosen by DB2
does an index-based table-fetch through tables NATION
and REGION while for QA’ it just does an index scan and
there is no reference to the table data pages whatsoever.
This is because QA’ is referring only to the primary keys of
tables – n nationkey for NATION and n regionkey
for REGION – which have indexes on them. The optimizer
detects this and therefore answers the query from the index
itself. SIMCHECK also detects this difference because the
Index Flag feature is set for QA’ but not for QA.

A completely opposite scenario to the one just described
is seen in the pair of queries, QA and QA”. Here the queries

are very different in terms of their structure but the tem-
plates of the plans generated by the DB2 optimizer are ex-
actly the same! The reason for this is that the effective se-
lectivities and input sizes of the tables involved in both the
queries are similar. Also, the queries are structurally simi-
lar. SIMCHECK is successful in identifying these aspects
and therefore predicts the same plan for QA” as that used
for QA.

6 Query Clustering

This section describes the algorithm that is used by PLAS-
TIC for clustering the queries. The major issues related to
clustering queries are: (1) dealing with a large collection of
queries; (2) deciding the number of clusters to be formed;
and (3) ensuring the accuracy of clusters.

PLASTIC uses a clustering technique that is based on
the Leader algorithm proposed by Hartinger [9]. In the
Leader algorithm, whenever a pattern does not find a match
with any of the existing clusters, a fresh cluster is created
with the pattern becoming its representative or “leader”.
Our choice of Leader is based on several factors. First, it
is an O(kn) clustering algorithm, where � is the number of
clusters and � is the number of queries, which is attractive
for online environments that deal with large query work-
loads. This time complexity is because every query needs
to be compared with � cluster leaders in order to assign it to
a cluster. In practice, � �� � since every leader potentially
represents hundreds of queries, making Leader a linear al-
gorithm with respect to the total number of user queries.
Further, Leader is also incremental in the sense that when
a new query is included in the Cluster Database, it does not
require a reworking of the existing clusters.

We could also have chosen alternative algorithms such
as Nearest Neighbor (NN) to compute the clusters, but
since these algorithms typically require all queries to be
compared with all other queries, they need to access the
same query multiple times and for a large set of queries,
this may become very expensive. That is, the complexity
of such an NN-clustering algorithm is O(��) which when
compared with the O(kn) of Leader clearly indicates that
Leader would prove superior for large query workloads.

The second reason to choose Leader is that it is ex-
tremely simple to manage. In comparison, an algorithm
like BIRCH [18], which is also linear and incremental, has
to incur the overhead of managing a complex data structure
called the CF-TREE.

On the down side, however, the clusters formed by
Leader are a function of the query sequence since all un-
matched queries become cluster representatives. That is,
cluster formation is based on the order in which queries
arrive. However, the order-dependence does not have an
adverse effect on cluster accuracy since that depends only
on the cluster adius which is determined by the Threshold
setting. It is only the efficiency of cluster identification that
may become lower because a larger number of clusters than
strictly necessary are generated due to a particular query or-
der.



We now discuss a few characteristics of the clusters
formed by the Leader algorithm. Firstly, the distance func-
tion ������ produces clusters that are hyper-ellipsoids in the
query template space. This is because the stretch in a par-
ticular dimension depends on the table in that particular di-
mension, and since every ������ has a different value in the
denominator the stretch of the cluster in that particular di-
mension will be different, making the cluster an ellipsoid.
Secondly, in our current implementation, the leaders are
searched for the first acceptable fit, not the best one. This
is done for the sake of simplicity, but if required, it is easy
to modify the algorithm to implement a best fit policy.

With respect to the issue of deciding the number of clus-
ters, this is dictated by the Threshold setting. The smaller
the threshold, the more the number of clusters and the
lesser the error probability. Another solution is to specify
a maximum number of clusters and then, when this limit
is reached, assign each new query to whatever happens to
be the nearest existing cluster. Modifying the Leader algo-
rithm to implement this policy is straightforward.

If the same plan applies to the complete region covered
by a cluster then there will be no error in plan prediction
if a new query is mapped to this cluster. It is only if the
cluster’s space is covered by more than one plan, that there
will be an error in prediction because all the queries map-
ping to this cluster will be assigned the plan associated with
the query leader. The error involved in such an assignment
will increase as the difference in effective table sizes be-
tween the new query and the leader increases. If the cluster
regions are large then the stretch of clusters that straddle
plan boundaries is large and hence the error in prediction
may be higher. This aspect is controlled by the appropriate
setting of the Threshold value.

It should be noted here that our algorithm may map more
than one cluster to a single plan. This is essentially because
the clusters generated by the algorithm are of a fixed size
which is tuned by the user. Thus, filling up the complete
region in the plan space where a plan �� is applicable may
require a large number of clusters. For a set of � clusters,
this imposes a space overhead of ��� query feature vectors
and �� � plan templates. But this can be largely overcome
if we compare the plans corresponding to the leaders and
point all matching cluster leaders to the same physical plan
��.

7 Classification of New Queries

We now move on to the problem of efficiently determining
which cluster, if any, a new query should belong to. There
are a host of classification schemes that can be applied to
the query classification problem. For example, we can use
the Leader algorithm itself for classification purposes, and
in fact, make it an online classifier by having the optimizer
generate a plan whenever a new leader is encountered.

An obvious question that arises with this approach is
that the number of clusters may become very large and
matching with every leader may therefore become an ex-
pensive affair. Accordingly, we need a faster technique

Table Cardinality Size (in MB)
PART 200000 29.8
PARTSUPP 800000 124.7
CUSTOMER 150000 26.6
SUPPLIER 10000 1.7
LINEITEM 4859686 658.6
NATION 25 2 * ����

REGION 5 4 * ����

Table 3: TPC-H Table Statistics

such as decision trees or hierarchical clustering [4] – we
have explored the former option since it naturally suits our
problem. This is because most of our query features are de-
terministic as well as common to a small group of clusters
and we can therefore have a set of comparisons that zero-
in on the required cluster very quickly. For example, the
feature set: Degree Sequence, Predicate Counts and Join
Predicate Index Counts, will be the same for all the queries
within the cluster and thus can be considered to be a charac-
teristic of the cluster acting as a decision rule for selecting
clusters. Another important advantage of decision trees is
that once we have the rules generated, we can even drop
the source query feature vectors and simply interpret clus-
ters as leaves of the decision tree.

In the current setup of PLASTIC, the classical C5.0 de-
cision tree induction algorithm [12] is used to generate the
decision trees. The C5.0 algorithm chooses features for
splitting in an order that provides the maximum informa-
tion gain at every split.

8 Performance Framework

PLASTIC has been evaluated on the TPC-H Database pop-
ulated at scale 1 (i.e. 1 GB of data). The tables present
in the database and their sizes are given in Table 3. The
database was populated using DBGEN [1] and the queries
were generated using QGEN [1] – these queries were mod-
ified to result in un-correlated SPJ queries. While we con-
ducted experiments with a variety of TPC-H queries, we
discuss the results here for only a few representative queries
due to space limitations.

8.1 Metrics

We assume in our experiments that the queries received by
the system will be independent and uniformly distributed
over the feature space. The metrics used for evaluation are
as follows:

8.1.1 Accuracy

We measure accuracy in terms of what is referred to as an
empirical or training risk in the machine learning litera-
ture. In our case it is the ability of the cluster boundaries
to discriminate the plan boundaries sketched by an opti-
mizer. In this regard, we consider a cluster ambiguous if
there is more than one optimizer plan applicable to differ-
ent queries in the cluster. The predicted plan for a new



query is the plan mapped to the leader. But there may be
other queries in the cluster which may not have this plan as
their optimizer-generated plan. The expected probability of
a query being assigned to the wrong plan is given by:

	��� � 
������������� � � ����

where �� is an ambiguous cluster, � ���� �
�

���	���������������
is the apriori probability that

the query is assigned a particular cluster (assuming each
cluster is equally likely), and ����������� = Probability
that � is classified incorrectly if assigned to cluster ��. In
our experience, ambiguous clusters typically overlap two
plans, and therefore ����������� can be approximated to
50%.

8.1.2 Efficiency

We measure efficiency in terms of the time taken for clas-
sification. That is, given � clusters how much time does it
take PLASTIC to classify a new query and predict a plan.

8.1.3 Risk Factor

We define Risk Factor as the maximum risk involved in
predicting plans using PLASTIC. This risk is computed as
the worst case extra cost incurred when PLASTIC does not
choose the optimizer-generated plan for a particular query.
The worst case occurs when a leader is located at a point
in the query template space where the optimizer switches
from one plan to another, and the incoming query is located
at the periphery of this leader’s cluster.

8.1.4 Space Overhead

The space overhead involved is defined in terms of the
amount of space required for storing a single query. The
overall storage can be estimated using this value. The
space overhead is proportional to the accuracy desired. The
higher the accuracy desired, the greater is the space over-
head involved and vice versa.

8.2 SIMCHECK Algorithm Configuration

The SIMCHECK algorithm requires three constants: ��,
�� and ��� ��!"�. Through considerable empirical eval-
uation, we have found that the values 0.7 and 0.3 for � �

and �� give satisfactorily accurate results. Further, these
settings are robust to the extent that performance is only
marginally impacted by varying these weights to � 0.1.

With regard to the Threshold, we found that its ideal
value is a function of the nature of the underlying database.
For databases with large tables, lower threshold values
were found to be appropriate since the optimizer is more
sensitive with respect to selectivity changes in such envi-
ronments. Specifically, for the TPC-H database, we found
that setting the Threshold to 0.01 was a good choice. This
is especially true for higher selectivities where if we gen-
erate large clusters due to a high threshold value, the risk
involved will be considerable. Ideally, there should be

Metric DB2 P-DB2
Leader Decision Tree

Accuracy 100% 90.76% 88.8%
Efficiency 0.1s 0.004s 0.00025s

(avg. case) (worst case)
Space – 1.97 KB 3.96KB

Table 4: Performance Profile for Query Q2’

smaller clusters towards the high selectivity regions and
larger towards the low selectivity regions. Since in our cur-
rent implementation, we are using uniform sized clusters
for simplicity, the threshold needs to be set low so as to
minimize the risk for the high selectivity regions.

8.3 Evaluation Testbed

All our experiments were conducted using the optimizer
of DB2 Universal Database Version 7 on a Windows 2000
Workstation running on a Pentium III-800 MHz machine
with 256 MB RAM, and 20 GB disk. DB2 gives a choice
of 9 optimization classes – we use the default optimization
class, 5, in our experiments.

9 Experimental Results
Our first experiment evaluates the performance for a query
workload that is generated from the same query template,
while the second experiment investigates the sharing of
plans among queries that arise from different query tem-
plates. These experiments are described in the remainder
of this section.

9.1 Experiment 1: Intra-query Plan Sharing

We consider here query Q2’ for which we have already
seen the plan diagram and associated cluster diagram in
Figures 1 and 2, respectively. There were 65 clusters
created for this experiment and the associated performance
numbers are shown in Table 4, where DB2 refers to the
traditional optimizer performance while P-DB2 refers to
the performance of a DB2 that has been augmented with
PLASTIC. We evaluate the performance of P-DB2 under
two environments: First, where the Leader algorithm is
used for both classification and clustering, and second, a
more sophisticated implementation where a decision tree is
built on the clusters and used for classification.

The first point to note in Table 4 is that P-DB2 deliv-
ers an accuracy of around 90 percent, which shows that
PLASTIC can be profitably used in conjunction with a tra-
ditional optimizer. Further, note that in this formulation,
we have assumed that the DB2 optimizer always chooses
the best plan and hence its accuracy is quoted as 100%.
But in general, DB2 does not give as good a plan at level
5 optimization as the one it gives at level 9 optimization.
A deterrent to always run the optimizer at level 9 is the
fact that this level involves considerable additional compu-
tation cost. However, with P-DB2, we can now afford to
incur this cost since it is a one-time cost only. Hence, the
90% of cases where PLASTIC is correct would run at the



Ambiguous DB2 P-DB2 Risk
Cluster Cost Cost Factor (in %)
1 261209 266260 1.9
2 241054 246000 2
3 173913 188684 1.1
4 158577 158681 0
5 161814 159078 -.02

Table 5: Risk Factor Analysis for Q2’

best optimization level, which would have been difficult to
achieve otherwise.

Where P-DB2 really scores over DB2 is with regard to
Efficiency, that is, the optimization time. On average, DB2
takes 0.1s for optimization while P-DB2, even when us-
ing the Leader algorithm, which does a brute force search
takes only 0.004s in the worst case (which occurs when
it has to compare with all the 65 cluster leaders) ! When
the search is accelerated through a decision tree classifier,
the optimization times further reduce by an order of mag-
nitude. However, this improvement comes at the cost of
errors induced by the decision tree algorithm, resulting in a
marginally decreased accuracy.

Moving on to the risk that is incurred when P-DB2 does
make wrong choices, the risk values for 5 ambiguous clus-
ters are shown in Table 5 (the measurement is in timerons
which is the DB2 unit for cost estimation and represents a
weighted sum of IO and CPU cost). From these statistics
we see that there is only a a nominal risk associated with
each incorrect assignment. This can be traced to the fact
that when PLASTIC errs in cluster selection, it is found to
choose the second best plan in the majority of the cases.
More importantly, PLASTIC errs only when a cluster over-
laps different plans. This means that the switching between
these plans falls in that cluster and at switching points the
costs of the associated plans are very close to each other.
Therefore, the impact of the error is close to negligible.
In fact, for ambiguous cluster 5, PLASTIC has happened
to serendipitously pick up an even better plan than DB2
(due to its running only at level 5, whereas a higher level
of optimization may have recommended the plan output by
PLASTIC).

In summary, this experiment clearly shows that very
substantial improvements in the query optimization process
can be realized through a properly designed query cluster-
ing technique.

9.2 Experiment 2: Inter-query Plan Sharing

This experiment investigates a totally different dimension
to the use of PLASTIC and is aimed to highlight the fact
that PLASTIC identifies similarities at a higher plane than
mere structural mapping. We have already seen two exam-
ples demonstrating this in Section 5. This section analyzes
this capability of PLASTIC in more detail and presents four
different cases where queries having significantly different
structures and statistics are correctly optimized by P-DB2.

9.2.1 Different Projection Attributes

Given below is a query where certain projection attributes
that were present in Q2’ are removed and new attributes
have been added2, keeping the rest of the query the same.

select
s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment

from
part p, supplier s, partsupp ps,
nation n, region r

where
... (rest same as Q2’)

The plan generated by DB2 for this query is the same
as that for Q2’. This is because DB2 does not change its
plans unless there is a considerable impact of the difference
in projection attribute sizes on the effective join sizes of
individual tables. For example, if the projection attributes
are changed to * in this query, resulting in a very wide tuple,
DB2 changes its plan choice.

PLASTIC is also able to correctly identify the plan sim-
ilarity for the above query. It becomes possible because
we do not match attribute or table names but rely only on
the structural and statistical features. Since the queries are
structurally similar and their statistical distance is within
the similarity threshold, their plans are estimated to be the
same.

9.2.2 Different Selection Predicates

From the above discussion, it is straightforward to conclude
that even if we change/add/remove selection predicates in
a query, the optimizer may not change the plans. All that
matters for the optimizer are the estimated sizes calculated
on the basis of predicate selectivities and whether these
predicates are SARGable. For example, consider the query
shown below which augments Q5’, our SPJ version of the
Q5 query from the TPC-H benchmark, with the additional
selection predicate (R COMMENT � ’HELLO’).

select
l_extendedprice, l_discount

from
customer, orders, lineitem,

supplier, nation, region
where

c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name=’AFRICA’
and R_COMMENT > ’HELLO’
and o_orderdate >=

date (’1997-01-01’)
and year(o_orderdate ) <

(year(’1997-01-01’) + 1);

2The bind variables have the same values in both queries.



In this case, PLASTIC correctly recognizes that DB2 will
eventually choose the same plan for both Q5’ and the aug-
mented version since the overall selectivities of the RE-
GION table do not change to the extent that it will affect
the plan selection of the optimizer.

9.2.3 Different Join Attributes

Given below is another variant of query Q5’ where
the second predicate of Q5’ has been changed
to ”l commitdate=o orderdate” from the original
”l orderkey=o orderkey”.

select
l_extendedprice, l_discount

from
customer, orders, lineitem,
supplier, nation, region

where
...
L_COMMITDATE=O_ORDERDATE
...

DB2 generates the same plan for both this query and a
variant where the aforementioned commit date join pred-
icate is replaced with ”l shipdate = o orderdate”. PLAS-
TIC also identifies this because the join index and predicate
counts of both queries are the same. This is an example of
a situation where checking for equality on JIC values plays
an important role.

9.2.4 Different Tables in the Query

Our final experiment investigates the biggest difference
between two queries, namely, changing the query tables
themselves. For this we created a new table NATION 1
which was different in terms of number of tuples, number
of attributes, and column sizes of the attributes, from the
original table NATION of the TPC-H benchmark. The car-
dinalities of the tables were 25 and 36 tuples, respectively.
DB2 produces the same plan for Q5’, run once with NA-
TION and then with NATION 1. The point we are making
here is that if the overall sizes of tables and certain char-
acteristics of the tables, such as primary keys and their in-
dexes, etc. are similar, the optimizer’s choices are not sub-
ject to much change. Obviously, table and attribute names
do not matter for an optimizer. PLASTIC also incorporates
a similar logic and therefore successfully predicts that the
two queries will have the same plan.

10 Related Work
Techniques such as multi-query optimization (MQO) [13,
14, 16, 11, 8] and parametric query optimization (PQO) [5,
3, 10], have been previously proposed for enhancing the
query optimization process. Both these techniques are in-
herently computationally hard – for example, the search
space in MQO is doubly exponential in the size of the
queries. This has led to the design of heuristic-based so-
lutions, such as those presented in [13].

Our approach is fundamentally different from MQO in
that we do not attempt to optimize queries but merely to
make effective use of the results of prior optimizations.
Moreover, while we do group queries into clusters, the plan
selection is applicable on a per-query basis and is therefore
not restricted to query batches. Finally, our optimization
is not limited to a temporal window of queries, but can be
utilized across widely dispersed query sets.

Moving on to PQO, its coverage of the query space is
typically an offline process. In contrast, our approach can
be implemented in either an offline manner where artificial
queries are generated so as to create clusters that cover the
query space, or more practically as an online process with
regard to both cluster formation and query plan selection.
That is, the query space can be covered incrementally on
demand when user queries arrive at the database system.

Another significant difference with PQO is that our plan
selection process involves only the traversal of a simple de-
cision tree, whereas PQO requires a spatial storage and in-
dexing mechanism. This is because the scheme requires
storing not only the set of optimal plans but also the regions
in which each of these plans are optimal. Even for simple
linear cost functions, the shapes of these regions turn out to
be convex polyhedrons [5], mandating spatial storage and
access in order to identify which plan is to be utilized for a
newly arrived query. This issue assumes importance since
supporting spatial databases is well-known to be an expen-
sive proposition [17].

Finally, while PQO is concerned with completely char-
acterizing the plan space for a given query, our approach
extends to sharing of plans across similar queries.

10.0.5 Comparison with Modern Optimizers

Some modern optimizers also provide plan reuse facili-
ties. We discuss Oracle9i Optimizer [2] here and how
adding PLASTIC, to any such optimizer, can augment
its capabilities. The Oracle database system provides
a mechanism, called “stored outlines”, for preserving
queries and execution plans. When the system parameter
USE STORED OUTLINES is set to true, the optimizer
compares the incoming query with the stored queries and if
an identical match is found, the associated plan is used.

The point to note here is that the query matching is done
at the syntactic level. There is a one-to-one correspondence
between SQL text and its stored outline. If a different literal
is specified in a predicate, then a different outline applies.
To avoid this, Oracle also allows bind variables to be used
instead of constants to allow a wider coverage. This ap-
proach is still somewhat limited in several ways. Firstly,
the query matching is very strict – a slight change in the
structure of query, for example, adding or replacing of a
projection attribute, will result in the optimizer not utiliz-
ing the existing plan. Secondly, it does not take into ac-
count the fact that several selection predicates on a partic-
ular table can together generate a selectivity for the table
which is similar to that of a previously stored query. This
is essentially what was illustrated by the example involv-



ing QA and QA” in Section 5. Thirdly, a more serious
problem is that the query plan is the same for the com-
plete range of values of a bind variable since Oracle adopts
the heuristic of assuming small values for the selectivity of
bind variable-based predicates. Specifically, it chooses a
selectivity of 0.05 for all range predicates associated with
bind variables, a heuristic that can prove very costly for
database environments with higher selectivity values. Our
approach, on the other hand, tries to address all these three
issues in a much more flexible and fine-grained manner.

It should thus be noted that PLASTIC does not just map
a parametric space based on changes in bind variables of
selection predicates but works at the level of sharing be-
tween queries, a feature we expect would be desirable in
practice.

11 Conclusions
We have presented and evaluated PLASTIC, a value-
addition tool for query optimizers that attempts to effi-
ciently and accurately predict, given previous training in-
stances, what plans would be chosen by the optimizer for
new queries. Apart from the obvious advantage of speed-
ing up optimization time, it also improves query execution
efficiency since it makes it possible for optimizers to al-
ways run at their highest optimization level as the cost of
such optimization is amortized over all future queries that
reuse these plans. Yet another important advantage is that
the benefits of “plan hints”, a common technique for in-
fluencing optimizer plan choices for specific queries, au-
tomatically percolate to the entire set of queries that are
associated with this plan.

PLASTIC’s design is based on clustering in the query
space, rather than in the plan space, and its query fea-
ture vector includes a variety of structural and statistical
attributes. This framework allows PLASTIC, unlike the
state-of-the-art in commercial optimizers, to identify query
similarity at a much broader level, including handling
changes in projection, selection and join predicates, as also
in the query tables themselves. Therefore, it promises to
significantly improve the utility of plan cacheing.

A performance evaluation of PLASTIC against various
TPC-H benchmark queries showed high plan prediction ac-
curacy, an improvement by an order of magnitude in op-
timization time, a nominal error penalty and a low space
overhead.

In our future work, we plan to extend PLASTIC, which
currently only handles basic SPJ queries, to also support
nested queries, groups and aggregates. We also plan to in-
vestigate the design of variable-sized clusters which will
facilitate tuning cluster sizes to match the plan volatility
in each region of the feature space. Finally, we are work-
ing on automated mechanisms for setting the weights and
threshold values used in the similarity checking algorithm.
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