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Abstract 

The democratization of ubiquitous computing 
(access data anywhere, anytime, anyhow), the 
increasing connection of corporate databases to 
the Internet and the today’s natural resort to Web-
hosting companies strongly emphasize the need 
for data confidentiality. Database servers arouse 
user’s suspicion because no one can fully trust 
traditional security mechanisms against more and 
more frequent and malicious attacks and no one 
can be fully confident on an invisible DBA 
administering confidential data. This paper gives 
an in-depth analysis of existing security solutions 
and concludes on the intrinsic weakness of the 
traditional server-based approach to preserve data 
confidentiality. With this statement in mind, we 
propose a solution called C-SDA (Chip-Secured 
Data Access), which enforces data confidentiality 
and controls personal privileges thanks to a client-
based security component acting as a mediator 
between a client and an encrypted database. This 
component is embedded in a smartcard to prevent 
any tampering to occur. This cooperation of 
hardware and software security components 
constitutes a strong guarantee against attacks 
threatening personal as well as business data. 
 

1. Introduction 

The rapid growth of ubiquitous computing impels mobile 
users to store personal data on the Web to increase its 
availability. In the same way, corporate databases are 
made more and more accessible to authorized employees 
over the Internet. Small businesses are prompted to 
delegate part of their information system to Web-hosting 
companies or Database Service Providers (DSP) that 
guarantee data resiliency, consistency and high availability 

[eCr02,CaB02,Qck02]. Customer information is also 
maintained on-line for the needs of e-commerce and e-
business applications. Typically, Microsoft .NET Passport 
[Mic02] gathers customer information (identity, 
passwords, credit card numbers, profiling data) in an 
electronic wallet shared by all participating .NET Web 
sites. Consequently, the amount of sensitive information 
collected and shared in the marketplace is such that data 
confidentiality has become one of the major concerns of 
citizens, companies and public organizations, and 
constitutes a tremendous challenge for the database 
community.  

Confidential data threatened by attackers is manifold: 
information related to the private life of individuals (e.g., 
agenda, address book, bookmarks, medical records, 
household expenses), credit card numbers, patents, 
business strategies, diplomatic or military secrets. Even 
ordinary data may become sensitive once grouped and well 
organized in databases. Customers have no other choice 
than trusting DSP’s arguing that their systems are fully 
secured and their employees are beyond any suspicion. 
However, according to the “Computer Crime and Security 
Survey” published by the Computer Security Institute 
(CSI) and the FBI [FBI01], the theft of intellectual 
property due to database vulnerability costs American 
businesses $103 billion annually and 45% of the attacks 
are conducted by insiders.  

Traditional database security policies rely on user 
authentication, communication encryption and server-
enforced access controls [BPS96]. Unfortunately, these 
mechanisms are inoperative against most insider attacks 
and particularly against database administrator attacks. 
Several attempts have been made recently to strengthen 
server-based database security policies thanks to database 
encryption [Ora99, Mat00, HeW01].  

This paper first characterizes the intrinsic limits of 
these server-based solutions with respect to the different 
types of attacks that can be conducted. With these 
limitations in mind, we state the dimensions of the data 
confidentiality problem. 

While client-based security policies have been 
historically disregarded considering the vulnerability of 
client environments [Rus01], we argue that the emergence 
of smartcard secured client devices fundamentally changes 
the problem statement. Initially developed by Bull to 
secure the French banking system, smartcards have been 
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used successfully around the world in various applications 
managing secured data (such as banking, pay-TV or GSM 
subscriber identification, loyalty, healthcare, insurance, 
etc.). Unfortunately, smartcards suffer from intrinsic 
hardware constraints that confine their applicability in 
terms of data management to secure portable folders (e.g., 
healthcare folder) [ISO99, PBV01].  

We capitalize on the security properties of the 
smartcard to devise a solution to the data confidentiality 
problem, named Chip-Secured Data Access (C-SDA).  
C-SDA takes the form of a security software embedded in 
a smartcard. This software acts as an incorruptible 
mediator between a client and a server hosting an 
encrypted database. The confidence in C-SDA relies on the 
fact that data encryption, query evaluation and access right 
management are insulated in a smartcard and cannot be 
tampered by anyone, including the cardholder. Dedicated 
query evaluation techniques are proposed to tackle the 
strong smartcard hardware constraints. We show the 
conclusive benefit of associating software and hardware 
security to preserve data confidentiality. 

The contribution of this paper is twofold. First, it 
clearly states the dimensions of the data confidentiality 
problem and explains to which extent existing security 
solutions fail in addressing some of these dimensions. 
Second, it proposes a novel database security model where 
confidentiality is delegated to a tamper-resistant client 
device. This model is being validated in the context of a 
BtoB project supported by the French ANVAR agency 
(Agence Nationale pour la VAlorisation de la Recherche). 
This project will give us the opportunity to assess the 
functionality and performance of C-SDA on a real world 
application. 

This paper is organized as follows. Section 2 
characterizes the attacks that can be conducted against 
confidential data, analyzes the strengths and weaknesses of 
existing secure database solutions and concludes with a 
precise formulation of the data confidentiality problem. 
Section 3 introduces the Chip-Secured Data Access 
approach and shows how it answers each dimension of the 
data confidentiality problem. Section 4 addresses query 
management issues. Section 5 concentrates on data 
encryption and access right management. Section 6 
develops a complete scenario illustrating the behavior of 
C-SDA on a concrete example. Finally, section 7 
concludes the paper and sketches future research 
directions. 

2. Data confidentiality problem 

In this section, we first introduce the distinction between 
data privacy and data confidentiality. Then, we 
characterize the class of attacks that are commonly 
directed against databases. We discuss afterwards how 
server-based and client-based approaches resist to these 
attacks. We conclude by a precise formulation of the data 
confidentiality problem addressed in this paper. 

2.1. Data privacy vs. data confidentiality 

This paper concentrates on a particular aspect of database 
security, that is data confidentiality. Data confidentiality 
refers to the ability to share sensitive data among a 
community of users while respecting the privileges granted 
by the data owner to each member of the community. Any 
user external to the community is assumed to have no 
privilege at all. A special case of data confidentiality is 
data privacy. Data privacy means that the data owned by 
an individual will never be disclosed to anyone else.  

Privacy is easier to enforce than confidentiality since 
sharing is precluded. The simplest and most effective way 
to ensure data privacy is to encrypt the user’s data thanks 
to a symmetric key algorithm (e.g., DES [NIS93]). The 
user being the unique holder of the cipher key, no one else 
can access the clear text form of the data. Several Storage 
Service Providers propose to manage encrypted backups 
for personal data [Sky02]. They guarantee that data is 
encrypted at all times from transmission of a customer's 
computer to their server and back and remains safe from 
unauthorized access even by their staff.  

Data privacy solutions cover only a restricted range of 
applications considering that even private data is subject to 
sharing (e.g., patient’s medical records are shared by 
doctors, customer’s information is shared by e-commerce 
sites). Thus, the remainder of the paper focuses on the 
more general problem of data confidentiality and places 
much emphasis on access right management. 

2.2. The attackers 

In the light of the preceding section, we can identify three 
classes of attackers that can threaten data confidentiality: 
• Intruder: a person who infiltrates a computer system and 

tries to extract valuable information from the database 
footprint on disk (DBMS access controls are bypassed). 

• Insider: a person who belongs to a community of users 
properly identified by the computer system and the 
database server and who tries to get information 
exceeding her own access rights. 

• Administrator: a person who has enough (usually all) 
privileges to administer a computer system (System 
Administrator) or a DBMS (Database Administrator or 
DBA). These privileges give her the opportunity to 
tamper the access right definition and to spy on the 
DBMS behavior. 

An Intruder who usurps successfully the identity of an 
Insider or an Administrator will be considered as such in 
the rest of the paper.  

2.3. Weaknesses of server-based security policies 

Traditional database security policies rely on three well 
established principles [BPS96]: (1) user identification and 
authentication, that can be supported by mechanisms 
ranging from simple login/password methods up to 
smartcard or biometrics device-based methods; 



 

(2) network encryption, that guarantees the confidentiality 
and the integrity of client/server communications; and 
(3) server-enforced access control and privilege 
management. Although these mechanisms are clearly 
required, they fail to answer all threats identified earlier for 
two obvious reasons. The first reason is that the confidence 
on the server never exceeds the confidence the user is 
ready to place in the DBA. This confidence may vary 
depending on the users, the Web-hosting companies or the 
countries but, as far as data confidentiality is concerned, 
this confidence is generally quite low. The second reason 
is the increasing number of commercial or institutional 
sites that are hacked, demonstrating the difficulty of 
making the hosting computing system secure enough to 
prevent any intrusion. 

Recent attempts have been made to reinforce the server 
security by encrypting the database. Some commercial 
DBMSs provide encryption packages to this end [Ora00]. 
However, if encryption provides an effective answer to 
attacks conducted on the database footprint by an Intruder, 
it does not enforce data confidentiality on its own. Indeed, 
the server being still responsible for query execution and 
access right management, encryption makes just a bit more 
tedious the Administrator attacks. In these solutions, the 
management of cryptographic keys is under the 
application’s responsibility and data is decrypted on the fly 
by the server at query evaluation time. Thanks to her 
privileges and to the DBMS auditing tools, the DBA can 
change the encryption package, can get the cryptographic 
keys, can modify the access right definition and can even 
snoop the memory to get the data while it is decrypted. 
Thus, as Oracle confesses, encryption is not the expected 
“armor plating” because the DBA (or an Intruder usurping 
her identity) has all privileges (see Figure 1). 

Solutions complementary to database encryption have 
been recently investigated to guard the DBMS from the 
DBA. Protegrity [Mat00] introduces a clear distinction 
between the role of the DBA, administering the database 
resources, and the role of the SA (Security Administrator), 
administering user privileges, encryption keys and other 
related security parameters. This distinction is also made 
effective at the system level by separating the database 
server from the security server. The gain in confidence 
comes from the fact that an attack requires a conspiracy 

between DBA and SA. Anyway, one must keep in mind 
that data is still decrypted by the database server at query 
execution time. An alternative to this approach is to design 
a secure DBMS engine that restricts DBA privileges in 
order to make the aforementioned attacks inoperative 
[HeW01]. This raises the following question “can a DBA 
administrate a DBMS with restricted privileges?”. 
Unfortunately, DBMS vendors answer today negatively. In 
addition, this solution suffers from the same security 
breach as Protegrity regarding data decryption on the 
server. 

The proliferation of solutions to increase database 
security exemplifies the acuity of the problem. However, 
existing solutions fail in answering the data confidentiality 
requirements listed below: 

Data confidentiality requirements 
1. confidential data must be managed by an auto-

administered DBMS to cast off the DBA privileges, 
2. this DBMS must be hosted by an auto-administered 

computing system to cast off the system administrator 
privileges, 

3. this computing system must constitute a Secure 
Operating Environment (SOE)1 to cast off any Intruder 
action.  

The traditional database server approach suffer from a 
strong handicap to meet these requirements because 
existing DBMSs, as well as the computing systems they 
rely on, are far too complex, first to be auto-administered 
and second to constitute a SOE. The first assumption is 
strengthen by the analysis done in [ChW00] which 
measures the distance separating current technologies from 
future self-tuning and zero-admin DBMSs2. The worrying 
numbers regularly published by the Computer Security 
Institute and the FBI on database vulnerability [FBI01] 
truly confirms the second assumption. 

2.4. Client-based security policies 

The weaknesses of the server-based approach to meet the 
data confidentiality requirements led us to devise client-
based solutions. As a preliminary remark, let us notice that 
the solution presented in section 2.1 to enforce data 
privacy is typically client-based since the server does 
nothing but storing encrypted data. Unfortunately, these 
solutions do not support sharing. Enforcing data 
confidentiality in a client-based approach means 
delegating the sharing control to the client devices. 
However, client-based approaches have been historically 
disregarded considering that users have themselves the 
opportunity to hack the client system, and then the sharing 
control in our context, with total impunity [Rus01]. 

                                                           
1 A Secure Operating Environment was defined by [HeW01] as an 

environment able to manipulate secret data without causing secret leak. 
2 Although security is not the concern of [ChW00], the following 

sentence from the authors is eloquent “tuning is a nightmare and auto-
tuning is wishful thinking at this stage”. 

Figure 1: Database Server approach  
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The emergence of smartcard secured client 
equipment’s drastically changes these conclusions. We 
illustrate the smartcard-client-based approach below 
through practical examples, and discuss to which extent 
they meet the data confidentiality requirements. 

Smartcard is undoubtedly the most secure and cheap 
computing device today. The strength of smartcard 
applications regarding data confidentiality is threefold: (1) 
existing smartcard applications are simple enough to 
require zero-administration once downloaded in the card, 
(2) thanks to its hardware architecture making tampering 
extremely difficult [AnK96, ScS99], the smartcard is 
probably the best representative of SOE, (3) the high cost 
of an attack and its practical difficulty (holding the card) 
must be weighted up with its benefit (the data of a single 
user can be revealed). A common assumption is that a 
system can be considered secure if the cost of hacking it 
exceeds the value of the disclosed information. 
Conversely, the cost of security for the user is negligible 
considering the price of a smartcard (a few dollars). 

Smartcards become more and more versatile thanks to 
the emergence of the JavaCard standard [Sun99] and to 
their increasing computing power. Thus, complex 
applications can now be downloaded and coexist in 
smartcards. Simple smartcard applications do not require 
administration because they are in some sense pre-
administered (data schema, user and access rights are hard-
coded). The side effect is the lack of extensibility. To 
circumvent this limitation, ISO has recently promoted a 
database approach for smartcards, named SCQL [ISO99], 
which allows for the dynamic declaration of data, users 
and access rights. Thus, smartcard embedded databases 
require administration but this task is handled by the 
cardholder (the data owner) instead of by a DBA, thereby 
preserving data confidentiality (see Figure 2). The problem 
of designing database engines dedicated to smartcards 
(called smartcard DBMSs in the sequel) has been 
extensively studied in [PBV01] and the feasibility of the 
approach has been recently demonstrated [ABB01]. While 
smartcard DBMSs pave the way for complex secured 
client-based applications, they suffer from a tiny storage 
capacity3, which confines them to specific applications 
(typically secured portable folders).  

Interesting attempts have been made to push away the 
smartcard storage limit. The first solution, due to the 

                                                           
3 Existing smartcards provide around 128KB of EEPROM stable 

memory, while stable storage is rapidly growing, it will remain quite 
limited compared with traditional computers. 

WebCard project [Van98], consists of storing in the 
smartcard URLs referencing huge, but unprotected, 
external data. The Vault [Big98] extends the WebCard 
approach by encrypting the documents referenced by 
URLs. Undoubtedly, the Vault meets the requirements of 
some applications but it does not constitute a solution from 
the database point of view. Indeed, the on-board database 
is seen as a catalog of large encrypted documents rather 
than as a regular database holding numerous fine-grain 
objects that can be shared and queried.  

2.5. Problem definition 

From the preceding discussions, we can identify the 
different dimensions of the data confidentiality problem 
addressed in this paper.  

Data confidentiality problem 
• Privacy and confidentiality: privacy of personal data and 

confidentiality of shared data must be guaranteed against 
attacks conducted by Intruders, Insiders and 
Administrators. 

• Storage capacity: the system must not limit the volume 
nor the cardinality of the database. 

• Sharing capacity: if required, any data may be shared 
among multiple authorized users. 

• Query capacity: any data, whatever its granularity, may 
be queried through a predicate-based language (typically 
SQL). 

• Pertinence: the system must guarantee an acceptable 
response time to each user, must be scalable and must be 
economically viable to meet the requirements of large 
public applications. 

3. C-SDA baseline 

Before discussing the principles of Chip-Secured Data 
Access (C-SDA), we first analyze how smartcard client-
based solutions answer each dimension of the data 
confidentiality problem: 
• Privacy and confidentiality: enforced by the fact that the 

smartcard is a SOE hosting the data as well as the 
DBMS engine and that this DBMS is self or user-
administered. 

• Storage capacity: limited by the smartcard stable storage 
capacity. 

• Sharing capacity: limited by the need to share physically 
the same card4. 

• Query capacity: depends on the power of the embedded 
database engine. While query capacity is limited to 
simple selection in the SCQL standard [ISO99], 
PicoDBMS [PBV01] demonstrates the feasibility of 

                                                           
4 Typically, a smartcard medical folder has vocation for being shared 

among multiple users (patient, doctors, pharmacists, …) but a single 
user is active at a time. 
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embedding powerful query engines supporting selection, 
join, grouping and aggregate calculus. 

• Pertinence: well suited in terms of performance (the 
smartcard DBMS is mono-user and works on a reduced 
set of data), of scalability (one smartcard per user) and 
of price (a few dollar per smartcard).  

Given these statements, solving the data confidentiality 
problem sums up to bypass the storage and sharing 
limitations without hurting the other dimensions. The 
concept of server typically addresses the storage and 
sharing issues. Thus, let us consider to which extent the 
sphere of security provided by the smartcard could be 
extended to a remote server holding encrypted data. As 
discussed in section 2.3, the first security breach of the 
server-based approach comes from the fact that data is 
decrypted by the server at query execution time. Assuming 
that the DBMS query engine remains hosted by the 
smartcard, this eliminates the need to decrypt data on the 
server side. The second security breach of the server-based 
approach comes from the fact that access rights are 
enforced by the server and administered by an untrusted 
DBA. Let us assume that the DBMS access right manager 
remains hosted by the smartcard, the DBA (or an Intruder 
usurping her identity) is no longer able to abuse them.  

Can we infer from the preceding assumptions that a 
server acting as an encrypted repository for a smartcard 
DBMS can integrate the smartcard’s sphere of security 
(i.e., while keeping the level of confidence unchanged)? 
The answer is obviously ‘no’ since the server is not hosted 
by a SOE. Typically, an Intruder may conduct destructive 
or deny of service attacks on the server. However, privacy 
and confidentiality are preserved thanks to encryption5.  

In the same spirit, since the data that flows from the 
server to the smartcard DBMS is encrypted, can we infer 
that the communication channel is part of the smartcard’s 
sphere of security? Again, the answer is ‘no’ since the 
communication channel may undergo several forms of 
attacks. At first sight, privacy and confidentiality are 
preserved anyway. However, an Insider may compare the 
encrypted data issued from the server with the query result 
that appears in plain text on its terminal. This may help her 
to conduct a known plain text cryptanalysis in order to 
deduce the encryption keys hosted by the smartcard. 
Thanks to these keys, the Insider may attempt to access 
data exceeding her own access rights. Indeed, the Insider 

                                                           
5 The confidence that can be placed on data encryption itself will be more 

deeply discussed in section 5. 

may have the privilege to see the result of a query 
computed by the smartcard DBMS on data that is outside 
the scope of her privilege6. Consequently, re-encrypting 
the communication with a session key protocol (e.g., SSL) 
is necessary to enforce confidentiality7. 

The baseline of C-SDA is then to build a sphere of 
confidentiality encompassing the smartcard DBMS, the 
server and the communication channel linking them. The 
resulting functional architecture is pictured in Figure 3 and 
roughly works as follows. Each smartcard is equipped with 
a database engine managing access rights, query 
evaluation and encryption. When the user issues a query, 
the smartcard DBMS first checks the user’s access rights 
and, in the positive case, gets the data from the server, 
decrypts it, executes the query and delivers the result to the 
terminal.  

The server component of the C-SDA architecture is an 
answer to the storage and sharing dimensions of the data 
confidentiality problem. However, one may wonder about 
the impact of this answer on the other dimensions of the 
problem. The main question is whether the smartcard 
DBMS technology can conciliate complex queries, large 
volumes of data and performance, considering the inherent 
hardware constraints in the smartcard. The second question 
relates to data confidentiality and concerns the level of 
confidence that can be placed in data encryption (with 
respect to data hosted by the smartcard) and the granularity 
of sharing compatible with encryption. The next sections 
investigate these two issues.  

4. Query Management 

In order to evaluate the technical soundness of the C-SDA 
architecture in terms of query evaluation feasibility and 
efficiency, we first recall the smartcard characteristics that 
are relevant to this issue. Then, we propose a query 
evaluation principle that matches these smartcard 
characteristics whatever the volume of data involved in a 
query.  

4.1. Smartcard characteristics 

Current smartcards include in a monolithic chip, a 32 bits 
RISC processor at about 30 MIPS, memory modules (of 
about 96 KB of ROM, 4 KB of static RAM and 128 KB of 
EEPROM), a serial I/O channel (current bandwidth is 
around 9.6Kbps but the ISO standard allows up to 
100Kbps) and security components preventing tampering 
[ISO98]. ROM is used to store the operating system, fixed 
data and standard routines. RAM is used to manage the 
execution stack of programs and to calculate results. 
EEPROM is used to store persistent information. 

                                                           
6 For instance, a user may be authorized to consult the result of an 

aggregation without be aware of the elementary values from which this 
aggregation is computed. 

7 A side effect of an SSL-like protocol is to guarantee at the same time a 
mutual identification/authentification of the client and the server as 
well as the integrity of messages. 
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EEPROM has very fast read time (60-100 ns/word) 
comparable to RAM, but a dramatically slow write time (1 
to 5 ms/word).  

The main constraints of current smartcards are 
therefore: (i) the very limited storage capacity; (ii) the very 
slow write time in EEPROM and (iii) the extremely 
reduced size of the RAM. On the other hand, smartcards 
benefit from a very high security level and from a very 
powerful CPU with respect to the other resources. This 
makes the smartcard an asymmetric computing 
architecture which strongly differs from any other 
computing devices.  

The current trends in hardware advances are on: (i) 
augmenting the CPU power to increase the speed of cipher 
algorithms, (ii) augmenting the capacity of the stable 
storage and (iii) augmenting the communication bandwidth 
between the chip and the card-reader8. More details on 
existing smartcard platforms and their evolution can be 
found in [Tua99, PBV01].  

4.2. Query evaluation principle 

A naive interpretation of the C-SDA architecture depicted 
in Figure 3 is to consider that the server acts as a persistent 
encrypted virtual memory which is accessed by the 
smartcard DBMS during query evaluation, any time a data 
item is requested for computation. Such an architecture 
would suffer from disastrous performance because it 
would incur a prohibitive communication cost (one call per 
data item) and I/O cost (traditional server optimizations 
become irrelevant). It may even happen that the same data 
be loaded several times from the server if the smartcard 
DBMS cannot keep enough local resources to cache it. 
Last but not least, the smartcard hardware constraints 
impose to design very specific query evaluation strategies. 
While ad-hoc strategies have been shown convenient in the 
context of small-embedded databases, their algorithm 
complexity renders them totally inappropriate for large 
databases [PBV01]. 

Thus, new query evaluation strategies that better 
exploit the computational resources available on the server 
and even on the terminal must be devised. This leads to 
split a query Q into a composition of the form  
Qs ° Qc ° Qt, where Qs, Qc and Qt denote respectively the 

sub-query evaluated on the server, the card and the 
terminal. The imbalance between the smartcard, the server 
and the terminal in terms of computing resources 
advocates pushing the biggest part of the computation 
down into Qs and Qt. However, the imbalance between 
these same components in terms of security leads to the 
following compromise:  
• Server subquery (Qs): the server must execute the largest 

part of the query as far as confidentiality is not 
compromised. That is, any predicate that can be 

                                                           
8 These trends are partly explained by market perspectives on delivering 

multimedia objects (e.g., an mp3 flow) that can be decrypted on the fly 
by the card of a subscriber. 

evaluated on the encrypted form of the data must be 
pushed down to the server. To simplify things, we 
consider below that predicates based on an equality 
comparator {=, ≠} satisfy this condition9. In the sequel, 
we call these predicates equi-predicates in opposition to 
inequi-predicates based on inequality operators {>, ≥, <, 
≤}. 

• Smartcard subquery (Qc): the smartcard DBMS is 
responsible for filtering the result of Qs to evaluate all 
predicates that cannot be pushed down to Qs and for 
computing aggregation functions if required. The 
terminal cannot participate to this evaluation because the 
data flow resulting from Qs may go beyond the user’s 
access rights.  

• Terminal subquery (Qt): due to the confidentiality 
consideration mentioned earlier, the terminal can only 
evaluate the part of the query related to the result 
presentation. Typically, it can handle the sort and the 
distinct operators, if requested by the user. 

The challenge in decomposing Q into Qs ° Qc ° Qt is 

twofold. First, the global evaluation must meet the 
pertinence requirement in terms of performance and 
scalability. Second, Qc must accommodate the smartcard’s 
hardware constraints. Query evaluation on the smartcard 
precludes the generation of any intermediate results since: 
(i) the RAM capacity cannot accommodate them, (ii) RAM 
cannot overflow into EEPROM due to the dramatic cost of 
EEPROM writes and (iii) intermediate results cannot be 
externalized to the terminal without hurting confidentiality. 

To explain how this challenge can be tackled, we will 
consider unnested SQL queries composed by the 
traditional Select, From, Where, Group by, Having and 
Order by clause and we will reason about them in terms of 
relational algebra. Let us first introduce some notations: 
R, S, …U:  relations involved in the query 
R.a :  attribute a from relation R 
πp,fp: projection operator, where p denotes the list of 

attributes to be projected and fp denotes  
the list of aggregate functions to be computed 
before projection 

χ: cartesian product operator 
σq: selection operator, where q denotes the 

selection qualification: q is expressed in 
conjunctive normal form as follows: C1 ∧  C2 

… ∧  Cn, each condition Ci being of the form 
(P1 ∨  P2…∨  Pk), each predicate Pj being of the 
form (R.a θ value) or (R.a θ S.b), with θ ∈  {=, ≠, 
>, ≥, <, ≤}. 

 Cq denotes the set {C1, C2 …, Cn} of 
conditions participating in q. 

 PCi denotes the set {P1, P2, Pk} of predicates 
participating in Ci. 

                                                           
9 This assumption means that any couple of data subject to comparison is 

encrypted with the same key. Data encryption is more deeply detailed 
in section 5. 



 

γg: grouping operator, where g denotes the list of 
attributes on which the grouping applies 

ηc, fη: having operator, where c denotes the having 
qualification and fη  the list of aggregate 
functions on which c applies 

φ: presentation operators: sort, duplicate removal 
E (resp. D): encryption (resp. decryption) operator 

 
According to the operational semantics of SQL, an 
unnested query Q is equivalent to the following formula: 

Q = φ (πp, fp (ηc, fη (γg (σq (RχSχ …U))))) 
Under the assumption made about database encryption, 
that is: ∀ di,dj, E(di) = E(dj) ⇔ di = dj, we can infer that the 
largest part of Q that can be delegated to the server is: 

Qs = πps (γg (σqs (RχSχ …U))), with 
Cqs ⊆  Cq and Ci∈ Cqs ⇒ ∀ Pk∈  PCi, θ ∈  {=, ≠}, 
ps = p ∪  g ∪  lp ∪  lη ∪  lqc, where  

lp is the list of attributes referenced by fp 
lη is the list of attributes referenced by fη 
lqc is the list of attributes referenced by the 
conditions ∈  (Cq - Cqs) 

This leads to define Qc and Qt as follows: 
Qc = πp,fp (ηc,fη (σqc (D (Qs)))), with Cqc = Cq - Cqs 
Qt = φ (Qc)  
 
Roughly speaking, this means that equi-selection, equi-

join and group by are computed on the server while inequi-
predicates, aggregation and predicates over aggregate 
results have all to be evaluated on the smartcard. Figure 4 
sketches the algorithm in charge of the evaluation of Qc in 
the smartcard. This algorithm is self-explanatory. It 
consumes one tuple at a time from Qs and requires a single 
buffer to cache the tuple of Qc under construction. Note 

that if an aggregation is to be computed, the tuples of Qs 
have already been grouped by the server and then do not 
need to be reordered in the smartcard. Thus, it clearly does 
not produce intermediate results and fulfills the second 
part of the decomposition challenge. As far as performance 
and scalability are concerned, two remarks have to be 
made. First, the cost incurred by the security mechanism 
(i.e., decryption) is spread over all users’ smartcards 
instead of being concentrated on the server, thereby 
improving scalability. Second, the in-card computation is 
not CPU bound (powerful processor, low algorithm 
complexity) nor memory bound (one tuple at a time) but 
communication bandwidth bound. Let us remind that the 
communication channel between a smartcard and the card 
reader range from 9.6Kbps to 115Kbps maximum. The 
output-channel is not the limiting factor because it can 
deliver the resulting tuples at a reasonable rate (i.e., up to 
bandwidth/sizeof(πp,fp(result)). However, the input-channel 
may become the bottleneck if the ratio  Qc / Qs  is low, 
because this ratio decreases in the same proportion the 
output rate. To illustrate the problem, let assume an inequi-
join between relations R and S having a selectivity factor 
of 0.01. All tuples resulting from the cartesian product 
RχS computed in Qs will traverse the input-channel while 
only 1% of relevant tuples will traverse the output-channel. 
Optimization techniques are clearly required to handle this 
problem. This issue is addressed in section 6.2 

5. Confidentiality and encryption 

This section fixes a set of encryption rules required to 
answer accurately the data confidentiality problem. Then, 
it shows how the smartcard device can be exploited to 
increase the privacy and confidentiality of a reduced set of 

∅  → result   // buffer caching the tuple of Qc being constructed 
     // result owns one attribute for each element in ps 
0 → groupCard   // cardinality of a group 
For each t ∈  Qs, do  
 D(t) → t   // decrypt tuple t 
 If σqc(t) = true, then  // check selection qualification 
  If g = ∅  then // no grouping 
   send πp(t) to the terminal  
  Else   // group by clause 
   If πg(t) ≠ πg(result), then // a new group is detected  
    If ηc, fη(result) = true then  // check having qualification 
     send πp, fp(result) to the terminal 
    ∅  → result 
    0 → groupCard 
   For each aggi ∈  (fp ∪  fη),  do // t belongs to the same group as result 
    aggi(t) → result.aggi // evaluate aggregation functions1  
   groupCard + 1 → groupCard  

 send πp, fp(result) to the terminal // send the last tuple under construction 
 

 
 

Figure 4: Qc in-card algorithm 
 

1  Each aggregate function to be computed uses one attribute of result as a state variable. Assume the avg function is to be computed,  
avg(t) → result.avg sums up the current attribute value of t into result.avg while πavg(result) divides this sum by the cardinality groupCard of the 
current group. 



 

highly sensitive data. Finally, it addresses the management 
of access rights and concludes with a discussion on the 
limits of the solution. 

5.1. Database encryption 

From the beginning of the paper, we have considered 
implicitly that the whole database was encrypted. 
Obviously, only the confidential part of it needs to be 
encrypted. For the sake of simplicity, we will not discuss 
further the cohabitation between clear and encrypted data 
because it does not present a major technical difficulty. 
Thus, we concentrate in the sequel on the quality of the 
database encryption.  

As stated in section 3, the level of confidence placed in 
C-SDA is strongly related to the confidence placed in the 
data encryption strategy. In our context, the following data 
encryption rules apply: 

 

Key insulation rule: encryption keys must remain confined 
in the smartcard. 
This rule is required to prevent any attack conducted by 
the DBA, an Intruder and even an Insider. Consequently, 
data encryption and decryption must be handled by the 
smartcard as well. Note that the cardholder herself has no 
way to access the encryption keys hosted by its own card. 
These keys remain under the exclusive control of the in-
card C-SDA software. 

 

Sharing rule: encryption must remain orthogonal to 
access rights. 
As explained in section 2.1, encryption alone is sufficient 
to implement data privacy, assuming that each user 
encrypts her own data with a secrete key. Thus, encryption 
acts as a binary access right granting or revoking all 
privileges to the user depending on whether or not she 
knows the secrete key. On the contrary, data 
confidentiality requires sharing the same key(s) among a 
community of authorized users. Unfortunately, there is no 
bijection between encryption and access rights because 
these two mechanisms do not operate at the same level of 
granularity. Access rights are commonly attached to 
database views to share data at a very fine-grain level. The 

sharing is thus predicate-based. Achieving the same level 
of sharing with encryption alone would require defining as 
many encryption keys as possible SQL qualifications. 
Access rights can even be defined on virtual data (e.g., 
aggregate calculus) that obviously cannot be encrypted. 
Consequently, encryption rules must remain orthogonal to 
access right management. Assuming key Ki is used to 
encrypt data shared among multiple users, Ki must be 
hosted by the smartcard of each of these users but the key 
usage is restricted to the in-card C-SDA software that 
controls access rights (see Figure 5). 

 

Computation rule: encryption must preserve attribute 
equality comparisons. 
Encrypting the database on a tuple, column, or relation 
basis precludes any computation to occur on the server 
side without decrypting the data first. Thus, the encryption 
must be done on an attribute basis. In addition, as stated in 
section 4.2, the minimal assumption required to allow 
server computation without decryption is ∀ di,dj, E(di) = 
E(dj) ⇔ di = dj. Obviously, this assumption is required 
only for couple of data that may be subject to comparison. 
Fortunately, most block encryption algorithms (e.g., DES 
[NIS93]) satisfy this assumption.  

Stronger assumptions on the encryption method might 
increase the range of computations that can be delegated to 
the server. Privacy homomorphisms (PH) introduced in 
[RAD78] allow to perform some computation on encrypted 
data. For instance, the PH proposed in [Dom97] preserves 
the basic four arithmetic operations, but equality predicates 
can no longer be checked. Order-preserving PH and more 
generally PH maintaining range information can also be 
devised but they drastically reduce the robustness of the 
encryption method [Sch96, Dom97].  

 

Performance rule: encryption must be symmetric and 
client-based. 
As stated in section 4.2, client-based encryption/decryption 
is the first guarantee of scalability. Moreover, considering 
the large volume of data to be encrypted/decrypted, we 
promote the use of symmetric encryption algorithms 
(e.g., DES) because they are more robust and much more 
efficient (three orders of magnitude faster) than 
asymmetric algorithms (e.g., RSA[RSA93]). The secure 
diffusion of secrete keys is the major problem of 
symmetric algorithms in traditional architectures. This 
problem is solved by nature in the C-SDA context, thanks 
to the smartcard device that provides a secure key hosting. 
Thus, keys are distributed among users along with 
smartcards. 

 

Multi-key encryption rule: encryption must exploit as 
much different keys as possible. 
Increasing the number of keys in the encryption process 
has two main advantages. First, it makes statistical attacks 
more difficult to conduct. Second, it reduces the amount of 
data that will be disclosed if the aforementioned attack 
succeeds. Different techniques can be envisioned to use 
multiple keys while respecting the computation rule. A 
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Figure 5: Encryption keys versus access rights 
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first solution is based on vertical fragmentation, that is 
encrypting with different keys the columns that will never 
participate to an equi-join (e.g., Person.name and 
Person.age). A second solution is based on horizontal 
partitioning, that is encrypting with different keys the 
attribute values of the same column thanks to a one-way 
hash function. For instance, Key(h(a)) can be used as a 
parameter to encrypt the attribute value a, and the value 
(h(a), Ekey(h(a))(a)) is stored in the database in place of a. 
Note that this solution respects the computation rule. Other 
techniques may be used but space limitations forbid their 
presentation in this paper.  

5.2. Sensitive data 

The persistent storage capacity of the smartcard introduces 
new alternatives to achieve data privacy and 
confidentiality. Basically, highly sensitive data may be 
stored in the smartcard instead of in the server, thereby 
making it ultimately robust against attacks. For instance, 
identification information could benefit from this property 
(e.g., name, social security number, …), so that the 
database in the server is depersonalized. This technique 
however introduces three issues: (i) how to integrate this 
sensitive data in the query evaluation process, (ii) how to 
guarantee its durability and (iii) how to share it if it is used 
by multiple users. 

To make the integration of sensitive data in the query 
evaluation process as simple as possible, we propose to 
group sensitive data in sensitive domains (i.e., set of data 
items without duplicates) and to store indices referencing 
these domain values in place of the corresponding data in 
the server. This technique can be formally considered as a 
particular encryption method E(data)→domain_index that 
is definitely unbreakable without the smartcard. The 
integration in the query evaluation process is 
straightforward since E satisfies the computation rule. 

The complexity of enforcing sensitive data durability 
depends on whether a sensitive domain is static or 
dynamic. Static domain can simply be duplicated on any 
secure storage device (e.g., a backup smartcard). Dynamic 
domains are trickier to manage, especially if they are 
shared among multiple users. The solution is to leave an 
encrypted copy of the domain on a backup server 
(preferably distinct from the database server) and to 
synchronize this encrypted backup with the domain copy 
residing on a smartcard at each connection. One may 
wonder about the benefit of this method compared with 
leaving the data in their original form on the database 
server. The benefit is actually twofold. First, the database 
and the sensitive domains are located on two separate 
servers thereby increasing the complexity of attacks. 
Second, the backup copy of the domain doesn’t need to 
participate in the query evaluation. Thus, it can be 
encrypted with stronger methods (e.g., a different key for 
each domain entry) since it is not affected by the 
computation rule.  

5.3. Access Right Management 

As stated in section 3, access right management must be 
embedded in the smartcard to prevent any DBA tampering. 
Since access rights are commonly defined on database 
views, the views have to be managed by the smartcard as 
well. This raises the problem of access rights and views 
evolution. If the smartcard is responsible for controlling 
access rights and views, their definitions have to be 
securely stored in a server accessible by all smartcards. 
Modeling the list of access right definitions and the list of 
database view definitions as two dynamic and shared 
sensitive domains brings a simple and accurate solution to 
this problem. 

The crucial question regarding access rights is who is 
responsible for granting/revoking them. The common rule 
in database systems is that the owner of an object inherits 
this responsibility. In practice, the unlimited privileges of 
the DBA contradict this rule. Using C-SDA, the DBA 
conserves all her privileges, so that she can administer the 
database server but she has no way to break the data 
confidentiality, as long as she has no access to the user’s 
smartcard. As a conclusion, a C-SDA user is definitely the 
unique holder of her data and she decides if she wants to 
exhibit them and to whom. 

5.4. Limits of the solution 

One may wonder whether this combination of hardware 
(the smartcard) and software (C-SDA) security 
components constitutes the ultimate protection against data 
confidentiality attacks. In this respect, we must state the 
limits of the solution.  

First, an Intruder can infiltrate the user’s terminal in 
order to snoop the query results that are presented in plain 
text to the user or to alter the query expression sent by the 
terminal to the smartcard before processing. By this way, 
the Intruder may try to execute a query selecting more data 
than expected by the user and snoop them. Anyway, such 
attack can reveal only data being in the user’s access right 
scope. This threat cannot be avoided by any security 
architecture, unless the terminal is itself secure. To secure 
the terminal, both the screen and the keyboard must be part 
of the SOE, like in today’s smartcard payment devices. 
This solution can be suitable for users willing only to 
consult their data but is inadequate as soon as computation 
is required on these data.  

Second, an Intruder or an Administrator may try to 
tamper the database footprint on disk in the hope of 
decrypting unauthorized data thanks to the smartcard (e.g., 
by permuting columns encrypted with the same key). This 
attack can be beat off at the expense of introducing a 
checksum attribute in each tuple. Anyway, the scope of 
this attack is limited by the use of multiple encryption keys 
and by the fact that the attacker must be a cardholder. 



 

6. C-SDA scenario 

This section presents a complete C-SDA scenario 
illustrating the step by step evaluation of a simple query on 
a corporate database. Confidentiality and performance 
issues are discussed along the scenario unfolding.  

6.1. Query Execution with C-SDA 

Let us consider a business database application where the 
invoice department is willing to bill invoices having a total 
amount greater than 1000 US$. The privilege of the 
invoice department clerk is assumed to be restricted to the 
select operation on the view Invoice. This view calculates 
for each customer, the total amount of delivered orders 
since January 2002. This view prevents an untrusted clerk 
to access confidential order-lines. Figure 6 shows a query 
Q, issued by the clerk and expressed on the view Invoice, 
and the query Q’, resulting from the view resolution and 
expressed on the base relations Customer and Order. The 
execution of query Q comprises the following steps (see 
Figure 6). 
1. Metadata refreshing: At connection time (i.e., when the 

user inserts her smartcard to the card reader), C-SDA 
contacts the durability server(s) in order to refresh its 
local copy of relation and view definitions, access right 
information’s and sensitive data.  

2. Access Right checking and view resolution: The access 
right manager checks that query Q involves only 
authorized relations and views. Then, the view manager 
merges Q with the view definition to produce Q’. 

3. Query splitting: The query splitter splits query Q’ into 
Qs (step 4), Qc (step 6) and Qt (step 7) conforming to the 
decomposition principle detailed in section 4.2. Qs is 
then rewritten in an “encrypted SQL form”, that is 
relation names, attributes and constant are encrypted 
(encryption is denoted by E() in Figure 6). Note that the 

encrypted form of a well-formed SQL query is a well-
formed SQL query.  

4. Qs transmission and execution: The encrypted query Qs 
is sent to the database server using a secured 
communication protocol. Secured communication is 
mandatory to avoid any falsification of Qs before 
transmission (which may permit a malicious user to 
access more data than granted). The database server 
optimizes and processes Qs as any traditional query, 
without being aware of encryption. The query execution 
plan of Qs is pictured in Figure 7.  

5. Qs Result transmission: The encrypted result Rs is sent 
back to the smartcard using a secured communication 
protocol. As explained in section 3, secured 
communication is mandatory here to avoid plaintext 
cryptanalysis on the terminal. 

6. Qc execution: The encrypted result Rs is processed in a 
pipelined fashion by C-SDA following the algorithm 
presented in Section 4.2. Figure 7 presents the query 
trees of Qs and Qc. As shown in the Figure, data 
decryption is pushed up to the query tree of Qc as far as 
possible. This avoids decrypting all attributes of tuples 
that do not participate in the final result. For instance, 
the attribute date is first decrypted in order to check the 
predicate date>01/01/02. Tuples which survive this 
selection are further partially decrypted in order to 
compute the aggregation and to check the having 
clause. Finally, the qualified tuples are fully decrypted 
before being sent to the user. Assuming that ccN° 
(credit card number) is a sensitive domain, decryption 
of this attribute follows the principle described in 
section 5.2.  

7. Rc delivering and Qt execution: Finally, once decrypted, 
the tuples participating in the final result are sent to the 
terminal where the distinct and/or sort clauses 
potentially present in Qt are applied. 
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Select  name, ccN°, total  
From   Invoice 
Where  F.total>1000; 

Select  name, ccN°, sum(amount) total  
From   Customer C, Order O  
Where  C.C# = O.C# and delivered = true 
 and date>#01/01/02#   
Groupby  C.name, C.ccN° 
Having  sum(O.amount) >1000;  

Select  E(name), E(ccN°), 
 E(amount), E(date) 
From   E(Customer) C, E(Order) O  
Where  C.E(C#)=O.E(C#) and 
 E(delivered)=E(true)  
Orderby E(name), E(ccN°) Q Q’ Qs 

Figure 6: C-SDA architecture and scenario 
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6.2. Optimization Issues 

The performance problem pointed out in section 4.2 is 
exemplified in this scenario. Assume that only 1% of 
orders satisfies the selection on date, 99% of the Rs tuples 
sent back to the smartcard are irrelevant, generating a 
bottleneck on the smartcard input-channel. In the 
following we sketch a solution alleviating this problem. 
Other optimizations of the C-SDA architecture can 
undoubtedly be devised but are out of the scope of this 
paper. 

The solution proposed relies on a multi-stage 
cooperation between the smartcard and the server aiming 
at minimizing the flow of data traversing the smartcard 
input-channel. The intuition is to use the smartcard as a 
secured co-processor which can evaluate inequi-predicates 
on demand. The evaluation of each inequi-predicate is 
handled by a pre-processing query that takes as input a 
collection of encrypted values issued by the server, 
decrypts them, evaluates the inequi-predicate and sends 
back the matching values in their encrypted form to the 
server. On the server side, this result is integrated in the 
initial query thanks to a semi-join operator.  

Let us illustrate the concept of pre-processing query on 
our scenario. The objective is to evaluate the inequi-
predicate date>01/01/02 on a data set smaller than Rs. 
Ideally, this predicate should be evaluated on the subset of 
Order tuples satisfying the selection delivered = true. This 
situation would be optimal in two respects. First, it would 
minimize the data flow traversing the smartcard input-
channel. Second, it would minimize the cost of evaluating 
query Qs on the server side by pushing up selections before 
joins in the regular way. Pre-processing is the way to 
achieve this goal. A pre-processing query PQs is first 

generated by the smartcard query splitter to get from the 
server the tuples resulting from πdate (σdelivered=true (Order)). 
Then, the smartcard query processor computes 
T = E((σdate>01/01/02 (D(PQs)))), the content of which is 
stored in a temporary relation on the server side. Finally, 
the smartcard query splitter adds the semi-join predicate 
T.E(date) = Order.E(date) to the initial query Qs and sends 
it to the server for computation (see Figure 8). This 
strategy applies as well to inequi-join predicates, and can 
be exploited iteratively for all inequi-predicates involved 
in the same query. 

7. Conclusion and future prospects 

The tremendous development of Internet applications 
prompts citizens and companies to put always more data 
accessible through the Web. Preserving data 
confidentiality in this context is becoming one of the most 
challenging issues for the database community.  

This paper addresses this issue and makes the 
following contributions. First, it gives an in-depth analysis 
of the security solutions proposed in the database field and 
capitalizes on strengths and weaknesses of these 
approaches to clearly state the dimensions of the data 
confidentiality problem. Second, it proposes the Chip-
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Secured Data Access (C-SDA) principle as a solution to 
this problem. The main idea underlying C-SDA is to 
insulate data encryption, query evaluation and access right 
management in a Secured Operating Environment (SOE). 
Third, query evaluation and optimization techniques are 
proposed to tackle the strong hardware constraints 
introduced by the most popular representative of SOE, the 
smartcard. 

C-SDA is being validated in the context of a B2B 
project founded by the French ANVAR agency. This 
project, started in january 2002, aims at sharing an EDI 
database between business partners. Depending on the 
business model, this database can be hosted by a DSP or 
by one of the partner, but the data confidentiality 
requirements remain the same. 

C-SDA has been devised in the context of smartcards 
because of its wide acceptance and its well-established 
technology. However, the C-SDA architecture can be 
adapted to other secured computing devices. For instance, 
the Dallas i-button [iBu02] provides a security level 
comparable to smartcards but benefits from a higher 
bandwidth with the terminal. Such technology could be 
exploited to alleviate the performance problem induced by 
inequi-predicates. The apparition of high-end secure 
coprocessor [Swe99] may, in the future, render viable 
tamper-resistant server-based solutions that are technically 
unfeasible today for performance and scalability reasons. 
In all situations, the interactions between the C-SDA 
software hosted by the secured device and the encrypted 
data store will remain the same, but with different 
technical tradeoffs. 

Other important open issues concern the extension of 
C-SDA to more complex data models, query languages 
and client/server interactions. More generally, we believe 
that tamper-resistant devices will have an increasing 
influence on the way security solutions for information 
systems will be devised.  
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