
Chip-Secured Data Access:
Confidential Data on Untrusted Servers

Luc Bouganim, Philippe Pucheral

PRISM Laboratory – 78035 Versailles – France
<Firstname.Lastname>@prism.uvsq.fr

Abstract

The democratization of ubiquitous computing
(access data anywhere, anytime, anyhow), the
increasing connection of corporate databases to
the Internet and the today’s natural resort to Web-
hosting companies strongly emphasize the need
for data confidentiality. Database servers arouse
user’s suspicion because no one can fully trust
traditional security mechanisms against more and
more frequent and malicious attacks and no one
can be fully confident on an invisible DBA
administering confidential data. This paper gives
an in-depth analysis of existing security solutions
and concludes on the intrinsic weakness of the
traditional server-based approach to preserve data
confidentiality. With this statement in mind, we
propose a solution called C-SDA (Chip-Secured
Data Access), which enforces data confidentiality
and controls personal privileges thanks to a client-
based security component acting as a mediator
between a client and an encrypted database. This
component is embedded in a smartcard to prevent
any tampering to occur. This cooperation of
hardware and software security components
constitutes a strong guarantee against attacks
threatening personal as well as business data.

1. Introduction

The rapid growth of ubiquitous computing impels mobile
users to store personal data on the Web to increase its
availability. In the same way, corporate databases are
made more and more accessible to authorized employees
over the Internet. Small businesses are prompted to
delegate part of their information system to Web-hosting
companies or Database Service Providers (DSP) that
guarantee data resiliency, consistency and high availability

[eCr02,CaB02,Qck02]. Customer information is also
maintained on-line for the needs of e-commerce and e-
business applications. Typically, Microsoft .NET Passport
[Mic02] gathers customer information (identity,
passwords, credit card numbers, profiling data) in an
electronic wallet shared by all participating .NET Web
sites. Consequently, the amount of sensitive information
collected and shared in the marketplace is such that data
confidentiality has become one of the major concerns of
citizens, companies and public organizations, and
constitutes a tremendous challenge for the database
community.

Confidential data threatened by attackers is manifold:
information related to the private life of individuals (e.g.,
agenda, address book, bookmarks, medical records,
household expenses), credit card numbers, patents,
business strategies, diplomatic or military secrets. Even
ordinary data may become sensitive once grouped and well
organized in databases. Customers have no other choice
than trusting DSP’s arguing that their systems are fully
secured and their employees are beyond any suspicion.
However, according to the “Computer Crime and Security
Survey” published by the Computer Security Institute
(CSI) and the FBI [FBI01], the theft of intellectual
property due to database vulnerability costs American
businesses $103 billion annually and 45% of the attacks
are conducted by insiders.

Traditional database security policies rely on user
authentication, communication encryption and server-
enforced access controls [BPS96]. Unfortunately, these
mechanisms are inoperative against most insider attacks
and particularly against database administrator attacks.
Several attempts have been made recently to strengthen
server-based database security policies thanks to database
encryption [Ora99, Mat00, HeW01].

This paper first characterizes the intrinsic limits of
these server-based solutions with respect to the different
types of attacks that can be conducted. With these
limitations in mind, we state the dimensions of the data
confidentiality problem.

While client-based security policies have been
historically disregarded considering the vulnerability of
client environments [Rus01], we argue that the emergence
of smartcard secured client devices fundamentally changes
the problem statement. Initially developed by Bull to
secure the French banking system, smartcards have been

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

used successfully around the world in various applications
managing secured data (such as banking, pay-TV or GSM
subscriber identification, loyalty, healthcare, insurance,
etc.). Unfortunately, smartcards suffer from intrinsic
hardware constraints that confine their applicability in
terms of data management to secure portable folders (e.g.,
healthcare folder) [ISO99, PBV01].

We capitalize on the security properties of the
smartcard to devise a solution to the data confidentiality
problem, named Chip-Secured Data Access (C-SDA).
C-SDA takes the form of a security software embedded in
a smartcard. This software acts as an incorruptible
mediator between a client and a server hosting an
encrypted database. The confidence in C-SDA relies on the
fact that data encryption, query evaluation and access right
management are insulated in a smartcard and cannot be
tampered by anyone, including the cardholder. Dedicated
query evaluation techniques are proposed to tackle the
strong smartcard hardware constraints. We show the
conclusive benefit of associating software and hardware
security to preserve data confidentiality.

The contribution of this paper is twofold. First, it
clearly states the dimensions of the data confidentiality
problem and explains to which extent existing security
solutions fail in addressing some of these dimensions.
Second, it proposes a novel database security model where
confidentiality is delegated to a tamper-resistant client
device. This model is being validated in the context of a
BtoB project supported by the French ANVAR agency
(Agence Nationale pour la VAlorisation de la Recherche).
This project will give us the opportunity to assess the
functionality and performance of C-SDA on a real world
application.

This paper is organized as follows. Section 2
characterizes the attacks that can be conducted against
confidential data, analyzes the strengths and weaknesses of
existing secure database solutions and concludes with a
precise formulation of the data confidentiality problem.
Section 3 introduces the Chip-Secured Data Access
approach and shows how it answers each dimension of the
data confidentiality problem. Section 4 addresses query
management issues. Section 5 concentrates on data
encryption and access right management. Section 6
develops a complete scenario illustrating the behavior of
C-SDA on a concrete example. Finally, section 7
concludes the paper and sketches future research
directions.

2. Data confidentiality problem

In this section, we first introduce the distinction between
data privacy and data confidentiality. Then, we
characterize the class of attacks that are commonly
directed against databases. We discuss afterwards how
server-based and client-based approaches resist to these
attacks. We conclude by a precise formulation of the data
confidentiality problem addressed in this paper.

2.1. Data privacy vs. data confidentiality

This paper concentrates on a particular aspect of database
security, that is data confidentiality. Data confidentiality
refers to the ability to share sensitive data among a
community of users while respecting the privileges granted
by the data owner to each member of the community. Any
user external to the community is assumed to have no
privilege at all. A special case of data confidentiality is
data privacy. Data privacy means that the data owned by
an individual will never be disclosed to anyone else.

Privacy is easier to enforce than confidentiality since
sharing is precluded. The simplest and most effective way
to ensure data privacy is to encrypt the user’s data thanks
to a symmetric key algorithm (e.g., DES [NIS93]). The
user being the unique holder of the cipher key, no one else
can access the clear text form of the data. Several Storage
Service Providers propose to manage encrypted backups
for personal data [Sky02]. They guarantee that data is
encrypted at all times from transmission of a customer's
computer to their server and back and remains safe from
unauthorized access even by their staff.

Data privacy solutions cover only a restricted range of
applications considering that even private data is subject to
sharing (e.g., patient’s medical records are shared by
doctors, customer’s information is shared by e-commerce
sites). Thus, the remainder of the paper focuses on the
more general problem of data confidentiality and places
much emphasis on access right management.

2.2. The attackers

In the light of the preceding section, we can identify three
classes of attackers that can threaten data confidentiality:
• Intruder: a person who infiltrates a computer system and

tries to extract valuable information from the database
footprint on disk (DBMS access controls are bypassed).

• Insider: a person who belongs to a community of users
properly identified by the computer system and the
database server and who tries to get information
exceeding her own access rights.

• Administrator: a person who has enough (usually all)
privileges to administer a computer system (System
Administrator) or a DBMS (Database Administrator or
DBA). These privileges give her the opportunity to
tamper the access right definition and to spy on the
DBMS behavior.

An Intruder who usurps successfully the identity of an
Insider or an Administrator will be considered as such in
the rest of the paper.

2.3. Weaknesses of server-based security policies

Traditional database security policies rely on three well
established principles [BPS96]: (1) user identification and
authentication, that can be supported by mechanisms
ranging from simple login/password methods up to
smartcard or biometrics device-based methods;

(2) network encryption, that guarantees the confidentiality
and the integrity of client/server communications; and
(3) server-enforced access control and privilege
management. Although these mechanisms are clearly
required, they fail to answer all threats identified earlier for
two obvious reasons. The first reason is that the confidence
on the server never exceeds the confidence the user is
ready to place in the DBA. This confidence may vary
depending on the users, the Web-hosting companies or the
countries but, as far as data confidentiality is concerned,
this confidence is generally quite low. The second reason
is the increasing number of commercial or institutional
sites that are hacked, demonstrating the difficulty of
making the hosting computing system secure enough to
prevent any intrusion.

Recent attempts have been made to reinforce the server
security by encrypting the database. Some commercial
DBMSs provide encryption packages to this end [Ora00].
However, if encryption provides an effective answer to
attacks conducted on the database footprint by an Intruder,
it does not enforce data confidentiality on its own. Indeed,
the server being still responsible for query execution and
access right management, encryption makes just a bit more
tedious the Administrator attacks. In these solutions, the
management of cryptographic keys is under the
application’s responsibility and data is decrypted on the fly
by the server at query evaluation time. Thanks to her
privileges and to the DBMS auditing tools, the DBA can
change the encryption package, can get the cryptographic
keys, can modify the access right definition and can even
snoop the memory to get the data while it is decrypted.
Thus, as Oracle confesses, encryption is not the expected
“armor plating” because the DBA (or an Intruder usurping
her identity) has all privileges (see Figure 1).

Solutions complementary to database encryption have
been recently investigated to guard the DBMS from the
DBA. Protegrity [Mat00] introduces a clear distinction
between the role of the DBA, administering the database
resources, and the role of the SA (Security Administrator),
administering user privileges, encryption keys and other
related security parameters. This distinction is also made
effective at the system level by separating the database
server from the security server. The gain in confidence
comes from the fact that an attack requires a conspiracy

between DBA and SA. Anyway, one must keep in mind
that data is still decrypted by the database server at query
execution time. An alternative to this approach is to design
a secure DBMS engine that restricts DBA privileges in
order to make the aforementioned attacks inoperative
[HeW01]. This raises the following question “can a DBA
administrate a DBMS with restricted privileges?”.
Unfortunately, DBMS vendors answer today negatively. In
addition, this solution suffers from the same security
breach as Protegrity regarding data decryption on the
server.

The proliferation of solutions to increase database
security exemplifies the acuity of the problem. However,
existing solutions fail in answering the data confidentiality
requirements listed below:

Data confidentiality requirements
1. confidential data must be managed by an auto-

administered DBMS to cast off the DBA privileges,
2. this DBMS must be hosted by an auto-administered

computing system to cast off the system administrator
privileges,

3. this computing system must constitute a Secure
Operating Environment (SOE)1 to cast off any Intruder
action.

The traditional database server approach suffer from a
strong handicap to meet these requirements because
existing DBMSs, as well as the computing systems they
rely on, are far too complex, first to be auto-administered
and second to constitute a SOE. The first assumption is
strengthen by the analysis done in [ChW00] which
measures the distance separating current technologies from
future self-tuning and zero-admin DBMSs2. The worrying
numbers regularly published by the Computer Security
Institute and the FBI on database vulnerability [FBI01]
truly confirms the second assumption.

2.4. Client-based security policies

The weaknesses of the server-based approach to meet the
data confidentiality requirements led us to devise client-
based solutions. As a preliminary remark, let us notice that
the solution presented in section 2.1 to enforce data
privacy is typically client-based since the server does
nothing but storing encrypted data. Unfortunately, these
solutions do not support sharing. Enforcing data
confidentiality in a client-based approach means
delegating the sharing control to the client devices.
However, client-based approaches have been historically
disregarded considering that users have themselves the
opportunity to hack the client system, and then the sharing
control in our context, with total impunity [Rus01].

1 A Secure Operating Environment was defined by [HeW01] as an

environment able to manipulate secret data without causing secret leak.
2 Although security is not the concern of [ChW00], the following

sentence from the authors is eloquent “tuning is a nightmare and auto-
tuning is wishful thinking at this stage”.

Figure 1: Database Server approach

Secured
communications

Encrypted
Data

Database Server

Encryption

Decryption

Access
rights

DBMS

Keys

usurpation

Insider

Administrator (DBA/SA)

Client

Intruder

The emergence of smartcard secured client
equipment’s drastically changes these conclusions. We
illustrate the smartcard-client-based approach below
through practical examples, and discuss to which extent
they meet the data confidentiality requirements.

Smartcard is undoubtedly the most secure and cheap
computing device today. The strength of smartcard
applications regarding data confidentiality is threefold: (1)
existing smartcard applications are simple enough to
require zero-administration once downloaded in the card,
(2) thanks to its hardware architecture making tampering
extremely difficult [AnK96, ScS99], the smartcard is
probably the best representative of SOE, (3) the high cost
of an attack and its practical difficulty (holding the card)
must be weighted up with its benefit (the data of a single
user can be revealed). A common assumption is that a
system can be considered secure if the cost of hacking it
exceeds the value of the disclosed information.
Conversely, the cost of security for the user is negligible
considering the price of a smartcard (a few dollars).

Smartcards become more and more versatile thanks to
the emergence of the JavaCard standard [Sun99] and to
their increasing computing power. Thus, complex
applications can now be downloaded and coexist in
smartcards. Simple smartcard applications do not require
administration because they are in some sense pre-
administered (data schema, user and access rights are hard-
coded). The side effect is the lack of extensibility. To
circumvent this limitation, ISO has recently promoted a
database approach for smartcards, named SCQL [ISO99],
which allows for the dynamic declaration of data, users
and access rights. Thus, smartcard embedded databases
require administration but this task is handled by the
cardholder (the data owner) instead of by a DBA, thereby
preserving data confidentiality (see Figure 2). The problem
of designing database engines dedicated to smartcards
(called smartcard DBMSs in the sequel) has been
extensively studied in [PBV01] and the feasibility of the
approach has been recently demonstrated [ABB01]. While
smartcard DBMSs pave the way for complex secured
client-based applications, they suffer from a tiny storage
capacity3, which confines them to specific applications
(typically secured portable folders).

Interesting attempts have been made to push away the
smartcard storage limit. The first solution, due to the

3 Existing smartcards provide around 128KB of EEPROM stable

memory, while stable storage is rapidly growing, it will remain quite
limited compared with traditional computers.

WebCard project [Van98], consists of storing in the
smartcard URLs referencing huge, but unprotected,
external data. The Vault [Big98] extends the WebCard
approach by encrypting the documents referenced by
URLs. Undoubtedly, the Vault meets the requirements of
some applications but it does not constitute a solution from
the database point of view. Indeed, the on-board database
is seen as a catalog of large encrypted documents rather
than as a regular database holding numerous fine-grain
objects that can be shared and queried.

2.5. Problem definition

From the preceding discussions, we can identify the
different dimensions of the data confidentiality problem
addressed in this paper.

Data confidentiality problem
• Privacy and confidentiality: privacy of personal data and

confidentiality of shared data must be guaranteed against
attacks conducted by Intruders, Insiders and
Administrators.

• Storage capacity: the system must not limit the volume
nor the cardinality of the database.

• Sharing capacity: if required, any data may be shared
among multiple authorized users.

• Query capacity: any data, whatever its granularity, may
be queried through a predicate-based language (typically
SQL).

• Pertinence: the system must guarantee an acceptable
response time to each user, must be scalable and must be
economically viable to meet the requirements of large
public applications.

3. C-SDA baseline

Before discussing the principles of Chip-Secured Data
Access (C-SDA), we first analyze how smartcard client-
based solutions answer each dimension of the data
confidentiality problem:
• Privacy and confidentiality: enforced by the fact that the

smartcard is a SOE hosting the data as well as the
DBMS engine and that this DBMS is self or user-
administered.

• Storage capacity: limited by the smartcard stable storage
capacity.

• Sharing capacity: limited by the need to share physically
the same card4.

• Query capacity: depends on the power of the embedded
database engine. While query capacity is limited to
simple selection in the SCQL standard [ISO99],
PicoDBMS [PBV01] demonstrates the feasibility of

4 Typically, a smartcard medical folder has vocation for being shared

among multiple users (patient, doctors, pharmacists, …) but a single
user is active at a time.

 Terminal

 Result
 Query

SmartCard

Figure 2: PicoDBMS, a smartcard client-based approach

Pico
DBMS Database

Size !

Data
Sharing !

Access
rights

Intruder

Insider

Client

Data

embedding powerful query engines supporting selection,
join, grouping and aggregate calculus.

• Pertinence: well suited in terms of performance (the
smartcard DBMS is mono-user and works on a reduced
set of data), of scalability (one smartcard per user) and
of price (a few dollar per smartcard).

Given these statements, solving the data confidentiality
problem sums up to bypass the storage and sharing
limitations without hurting the other dimensions. The
concept of server typically addresses the storage and
sharing issues. Thus, let us consider to which extent the
sphere of security provided by the smartcard could be
extended to a remote server holding encrypted data. As
discussed in section 2.3, the first security breach of the
server-based approach comes from the fact that data is
decrypted by the server at query execution time. Assuming
that the DBMS query engine remains hosted by the
smartcard, this eliminates the need to decrypt data on the
server side. The second security breach of the server-based
approach comes from the fact that access rights are
enforced by the server and administered by an untrusted
DBA. Let us assume that the DBMS access right manager
remains hosted by the smartcard, the DBA (or an Intruder
usurping her identity) is no longer able to abuse them.

Can we infer from the preceding assumptions that a
server acting as an encrypted repository for a smartcard
DBMS can integrate the smartcard’s sphere of security
(i.e., while keeping the level of confidence unchanged)?
The answer is obviously ‘no’ since the server is not hosted
by a SOE. Typically, an Intruder may conduct destructive
or deny of service attacks on the server. However, privacy
and confidentiality are preserved thanks to encryption5.

In the same spirit, since the data that flows from the
server to the smartcard DBMS is encrypted, can we infer
that the communication channel is part of the smartcard’s
sphere of security? Again, the answer is ‘no’ since the
communication channel may undergo several forms of
attacks. At first sight, privacy and confidentiality are
preserved anyway. However, an Insider may compare the
encrypted data issued from the server with the query result
that appears in plain text on its terminal. This may help her
to conduct a known plain text cryptanalysis in order to
deduce the encryption keys hosted by the smartcard.
Thanks to these keys, the Insider may attempt to access
data exceeding her own access rights. Indeed, the Insider

5 The confidence that can be placed on data encryption itself will be more

deeply discussed in section 5.

may have the privilege to see the result of a query
computed by the smartcard DBMS on data that is outside
the scope of her privilege6. Consequently, re-encrypting
the communication with a session key protocol (e.g., SSL)
is necessary to enforce confidentiality7.

The baseline of C-SDA is then to build a sphere of
confidentiality encompassing the smartcard DBMS, the
server and the communication channel linking them. The
resulting functional architecture is pictured in Figure 3 and
roughly works as follows. Each smartcard is equipped with
a database engine managing access rights, query
evaluation and encryption. When the user issues a query,
the smartcard DBMS first checks the user’s access rights
and, in the positive case, gets the data from the server,
decrypts it, executes the query and delivers the result to the
terminal.

The server component of the C-SDA architecture is an
answer to the storage and sharing dimensions of the data
confidentiality problem. However, one may wonder about
the impact of this answer on the other dimensions of the
problem. The main question is whether the smartcard
DBMS technology can conciliate complex queries, large
volumes of data and performance, considering the inherent
hardware constraints in the smartcard. The second question
relates to data confidentiality and concerns the level of
confidence that can be placed in data encryption (with
respect to data hosted by the smartcard) and the granularity
of sharing compatible with encryption. The next sections
investigate these two issues.

4. Query Management

In order to evaluate the technical soundness of the C-SDA
architecture in terms of query evaluation feasibility and
efficiency, we first recall the smartcard characteristics that
are relevant to this issue. Then, we propose a query
evaluation principle that matches these smartcard
characteristics whatever the volume of data involved in a
query.

4.1. Smartcard characteristics

Current smartcards include in a monolithic chip, a 32 bits
RISC processor at about 30 MIPS, memory modules (of
about 96 KB of ROM, 4 KB of static RAM and 128 KB of
EEPROM), a serial I/O channel (current bandwidth is
around 9.6Kbps but the ISO standard allows up to
100Kbps) and security components preventing tampering
[ISO98]. ROM is used to store the operating system, fixed
data and standard routines. RAM is used to manage the
execution stack of programs and to calculate results.
EEPROM is used to store persistent information.

6 For instance, a user may be authorized to consult the result of an

aggregation without be aware of the elementary values from which this
aggregation is computed.

7 A side effect of an SSL-like protocol is to guarantee at the same time a
mutual identification/authentification of the client and the server as
well as the integrity of messages.

Server

Encrypted
Data

SmartCard

Encryption

Secured
communications

Decryption

Figure 3: C-SDA sphere of confidentiality

Keys

Access
rights

DBMS
Client

Intruder

Insider

Admin.

EEPROM has very fast read time (60-100 ns/word)
comparable to RAM, but a dramatically slow write time (1
to 5 ms/word).

The main constraints of current smartcards are
therefore: (i) the very limited storage capacity; (ii) the very
slow write time in EEPROM and (iii) the extremely
reduced size of the RAM. On the other hand, smartcards
benefit from a very high security level and from a very
powerful CPU with respect to the other resources. This
makes the smartcard an asymmetric computing
architecture which strongly differs from any other
computing devices.

The current trends in hardware advances are on: (i)
augmenting the CPU power to increase the speed of cipher
algorithms, (ii) augmenting the capacity of the stable
storage and (iii) augmenting the communication bandwidth
between the chip and the card-reader8. More details on
existing smartcard platforms and their evolution can be
found in [Tua99, PBV01].

4.2. Query evaluation principle

A naive interpretation of the C-SDA architecture depicted
in Figure 3 is to consider that the server acts as a persistent
encrypted virtual memory which is accessed by the
smartcard DBMS during query evaluation, any time a data
item is requested for computation. Such an architecture
would suffer from disastrous performance because it
would incur a prohibitive communication cost (one call per
data item) and I/O cost (traditional server optimizations
become irrelevant). It may even happen that the same data
be loaded several times from the server if the smartcard
DBMS cannot keep enough local resources to cache it.
Last but not least, the smartcard hardware constraints
impose to design very specific query evaluation strategies.
While ad-hoc strategies have been shown convenient in the
context of small-embedded databases, their algorithm
complexity renders them totally inappropriate for large
databases [PBV01].

Thus, new query evaluation strategies that better
exploit the computational resources available on the server
and even on the terminal must be devised. This leads to
split a query Q into a composition of the form
Qs ° Qc ° Qt, where Qs, Qc and Qt denote respectively the

sub-query evaluated on the server, the card and the
terminal. The imbalance between the smartcard, the server
and the terminal in terms of computing resources
advocates pushing the biggest part of the computation
down into Qs and Qt. However, the imbalance between
these same components in terms of security leads to the
following compromise:
• Server subquery (Qs): the server must execute the largest

part of the query as far as confidentiality is not
compromised. That is, any predicate that can be

8 These trends are partly explained by market perspectives on delivering

multimedia objects (e.g., an mp3 flow) that can be decrypted on the fly
by the card of a subscriber.

evaluated on the encrypted form of the data must be
pushed down to the server. To simplify things, we
consider below that predicates based on an equality
comparator {=, ≠} satisfy this condition9. In the sequel,
we call these predicates equi-predicates in opposition to
inequi-predicates based on inequality operators {>, ≥, <,
≤}.

• Smartcard subquery (Qc): the smartcard DBMS is
responsible for filtering the result of Qs to evaluate all
predicates that cannot be pushed down to Qs and for
computing aggregation functions if required. The
terminal cannot participate to this evaluation because the
data flow resulting from Qs may go beyond the user’s
access rights.

• Terminal subquery (Qt): due to the confidentiality
consideration mentioned earlier, the terminal can only
evaluate the part of the query related to the result
presentation. Typically, it can handle the sort and the
distinct operators, if requested by the user.

The challenge in decomposing Q into Qs ° Qc ° Qt is

twofold. First, the global evaluation must meet the
pertinence requirement in terms of performance and
scalability. Second, Qc must accommodate the smartcard’s
hardware constraints. Query evaluation on the smartcard
precludes the generation of any intermediate results since:
(i) the RAM capacity cannot accommodate them, (ii) RAM
cannot overflow into EEPROM due to the dramatic cost of
EEPROM writes and (iii) intermediate results cannot be
externalized to the terminal without hurting confidentiality.

To explain how this challenge can be tackled, we will
consider unnested SQL queries composed by the
traditional Select, From, Where, Group by, Having and
Order by clause and we will reason about them in terms of
relational algebra. Let us first introduce some notations:
R, S, …U: relations involved in the query
R.a : attribute a from relation R
πp,fp: projection operator, where p denotes the list of

attributes to be projected and fp denotes
the list of aggregate functions to be computed
before projection

χ: cartesian product operator
σq: selection operator, where q denotes the

selection qualification: q is expressed in
conjunctive normal form as follows: C1 ∧ C2

… ∧ Cn, each condition Ci being of the form
(P1 ∨ P2…∨ Pk), each predicate Pj being of the
form (R.a θ value) or (R.a θ S.b), with θ ∈ {=, ≠,
>, ≥, <, ≤}.

 Cq denotes the set {C1, C2 …, Cn} of
conditions participating in q.

 PCi denotes the set {P1, P2, Pk} of predicates
participating in Ci.

9 This assumption means that any couple of data subject to comparison is

encrypted with the same key. Data encryption is more deeply detailed
in section 5.

γg: grouping operator, where g denotes the list of
attributes on which the grouping applies

ηc, fη: having operator, where c denotes the having
qualification and fη the list of aggregate
functions on which c applies

φ: presentation operators: sort, duplicate removal
E (resp. D): encryption (resp. decryption) operator

According to the operational semantics of SQL, an
unnested query Q is equivalent to the following formula:

Q = φ (πp, fp (ηc, fη (γg (σq (RχSχ …U)))))
Under the assumption made about database encryption,
that is: ∀ di,dj, E(di) = E(dj) ⇔ di = dj, we can infer that the
largest part of Q that can be delegated to the server is:

Qs = πps (γg (σqs (RχSχ …U))), with
Cqs ⊆ Cq and Ci∈ Cqs ⇒ ∀ Pk∈ PCi, θ ∈ {=, ≠},
ps = p ∪ g ∪ lp ∪ lη ∪ lqc, where

lp is the list of attributes referenced by fp
lη is the list of attributes referenced by fη
lqc is the list of attributes referenced by the
conditions ∈ (Cq - Cqs)

This leads to define Qc and Qt as follows:
Qc = πp,fp (ηc,fη (σqc (D (Qs)))), with Cqc = Cq - Cqs
Qt = φ (Qc)

Roughly speaking, this means that equi-selection, equi-

join and group by are computed on the server while inequi-
predicates, aggregation and predicates over aggregate
results have all to be evaluated on the smartcard. Figure 4
sketches the algorithm in charge of the evaluation of Qc in
the smartcard. This algorithm is self-explanatory. It
consumes one tuple at a time from Qs and requires a single
buffer to cache the tuple of Qc under construction. Note

that if an aggregation is to be computed, the tuples of Qs
have already been grouped by the server and then do not
need to be reordered in the smartcard. Thus, it clearly does
not produce intermediate results and fulfills the second
part of the decomposition challenge. As far as performance
and scalability are concerned, two remarks have to be
made. First, the cost incurred by the security mechanism
(i.e., decryption) is spread over all users’ smartcards
instead of being concentrated on the server, thereby
improving scalability. Second, the in-card computation is
not CPU bound (powerful processor, low algorithm
complexity) nor memory bound (one tuple at a time) but
communication bandwidth bound. Let us remind that the
communication channel between a smartcard and the card
reader range from 9.6Kbps to 115Kbps maximum. The
output-channel is not the limiting factor because it can
deliver the resulting tuples at a reasonable rate (i.e., up to
bandwidth/sizeof(πp,fp(result)). However, the input-channel
may become the bottleneck if the ratio Qc / Qs is low,
because this ratio decreases in the same proportion the
output rate. To illustrate the problem, let assume an inequi-
join between relations R and S having a selectivity factor
of 0.01. All tuples resulting from the cartesian product
RχS computed in Qs will traverse the input-channel while
only 1% of relevant tuples will traverse the output-channel.
Optimization techniques are clearly required to handle this
problem. This issue is addressed in section 6.2

5. Confidentiality and encryption

This section fixes a set of encryption rules required to
answer accurately the data confidentiality problem. Then,
it shows how the smartcard device can be exploited to
increase the privacy and confidentiality of a reduced set of

∅ → result // buffer caching the tuple of Qc being constructed
 // result owns one attribute for each element in ps
0 → groupCard // cardinality of a group
For each t ∈ Qs, do
 D(t) → t // decrypt tuple t
 If σqc(t) = true, then // check selection qualification
 If g = ∅ then // no grouping
 send πp(t) to the terminal
 Else // group by clause
 If πg(t) ≠ πg(result), then // a new group is detected
 If ηc, fη(result) = true then // check having qualification
 send πp, fp(result) to the terminal
 ∅ → result
 0 → groupCard
 For each aggi ∈ (fp ∪ fη), do // t belongs to the same group as result
 aggi(t) → result.aggi // evaluate aggregation functions1
 groupCard + 1 → groupCard

 send πp, fp(result) to the terminal // send the last tuple under construction

Figure 4: Qc in-card algorithm

1 Each aggregate function to be computed uses one attribute of result as a state variable. Assume the avg function is to be computed,
avg(t) → result.avg sums up the current attribute value of t into result.avg while πavg(result) divides this sum by the cardinality groupCard of the
current group.

highly sensitive data. Finally, it addresses the management
of access rights and concludes with a discussion on the
limits of the solution.

5.1. Database encryption

From the beginning of the paper, we have considered
implicitly that the whole database was encrypted.
Obviously, only the confidential part of it needs to be
encrypted. For the sake of simplicity, we will not discuss
further the cohabitation between clear and encrypted data
because it does not present a major technical difficulty.
Thus, we concentrate in the sequel on the quality of the
database encryption.

As stated in section 3, the level of confidence placed in
C-SDA is strongly related to the confidence placed in the
data encryption strategy. In our context, the following data
encryption rules apply:

Key insulation rule: encryption keys must remain confined
in the smartcard.
This rule is required to prevent any attack conducted by
the DBA, an Intruder and even an Insider. Consequently,
data encryption and decryption must be handled by the
smartcard as well. Note that the cardholder herself has no
way to access the encryption keys hosted by its own card.
These keys remain under the exclusive control of the in-
card C-SDA software.

Sharing rule: encryption must remain orthogonal to
access rights.
As explained in section 2.1, encryption alone is sufficient
to implement data privacy, assuming that each user
encrypts her own data with a secrete key. Thus, encryption
acts as a binary access right granting or revoking all
privileges to the user depending on whether or not she
knows the secrete key. On the contrary, data
confidentiality requires sharing the same key(s) among a
community of authorized users. Unfortunately, there is no
bijection between encryption and access rights because
these two mechanisms do not operate at the same level of
granularity. Access rights are commonly attached to
database views to share data at a very fine-grain level. The

sharing is thus predicate-based. Achieving the same level
of sharing with encryption alone would require defining as
many encryption keys as possible SQL qualifications.
Access rights can even be defined on virtual data (e.g.,
aggregate calculus) that obviously cannot be encrypted.
Consequently, encryption rules must remain orthogonal to
access right management. Assuming key Ki is used to
encrypt data shared among multiple users, Ki must be
hosted by the smartcard of each of these users but the key
usage is restricted to the in-card C-SDA software that
controls access rights (see Figure 5).

Computation rule: encryption must preserve attribute
equality comparisons.
Encrypting the database on a tuple, column, or relation
basis precludes any computation to occur on the server
side without decrypting the data first. Thus, the encryption
must be done on an attribute basis. In addition, as stated in
section 4.2, the minimal assumption required to allow
server computation without decryption is ∀ di,dj, E(di) =
E(dj) ⇔ di = dj. Obviously, this assumption is required
only for couple of data that may be subject to comparison.
Fortunately, most block encryption algorithms (e.g., DES
[NIS93]) satisfy this assumption.

Stronger assumptions on the encryption method might
increase the range of computations that can be delegated to
the server. Privacy homomorphisms (PH) introduced in
[RAD78] allow to perform some computation on encrypted
data. For instance, the PH proposed in [Dom97] preserves
the basic four arithmetic operations, but equality predicates
can no longer be checked. Order-preserving PH and more
generally PH maintaining range information can also be
devised but they drastically reduce the robustness of the
encryption method [Sch96, Dom97].

Performance rule: encryption must be symmetric and
client-based.
As stated in section 4.2, client-based encryption/decryption
is the first guarantee of scalability. Moreover, considering
the large volume of data to be encrypted/decrypted, we
promote the use of symmetric encryption algorithms
(e.g., DES) because they are more robust and much more
efficient (three orders of magnitude faster) than
asymmetric algorithms (e.g., RSA[RSA93]). The secure
diffusion of secrete keys is the major problem of
symmetric algorithms in traditional architectures. This
problem is solved by nature in the C-SDA context, thanks
to the smartcard device that provides a secure key hosting.
Thus, keys are distributed among users along with
smartcards.

Multi-key encryption rule: encryption must exploit as
much different keys as possible.
Increasing the number of keys in the encryption process
has two main advantages. First, it makes statistical attacks
more difficult to conduct. Second, it reduces the amount of
data that will be disclosed if the aforementioned attack
succeeds. Different techniques can be envisioned to use
multiple keys while respecting the computation rule. A

Database Server

Data
encrypted

with K1..Kn

Figure 5: Encryption keys versus access rights

User1

SmartCard1 SmartCard2
Intruder

Different!

User2

Access
right

Access
right

C-SDA C-SDA

Keys
K1..Kn

Keys
K1..Kn Identical!

first solution is based on vertical fragmentation, that is
encrypting with different keys the columns that will never
participate to an equi-join (e.g., Person.name and
Person.age). A second solution is based on horizontal
partitioning, that is encrypting with different keys the
attribute values of the same column thanks to a one-way
hash function. For instance, Key(h(a)) can be used as a
parameter to encrypt the attribute value a, and the value
(h(a), Ekey(h(a))(a)) is stored in the database in place of a.
Note that this solution respects the computation rule. Other
techniques may be used but space limitations forbid their
presentation in this paper.

5.2. Sensitive data

The persistent storage capacity of the smartcard introduces
new alternatives to achieve data privacy and
confidentiality. Basically, highly sensitive data may be
stored in the smartcard instead of in the server, thereby
making it ultimately robust against attacks. For instance,
identification information could benefit from this property
(e.g., name, social security number, …), so that the
database in the server is depersonalized. This technique
however introduces three issues: (i) how to integrate this
sensitive data in the query evaluation process, (ii) how to
guarantee its durability and (iii) how to share it if it is used
by multiple users.

To make the integration of sensitive data in the query
evaluation process as simple as possible, we propose to
group sensitive data in sensitive domains (i.e., set of data
items without duplicates) and to store indices referencing
these domain values in place of the corresponding data in
the server. This technique can be formally considered as a
particular encryption method E(data)→domain_index that
is definitely unbreakable without the smartcard. The
integration in the query evaluation process is
straightforward since E satisfies the computation rule.

The complexity of enforcing sensitive data durability
depends on whether a sensitive domain is static or
dynamic. Static domain can simply be duplicated on any
secure storage device (e.g., a backup smartcard). Dynamic
domains are trickier to manage, especially if they are
shared among multiple users. The solution is to leave an
encrypted copy of the domain on a backup server
(preferably distinct from the database server) and to
synchronize this encrypted backup with the domain copy
residing on a smartcard at each connection. One may
wonder about the benefit of this method compared with
leaving the data in their original form on the database
server. The benefit is actually twofold. First, the database
and the sensitive domains are located on two separate
servers thereby increasing the complexity of attacks.
Second, the backup copy of the domain doesn’t need to
participate in the query evaluation. Thus, it can be
encrypted with stronger methods (e.g., a different key for
each domain entry) since it is not affected by the
computation rule.

5.3. Access Right Management

As stated in section 3, access right management must be
embedded in the smartcard to prevent any DBA tampering.
Since access rights are commonly defined on database
views, the views have to be managed by the smartcard as
well. This raises the problem of access rights and views
evolution. If the smartcard is responsible for controlling
access rights and views, their definitions have to be
securely stored in a server accessible by all smartcards.
Modeling the list of access right definitions and the list of
database view definitions as two dynamic and shared
sensitive domains brings a simple and accurate solution to
this problem.

The crucial question regarding access rights is who is
responsible for granting/revoking them. The common rule
in database systems is that the owner of an object inherits
this responsibility. In practice, the unlimited privileges of
the DBA contradict this rule. Using C-SDA, the DBA
conserves all her privileges, so that she can administer the
database server but she has no way to break the data
confidentiality, as long as she has no access to the user’s
smartcard. As a conclusion, a C-SDA user is definitely the
unique holder of her data and she decides if she wants to
exhibit them and to whom.

5.4. Limits of the solution

One may wonder whether this combination of hardware
(the smartcard) and software (C-SDA) security
components constitutes the ultimate protection against data
confidentiality attacks. In this respect, we must state the
limits of the solution.

First, an Intruder can infiltrate the user’s terminal in
order to snoop the query results that are presented in plain
text to the user or to alter the query expression sent by the
terminal to the smartcard before processing. By this way,
the Intruder may try to execute a query selecting more data
than expected by the user and snoop them. Anyway, such
attack can reveal only data being in the user’s access right
scope. This threat cannot be avoided by any security
architecture, unless the terminal is itself secure. To secure
the terminal, both the screen and the keyboard must be part
of the SOE, like in today’s smartcard payment devices.
This solution can be suitable for users willing only to
consult their data but is inadequate as soon as computation
is required on these data.

Second, an Intruder or an Administrator may try to
tamper the database footprint on disk in the hope of
decrypting unauthorized data thanks to the smartcard (e.g.,
by permuting columns encrypted with the same key). This
attack can be beat off at the expense of introducing a
checksum attribute in each tuple. Anyway, the scope of
this attack is limited by the use of multiple encryption keys
and by the fact that the attacker must be a cardholder.

6. C-SDA scenario

This section presents a complete C-SDA scenario
illustrating the step by step evaluation of a simple query on
a corporate database. Confidentiality and performance
issues are discussed along the scenario unfolding.

6.1. Query Execution with C-SDA

Let us consider a business database application where the
invoice department is willing to bill invoices having a total
amount greater than 1000 US$. The privilege of the
invoice department clerk is assumed to be restricted to the
select operation on the view Invoice. This view calculates
for each customer, the total amount of delivered orders
since January 2002. This view prevents an untrusted clerk
to access confidential order-lines. Figure 6 shows a query
Q, issued by the clerk and expressed on the view Invoice,
and the query Q’, resulting from the view resolution and
expressed on the base relations Customer and Order. The
execution of query Q comprises the following steps (see
Figure 6).
1. Metadata refreshing: At connection time (i.e., when the

user inserts her smartcard to the card reader), C-SDA
contacts the durability server(s) in order to refresh its
local copy of relation and view definitions, access right
information’s and sensitive data.

2. Access Right checking and view resolution: The access
right manager checks that query Q involves only
authorized relations and views. Then, the view manager
merges Q with the view definition to produce Q’.

3. Query splitting: The query splitter splits query Q’ into
Qs (step 4), Qc (step 6) and Qt (step 7) conforming to the
decomposition principle detailed in section 4.2. Qs is
then rewritten in an “encrypted SQL form”, that is
relation names, attributes and constant are encrypted
(encryption is denoted by E() in Figure 6). Note that the

encrypted form of a well-formed SQL query is a well-
formed SQL query.

4. Qs transmission and execution: The encrypted query Qs
is sent to the database server using a secured
communication protocol. Secured communication is
mandatory to avoid any falsification of Qs before
transmission (which may permit a malicious user to
access more data than granted). The database server
optimizes and processes Qs as any traditional query,
without being aware of encryption. The query execution
plan of Qs is pictured in Figure 7.

5. Qs Result transmission: The encrypted result Rs is sent
back to the smartcard using a secured communication
protocol. As explained in section 3, secured
communication is mandatory here to avoid plaintext
cryptanalysis on the terminal.

6. Qc execution: The encrypted result Rs is processed in a
pipelined fashion by C-SDA following the algorithm
presented in Section 4.2. Figure 7 presents the query
trees of Qs and Qc. As shown in the Figure, data
decryption is pushed up to the query tree of Qc as far as
possible. This avoids decrypting all attributes of tuples
that do not participate in the final result. For instance,
the attribute date is first decrypted in order to check the
predicate date>01/01/02. Tuples which survive this
selection are further partially decrypted in order to
compute the aggregation and to check the having
clause. Finally, the qualified tuples are fully decrypted
before being sent to the user. Assuming that ccN°
(credit card number) is a sensitive domain, decryption
of this attribute follows the principle described in
section 5.2.

7. Rc delivering and Qt execution: Finally, once decrypted,
the tuples participating in the final result are sent to the
terminal where the distinct and/or sort clauses
potentially present in Qt are applied.

Terminal

Database Server

Database
Server

Encrypte
d

Database

SmartCard

Enc°

Dec° Sensitive
Domains

Keys

Metadata
Views, Rights, etc.

Rights Mgr

Views Mgr

Qc

Q’

Query Splitter

Q

Qt

 Qs

Rs

Rc

Query
Processor

Secured communications

Q User
Interface

(sort/distinct)

Stronly
Encrypted
Metadata

Strongly
Encrypted
Sensitive D.

Refresh

Refresh

Durability
servers

Select name, ccN°, total
From Invoice
Where F.total>1000;

Select name, ccN°, sum(amount) total
From Customer C, Order O
Where C.C# = O.C# and delivered = true
 and date>#01/01/02#
Groupby C.name, C.ccN°
Having sum(O.amount) >1000;

Select E(name), E(ccN°),
 E(amount), E(date)
From E(Customer) C, E(Order) O
Where C.E(C#)=O.E(C#) and
 E(delivered)=E(true)
Orderby E(name), E(ccN°) Q Q’ Qs

Figure 6: C-SDA architecture and scenario

Intrude

Insider

Admin.

R

Client

6.2. Optimization Issues

The performance problem pointed out in section 4.2 is
exemplified in this scenario. Assume that only 1% of
orders satisfies the selection on date, 99% of the Rs tuples
sent back to the smartcard are irrelevant, generating a
bottleneck on the smartcard input-channel. In the
following we sketch a solution alleviating this problem.
Other optimizations of the C-SDA architecture can
undoubtedly be devised but are out of the scope of this
paper.

The solution proposed relies on a multi-stage
cooperation between the smartcard and the server aiming
at minimizing the flow of data traversing the smartcard
input-channel. The intuition is to use the smartcard as a
secured co-processor which can evaluate inequi-predicates
on demand. The evaluation of each inequi-predicate is
handled by a pre-processing query that takes as input a
collection of encrypted values issued by the server,
decrypts them, evaluates the inequi-predicate and sends
back the matching values in their encrypted form to the
server. On the server side, this result is integrated in the
initial query thanks to a semi-join operator.

Let us illustrate the concept of pre-processing query on
our scenario. The objective is to evaluate the inequi-
predicate date>01/01/02 on a data set smaller than Rs.
Ideally, this predicate should be evaluated on the subset of
Order tuples satisfying the selection delivered = true. This
situation would be optimal in two respects. First, it would
minimize the data flow traversing the smartcard input-
channel. Second, it would minimize the cost of evaluating
query Qs on the server side by pushing up selections before
joins in the regular way. Pre-processing is the way to
achieve this goal. A pre-processing query PQs is first

generated by the smartcard query splitter to get from the
server the tuples resulting from πdate (σdelivered=true (Order)).
Then, the smartcard query processor computes
T = E((σdate>01/01/02 (D(PQs)))), the content of which is
stored in a temporary relation on the server side. Finally,
the smartcard query splitter adds the semi-join predicate
T.E(date) = Order.E(date) to the initial query Qs and sends
it to the server for computation (see Figure 8). This
strategy applies as well to inequi-join predicates, and can
be exploited iteratively for all inequi-predicates involved
in the same query.

7. Conclusion and future prospects

The tremendous development of Internet applications
prompts citizens and companies to put always more data
accessible through the Web. Preserving data
confidentiality in this context is becoming one of the most
challenging issues for the database community.

This paper addresses this issue and makes the
following contributions. First, it gives an in-depth analysis
of the security solutions proposed in the database field and
capitalizes on strengths and weaknesses of these
approaches to clearly state the dimensions of the data
confidentiality problem. Second, it proposes the Chip-

Qs

 Qp

SD

Keys

Keys

Keys

sum

Dec°

Dec°

Dec°

Dec°

date>01/01/02

amount

amount

Sum(amount)>1000

date

name

ccN°

Customer

Order

delivered = true

C.C# = O.C#

.name, ccN°

η

σ

σ

 γ

Figure 7: Qs and Qc query tree

.transmission

Select E(date)
From E(Order)
Where E(delivered)=E(true)

Select E(name), E(ccN°),
 E(amount)
From E(Customer) C,
 E(Order) O, Temp T
Where C.E(C#)=O.E(C#)
and E(delivered)=E(true)
and O.E(date)=T.E(date)
Orderby E(name), E(ccN°)

Keys

Keys Dec°

Enc°

date>01/01/02

date

date

delivered = true

date

Order

delivered = true

date Customer

C.C# = O.C#

name, CCN°

SD

Keys

Keys

sum

Dec°

Dec°

Dec° amount

amount

Sum(amount)>1000

name

ccN°

Order

η

 γ

Figure 8: Optimized query tree

 π

σ

σ

σ

PQs

Qs

Qc

PQc

Secured Data Access (C-SDA) principle as a solution to
this problem. The main idea underlying C-SDA is to
insulate data encryption, query evaluation and access right
management in a Secured Operating Environment (SOE).
Third, query evaluation and optimization techniques are
proposed to tackle the strong hardware constraints
introduced by the most popular representative of SOE, the
smartcard.

C-SDA is being validated in the context of a B2B
project founded by the French ANVAR agency. This
project, started in january 2002, aims at sharing an EDI
database between business partners. Depending on the
business model, this database can be hosted by a DSP or
by one of the partner, but the data confidentiality
requirements remain the same.

C-SDA has been devised in the context of smartcards
because of its wide acceptance and its well-established
technology. However, the C-SDA architecture can be
adapted to other secured computing devices. For instance,
the Dallas i-button [iBu02] provides a security level
comparable to smartcards but benefits from a higher
bandwidth with the terminal. Such technology could be
exploited to alleviate the performance problem induced by
inequi-predicates. The apparition of high-end secure
coprocessor [Swe99] may, in the future, render viable
tamper-resistant server-based solutions that are technically
unfeasible today for performance and scalability reasons.
In all situations, the interactions between the C-SDA
software hosted by the secured device and the encrypted
data store will remain the same, but with different
technical tradeoffs.

Other important open issues concern the extension of
C-SDA to more complex data models, query languages
and client/server interactions. More generally, we believe
that tamper-resistant devices will have an increasing
influence on the way security solutions for information
systems will be devised.

Acknowledgments
The authors wish to thank Philippe Bonnet and Ioana
Manolescu for their helpful comments on this paper.

References
[ABB01] N. Anciaux, C. Bobineau, L. Bouganim, P. Pucheral, P.

Valduriez, "PicoDBMS: Validation and Experience",
Int. Conf. on VLDB, 2001.

[AnK96] R. Anderson, M. Kuhn, “Tamper Resistance – a
Cautionary Note”, USENIX Workshop on Electronic
Commerce, 1996.

[Big98] P. Biget “The Vault, an Architecture for Smartcards to
Gain Infinite Memory”, Smart Card Research and
Advanced Application Conference (CARDIS'98), 1998.

[Bla95] M. Blaze, “High-Bandwidth Encryption with Low-
Bandwidth Smartcards”, AT&T Bell Labs, 1995.

 (ftp://ftp.research.att.com/dist/mab/ card cipher.ps)
[BPS96] A. Baraani, J. Pieprzyk, R. Safavi-Naini "Security In

Databases: A Survey Study", 1996.
 citeseer.nj.nec.com/baraani-dastjerdi96security.html

[CaB02] The Caspio Bridge DSP. www.caspio.com/bridge.htm
[ChW00] S. Chaudhuri, G. Weikum, “Rethinking Database

System Architecture: Towards a Self-tuning RISC-style
Database System”, Int. Conf. on VLDB, 2000.

[Dom97] J. Domingo-Ferrer, “Multi-application smart cards and
encrypted data processing”, Future Generation
Computer Systems, (13), 1997.

[eCr02] The eCriteria DSP. www.ecriteria.net
[FBI01] Computer Security Institute, "CSI/FBI Computer Crime

and Security Survey". www.gocsi.com/forms/fbi/pdf.html
[HeW01] J. He, M. Wang, “Cryptography and Relational

Database Management Systems”, Int. Database and
Engineering and Application Symposium, 2001.

[iBu02] The crypto iButton with Java - (http://www.ibutton.com/)
[ISO98] International Standardization Organization (ISO),

Integrated Circuit(s) Cards with Contacts – Part 1:
Physical Characteristics, ISO/IEC 7816-1, 1998.

[ISO99] International Standardization Organization (ISO),
Integrated Circuit(s) Cards with Contacts – Part 7:
Interindustry Commands for Structured Card Query
Language (SCQL), ISO/IEC 7816-7, 1999.

[Mat00] U. Mattsson, Secure.Data Functional Overview,
Protegity Technical Paper TWP-0011, 2000.

 (http://www.protegrity.com/White_Papers.html)
[Mic02] The Microsoft.Net Passport. www.passport.com
[NIS93] National Institute of Standards and Technology,

Announcing the Data Encryption Standard (DES), FIPS
PUB 46-2, 1993.

[NIS94] National Institute of Standards and Technology,
Announcement of Weakness in the Secure Hash
Standard, 1994.

[Ora99] Oracle Corp., Database Security in Oracle8i, 1999.
otn.oracle.com/deploy/security/oracle8i

[Ora00] Oracle Corp., Advanced Security Administrator Guide,
Release 8.1.7, 2000.

[PBV01] P. Pucheral, L. Bouganim, P. Valduriez, C. Bobineau,
"PicoDBMS: Scaling down Database Techniques for
the Smartcard", VLDB Journal, 10(2-3), 2001.

[Qck02] The Quickbase DSP. https://www.quickbase.com/
[RAD78] R. L. Rivest, L. Adleman and M. L. Dertouzos, “On Data

Banks and Privacy Homomorphisms”, Foundations of Secure
Computation. Academic Press, 1978.

[RSA93] RSA Laboratories, PKCS #1: RSA Encryption
Standard, RSA Laboratories Technical Note, 1993.

[Rus01] Ryan Russel et al., Hack Proofing Your Network,
Syngress Publishing, 2001.

[ScS99] B. Schneier, A. Shostack, “Breaking up is hard to do:
Modeling Security Threats for Smart Cards”, USENIX
Symposium on Smart Cards, 1999.

[Sch96] B. Schneier, Applied Cryptography, 2nd Edition, John
Wiley & Sons, 1996.

[Sky02] SkyDesk : @Backup. www.backup.com/index.htm
[Swe99] S.W. Smith, S.H. Weingart, Building a High-

Performance, Programmable, Secure Coprocessor,
Computer Networks (31) - 1999

[Sun99] Sun Microsystems, JavaCard 2.1 Application
Programming Interface Specification, JavaSoft
documentation, 1999.

[Tua99] J.-P. Tual, “MASSC: A Generic Architecture for
Multiapplication Smart Cards”, IEEE Micro Journal,
N° 0272-1739/99, 1999.

[Van98] J.J. Vandewalle, P. Biget, “Extended Memory Card”,
European Multimedia Microprocessor Systems and
Electronic Commerce Conf., 1998.

