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Abstract

Structurally recursive XML queries are an im-
portant query class that follows the structure
of XML data. At present, it is difficult for
XQuery to type and optimize structurally re-
cursive queries because of polymorphic recur-
sive functions involved in the queries.

In this paper, we propose a new technique
called structural function inlining which in-
lines recursive functions used in a query by
making good use of available type informa-
tion. Based on the technique, we develop a
new approach to typing and optimizing struc-
turally recursive queries. The new approach
yields a more precise result type for a query.
Furthermore, it produces an optimal algebraic
expression for the query with respect to the
type information. When a structurally recur-
sive query is applied to non-recursive XML
data, our approach translates the query into
a finitely nested iterations.

We conducted several experiments with com-
monly used real-life and synthetic datasets.
The experimental results show that the num-
ber of node lookups by our approach is on
the average 3.7 times and up to 279.8 times
smaller than that by the XQuery core’s cur-
rent approach in evaluating structurally recur-
sive queries.
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1 Introduction

XML is the standard language for representing data on
the Web. Because of the growing popularity of XML,
it is crucial to have a flexible query language capable of
querying diverse XML data sources. In this regard, a
standard query language called XQuery [2] is currently
being developed, which is a strongly typed functional
language in which a query is a typed expression. An
important feature of XQuery is its support for recur-
sive queries that follow the structure of XML data.
We refer to this important query class as structurally
recursive queries.

By a structurally recursive query, we mean a query
that involves a recursive navigation (“//”) [2], a re-
cursive filtering [2], and function calls to user-defined
structurally recursive functions [3, 11]. Several use
cases [5] and the requirements [4] of XQuery indicate
that structurally recursive queries are frequently used,
and also meet various requirements such as abilities to
query without schema knowledge, to operate on hier-
archy, to transform input structures and create new
structures, and to preserve the relative hierarchy and
sequence of input structures in query results. For ex-
ample, we often write //title to retrieve title ele-
ments regardless of the structure of data and the loca-
tions of title elements in the data.

In connection to the whole XQuery language, the
XQuery core [10, 11] (a core subset of XQuery) has
been established as well. Every XQuery expression
is mapped to an expression in the XQuery core, re-
vealing the semantics of the original expression. And
then, the mapped expression is typed and optimized
by means of the XQuery core’s typing rules and equiv-
alence rules. Thus, the XQuery core serves as an al-
gebra for XQuery, and it is crucial for the XQuery
core to map, type, and optimize structurally recur-
sive queries properly. However, the XQuery core is
still incomplete with regard to structurally recursive
queries [10]. (Section 2 reviews how the XQuery core
types and optimizes a structurally recursive query in
detail.) Several related issues have been raised by the



XML Query Working Group as follows:

• Issues 42 and 163 in the XQuery 1.0 document [2];
and 0008, 0032, and 0098 in the XQuery 1.0 for-
mal semantics document [11] are related to typ-
ing structurally recursive queries. For example,
a structurally recursive query’s type inferred by
the XQuery core tends to be imprecise since the
query relies on polymorphic recursive functions
whose declared return type is usually a generic
type such as xs:AnyType [10].

• Issues 0008 and 0043 in the XQuery 1.0 formal
semantics document [11] are related to optimiz-
ing structurally recursive queries. For example,
//title exhaustively searches whole data only
to retrieve relatively small fragments consisting
of title elements.

In this paper, we provide a solution to the above
issues. We have been motivated by the XQuery core’s
support for projection [10, 11, 13]. The XQuery core
translates a projection into nested iterations sensitive
to their local types. In this way, the projection is nat-
urally typed and significantly optimized. To achieve
similar results, we adapt a well-known technique called
function inlining [1] to typing and optimizing struc-
turally recursive queries. The rationale of this adapta-
tion is based on the observation that the main obsta-
cle in typing and optimizing a structurally recursive
query is polymorphic recursive functions involved in
the query. While function inlining has been used in
the programming language community, our function
inlining differs significantly in that it inlines a (struc-
turally) recursive function with the guidance of type
information. We refer to this kind of function inlining
as structural function inlining. The guiding principle
is making good use of type information available in
both a query and its environment [11] in which it is
evaluated.

A brief overview of our approach is as follows: Given
a structurally recursive query, it is mapped to struc-
turally recursive functions and function calls to them.
The mapped functions embed as much type informa-
tion as possible into their function bodies from the
given query. And then, we apply the structural func-
tion inlining to the mapped function calls. The tech-
nique can be regarded as a series of cascaded function
inlining guided by available type information, and is
followed by algebraic simplification. Together with the
algebraic simplification, the structural function inlin-
ing translates the given query into an optimal algebraic
expression with respect to the type information. This
approach provides a more precise result type, and the
resulting expression does not require useless evaluation
with respect to the type information. Furthermore, if a
structurally recursive query is applied to non-recursive
XML data, the structural function inlining transforms
a recursive function call into a finitely nested iterations

sensitive to their local types. This effect is similar to
that of the XQuery core’s relating projection to iter-
ation. As we can see in [2, 5], structurally recursive
queries are very commonly applied to non-recursive
XML data.

We conducted several experiments with commonly
used real-life and synthetic datasets to compare quan-
titatively resulting expressions produced by our ap-
proach and the XQuery core’s approach. The experi-
mental results show that the number of node lookups
by our approach is on the average 3.7 times and up
to 279.8 times smaller than that by the XQuery core’s
current approach in evaluating structurally recursive
queries.

1.1 Contributions and Advantages

Major contributions of our approach are summarized
as follows:

• The structural function inlining technique that is
the first adaptation of function inlining to typing
and optimizing recursive functions;

• An algorithm that implements the structural
function inlining;

• An approach based on the structural function in-
lining to typing and optimizing the structurally
recursive query. The approach is illustrated with
three representative examples of applying the
structural function inlining to recursive naviga-
tion, recursive filtering, and regular path expres-
sions;

• Several experiments for quantitative evaluation of
our approach with respect to the XQuery core’s
current approach.

In addition, major advantages of the structural
function inlining technique are summarized as follows:

• The technique is always promising because it pro-
vides not only a precise result type but also an
optimal algebraic expression with respect to avail-
able type information.

• When a structurally recursive query is a sub-
query of a larger query, the technique reveals hid-
den opportunities for further global optimization
by translating a structurally recursive query to
nested iterations.

1.2 Organization of the Paper

The rest of the paper is organized as follows. After
summarizing related work in the next section, Sec-
tion 2 reviews the XQuery core’s approach to mapping,
typing, and optimizing structurally recursive queries.
Subsequent sections describe our approach. The basic



idea and the algorithm of the structural function in-
lining are presented in Section 3, and its application
to structurally recursive queries is illustrated with ex-
amples in Section 4. The experiments we conducted
and the experimental results are presented in Section
5. Finally, Section 6 concludes the paper.

1.3 Related Work

There has been a little work on typing XML queries
and optimizing recursive functions. Some excellent
work on typing XML queries such as semi-monad [13]
and XDuce [15] has affected the type system of the
XQuery core significantly. However, the XQuery core
cannot properly type recursive XML queries [2, 10, 11].
In this regard, our structural function inlining is a
novel technique for typing recursive XML queries.

As to optimizing functions, most of existing opti-
mization techniques [6, 7] treat functions simply as
externally defined black boxes accompanying some se-
mantic information. Moreover, they consider nonre-
cursive functions only, and even the XQuery core can-
not optimize recursive functions [2, 10, 11]. In con-
trast, the structural function inlining optimizes recur-
sive functions to avoid useless evaluation over irrel-
evant fragments of data. The query pruning [14]
similarly optimizes regular path expressions, but it is
inapplicable to arbitrary recursive functions contain-
ing operations interleaved arbitrarily with navigation
since such recursive functions are not transformed to
finite automata.

2 Preliminaries

We briefly review how an XQuery expression is
mapped to the corresponding algebraic expression and
how the algebraic expression is typed and optimized
in the XQuery core. For more details including the
complete XQuery core syntax, typing rules, and equiv-
alence rules, the reader is referred to the current
XQuery 1.0 Formal Semantics document [11].

Mapping. A structurally recursive query in-
volves one or more recursive functions and func-
tion calls to them. In the case of a recursive nav-
igation, it is mapped to an expression that con-
sists of a function call to the built-in recursive
function descendant-or-self() and a projection.
For example, //title is mapped intermediately to
descendant-or-self($roots)/title. The variable
$roots is a distinguished variable bound to a sequence
of root nodes [11]. Since the projection is not in the
XQuery core, we have the following expression from
the subsequent mapping that relates the projection to
an iteration [10, 11, 13]:

for $v1 in descendant-or-self($roots) return
typeswitch ($v1) as $v2

case element title(xs:AnyType) return $v2
default return ()

The typeswitch keyword is followed by a parenthe-
sized expression called the operand expression. The
variable that follows the as keyword is referred to as
the operand variable. Whatever the operand expres-
sion’s type is, the type matches at least one case rule.
In other words, the case rules are exhaustive. The
case rule that matches first is called the effective case.
While the operand expression may have several local
types at query-analysis time, the operand variable has
a single local type that dynamically determines the ef-
fective case at each step of the iteration. This makes
the iteration sensitive to the local types of $v1. Thus,
the mapped expression can be read in English as fol-
lows: for each descendant of the root nodes including
themselves, either return the descendant if its type is
element title(xs:AnyType), or return an empty se-
quence.

Typing. Typing a function call checks whether
each argument type is subsumed by the corresponding
formal parameter type, and then takes the declared re-
turn type for its type. However, this may not provide
useful type information when the return type is, for
instance, xs:AnyType. The return type of a polymor-
phic recursive function that accepts any XML data is
usually declared as xs:AnyType [10]. Because of such
functions, the type of a structurally recursive query
tends to be typed imprecisely.

On the other hand, a recursive navigation is typed
differently by an ad hoc approach [11] that uses
an internal typing function recfactor(). Consider
the expression descendant-or-self($roots)/title
mapped from //title. After translating the pro-
jection into an iteration, we have to determine the
type of descendant-or-self() to type the entire
expression. Supposing that the type of $roots is Bib
in Figure 1(a), the current ad hoc approach invokes
recfactor() with Bib. Then recfactor() collects
all the types encountered in a recursive traversal of
Bib, and gives the following type:
( element bib(Book*) | element book(attribute year(xs:CDATA),

· · · ) | attribute year(xs:CDATA) | xs:CDATA | element

title(xs:string) | xs:string | · · · | element first(xs:string) )

min 1 max *.
This type is any sequence of choices each of which
consists of all the types encountered in the recursive
traversal of Bib. Here, we omit several types to
be met in the recursive traversal, but it is easy to
find them in the type definitions. The lower bound
min 1 happens when a single element bib of type
Bib has no book elements. It should be clear that
the upper bound is unbounded, and hence max *.
Based on the type above, we can infer that the type
of descendant-or-self($roots)/title is element
title(xs:string)* as expected.

Optimization. The XQuery core has a rich set of
equivalence rules. With such rules, we can eliminate
unnecessary expressions, reorder expressions, or dis-



t ype Bi b = 
el ement  bi b( Book* )

t ype Book =
el ement  book
( at t r i but e year ( xs: CDATA) ,

el ement  t i t l e( xs: st r i ng) ,
( el ement  aut hor ( el ement  l ast ( xs: st r i ng) ,

el ement  f i r s t ( xs: st r i ng) ) ) +)

(a) Type definitions

l et  $bi b0 =
<bi b>

<book year =" 1994" >
<t i t l e>TCP/ I P I l l ust r at ed</ t i t l e>
<aut hor >

<l ast >St evens</ l ast ><f i r s t >W. </ f i r st >
</ aut hor >

</ book>
<book year =" 1992" >

<t i t l e>Advanced Pr ogr ammi ng . . . </ t i t l e>
<aut hor >

<l ast >St evens</ l ast ><f i r s t >W. </ f i r st >
</ aut hor >

</ book>
<book year =" 2000" >

<t i t l e>Dat a on t he Web</ t i t l e>
<aut hor >

<l ast >Abi t eboul </ l ast ><f i r s t >Ser ge</ f i r s t >
</ aut hor >
<aut hor >

<l ast >Buneman</ l ast ><f i r s t >Pet er </ f i r s t >
</ aut hor >
<aut hor >

<l ast >Suci u</ l ast ><f i r s t >Dan</ f i r s t >
</ aut hor >

</ book>
<book year =" 1999" >

<t i t l e>The Economi cs . . . </ t i t l e>
<aut hor >

<l ast >Ger bar g</ l ast ><f i r s t >Dar cy</ f i r s t >
</ aut hor >

</ book>
</ bi b> :  Bi b

(b) Data of the type Bib

Figure 1: An example of type definitions and XML
data

tribute computations. However, it is hard to optimize
structurally recursive queries because of functions. For
example, descendant-or-self($roots)/title is in-
efficiently evaluated, since we must consider all the de-
scendants of $roots. Furthermore, it is also difficult
to optimize an expression by reordering expressions as
in the conventional cost based optimization because of
(1) the inherent order in XML data, and (2) the ab-
sence of various physical operators and their cost for-
mulae for each core operation. However, we can think
of static optimization such as determining whether a
query (or a subquery) is type-invalid early by inspect-
ing the type information to avoid useless evaluation
over potentially large amounts of irrelevant data.

3 Structural Function Inlining

3.1 Basic Idea

The main obstacle in typing and optimizing a struc-
turally recursive query is the functions involved in the
query. To get rid of them, we inline the corresponding
function body in place of each function call.

Before further discussion, we introduce some no-
tations. For a function call f(), function inlining is

{ { get Bi b( $bi b0) } }
==> f or  $n i n $bi b0 r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  bi b( xs: AnyType) r et ur n $x
def aul t  r et ur n ( )

{ { get Bi b( $bi b0) } }
==> f or $n i n $bi b0 r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  bi b( Book* ) r et ur n $x
def aul t  r et ur n ( )

(a) Naive function inlining

{ { get Bi b( $bi b0) } }
==> f or  $n i n $bi b0 r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  bi b( xs: AnyType) r et ur n $x
def aul t  r et ur n ( )

{ { get Bi b( $bi b0) } }
==> f or $n i n $bi b0 r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  bi b( Book* ) r et ur n $x
def aul t  r et ur n ( )

(b) Structural function inlining

Figure 2: Two inlining examples

denoted by {{f()}}. T(E) denotes the type of an ex-
pression E. In addition, we define a symbol <: denoting
the subtype relation. If t1 is a subtype of t2, we write
t1<:t2. Finally, the intersection t1 ∧ t2 of types t1 and
t2 is the largest type t such that t<:t1 and t<:t2.

Let us consider the following non-recursive function:

define function getBib(xs:AnyType $a) returns xs:AnyType
{

for $n in $a return
typeswitch ($n) as $x
case element bib(xs:AnyType) return $x
default return ()

}

This function accepts any sequence, iterates over the
items in the sequence, and returns an item when
the item is a bib element. We use a generic type,
xs:AnyType, for polymorphism. Type xs:AnyType de-
notes a sequence of items each of which is any simple
type, element, or attribute.

Consider a query getBib($bib0) over the XML
data in Figure 1(b) of the type Bib (indicated after “:”
in the last line). Because T($bib0) = Bib = element
bib(Book*), the effective case is the first case rule.
Thus, the query gives the bib element bound to $bib0.

We show a naive function inlining for the query
getBib($bib0) in Figure 2(a). The formal parame-
ter $a is replaced by the argument $bib0. Then, we
inline the body instead of the corresponding function
call. After inlining, we have the resulting expression
in Figure 2(a), which is an iteration sensitive to lo-
cal types. Since T($bib0), T($n), and hence T($x)
are element bib(Book*), the type of the expression
is element bib(Book*). In contrast, without function
inlining, the type is xs:AnyType because the declared
return type of getBib() is xs:AnyType. This shows
that function inlining would give more precise type.

However, this naive function inlining is insufficient
in that it ignores static optimization with respect to
the horizontal structure and the vertical structure that
can be found from the associated type information
in the environment. For example, Figure 3 depicts
parsed type trees that constitute a tree view of the
type definitions for the example query. In the trees,



t ype Bi b

t ype Book

el ement  bi b

*

el ement  book

el ement  t i t l eat t r i but e year

el ement  aut hor

el ement  f i r s tel ement  l ast

xs: st r i ng xs: st r i ng

xs: CDATA xs: st r i ng

+

,

,

Book

Figure 3: A tree view of the types in Figure 1(a)

each node is a type, a type variable (Bib, Book), or a
type constructor (*, +, comma). If a node is a type,
the children of the node is the content of the type. The
horizontal and the vertical structures indicate sibling
types and descendant types of a type, respectively.
For example, the sibling types of the type element
title(xs:string) are attribute year(xs:CDATA)
and element author(· · · )+, while its descendant type
is xs:string. The structural function inlining yields
an optimal expression for a given query by means of
two kinds of static optimization, which are horizontal
and vertical optimizations.

The horizontal optimization specializes the case
rules of a typeswitch expression with respect to the
possible types of the operand expression. For exam-
ple, consider the function call getBib($bib0). Since
T($bib0) = element bib(Book*), T($n) in the func-
tion body is element bib(Book*) also. With re-
spect to the type, the horizontal optimization spe-
cializes the effective case. That is, instead of the
original type element bib(xs:AnyType) in the ef-
fective case, we take element bib(Book*)∧element
bib(xs:AnyType), which is element bib(Book*).
Thus, the first case rule in Figure 2(b) has the ex-
act type element bib(Book*) instead of the origi-
nal type element bib(xs:AnyType) in Figure 2(a).
(They are boldfaced in the figures.) This illustrates
what is horizontal optimization, which is used later.
The other rules, if exist, are discarded. Instead, we
add a new rule “default return ()” for both future
optimization and exhaustiveness. Note that the orig-
inal default rule is specialized only when it is the
effective case.

The other optimization is vertical optimization on
descendant types. Since the function getBib() is non-
recursive, we introduce another function:

define function s1(xs:AnyType $a) returns xs:AnyType
{

for $n in $a return
typeswitch ($n) as $x

case element title(xs:AnyType)
return $x, s1(children($x))

case () return ()
default return s1(children($x))

}

This function retrieves every title element regard-

less of its depth. It is an example of structural recur-
sion [3] that follows the structure of data and consists
of horizontal and vertical recursion. The horizontal re-
cursion corresponds to the iteration expression of s1()
over a given sequence. On the other hand, the ver-
tical recursion corresponds to every recursive call in
the case rules. It is notable that the vertical recur-
sion is used on the content of the operand variable
(i.e., children($x) in the first and the last rules).
In this way, structural recursion always terminates.
The stopping point of the recursion is the second rule
for an empty sequence type. Interestingly, the struc-
turally recursive function is applied frequently to non-
recursive XML data. For example, a query s1($bib)
gives the following result:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics ...</title>

Now, we describe the vertical optimization, which
can be thought of as a cascaded series of function in-
lining with horizontal optimization. Suppose that a
variable $book is bound to a book element in the ex-
ample data (Figure 1(b)), and its type is Book (Fig-
ure 1(a)). Consider the query s1($book). The opti-
mization starts with typing the argument $book, and
T($book) = Book = element book(· · · ). According
to T($book), the function body is optimized by the
horizontal optimization. The effective case is the
default rule of s1()’s body, and it is specialized into
“case Book return s1(children($x))” because we
regard the label default as xs:AnyType. After that,
a new rule “default return ()” is added for further
optimization and exhaustiveness. The resulting ex-
pression contains another function call (2) with the
argument children($x) which differs from $book as
in Box (1) of Figure 4. This optimization is applied
to the call (2) as well.

In the case of (2), T(children($x)) is ei-
ther element title(xs:string) or element
author(· · · ). Since the built-in function children()
returns no attributes, attribute year(xs:CDATA) is
ignored. Box (2) in Figure 4 shows the result of the
horizontal optimization. The original case rules are
specialized for each possible type, and the resulting
case rules introduce two new recursive function calls
(3) and (5).

Regarding the call (3), the type of children for the
type element title(xs:string) is xs:string. So
the default rule of s1()’s body is the effective case.
The resulting case rules are given in Box (3). Now,
another call (4) is inlined. Since simple types such
as xs:string has no children, the type of children
is an empty sequence (). Therefore, the rule for ()
matches, and the resulting expression is given in Box
(4), which has no function call. Here, the recursion
for this branch has finished. Before producing the final
expression, the resulting expression of the call (4) that



( 1)  { { s1( $book) } }
==> f or  $n i n $book r et ur n

t ypeswi t ch ( $n)  as $x
case Book r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )          ( 2)

==> f or  $n i n $book r et ur n
t ypeswi t ch ( $n)  as $x

case Book r et ur n
f or  $n1 i n chi l dr en( $x)  r et ur n

t ypeswi t ch ( $n1)  as $x1
case el ement  t i t l e( xs: st r i ng)  r et ur n $x1
def aul t  r et ur n ( )

def aul t  r et ur n ( )

( 2)  { { s1( chi l dr en( $x) ) } }
==> f or  $n1 i n chi l dr en( $x)  r et ur n

t ypeswi t ch ( $n1)  as $x1
case el ement t i t l e( xs: st r i ng)  r et ur n $x1,  { { s1( chi l dr en( $x1) ) } }
case el ement  aut hor ( …)  r et ur n { { s1( chi l dr en( $x1) ) } } ( 3)
def aul t  r et ur n ( )                      ( 5)

==> f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case el ement  t i t l e( xs: st r i ng)  r et ur n $x1,  ( )
case el ement  aut hor ( …)  r et ur n ( )
def aul t  r et ur n ( )

==> f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case el ement  t i t l e( xs: st r i ng)  r et ur n $x1
def aul t  r et ur n ( )

( 3)  { { s1( chi l dr en( $x1) ) } }
==> f or  $n2 i n chi l dr en( $x1)  r et ur n

t ypeswi t ch ( $n2)  as $x2
case xs: st r i ng r et ur n { { s1( chi l dr en( $x2) ) } }
def aul t  r et ur n ( )              ( 4)

==> f or  $n2 i n chi l dr en( $x1)  r et ur n
t ypeswi t ch ( $n2)  as $x2

case xs: st r i ng r et ur n ( )
def aul t  r et ur n ( )

==> ( )

( 4)  { { s1( chi l dr en( $x2) ) } }
==> f or  $n3 i n chi l dr en( $x2)  r et ur n

t ypeswi t ch ( $n3)  as $x3
case ( )  r et ur n ( )
def aul t  r et ur n ( )

==> ( )

( 5)  { { s1( chi l dr en( $x1) ) } }
==> f or  $n3 i n chi l dr en( $x1)  r et ur n

t ypeswi t ch ( $n3)  as $x2
case el ement  l ast ( xs: st r i ng)

r et ur n { { s1( chi l dr en( $x2) ) } }
case el ement  f i r st ( xs: st r i ng)              ( 6)  ==> ( )

r et ur n { { s1( chi l dr en( $x2) ) } }
def aul t  r et ur n ( )                           ( 7)  ==> ( )

==> ( )

Figure 4: Trace of inlining the query s1($book)

returns only empty sequence is simplified into (). This
empty sequence expression replaces the call (4) in Box
(3), and the resulting expression of (3) is simplified
into () as well. These steps are depicted beneath Box
(4) in Box (3). The final expression () also replaces
the call (3) in Box (2).

Next, let us consider the call (5). Inlin-
ing call (5) introduces two case branches,
since T(children($x1)) is either element
last(xs:string) or element first(xs:string).
Each of them contains a recursive call with an argu-
ment of type xs:string. Inlining this call is identical
to that of Box (3), and hence the call becomes ().
So Box (5) shows the expression in which each case
rule returns (), and then the expression is simplified
into ().

After inlining both (3) and (5) in the two case
branches of the call (2), algebraic simplification makes
the expression more concise. The resulting expression
is given beneath Box (5) in Figure 4. Finally, the call
(2) of Box (1) has been inlined. The final expression
is the last expression in Box (1), which is a finitely
nested iterations sensitive to their local types. The
expression provides precise type information (element
title(xs:string) instead of xs:AnyType) as in the

case of projection, and it is optimal in that it is evalu-
ated without useless searches. Furthermore, this static
optimization can be followed by further optimization
such as the cost based optimization.

3.2 Inlining Algorithm

Consider a function f(p1, · · · , pn) with n formal
parameters whose body is B and a function call
f(a1, · · · , an) with n arguments. Function inlining can
be formalized as follows:

Rule 1 (Function inlining)
{{f(a1, · · · , an)}} ==> Bn where

Bi =





let vi := ai return Bi−1[pi/vi]
if ai is an expression

Bi−1[pi/ai] if ai is a variable
B if i = 0

In the rule, Bi is the function body obtained after sub-
stituting the ith argument for the ith formal parame-
ter, and Bi−1[pi/vi] is that vi substitutes for every oc-
currence of pi in Bi−1. Bi−1[pi/ai] is similarly defined.
Introducing new let expressions is a kind of optimiza-
tion since it prevents multiple evaluations of expression
ai. Otherwise, ai would be evaluated as many times
as it appears in B. (In Figure 4 and later on, we in-
tentionally omit this optimization for brevity.) This
rule is used to blindly inline the corresponding func-
tion body in place of an arbitrary function call.

Obviously, if we apply the function inlining indis-
criminately, it is easy to find cases where inlining a
function creates new function calls that can be inlined
again, ad infinitum. Therefore, there have been nu-
merous heuristics such as inlining functions called only
once and inlining functions containing no function call.
Such heuristics are still valid in the context of XQuery.

However, we have observed that some function
classes in XQuery would be inlined more systemati-
cally under the guidance of type information. Struc-
turally recursive functions are a kind of the function
classes to which we can apply the structural func-
tion inlining. In order to identify what function class
we focus our consideration on, we adopt the syntac-
tic restrictions of the state-of-the-art work on struc-
tural recursion [3], which define the common form of
structurally recursive function. Many papers including
[3, 10, 13] suggest such restriction for structural recur-
sion. Despite the syntactic difference between XQuery
and the query language (UnQL) used in [3], the re-
strictions are applicable to XQuery.

Let the structural parameter be a parameter of any
sequence type which is used for structural recursion.
The structural function inlining exploits the property
that the structural parameter’s type changes for each
recursive call according to the syntactic restrictions.

The structural function inlining algorithm is
presented in Figure 5. Main algorithm Struc-
tural Function Inlining accepts a query expression,



Algorithm Structural Function Inlining(e)
input: a query expression e
output: the inlined expression
begin
1. for each function call f in e
2. if f is a structurally recursive function
3. then
4. b = Horizontal Optimization(f)
5. prevent any name conflict between b and e
6. endif
7. replace f with b
8. endfor
9. simplify the resulting expression e′
10. output e′
end

Algorithm Horizontal Optimization(f)
input: a function call f
output: the inlined expression
begin
11. b = the expression obtained by Rule 1
12. for each typeswitch expression te in b
13. replace te with te′ obtained by Rule 2
14. for each “case t return e” in te′
15. e′ = Vertical Optimization(e, t)
16. replace e with e′
17. endfor
18. endfor
19. output b
end

Algorithm Vertical Optimization(e, t)
input: a query expression e, the current type t
output: the inlined expression
begin
20. for each function call f in e
21. if f is a structurally recursive function
22. then
23. if t is recursive
24. b = Build Surrogate Fn(f , t)
25. else
26. b = Horizontal Optimization(f)
27. prevent any name conflict between b and e
28. endif
29. endif
30. replace f with b
31. endfor
32. simplify the resulting expression e′
33. output e′
end

Algorithm Build Surrogate Fn(f , t)
input: a function call f , the current type t
output: a new call to the surrogate function
begin
34. if not(input pair (f , t) is a previously kept pair)
35. then
36. keep input pair (f , t)
37. b = Horizontal Optimization(f)
38. create a new surrogate function fs

input argument: same as f but take the structural
parameter’s type as T(children(t))

function body: b
output type: fs t

39. add type definition fs t = T(b) to the environment
40. output a new function call to fs for (f ,t)
41. else
42. output a new function call to fs for (f ,t)
43. endif
end

Figure 5: Structural Function Inlining Algorithm

and apply subalgorithm Horizontal Optimization to
each function (lines 1-4). Horizontal Optimization
prepares the function body to be inlined by means of
Rule 1, and the horizontal optimization is conducted
by using Rule 2 given below (lines 11-13). Rule 2 spec-
ifies how to transform the typeswitch expression in
the function body with respect to the possible types
for its operand expression. Such type information can
be inferred from the concrete type of the structural
paremeter. Let a typeswitch expression T be:

typeswitch (E) as v
case t1 return E1

case t2 return E2

· · ·
default return El

By regarding the default rule as case xs:AnyType
return El, the horizontal optimization can be formal-
ized as follows:

Rule 2 (Horizontal optimization)
For the typeswitch expression T and a set of possible
types t′1, · · · , t′m for T(E), T ==>

typeswitch (E) as v
case t′′1 return E′

1

case t′′2 return E′
2

· · ·
default return E′

n
where ∀(1≤i≤(n−1))∃(1≤j≤m,1≤k≤l)(t′′i = t′j∧tk

∧
t′j <:

tk
∧

E′
i = Ek) such that tk and Ek are the associated

type and the associated expression, respectively, of the
effective case for the possible operand type t′j . Here,∧

denotes the logical AND, and E′
n in the default

rule is a designated expression.

The designated expression can be either error or
(). We have chosen () as E′

n because this choice per-
mits further simplification as we have seen in Figure 4.
According to Rule 2, the horizontal optimization spe-
cializes the case rules by pruning useless case rules
and retaining only the effective cases for sibling types
at a certain level in the type tree.

The vertical optimization applies this horizontal op-
timization to many subsequent levels recursively. So
the vertical optimization, together with algebraic sim-
plification, eventually prunes a large number of case
rules to be evaluated fruitlessly. In the algorithm,
on producing the horizontally optimized typeswitch
expression te′, Horizontal Optimization invokes Ver-
tical Optimization for each case rule of te′ (lines 14-
15). Vertical Optimization inlines each function call
by invoking either Build Surrogate Fn or Horizon-
tal Optimization (lines 20-31), and simplifies the re-
sultant expression (line 32). This recursive process
always terminates due to the syntactic restrictions if
the process involves no recursive type. Otherwise, it
may not terminate.

To understand the separate treatment of recursive
types, let us consider the type definitions in Figure
6. The name after keyword type is referred to as the



t ype Chapter = 
el ement  chapt er

( el ement  t i t l e( xs: st r i ng) ,
Sect i on* )

t ype Section =
el ement  sect i on

( el ement  t i t l e( xs: st r i ng) ,
Sect i on* )

t ype Chapter

el ement  chapt er

el ement  t i t l e

Sect i onxs: st r i ng

*

,

t ype Section

el ement  sect i on

el ement  t i t l e

Sect i onxs: st r i ng

*

,

(a) Type definitions

t ype Chapter = 
el ement  chapt er

( el ement  t i t l e( xs: st r i ng) ,
Sect i on* )

t ype Section =
el ement  sect i on

( el ement  t i t l e( xs: st r i ng) ,
Sect i on* )

t ype Chapter

el ement  chapt er

el ement  t i t l e

Sect i onxs: st r i ng

*

,

t ype Section

el ement  sect i on

el ement  t i t l e

Sect i onxs: st r i ng

*

,

(b) Tree view

Figure 6: An example of the recursive type

type variable, which is divided into three syntactic cat-
egories in the concrete type syntax of the XQuery core
[11]: attribute group variable, element group variable,
and content type variable. The latter two kinds of
the type variable are used in Figure 6. The element
group variable is boldfaced, and is used to name an
element type group. The content type variable is un-
derlined, and is used to denote the content type of
elements. The recursive type is always explicitly de-
fined by means of the element group variable and the
content type variable, and both type variables are rep-
resented as a node in the parsed type trees. Thus, we
can easily detect a recursive type by discovering an el-
ement group variable containing one or more content
type variable identical to itself. Section type is an
example.

Considering a function call s1($sec0) where $sec0
is bound to an element of type Section, the struc-
tural function inlining may produce an infinite in-
lining sequence as in Figure 7(a). Box (1) shows
that the horizontal optimization produces a func-
tion call (call (2)) with element section’s chil-
dren whose type is (element title(xs:string),
Section*) enclosed by a rectangle in Figure 6(a) and
6(b). This function call yields two new function calls
(3) and (4). The call (3) will be simplified to ()
(see Box (3) in Figure 4), but the call (4) is inlined
infinitely. The expressions (enclosed by two rectangles
in Figure 7(a)) to be inlined forever are identical.

The structural function inlining algorithm should
cope with this problem. Our solution is to detect
any recursive type, define a new surrogate function
for the infinite inlining sequence, and define the sur-
rogate function’s new output type. This solution is
depicted in Figure 7(b). In Box (1), the first hori-
zontal optimization results in a new function call (2)
(lines 1-4, 11-13), and Vertical Optimization is invoked
with a pair of arguments, the resulting expression and
the type Section (lines 14-15). Since the type is re-
cursive, Build Surrogate Fn is invoked instead of Hori-
zontal Optimization (lines 23-26). Build Surrogate Fn

(1) checks the input pair and keeps it (lines34-36), (2)
invokes Horizontal Optimization to build the inlined
function body (enclosed by the first rectangle in Box
(2)) for the call (2) (line 37), (3) adds a new sur-
rogate function with a fresh name (s1’ in Box (2))
with same parameters, the inlined function body, and
a new output type (line 38), (4) adds type definition
(enclosed by the second rectangle in Box (2)) for the
output type (line 39), and finally (5) returns a new
function call (line 40) boldfaced at the bottom of Box
(1). It is noticeable that the second invocation of
Build Surrogate with the same arguments as the first
invocation simply returns a new function call to the
surrogate function defined by the first invocation (lines
34, 42), and so the inline process ends. This is de-
noted at the right side of call (4) in Box (2) of Figure
7(b). Notably, the type of the structural parameter of
function s1’ is precisely type Section’s content type,
and the output type s1’ t is equivalent to element
title(xs:string)+ as expected.

Finally, the following theorem states that the struc-
tural function inlining produces an optimal expression
with respect to type information. We define the cost
of evaluating a query Q over a sequence s denoted by
cost(Q, s), which means total number of nodes (defined
in the XQuery data model [12]) that are accessed in
the evaluation of Q. Suppose that a structurally recur-
sive query Q is transformed into QT by the structural
function inlining with respect to type information T .

Theorem 1 For any query Q′ equivalent to Q and
any sequence s conforming to T , cost(QT , s) ≤
cost(Q′, s).

Proof Omitted due to space limitation. 2

4 Application of the Structural Func-
tion Inlining

In this section, we describe how to apply the structural
function inlining to structurally recursive queries in
XQuery. For each of the three representative types of
the structurally recursive query, we present the current
approach of the XQuery core, new approaches that ex-
ploit the structural function inlining, and some discus-
sion.

Recursive navigation. The XQuery core’s ap-
proach to support recursive navigation is based on the
built-in descendant-or-self() function and the in-
ternal typing function recfactor() as we have already
seen in Section 2.

Instead, our approach maps a recursive navigation
into a function call to a structurally recursive func-
tion by means of the translation method presented in
[3] for a regular path expression. For example, we
can think of a query //title as a nondeterministic
finite automaton depicted in Figure 8, and define two
structurally recursive functions from the automaton.



( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2)

( 2)  { { s1( chi l dr en( $x) ) } }
==> f or  $n1 i n chi l dr en( $x)  r et ur n

t ypeswi t ch ( $n1)  as $x1
case el ement  t i t l e( xs: st r i ng)  r et ur n $x1,  { { s1( chi l dr en( $x1) ) } }
case Sect i on r et ur n { { s1( chi l dr en( $x1) ) } } ( 3)  ==> ( )
def aul t  r et ur n ( )           ( 4)

( 4) f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case el ement  t i t l e( xs: st r i ng)  r et ur n $x1,  ( )
case Sect i on r et ur n { { s1( chi l dr en( $x1) ) } }
def aul t  r et ur n ( )            ( 4)

. . .

( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2)

==> f or  $n i n $sec0 r et ur n
t ypeswi t ch ( $n)  as $x

case Sect i on r et ur n s1’ ( chi l dr en( $x) )
def aul t  r et ur n ( )

( 2)  { { s1( chi l dr en( $x) ) } }
==> def i ne f unct i on s1’ ( ( el ement  t i t l e( xs: st r i ng) ,  Sect i on* )  $a)  r et ur ns s1’ _t

{
f or  $n i n $a r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  t i t l e( xs: st r i ng)  r et ur n $x,  { { s1( chi l dr en( $x) ) } }
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } } ( 3)  ==> ( )
def aul t  r et ur n ( )            ( 4)  ==> s1’ ( chi l dr en( $x) )

}

t ype s1’ _t  = el ement  t i t l e( xs: st r i ng) ,  s1’ _t

(a) Infinite inlining

( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2)

( 2)  { { s1( chi l dr en( $x) ) } }
==> f or  $n1 i n chi l dr en( $x)  r et ur n

t ypeswi t ch ( $n1)  as $x1
case el ement  t i t l e( xs: st r i ng)  r et ur n $x1,  { { s1( chi l dr en( $x1) ) } }
case Sect i on r et ur n { { s1( chi l dr en( $x1) ) } } ( 3)  ==> ( )
def aul t  r et ur n ( )           ( 4)

( 4) f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case el ement  t i t l e( xs: st r i ng)  r et ur n $x1,  ( )
case Sect i on r et ur n { { s1( chi l dr en( $x1) ) } }
def aul t  r et ur n ( )            ( 4)

. . .

( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2)

==> f or  $n i n $sec0 r et ur n
t ypeswi t ch ( $n)  as $x

case Sect i on r et ur n s1’ ( chi l dr en( $x) )
def aul t  r et ur n ( )

( 2)  { { s1( chi l dr en( $x) ) } }
==> def i ne f unct i on s1’ ( ( el ement  t i t l e( xs: st r i ng) ,  Sect i on* )  $a)  r et ur ns s1’ _t

{
f or  $n i n $a r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  t i t l e( xs: st r i ng)  r et ur n $x,  { { s1( chi l dr en( $x) ) } }
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } } ( 3)  ==> ( )
def aul t  r et ur n ( )            ( 4)  ==> s1’ ( chi l dr en( $x) )

}

t ype s1’ _t  = el ement  t i t l e( xs: st r i ng) ,  s1’ _t

(b) Building a surrogate function

Figure 7: Infinite inlining and our approach

The two functions are also in Figure 8. Each func-
tion and each function call correspond to a state and
a transition to a state, respectively. For the transi-
tion, its symbol is represented as the associated type
of the case rule that contains the corresponding func-
tion call. Thus, the default rule in function s1() calls
s1() itself, and this call corresponds to the transition
with symbol * from s1 to itself. In addition, if a tran-
sition leads to a terminal state, the current element
should be returned as well. So the first case rule in
s1() returns the current element bound to $x and calls
s2() that corresponds to the terminal state s2. It is
notable that this case rule should call s1() as well
since title is matched also with symbol *. Function
s2() simply returns (), because state s2 has no tran-
sition.

We can fuse the two functions by (1) simplifying the
body of s2() into () and then (2) inlining it in lieu of
any function call to s2() by Rule 1. This simplification
yields a generic mapping for recursive navigation, and
the example query becomes:

define function s1(xs:AnyType $a) returns xs:AnyType
{

for $n in $a return
typeswitch ($n) as $x

case element title(xs:AnyType)
return $x, s1(children($x))

case () return ()
default return s1(children($x))

}

s1($roots)

The function call s1($roots) produces the ex-
pected results (a sequence of title elements). This
mapping is generic in that we can map any other re-
cursive navigation query in the same way. For exam-
ple, if “//a” is given, the first case rule is changed to
“case element a(xs:AnyType) return · · · .”

Suppose T($roots) is Book in Figure 1(a). The
same trace as given in Figure 4 results from the appli-
cation. Thus, we have the following optimized expres-
sion for the query //title and the expression’s type

S1 S2
t i t l e

*

def i ne f unct i on s1( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case el ement  t i t l e( xs: AnyType)
r et ur n $x,  s1( chi l dr en( $x) ) ,  s2( chi l dr en( $x) )

case ( )  r et ur n ( )
def aul t  r et ur n s1( chi l dr en( $x) )

}
def i ne f unct i on s2( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n ( )
}

Figure 8: Mapping of the recursive navigation query

is element title(xs:string)*:
for $n in $roots return
typeswitch ($n) as $x1
case Book return
for $n1 in children($x) return
typeswitch ($n1) as $x1
case element title(xs:string) return $x1
default return ()

default return ()

We note that this expression will traverse only the
paths to title elements during evaluation, and never
traverse the other irrelevant paths (for example, to
last or first elements). Moreover, using the type in-
formation, the resulting expression can be further sim-
plified [10, 11, 13]. When the query is a subexpression
of a larger expression, the effect of this further simpli-
fication would be even more dramatic. Another im-
portant advantage of our approach is its typing, which
is very similar to that of projection [10, 11, 13].

Recursive filtering. There is no valid approach
in the XQuery core to support recursive filtering, and
even the current mapping for filtering is obsolete [2,
11]. We propose two possible approaches. The first
approach is for a special but most common case of
recursive filtering, and the other is for the general case.

Even though a recursive filtering takes a single pa-
rameter which can be any expression, the most com-



mon argument is the path expression. The first ap-
proach maps a recursive filtering query whose argu-
ment is a path expression into a set of structurally re-
cursive functions by means of the translation we have
used for recursive navigation.

If filter($sec0//title|$sec0//title/text())
is given, for instance, we can construct a nondeter-
ministic finite automaton and define functions from
the automaton as in Figure 9. The automaton can be
constructed and simplified by the well-known methods
in the automata area, and the functions are defined
and simplified in the same way as we have explained
in “Recursive navigation” section. The two functions
in Figure 9 are simplified versions of the originals. Due
to the shallow copy semantics [2] of the recursive fil-
tering, we construct a new element with the known
name and copy attributes instead of simply returning
the current element node as in the first case rule of
s1() (boldfaced in Figure 9). Thus, the mapped query
s1($sec0) will produce the expected result, and will
be optimized by the structural function inlining. Fig-
ure 10 is the trace when T($sec0) is Section in Figure
6. We omit the explanation of the trace since it is al-
most the same as that of Figure 7(b). The resulting
expression is optimized with respect to the type infor-
mation. In addition, $sec0’s type Section and the
surrogate function’s type s1’ t mean that the type of
the example query is element title(xs:string)+.

However, we cannot use the first approach when the
argument is any expression other than the path expres-
sion. In this case, as the second approach, we should
define a more generic structurally recursive function.
If a given query is filter(getBib($bib0)) in which
getBib($bib0) is the first example query used in Sec-
tion 3.1, the query is mapped as follows:

def i ne f unct i on descendant - or - sel f ( xs: AnyType $x)  r et ur ns xs: AnyType
{

f or  $n i n $x r et ur n
t ypeswi t ch ( $n)  as $y

case ( Comment | PI | xs: AnyAt t r i but e)  r et ur n ( )
def aul t  r et ur n $y,  descendant - or - sel f ( chi l dr en( $y) )

}

def i ne f unct i on member ( xs: AnyTr ee $x,  xs: AnyType $y)  r et ur ns xs: bool ean
{

not ( empt y( f or  $v i n $y r et ur n
i f  $v==$x t hen $v el se ( ) ) )

}
def i ne f unct i on f i l t er ( xs: AnyType $x,  xs: AnyType $y)  r et ur ns xs: AnyType
{

f or  $n i n $x r et ur n
t ypeswi t ch ( $n)  as $n1

case ( Comment | PI | xs: AnyAt t r i but e| xs: AnySi mpl eType)  r et ur n
i f  ( member ( $n1, $y) )  t hen $n1 el se ( )

def aul t  r et ur n
i f  ( member ( $n1, $y) )  t hen <{ name( $n1) } >

{ $n1/ @* ,  f i l t er ( chi l dr en( $n1) , $y) }
</ { name( $n1) } >

el se f i l t er ( chi l dr en( $n1) , $y)
}

l et  $t ar get  : = get Bi b( $bi b0)  r et ur n f i l t er ( $r oot s,  $t ar get )

def i ne f unct i on dept h( el ement  $e)  r et ur ns xs: i nt eger
{

i f  ( empt y( $e/ * ) )  t hen 1
el se max( f or  $c i n $e/ *  r et ur n dept h( $c) )  + 1

}

The structural function inlining works fine with this
mapped expression as well. To our knowledge, these
two approaches are the first solution to the open issues
on the recursive filtering [2, 10, 11].

However, the XQuery core’s current type system
types the inlined function body less precisely. This
is due to the typing rules for the element construc-
tion with a computed tag name (e.g., <{name($n1)}>),
the attribute construction with a computed attribute
name, and the built-in name() function whose return

def i ne f unct i on s1( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case el ement  t i t l e( xs: AnyType)
r et ur n <t i t l e>

{ $x/ @* ,  s1( chi l dr en( $x) ) ,  s3{ chi l dr en( $x) ) }
</ t i t l e>

case ( )  r et ur n ( )
def aul t  r et ur n s1( chi l dr en( $x) )

}
def i ne f unct i on s3( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case xs: st r i ng
r et ur n $x

def aul t  r et ur n ( )
}

S2t i t l e

*

S3 S4

t i t l e

xs: st r i ng

( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2) ==> s1’ ( chi l dr en( $x) )

( 2)  { { s1( chi l dr en( $x) ) } }
==> def i ne f unct i on s1’ ( ( el ement  t i t l e( xs: st r i ng) ,  Sect i on* )  $a)  r et ur ns s1’ _t

{
f or  $n i n $a r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  t i t l e( xs: st r i ng)  r et ur n

<t i t l e>{ $x/ @* ,  { { s1( chi l dr en( $x) ) } } ,  { { s3( chi l dr en( $x) ) } }
==> ( ) ==> ( )  ==> 

f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case xs: st r i ng r et ur n $x1
def aul t  r et ur n ( )

} </ t i t l e>
case el ement  Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )                    ( 5)  ==> s1’ ( chi l dr en( $x) )

}

t ype s1’ _t  = el ement  t i t l e( xs: st r i ng) ,  s1’ _t

S1

Figure 9: Mapping of the recursive filtering query

def i ne f unct i on s1( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case el ement  t i t l e( xs: AnyType)
r et ur n <t i t l e>

{ $x/ @* ,  s1( chi l dr en( $x) ) ,  s3{ chi l dr en( $x) ) }
</ t i t l e>

case ( )  r et ur n ( )
def aul t  r et ur n s1( chi l dr en( $x) )

}
def i ne f unct i on s3( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case xs: st r i ng
r et ur n $x

def aul t  r et ur n ( )
}

S2t i t l e

*

S3 S4

t i t l e

xs: st r i ng

( 1)  { { s1( $sec0) } }
==> f or  $n i n $sec0 r et ur n

t ypeswi t ch ( $n)  as $x
case Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )            ( 2) ==> s1’ ( chi l dr en( $x) )

( 2)  { { s1( chi l dr en( $x) ) } }
==> def i ne f unct i on s1’ ( ( el ement  t i t l e( xs: st r i ng) ,  Sect i on* )  $a)  r et ur ns s1’ _t

{
f or  $n i n $a r et ur n

t ypeswi t ch ( $n)  as $x
case el ement  t i t l e( xs: st r i ng)  r et ur n

<t i t l e>{ $x/ @* ,  { { s1( chi l dr en( $x) ) } } ,  { { s3( chi l dr en( $x) ) } }
==> ( ) ==> ( )  ==> 

f or  $n1 i n chi l dr en( $x)  r et ur n
t ypeswi t ch ( $n1)  as $x1

case xs: st r i ng r et ur n $x1
def aul t  r et ur n ( )

} </ t i t l e>
case el ement  Sect i on r et ur n { { s1( chi l dr en( $x) ) } }
def aul t  r et ur n ( )                    ( 5)  ==> s1’ ( chi l dr en( $x) )

}

t ype s1’ _t  = el ement  t i t l e( xs: st r i ng) ,  s1’ _t

S1

Figure 10: Trace of inlining the query s1($sec0)

S2 S3t i t l e

sect i on

S1 chapt er

def i ne f unct i on s1( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case el ement  chapt er ( xs: AnyType)  r et ur n s2( chi l dr en( $x) )
def aul t  r et ur n ( )

}
def i ne f unct i on s2( xs: AnyType $a)  r et ur ns xs: AnyType
{

f or  $n i n $a r et ur n
t ypeswi t ch ( $n)  as $x

case el ement  t i t l e( xs: AnyType)  r et ur n $x
case el ement  sect i on( xs: AnyType)  r et ur n s2( chi l dr en( $x) )
def aul t  r et ur n ( )

}

Figure 11: Mapping of chapter/section*/title



type is simply xs:QName [11]. These rules ignore avail-
able type information. The typing rules should be
improved to deal with precise type expressions as in
the previous version of the XQuery core’s type system
at http://www.w3.org/TR/2001/WD-query-algebra-20010215.
With the improvement, the function body is well-
typed.

Regular path expression. Since XQuery does
not support regular path expressions, the user must ex-
press regular path expressions by defining user-defined
structurally recursive functions. By means of the
translation method in [3], one can easily express any
regular path expression in XQuery. For example,
chapter/section*/title is expressed as a finite au-
tomaton and hence structurally recursive functions in
Figure 11. The functions in the figure are simplified
versions of the originals in the same manner as we have
described earlier in this section. Using the functions,
the example query becomes a function call to s1()
with an argument. Like the recursive navigation and
the recursive filtering, the structural function inlining
provides an inlined and optimized expression, and the
XQuery core’s type system types it properly.

5 Experiments

We conducted several experiments to show the quanti-
tative effect of our proposed approach with respect to
the XQuery core’s current approach, using real-life and
synthetic datasets. The characteristics of the real-life
and the synthetic datasets are summarized in Table 1.
Real-life datasets are Shakespeare’s plays [8] in XML,
which are hen iv 1.xml and hen iv 2.xml. In addition,
to test the efficiency of the expressions resulting from
our approach with regard to various data sizes, we
combined some plays of Shakespeare into bigger ones:
four tragedy.xml consists of four tragedies (Hamlet,
Macbeth, Othello, and Lear), and shakspeare.xml is
an XML file containing all Shakespeare’s plays. The
other datasets are geneneated by IBM’s XML Genera-
tor [9]. Types in Figure 1(a) and Figure 6(a) are used
for bib1-4.xml datasets and chapter1-4.xml datasets,
respectively, which are selected from types in XQuery
use cases [5].

All the experiments were conducted on Pentium
III-866MHz PC running MS-Windows 2000 with 256
MBytes of memory. To parse XML datasets, we used
IBM’s XML4J parser.

We evaluated two queries //persona over the real-
life datasets and //title over the synthetic datasets.
The expression resulting from the latter query by the
XQuery core is presented in “Mapping” section of Sec-
tion 2, and the expressions resulting by the structural
function inlining are partially shown in Figure 4 and
7(b). In the experiments, we measured the number
of node lookups to evaluate each expression on parsed
DOM trees, since the XQuery expressions are evalu-
ated through the tree traversal [2].

 

Dataset Elements Distinct tags Recursive 

hen_iv_1.xml 4825 21 N 

hev_iv_2.xml 5326 21 N 

four_tragedy.xml 22786 21 N 

Shakespeare.xml 179653 21 N 

bib1.xml 993 6 N 

bib2.xml 11697 6 N 

bib3.xml 61695 6 N 

bib4.xml 126554 6 N 

chapter1.xml 1555 7 Y 

chapter2.xml 14965 7 Y 

chapter3.xml 54618 7 Y 

chapter4.xml 138728 7 Y 

Table 1: XML Datasets

Dataset XQuery core Structural function inlining 

hen_iv_1.xml 8847 38 

hen_iv_2.xml 9715 66 

four_tragedy.xml 41405 148 

shakespeare.xml 327095 1561 

Table 2: Experimental results for the real-life datasets
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Figure 12: Experimental results for the synthetic
datasets



As shown in Table 2 and Figure 12, our struc-
tural function lining significantly reduces the number
of node lookups in evaluating the queries, whereas the
XQuery core’s approach traverses whole DOM tree ex-
haustively. The total number of node lookups by the
XQuery core’s approach is 1,036,516, while that by our
approach is 279,308. Therefore, our approach is 3.7
times more efficient than the XQuery core’s approach.
Moreover, the result of four tragedy.xml dataset in Ta-
ble 2 shows that the number of node lookups by our ap-
proach is 279.8 times smaller than that by the XQuery
core’s approach. Figure 12(b) shows the results of an
unusual case that most of data is relevant to the eval-
uation of the query according to the type of the data,
and hence the performance of our approach is only
1.5 times better than that of the XQuery core’s ap-
proach. We note that the number of node lookups by
the XQuery core’s approach is greater than the num-
ber of elements in an XML document due to PCDATA
(xs:string) nodes scattered in a DOM tree.

6 Conclusions

While XQuery has many excellent features, it has suf-
fered from the difficulty of typing and optimizing poly-
morphic recursive functions. Since structurally recur-
sive queries rely on such functions, structurally recur-
sive queries are neither well-typed nor well-optimized
so far. We have addressed this problem in this paper.

Our major contributions are a new technique re-
ferred to as the structural function inlining and a new
approach to the problem of typing and optimizing
structurally recursive queries. We have presented how
the technique works, how to cope with technical ob-
stacles such as the infinite inlining, and how to apply
the technique to structurally recursive queries. The
approach we have presented translates a structurally
recursive query into a well-typed optimal expression.
This is illustrated with various examples, and our ex-
periments show that the number of node lookups by
our approach is on the average 3.7 times and up to
279.8 times smaller than that by the XQuery core’s
current approach in evaluating structurally recursive
queries.
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