

 Sideway Value Algebra for Object-Relational Databases

 Özsoyoğlu#, G, Al-Hamdani#, A, Altıngövde+, I.S, Özel, S.A, Ulusoy+, Ö, Özsoyoğlu#, Z.M

#EECS Dept, Case Western Reserve University, Cleveland, Ohio 44106
+Comp. Eng. Dept, Bilkent University, Ankara, Turkey

(tekin, abd, ozsoy)@eecs.cwru.edu (ismaila, selma, oulusoy)@cs.bilkent.edu.tr

Abstract

Using functions in various forms, recent database
publications have assigned “scores”, “preference values”,
and “probabilistic values” to object-relational database
tuples. We generalize these functions and their
evaluations as sideway functions and sideway values,
respectively. Sideway values represent the advices
(recommendations) of data creators or preferences of
users, and are employed for the purposes of ranking query
outputs and limiting output sizes during query evaluation
as well as for application-dependent querying.

This paper introduces SQL extensions and a sideway
value algebra (SVA) for object-relational databases. SVA
operators modify and propagate sideway values of base
relations in automated and generic ways. We define the
SVA join, and a recursive SVA closure operator, called
TClosure. Output tuples of the SVA join operator are
assigned sideway values on the basis of the sideway
values and similarities of joined tuples, and the operator
returns the highest ranking tuples. TClosure operator
recursively expands a given set of objects (as tuples)
according to a given regular expression of relationship
types, and derives sideway values for the set of newly
reached objects.

We present evaluation algorithms for SVA join and
TClosure operators, and report experimental results on the
performance of the operators using the DBLP
Bibliography data and synthetic data.
1 Introduction

Recent database applications on the web have
necessitated the attachment of (a) functions to relations of
object-relational databases, and (b) function evaluations to
tuples of object-relations. Using functions in various
forms, recent publications have assigned “scores”
[Coh98], “preference values” [AW00, HKP01], and
“probabilistic values” [BMP92] to object-relational
database tuples. We refer to these values and the functions
that generate them as sideway values and sideway value
functions, respectively. Sideway functions and sideway
values represent the recommendations of data creators.
We illustrate with a web querying example.

Example 1.1 Consider a web resource that is modeled (using
metadata extracted from it by data mining techniques) in terms
of topics, relationships among topics (metalinks), and topic
occurrences (i.e., topic sources) within information resources
[A+01]. Topics have names (a keyword or a phrase) as well as
types and domains and other attributes. Arbitrarily specified
words/phrases are allowed for topic names. Topics, topic
sources, and metalinks are assigned real-valued importance
values (i.e., sideway values) in the range of [0, 1], which the
users employ in specifying their queries. Different sets of topics,
metalinks, and topic sources, together with their importance
values, constitute the advices of different “experts”. Topics and
Metalinks relations of each expert contain the topics and
metalinks defined by the expert, respectively. A certain web
document (or, a part of it) is designated as a topic source for a
topic. Metalinks represent relationships among topics (not
sources); i.e., metalinks are “meta” relationships. E.g., Given
two topic names, “query optimization” and “sort-merge join”,
the Prerequisite metalink instance “query optimization �Pre
sort-merge join, with importance value 0.8” states that
“prerequisite to (viewing, learning, etc. sources on) query
optimization is (viewing, learning, etc. sources on) sort-merge
join”, and this metalink instance is deemed to have the
importance (sideway) value of 0.8.

Sideway functions and sideway values are selectively
employed by users for two purposes:
(a) User-guided query output ranking and size control.
Users choose in their queries which sideway values to
consider and in which manner, for ranking and limiting
query output sizes. And, unlike the previous approaches,
the sideway values can be used to provide not only final
query output size controls, but also intermediate query
output size controls.
(b) Querying. Users query sideway values as if they were
attribute values. E.g., for web querying, users compare in
their queries the importance values of two topics.

Sideway values are not necessarily maintained as a
column of base relations; sometimes, they can be defined
by functions (e.g., “preference functions” [HKP01]) and
attached to the base relations of the database in different
forms: (a) Open form [Coh98, AW00] where, for each
tuple, a value is specified, (i.e., sideway values are stored
in a column of the base relation), (b) Closed form
[HKP01] where each tuple’s sideway value is derived
from a closed function. (E.g., for a relation R with
attributes X and Y, we may have f (X,Y) = a.X + b.Y
where a and b are constants), (c) Semi-closed form where
the function specifies a value for a set of tuples identified

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

through regular expressions. As an example, for the web
resources of the National Institute for Health (US), an
SVA function f() for topics is f(<TName = “*kidney
complications*, TType = *, TDomain=*>) =0.9 which
states that any tuple with a topic name containing the
string “kidney complications”, regardless of type and
domain, is at the importance level of 0.9.

SVA queries specify the propagation and modifications
of sideway values of input relations to query output
relations in automated ways. Once the desired sideway
values are selected, the query output sizes can be
controlled in three ways: (i) for the final output size
control, a ranking threshold k (i.e., output only the top-
ranking k tuples [CK97, CK98, CG99, CH02]), or (ii) for
intermediate and final output size controls, a sideway
value threshold Vt (i.e., output all the tuples with sideway
values above the threshold Vt), or (iii) both the ranking
threshold k and the sideway value threshold Vt are
specified.

Following recent works (e.g., [Coh98]), we integrate
approximate (similarity) comparisons into our querying
framework. In this paper, we concentrate on the similarity
of textual phrases; and, to compare them, we use the TF-
IDF model [Salt89] from the IR domain. We illustrate
with an example.
Example 1.2 Consider the web resources DBLP Bibliography
[DBLP01] and the ACM SIGMOD Anthology. Assume that
information about papers (e.g., paper titles, index terms, author
names, etc.) in the DBLP Bibliography and ACM SIGMOD
Anthology are collected as topics, and stored into the Topics
relation, as illustrated in Table 1.1(a). As an example, the tuple
with tuple id T08 is the 1980 paper of E.F. Codd [Codd80].
And, the importance of the tuple with tuple id T01 is 0.9.
Assume that the user asks for all database researchers with a
name similar to “E. Codd”, and the similarity between “ Edward
Codd” and “E. Codd” is judged to be 0.7. Then the tuple T01 is
returned to the user with the revised importance value of
0.9*0.7=0.63.

TId TName TType Tdomain TImp
T01 E. F. Codd researcher database 0.9

T08 data models
database

management

research
paper

database 0.8

(a) Topics relation
Mid MType AntecedentId ConsequentId
M01 ResearchPaperOf T01 T08

(b) Metalinks relation
Table 1.1 Topics and Metalinks relations of a database

This paper defines SQL extensions and a Sideway Value
Algebra (SVA) for the object-relational model, which (a)
allow users to selectively modify and propagate sideway
values of base relations in automated and generic ways,
and (b) employ them for efficient query processing. We
focus on three new SVA operators here and present
evaluations of two of them (see [O+02] for details):
• SVA join with text similarity modifies sideway values
on the basis of the textual similarity of tuples. We

discuss SVA join evaluation algorithms that terminate
their evaluations early, by using sideway values.

• The recursive SVA closure operator. We describe this
operator within the context of web querying, and
illustrate it for querying the DBLP Bibliography and the
ACM SIGMOD Anthology. The operator, called Topic
Closure, starts with a set X of topics, a regular
expression of metalink types, and a relation M
representing metalinks M involving topics, expands X
using the regular expression and metalink axioms, and
terminates the closure computations selectively when
“derived” sideway values of newly “reached” topics
either get sufficiently small or are not in the top-k output
tuples. That is, the derived topic importance values get
smaller than a threshold Vt or are guaranteed not to
produce top-k-ranking output tuples.
In section 2, we discuss SQL extensions, logical query

trees, and the SVA selection, join, and topic closure
operators with examples (using the queries of SQL-TC,
“topic-centric” SQL [A+01]). Section 3 discusses nested-
loops-based SVA join algorithms. In section 4, we discuss
TClosure algorithms where the regular expression is
reduced to a single metalink type. Section 5 is the
experimental results.
2 SQL Extensions and Sideway Value Algebra

We illustrate SQL extensions and the SVA with
examples.
Example 2.1 Consider the query “Based on the advice at
www.expert.com/advice, find the topic ids of 20 highest topic-
importance-ranked papers having index terms with similarity
above 0.9 to “join algorithms”. Employ a product-based
importance propagation function that uses only topic importance
values”.

select M.ConsequentId
using advice at www.expert.com/advice as database DB
from DB.Topics T, DB.Metalinks M
where T.TType=”Index Term” and
 M.MType=”IndexedBy” and
 T.TId is-in M.AntecedentId and
 T.TName ≅(0.9) ”join algorithms”
propagate importance as product function of T
stop after 20 most important

where DB denotes the topic advice database at
www.expert.com/advice, Topics is the topics relation in DB,
with attributes TId, TName, and TType; Metalinks is the
metalinks relation in DB, with attributes MType, AntecedentId,
ConsequentId; and IndexedBy metalink type has the signature
IndexedBy: SetOf IndexTermId � PaperId (i.e., for this
metalink type, AntecedentId is IndexTermId, and ConsequentId
is PaperId). The last atomic formula, ≅(0.9), of the where clause
states that the topic (index term) name of T is similar to “join
algorithms” with similarity above 0.9. We assume that the
similarity between an index term name and the phrase “join
algorithms” is evaluatable by information retrieval techniques,
e.g., by using the vector space model and the TF-IDF weighting
scheme [Salt89] to represent the topic names (see section 3.1).
The “propagate importance” clause specifies the sideway value
function for output tuples. In this example, the clause states that

the importance values of output tuples are computed from the
importance values of the base relation T using a “product”
function revised with similarities. Table 2.1 lists possible
propagate-importance clauses and the corresponding SVA
output function specifications. Other output sideway value
functions such as numeric maximum, numeric median, etc., are
possible. We assume that the possible choices for output
sideway value functions are small and known a priori. Note that
this query uses only the topic importance values, but not
metalink importance values, as specified by the “propagate
importance” clause. And, in this query and others, there is no
direct information resource access (to simplify the presentation
and examples); i.e., here, only topic (paper) ids, but not the
paper sources, are output.

SQL clause Effect
product flin * frin * sim()

numeric average Ave(flin , frin) * sim()
geometric average Sqrt(flin * frin) * sim()

Table 2.1 Examples of output sideway value function fout for a
join with (i) two input relations R and S having the sideway
value functions flin and frin , respectively, and (ii) a text
similarity join condition between R and S with similarity
function sim().

The sideway value function of base relations is denoted
by fin, and has the normalized range [0, 1]. During SVA
operations, we materialize the output sideway function of
an operator, i.e., convert it into the open-form from the
other two forms, and keep it as a (new) column while
processing queries.
2.1 SQL Extensions

We define a generic, user-guided, and system-enforced
mechanism for users to control query output sizes, by
using sideway values. In Example 2.1, we presented three
clauses for SQL, namely,
(a) The clause using advice at www.xx as database which
specifies the database,
(b) The clause propagate importance as xx function of
which specifies a generic formula for propagating
sideway values of output tuples, and
(c) the clause stop after k which specifies the ranking
threshold, or stop with threshold Vt which specifies the
sideway value threshold, or stop after k and with
threshold Vt, which specifies both types of stopping
conditions.

The clause in (a) is self explanatory.
A. Propagating Sideway Values. The clause in (b) is
used to propagate importance values of input relations to
the output tuples. The general form is:
Propagate importance as <type> function of <arg list>
where type is one the specific function types (e.g., min,
max, product, arithmetic average (avg), geometric average
(gavg), etc.), and argument list is a sublist of relations
listed in the From clause of the SQL query.
As an example, in the SQL query:
Select … From R, S, T, V …
Where …Propagate importance as Product function of (R, S)

the propagate-importance clause states that, when
propagating sideway values of relations R and S, the
system will use a product function, and the tuple sideway
values of T and V are suppressed (not used). That is,
consider an intermediate relation ei, obtained during the
execution of the above query, which is an output of a
relational algebra expression Ei. Then, ei will have tuple
sideway values iff Ei has at least one of R or S as its input
arguments. Next, we define the execution semantics of the
propagate-importance clause for a binary operator (such
as join or Cartesian product—we omit unary operators to
save space) with operands E1 and E2, where E1, E2 denote
intermediate relations (resulting from algebra expressions
with zero or more operators):
(i) E1 and E2 are either R or S, respectively, or each has at
least one of R or S as an argument: If Ei is R (or S) then
the tuple sideway values of Ei are the same as R;
otherwise they are computed recursively by considering
the operators in E1 and E2. Then, the tuple sideway values
for the output of the binary operator are computed as the
product of the tuple sideway values for E1 and E2.
(ii) Neither E1 nor E2 is R (or S), and neither has at least
one of R or S as an argument: In this case, neither of the
operands E1 and E2 have tuple sideway values (i.e., they
are suppressed). Hence, output tuples do not have tuple
sideway values either.
(iii) Only one of E1 or E2 is R or S, or has at least one of R
or S as an operand: Let E1 be the operand involving R or
S. Then E1 has tuple sideway values, and E2 doesn’t.
Then, the tuple sideway value of a tuple t of E1 is simply
passed to the output tuples of the binary operator that t
contributes.

Thus, we have presented unambiguously a single-
clause-based (i.e., propagate-importance) sideway value
propagation technique, and its effects on the construction
of the logical query trees. Having propagated sideway
values to the nodes of logical query trees in turn allows us
to introduce size-controls at the intermediate nodes of
logical trees, and perform query optimization.
B. Propagating Stopping Conditions. We extend SQL
with stopping conditions, whose utility is to significantly
lower the query processing times. Ideally, we want
stopping conditions to be propagatable to the intermediate
nodes of the logical query tree (i.e., to the algebra
operators), in which case the query processing times of all
SVA operators are drastically reduced. Unfortunately, the
clause stop after k, which specifies the size of the final
query Q output (i.e., the top-k query), is difficult to
propagate to intermediate logical query tree nodes of Q
during query processing [CK97, CK98]. In contrast, the
clause stop with threshold Vt (i.e., output all tuples with
sideway values above Vt) always propagates to all logical
query tree nodes of query Q (as a single operator stopping
condition) when the sideway value propagation function
returns a value less than its input sideway values. Note
that the product function used in this paper satisfies this

property. As an example, in the logical query tree of
example 2.4, the stopping condition with threshold
Vt=0.95 is propagated into the two selection and one join
in the logical tree, as shown in figure 2.3.

Another approach to specifying stopping conditions that
propagate to logical query tree nodes naturally is to attach
stopping conditions to the where clause predicates of
SQL. As an example, the users may request that (a) the
number of top-sideway-valued tuples (objects) that satisfy
a certain predicate p (e.g., PersonCity = “Cleveland” or
PersonAddress = ”*Cleveland*”) is k, or (b) all of the
tuples that satisfy a given predicate p have sideway values
above a threshold Vt. In such cases, the predicate-attached
stopping conditions naturally propagate to the logical
query tree nodes where the predicates appear.

Once the stopping conditions are propagated to the
logical query tree nodes (i.e., individual SVA operators),
what remains is the evaluation of individual SVA
operators, which we discuss in sections 3 and 4. Next, we
illustrate SQL extensions, logical query trees, and the
SVA operators with examples.

In the logical query tree examples discussed next, we
use the following notation: Operators with superscript *
are SVA operators. Operators without superscript * are
normal relational algebra (RA) operators. A unary RA
operator without * in its superscript simply carries (into
its output tuples) the sideway values of its only operand
relation. A binary operator RA without a superscript *
may carry (into its output tuples) sideway values of either
its left (hand side) relation or its right (hand side) relation,
indicated by superscript L or R, respectively.

For each RA operator, there is an SVA counterpart
extended with an output sideway value function fout and
the output threshold β, which is either the integer-valued
ranking threshold, or the real-valued sideway value
threshold Vt in the range [0, 1].
2.2 SVA Selection: σ*

C, fout, ββββ (R)
The selection operator σ * takes as input a relation R

(with a sideway value function fin in open, closed, or
semiclosed form), a selection condition C, an output
sideway value propagation function fout, and the output
threshold β where β is either a positive integer k as the
ranking threshold, or the real-valued sideway value
threshold Vt in the range [0, 1], or the two-tuple (k, Vt).
The operator σ * returns, in decreasing order of output
sideway values, either (i) top k fout-ranking output tuples
that satisfy the selection condition C (when β is k), or (ii)
all tuples of R with an fout-sideway value greater than Vt
and satisfy the selection condition C (when β is Vt), or
(iii) top k fout-ranking output tuples that satisfy the
selection condition C and with an fout-sideway value
greater than Vt (when β is the two-tuple (k, Vt)).
Example 2.2 The logical query tree of example 2.1 is shown in
figure 2.1. The notation)t(

~= denotes text similarity-based

equality formula with the similarity acceptance threshold of t;
i.e.,)t(

~= returns True/False. The function sim() computes the

text similarity of two strings, and returns a value in the range [0,
1]. Here, sim() is used to modify the importance values of output
tuples according to their Tname similarity to “join algorithms”,
as illustrated in Table 2.1. Note that, as specified in the
propagate importance clause, this query does not use metalink
importance values. In this example, the SVA selection operator
has the β value of 0; therefore this operator returns all qualified
output tuples.

 STOP AFTER (20)
 ΠConsequentId

 ORDER BYImportance
 L
 L.TId in R.AntecedentId

 IndexedBy"" MTypeσ =

 σ*
TName ≅(0.9) “join algorithms” and TType=”Index Term”,

 fout=fin*sim(TName,”join algorithms”), β = 0.0

 DB.Topics DB.Metalinks

Figure 2.1 Logical Query Tree of Example 2.1.

2.3 SVA Join: (L)
*

β fout, B, θA (R)
The join operator takes as input two relations L and R

with sideway value functions flin and frin respectively, a
join condition θ on attributes A and B of relations L and
R, respectively, a sideway value propagation function fout
for the output tuples, and an output threshold β. The join
operator then produces joined tuples of L and R with
sideway values of output tuples computed as specified by
fout, and satisfying the output threshold β.

We illustrate the SVA join operator with two examples.
Example 2.3 Using the advice at www.expert.com/advice, find
five researchers who (a) published papers with index terms
having similarity to “join algorithms” above 0.9, and (b) have
the highest importance values computed using the geometric
averages of all involved importance values.

select M.ConsequentId
using advice at www.expert.com/advice as database DB
from DB.Topics T, DB.Metalinks M
where TType=”Index Term” and
 M.MType=”ResearchTopicOf”and
 T.Td is-in M.AntecedentId and
 T.TName ≅(0.9) “join algorithms”
propagate importance as gmtrc-average function of T, M
stop after 5 most important

The logical query tree of example 2.3 is shown in figure 2.2.
ConsID and AntId are consequent and antecedent attributes of
the Metalinks relation. We assume that ResearchTopicOf is a
metalink type that specifies the relationship between index terms
of papers and the authors of these papers (obtained by mining
the ACM Anthology digital library). The signature of the
metalink type is ResearchTopicOf: SetOf IndexTermId �
ResearcherId. Due to the clause “propagate importance”, this
query chooses researchers on the basis of a geometric average of
the importance values of researchers (topics) and their

ResearchTopicOf type metalinks. The SVA join in this case is
exact (i.e., no similarity computations are involved).
 STOP AFTER (5)

 Π ConsequentId
 ORDER BYImportance

 *
 L.TId in R.AntecedentId, fout=sqrt(flin*frin), β = 5

 σ*

TName ≅(0.9) “join algorithms” picOf"ResearchTo" MTypeσ =
 and TType=”Index Term”,
 fout=fin*sim(TName,”join algorithms”), β = 0.0

 DB.Topics DB.Metalinks

Figure 2.2 Logical Query Tree of Example 2.3.
Example 2.4. Using the advices at www.expert1.com/advice
(DB1) and at www.expert2.com/advice (DB2), find the titles and
URLs of pairs of papers advised by DB1 and DB2 such that (a)
the derived importance value of the paper pair (as defined by the
max function) is of importance above 0.95 and in the top-5-rank,
and (b) the topic name of the paper from DB1 has a similarity of
0.98 or above to the topic name of the paper from DB2. Employ
a max-based importance propagation function that uses all of the
involved importance values.

select T1.TName, T1.URL, T2.TName, T2.URL
using advice at www.expert1.com/advice as database
 DB1, www.expert2.com/advice as database DB2
from DB1.Topics T1, DB2.Topics T2
where T1.TType=”Paper” and T2.TType=”Paper”
 and T1.TName ≅(0.98)T2.TName
propagate importance as max function of T1, T2
stop after 5 most important and with threshold 0.95

The logical query tree of example 2.4 is shown in figure 2.3.
Note that the SVA join is similarity-based, and the sideway
value threshold of 0.95 is propagated to all of the three
operators, namely, the two SVA selections and one SVA join.
2.4 SVA Topic Closure

Next we define a recursive operator that takes into
account the sideway values of its input tuples. This
operator, called the “topic closure” operator, is motivated
by web querying; thus, we describe this operator, within
the context of topics and metalinks, not generically.
Notation: TClosure*

R, Metalinks, FPath, FPathMerge, β (X)
The topic closure operator computes the topic closure X+
of a set X of topics with respect to a regular expression R
of metalink types (and, thus, wrpt the set of axioms
characterizing the metalink types in R), a metalink
instance relation Metalinks (containing all metalink
instances). More specifically, the topic closure operator
takes as input (1) two relations, namely, the relation X of
topics with a sideway value function fX and the relation
Metalinks with a sideway value function fM, and (2) four
parameters: (a) the regular expression R , (b) a path-based
importance value propagation function FPath that
specifies how to compute the importance values of newly
reached topics with respect to a single path, (c) the

function FPathMerge that specifies how to merge the
importance values of a given topic obtained through
different paths, and (d) the output threshold β. It then
computes the closure X+ of X with respect to < R,
Metalinks, fX, fM, FPath, FPathMerge, β > where each new
topic in the closure is represented as an output tuple, and
has a derived importance value satisfying the output
threshold β.

 STOP AFTER (5)

 ΠL.TName, L.URL, R.TName, R.URL

 ORDER BYImportance
 *

(5,0.95) R.TName),e,Sim(L.TNam*),(outf

 R.TName,(0.98)L.TName

==

≅

βinfrinflMax

σ* TType=”Paper”, fin=fout, β=0.95 σ* TType=”Paper”, fin=fout, β=0.95

DB1.Topics DB2.Topics
Figure 2.3 Logical Query Tree of Example 2.4.

R is a regular expression of metalink types. E.g., the
regular expression PrerequisitePapers*IndexedTerms finds
the index terms in all the prerequisite papers (of a given
paper topic). Next we illustrate the notion of paths that
satisfy R with an example.
Example 2.5 Let A, B, C, D, and T denote single topics. The
metalinks A�

RelatedTo B, B�RelatedTo C and C�RelatedTo T
constitute a path P = {A, M1, B, M2, C, M3, T} where all nodes
are single topics and all metalinks M1, M2, and M3 have the type
RelatedTo (i.e. R = RelatedTo). As another example, metalinks
AB �Pre C, C �Pre DE, and DE�Pre T form a path P={AB, M1,
C, M2, DE, M3, T} that starts with a set of topics AB, followed
by a single topic C, then a set of topics DE, and ends with a
single topic T. The path P satisfies R = Prerequisite since all of
its metalinks M1, M2, and M3 are of type Prerequisite.

FPath is the derived importance value propagation
function with respect to a single path. In this paper, we
use the product function as FPath. As an example, assume
that the topic t is reached from a topic x in X using a path
P = <x m1 a m2 t> where a is a topic with importance
value va, m1 and m2 are metalinks with importance values
vm1 and vm2, and the metalink types of m1 and m2 satisfy
the regular expression R. Assume FPath is Product. Then,
the derived importance value of t with respect to P,
denoted by Impd(t, P, R), is computed as the product of all
the importance values in P that satisfies R, i.e.,
vx*vm1*va*vm2*vt, where va and vt are the importance
values of x and t, respectively.

The intuition for the semantics of derived topic
importance values is as follows: assume topic t is reached
through path P. The derived importance value of t in the
closure should be a function of the length and the type of
path P, and less than or equal to the importance value of t.

As the length of P increases, the derived importance value
of t should decrease because t is farther away from (and is
less related to) the topics in X, the original set of topics
listed by the user. Thus, Impd(t, P, R) with respect to path
P should be a monotonically decreasing function of the
length of path P (i.e., path-monotone).

FPathMerge is one of Product, NumAve, Min, Max,
etc., specifying how to compute the derived importance
value Impd (t, R) of topic t in X+ in terms of the Impd(t, P,
R) values obtained with respect to each path P.

We now specify the execution semantics of TClosure*
procedurally as follows:
(a) Locate metalink paths P from a topic in X to a topic t

not in X, where P “satisfies” the regular expression R,
and compute Impd(t, P, R) values.

(b) Compute the derived importance value of t as
sv=Impd(t, R), and add the new topic t to the closure of
X if sv satisfies the sideway value threshold β. That is,
If β is a positive integer k as the ranking threshold, then
sv satisfies β if sv is among the top-k output sideway
values. If β is the real-valued sideway value threshold
Vt in [0, 1], then sv satisfies β if sv > Vt.

Importance-value driven topic closure operator has
similarities to the recently introduced focused crawling
techniques on the web [DLGG89] in that the search space
of topic sources are crawled in a focused manner.

Example 2.6. Using the advice at www.expert.com/advice, find
the titles and URLs of five highest importance-valued papers
such that the selected papers (a) are either papers with titles
similar to “Advances in Spatial Databases” with a similarity
above 0.85, or their prerequisites (recursively), and (b) have the
highest importance values computed using a product function as
FPath, and min function as FPathMerge.
select T2.TName, T2.URL
using advice as www.expert.com/advice as database DB
from DB.Topics T1, DB.Topics T2, DB.Metalinks M
where T1.TName≅(0.85)“Advances in Spatial databases”
 and M.MType=”PrerequisitePapers” and

 T2.TId =any(PrerequisitePapers*,Product, Min, T1.TId, M)
propagate importance as product function of T1, T2, M
stop after 5 most important
The logical query tree for example 2.6 is given in Figure 2.4.

2.4.1 Metalink Axioms
Some metalink types have associated axioms; for

example, RelatedTo is both transitive and reflexive. IsIn is
transitive, but not reflexive; SubTopicOf is transitive.
Therefore, when a user asks for topics that are RelatedTo
topics in X, we need the topic closure X+ of X with
respect to the metalink type RelatedTo, which is formed
of all topics that are logically implied by the set X.

Computing topic closures requires a sound and
complete set of axioms for metalink types, and a
polynomial-time algorithm that computes the topic
closure using the axioms. Consider the Pre(requisite)

metalink type. In [O+01], we gave the following
axiomatization for the Pre metalink type.
 STOP AFTER (5)

 ΠTName, TURL

 ORDER BYImportance
 L

 .TId=R.TId
 DB.Topics
 TClosure*

PrerequisitePapers, DB.Metalinks, Product, Min, β=5

*

0.0)," DatabasesSpatial in Advances" Sim(TName,*infoutf
," DatabasesSpatial in Advances"(0.85)TNameσ

==
≅

β

 DB.Topics
Figure 2.4 Logical Query Tree of Example 2.6.

Case 1. Prerequisite metalinks are not left-hand-side
(LHS) decomposable (that is, A, B→Pre C is not
equivalent to the metalink A→Pre C and the metalink
B→Pre C), and are allowed to be cyclic.
Axioms: Let X, Y, and Z denote sets of topics.

• Subset-Reflexivity. If Y ⊆ X then X�
Pre Y.

• Augmentation. If X�
Pre Y then XZ �Pre YZ for any

Z.
• Transitivity. If X�

Pre Y and Y�
Pre Z then X�

Pre Z
These are the so-called Armstrong’s axioms [RG00].

Case 2. Prerequisite metalinks are not LHS-decomposable
and are acyclic.
Axioms: Let X, Y, Z and W denote sets of topics.

• Pseudo-transitivity. If X→Pre Y and WY→Pre Z then
WX→Pre Z.

• Split/join. If X→Pre YZ then X→Pre Y and X→Pre Z,
and vice-versa.
[O+01] proves that above axioms are sound and

complete.
Case 3. Prerequisite metalinks are LHS-decomposable.
We first decompose the LHS of all metalinks so that all
metalinks have a single topic in the left and the right hand
sides. And, then the only axiom is

• Transitivity. If A�
Pre B and B�Pre C then A�

Pre C
where A, B, C are topics.

In all three cases, the topic closure X+ of a set X of
topics wrpt the type Prerequisite can be found by using an
O(n.l) topic closure algorithm where n is the number of
prerequisite metalinks, and l is the length of the encoding
for a prerequisite metalink [O+01]. For all metalink types,
we assume the existence of sound and complete axioms.
3 Evaluating the SVA Join
3.1 Text Similarity Metrics

For those functions that require the similarity
comparison ≅, we assume that a vector space based
similarity model is employed [Coh98]. The vector space
model first creates a vocabulary (W) of all words (i.e.,

terms) included in the document collections, and then
represents each document with a vector v of |W| terms.
The vector entries are real numbers representing term
weights. Let vt denote the vector v element for term t. We
use the weighting scheme TF-IDF, which assigns a zero
weight for those terms that do not appear in the document,
and computes the weights of the other terms using the
formula vt = (log (TFv, t) + 1). Log(IDFt), where TFv, t
(term frequency) is the number of occurrences of term t in
the document represented by v, and IDFt is the inverse
document frequency that is defined as the ratio of the
number of all documents to the number of documents
including t. We focus on attributes with short phrases
such as topic names. The TF-IDF values are normalized
and the similarity of two documents represented with
vectors v and u is the cosine of the angle between them,
which is defined as Cosine (u, v) = ∑t in W

 vt * ut
We assume that term vectors that correspond to string-

based attributes of tuples, as well as the vocabulary, are
computed a priori. In this section, we assume that
vocabulary is small enough to fit in the main memory,
whereas all other input and output relations may be
arbitrarily large.

Since pipelining is preferable for threshold-based query
processing algorithms [RG00], and the nested-loop join
algorithm does not disrupt pipelining [Graef93], next, we
discuss nested loops-based SVA join algorithms.
Moreover, the nested-loop join is appropriate with
arbitrary join conditions.
3.2 Nested-Loops-Based Sideway-Value-Threshold

Join algorithms
We now discuss SVA join algorithms that return joined

tuples with derived values above a specified sideway
value threshold. We sketch two algorithms for join
conditions specifying (i) an arbitrary (user-defined)
predicate θ over the join attributes, or (ii) an approximate
match in terms of the similarity of the join attributes.
Definition. Monotone fout. Let svt denote the sideway
value of tuple t. Given relations R and S with tuples r and
s respectively, let fout(r, s) denote the sideway value of the
joined output tuple r.s. Then, ∀r1, r2 ∈ R and ∀s1, s2 ∈ S,
if fout (r1, s1) ≤ fout (r2, s2) whenever svr1 ≤ svr2 and svs1 ≤
svs2, the function fout is said to be monotone with respect to
input sideway values of R and S.

 Functions product, numeric average and geometric
average are monotone with respect to their input sideway
values.

Algorithm NLoopSVT

Input : Sorted Relations R and S wrpt sideway values;
fout() function; join condition r.A θ s.B; sideway value
threshold Vt
Output: {r.s | r∈R and s∈S and fout(r, s) ≥ Vt and r.A θ s.B}
{i := 1;

while (fout (ri, s1) ≥ Vt and i ≤ |R|)
{ j := 1;

 while (fout (ri, sj) ≥ Vt and j ≤ |S|)
 { if ri.A θ sj.B then add ri.sj into the output;
 j++ } i++ } }

Figure 3.1 NLoopSVT algorithm
Given a query involving a join with a monotone fout

function, we improve the nested-loop join algorithm by
enforcing new stopping conditions while processing the
inner and outer loops, as shown in the NLoopSVT
algorithm in Figure 3.1.

In the NLoopSVT algorithm, the inner loop exits
whenever the fout() value of the output tuple r.s is below
the threshold Vt, where r is in R and s is in S. Similarly,
the outer loop exits at the ith iteration whenever the fout()
value of the output tuple ri.s1 is below the threshold Vt,
where ri is in R and s1 is the first tuple in S.

In an ordinary block-nested loops (BNL) join [RG00],
assuming that the size of R is M pages with p tuples per
page, the size of S is N pages with q tuples per page, and
the memory has B+2 buffer pages, we can read B pages of
the outer relation R, and scan the inner relation S by using
one of the remaining two buffer pages, leaving the last
page to collect the output tuples. In this case, the disk
access cost of the BNL algorithm is M + (M*N/B)
[RG00]. In the worst case, the disk access cost of the
NLoopSVT algorithm is the same with the disk access cost
of the BNL algorithm. However, in the expected case, the
disk access cost of the NLoopSVT algorithm will be
reduced depending on how large Vt is. Assume that we
revise the allocation of buffer pages as B/2 pages each to
the relations R and S; the sideway values in R and S are
uniformly distributed; and fout() is the product function,
which is monotone. Thus, the tuples in the first B/2
blocks of R have sideway values in the range of [(1 ─
B/2M), 1]. Similarly, the tuples in the first B/2 blocks of S
have sideway values in the range of [(1 ─ B/2N),1].
During the first outer loop iteration, the inner loop will
terminate in the jth iteration when the lowest expected
sideway value of a join tuple in the buffer is equal to (or ε
less than) the sideway value threshold Vt. That is,

(1 ─ B/2M) * (1 ─ j*B/2N) = Vt
Rearranging the above equality, we have
)

2
2()1(2/ M

BNVj tB
N −−−∗=

Assuming N>>B and M ≈ N, the above equality reduces
to j=(N/(B/2))*(1-Vt). That is, in the expected case, for
Vt=0.9, the inner loop terminates with 10% of the disk
block accesses from S. Since R sideway values are sorted
and decreasing in value, for any outerloop tuple of R, S
will always be accessed at most for the first
bS=(N/(B/2))*(1-Vt) blocks. And, since the above
computations are symmetric for R and S, in the expected
case, NLoops SVT algorithm will terminate with
bR=(M/(B/2))*(1-Vt) disk block accesses from R as well.
Thus, the expected number E of disk accesses is
E = (B/2)* bS + (B/2)(bS ─ (B/2)) + (B/2)(bS ─ 2(B/2))+
… + (B/2)(bS ─ (bR ─ 1)* (B/2))
Assuming bS = bR = b, we have

E = (B/2)*b2 ─ (B/2)2*((b2 ─b)/2)
This, as shown in the experimental results section, is
significantly less than the cost of the BNL algorithm.
 When the join condition specifies an approximate
matching (based on the similarity of the text-valued join
attributes being above a given threshold tsim), we cannot
directly make use of the similarity function sim(r, s), as it
is not monotone, and thus makes fout non-monotone.
However, we can still use the NLoopsSVT algorithm of
Figure 3.1 with provisions: (a) the functions fout (ri, s1) and
fout (ri, sj) in the outer and the inner while loop conditions
are replaced by svri * svs1 and svri * svsj , respectively,
where svri, svs1 and svsj are the sideway values of tuples ri,
s1 and sj. (b) In the inner while loop, we check if fout (ri,
sj)= svri*svsj.sim(ri.A, sj .B) ≥ Vt and sim(ri.A, sj .B) ≥ tsim
where A in R and B is S are the join attributes. If so, the
tuple ri.sj is output.

Note that, so far, the join algorithm has not employed
the similarity function in improving its running time. We
now summarize an algorithm that uses the vector-space
model and the similarity function in improving the
efficiency of the join algorithm.
Remark 1. Let ur = <u1 u2 … ux> be the term vector
corresponding to the join attribute A of tuple r of R,
where ui represents the weight of the term i in A. Assume
that the filter vector fS = <w1 .. wx> is created such that
each value wi is the max weight of the corresponding term
i among all vectors of S. Then, if Cosine (ur, fS) < Vt then
r can not be similar to any tuple s in S with similarity
above Vt.

In this paper, the value Cosine (ur, fS) is called as the
maximal similarity of a record r in R to any other record s
in S. The maximum value of a term for a given relation is
determined while creating the vectors for the tuples, and
the filter vector for each relation may be formed as a one-
time cost. In figure 3.2, we summarize the NLoopSim-SVT
algorithm which makes use of the sorted order of relations
R and S by svr * Cosine (ur , fS), and svs, respectively (also
one-time costs). Note that, with both while loop
conditions, false drops are possible; that is, a tuple r in R
and a tuple s in S may satisfy the while loop conditions,
only to be eliminated from the output in the if statement
within the inner while loop (the if condition tests the
values of the actual fout() and sim() functions). On the
other hand, while loop conditions do not allow false
dismissals; that is, a join tuple that is in the output will be
added into the output.
Algorithm NLoopSim-SVT
Input : Relations R and S;
text-valued join attributes r.A and s.B; Buffers BS and BR;
sim function sim()=Cosine(); sim threshold tsim

Output: {r.s | r∈R and s∈S and fout(r, s) ≥ Vt and
 Cosine(ur , uS) > tsim }
1. Sort R by svr * Cosine(ur , fS); Sort S by svs;
2. Read tuples from the top of R into a block BR where, for each

ri in BR, svri * svs1 * Cosine(uri, fS) ≥Vt ;

3. Repetitively, read tuples from the top of S into a block BS,
where, for each sj in BS, svr1* svsj * Cosine(ur1, fS) ≥ Vt, and
compare and join tuples in BR and BS:
 for each r ∈BR do for each s ∈ BS do
 if (svr * svs * Cosine (ur , us)≥ Vt and Cosine (ur , us)≥ tsim)
 then add r.s into the output;

4. Repeat 2-3 until svri * svs1 * Cosine(uri, fS) < Vt
 Figure 3.2 NLoopSim-SVT Algorithm

3.3 Nested-Loops-Based Ranking-Threshold
(Top-K) Join Algorithms

It is easy to give an SVA join algorithm with top-k
output sideway values. Assume that (i) input relations are
sorted with respect to sideway values, and (ii) the fout()
function is monotone. The algorithm NLoopsTop-k begins
in a nested loop like manner, and computes the first k (but
not top k yet) joined output tuples, referred to as the
“Top-k-Set”. And, the sideway value of the kth joined
tuple becomes the lower bound (minSV); i.e., no tuple
with a sideway value below this lower bound can be in the
top-k output. The algorithm proceeds in a nested-loops
manner, and updates the lower bound and the current
Top-k-Set whenever it computes a join output with a new
sideway value larger than the minimum sideway value of
Top-k-Set.

Similar to the algorithm NLoopSim-SVT, the algorithm
NLoopTop-k can be revised for a ranking-threshold
algorithm NLoopSim-Top-k with approximate matching
conditions, which, to save space, is not presented here.
4 Evaluating the Topic Closure

 We now summarize TClosure algorithms to compute
the topic closure X+ for the simplest case where the
regular expression R is a single metalink type M (For full
algorithms, see [O+02]). Each metalink V �M Tid is
represented by a tuple in the Metalinks table, where V is a
set of topic identifiers and Tid is a topic identifier. If a
metalink type is LHS-decomposable then each metalink
with V in the left-hand-side is decomposed into multiple
metalinks with a single topic in the left-hand-side.
4.1 Sideway-Value-Threshold-based Topic Closure

We create an index MIndex for all metalink instances;
and the TClosure algorithm uses only MIndex to find the
closure of a given set of topics. We assume that all
metalinks are right-hand-side decomposed.

The index MIndex has five attributes: MType, Tid1,
Imp(Tid1), ParentList, and ChildList. The MType
attribute specifies a metalink type. The Tid1 attribute
contains the topic identifier of the topic from which the
metalink originates, and the attribute Imp(Tid1) is the
importance value of the topic Tid1. The attribute
ParentList is a list of topic identifiers of topics from
which there are metalinks of type MType to the topic
Tid1. The attribute ChildList is a list of triplets <Tid2,
Imp(Tid2),Imp(Mid)> where the triplet <Tid2, Imp(Tid2),
Imp(Mid)> represents a metalink that has Mid as its
metalink identifier, the topic with Tid1 as its antecedent

node, the topic with Tid2 as its consequent node, the type
MType as its metalink type, Imp(Tid2) as the importance
value of the topic with Tid2, and Imp(Mid) as the
importance value of the metalink.

The key for MIndex is the two attributes metalink type
MType and topic identifier Tid1. Therefore, the MIndex
entries with the key (MType, Tid1) contains all metalinks
of type MType that have the topic with Tid1 as its
antecedent. The entries of MIndex are sorted by (MType,
Tid1) so that the metalink of the same type are together
within the index. Table 4.1 shows the initial index
MIndex for the Metalinks relation graphically illustrated
in Figure 4.1.

 0.8

 RelatedTo
 0.6 0.85

 0.9 Pre
 0..95 0.7
 Pre Pre
 0.9 0.95 0.9

T2

T3

T4

T1 T5

Figure 4.1. A graphical representation for the metalinks in

Example 4.1.
While creating MIndex, if there are metalinks which are

not LHS-decomposable then we create a second index
H(yper)Index, to maintain all nodes that are not
decomposable; and the topic closure algorithm uses
HIndex to compute the closure of a given set of topics.
The HIndex table has two attributes Tid and NodeList.
The attribute Tid is the topic identifier of a topic t within
the nondecomposable node. The NodeList attribute is a
list of pairs <TidSet, Hid> where the pair <TidSet, Hid>
represents the Tid’s of the nondecomposable (hyper) node
(which contains Tid), and Hid is a new topic identifier for
the node. Table 4.2 illustrates HIndex for the
nondecomposable node {T3, T4} in Example 4.1. We
generate a new entry in MIndex for each
nondecomposable node with the identifier Hid as its Tid1
value, and with a set of topic ids that it contains as its
“ParentList”. For example, in Table 4.1, the entry with
Tid1 value of H1 and the ParentList value of {T3, T4}
represents the nondecomposable (hyper) node H1 in the
HIndex table.

In this section, to simplify the presentation, we assume
that the metalink type M has only the transitivity axiom,
but may or may not be LHS-decomposable. And, the
product function is used to compute FPath=Impd(t, P, R).

The topic closure of a set X of topics wrpt R = M and a
sideway value threshold Vt is computed as follows. For
each topic t in the topic closure X+, we create a triplet of
the form <t.Tid, Impd(t, R = M), {p | p is a path of type M
from a topic or topics in X to t}>. We use a set-valued
variable DiscoveredTids to contain the topics already in
the closure, but not yet checked for paths emanating from
them. We construct X+ by repetitively computing X(0),

X(1), …, X(i) where 1 ≤ i. In the first iteration, for each
topic t in X, a triplet <t.Tid, Impd(t, R), {t}> is created in
X(1) and the topic identifier Tid of t is added into the
DiscoveredTids variable.

MType Tid1 Imp(Tid1) ParentList
ChildList

<Tid2, Imp(Tid2),
Imp(Mid)> triplets

Pre T1 0.9 {} <T3,0.85,0.95>,
<T4,0.95,0.9>

Pre T3 0.85 {T1} -
Pre H1 Avg(0.9,

0.95)= 0.925
{T3, T4} <T5,0.7,0.9>

RelatedTo T1 0.9 {T2, T3,
T4}

<T2,0.8,0.6>,<T3,0.85,
0.95>, <T4,0.95,0.9>

Table 4.1 MIndex Table

Tid NodeList <TidList, Hid>
T3 <{T3,T4}, H1>
T4 <{T3,T4}, H1>

Table 4.2. HIndex Table
In each iteration of the closure algorithm, a topic t1 is

removed from the DiscoveredTids, and all metalinks that
emanate from topic t1 are visited. A triplet <t2,Impd(t2,R),
t2.paths> for the consequent topic t2 of each visited
metalink is added into the currently computed topic
closure X(i), if the triplet does not exist in X(i). If the triplet
exists then new paths into t2.paths are added and
Impd(t,R) is recomputed. The topic t2 is then added into
DiscoveredTids. If the metalink type MType, for which
the topic closure is to be computed, is not LHS-
decomposable then the algorithm checks if topic t1 is in
the LHS of a metalink of type M. The algorithm uses the
HIndex table to find all HIndex entries that contain topic
t1 as a member of their LHS set of topics. For each such
HIndex, if all of its LHS topics are in the currently
computed topic closure X(i) then new hyperpaths are
created and new derived importance values are computed
for every metalink that emanates from the HIndex. When
the DiscoveredTids is empty, the algorithm stops, and
X+=X(i). We refer to this algorithm as the
ThresholdTClosure algorithm.
Example 4.1 (Topic Closure Computation for a LHS-
Decomposable Metalink Type). We use the MIndex instance in
Table 4.1. Assume that we have the axiom: If A�

Pre B then
A�

RelatedTo B where A and B are topics. Also, assume that we
want to compute the topic closure for the set X={T1} with SV
threshold Vt=0.4 using the metalink type M=RelatedTo. Also,
assume that the average function is used for FPathMerge. Since
X={T1}, X(1)={<T1, 0.9, {T1}>} and DiscoveredTids={T1}.
Note that the RelatedTo metalink type is LHS decomposable. In
the first iteration, topic T1 is removed from DiscoveredTids.
Topic T2 has a path T1.T2, obtained using the metalink
T1(0.9)� RT(0.6) T2 (0.8), and its derived importance value is
Impd(T2,RelatedTo)= 0.9 * 0.6 * 0.8 = 0.43. Therefore, the
triplet <T2, 0.43, {T1.T2}> is added into X(1). After the first
iteration, X(2) ={<T1, 0.9,{T1}>,<T2, 0.43, {T1.T2}>}
and DiscoveredTids = {T2}. Next, the algorithm
terminates since there is no RelatedTo metalink emanating
from topic T2, therefore, DiscoveredTids becomes empty,
and the output of the closure operator is {<T1,0.9>, <T2,
0.43>}.

Example 4.2 (Hyperpath) In Figure 4.1, {(T1�Pre T3),(T1�Pre

T4)}�Pre T5 forms a hyperpath of type Pre from topic T1 to
topic T5. In order to compute the topic closure of type Pre for
topic T1, the topic T5 should be considered if both topics T3 and
T4 are added to the topic closure.
Example 4.3 (Topic Closure Computation for a Non-Left-
Hand-Side Decomposable Metalink). Compute the topic closure
for a set of topics X={T1} with sideway value threshold Vt=0.7
using the metalink type M=Pre. Assume that (a) FPathMerge is
max, and (b) the geometric average is used to compute the
derived importance value of a hypernode. Again, we use the
MIndex instance in Table 4.1 to compute X+ as {<T1, 0.76>,
<T3, 0.727>, <T4, 0.729>}.

During closure computations, a metalink instance (i.e., a
tuple in MIndex) can be visited more than once if there
are multiple paths to the left-hand-side topic node of the
metalink. To avoid visiting the same metalink more than
once, we use the parent-child relationship between topics.
A topic node with Tid1 is in the parent list of another
topic node with Tid2 in the metalink M if there is a
metalink Tid1 �

M Tid2. In the ThresholdTClosure
algorithm, we use a set-valued variable PostponedTids to
add the restriction that a topic node can not be
“processed” until all nodes in its parent list is processed.

The algorithm ThresholdTClosure needs to maintain all
paths from the set of input topics X to a given topic
instance a in order to compute the derived importance
value of a using a generic function. However, some
functions, such as max, need to maintain only a single
path to compute the derived importance value of a given
topic. One can give an algorithm ThresholdTClosureMax
that does not maintain the path information for any topic,
and computes the derived importance value of a topic x by
comparing its “current” derived importance value with
respect to that of the “currently visited” path P. Clearly,
ThresholdTClosureMax is much more efficient than
ThresholdTClosure.
4.2 Ranking-based Topic Closure

The RankingTClosureMax algorithm is used to compute
the top k-ranked topic closure using the maximum
function. The algorithm finds the topics with the k highest
derived importance values in the topic closure of a set X
of input topics. It first computes the initial candidate top k
ranked topics from the input topics X. Then, in each
iteration i, it extracts the ith top-ranked topic from the
current k-i+1 candidate top-ranked topics and updates the
current candidate topics by processing all emanating
metalinks from the ith topic. Therefore, the algorithm
needs k iterations in order to compute the top-k-ranked
topic closure of a set X of input topics.

The RankingTClosureMax algorithm maintains two
lists X+ and CandidateTopics of size at most k.The
algorithm requires at most Ω(k * |X|) time to compute the
initial CandidateTopics list, where |X| is the size of the
input topic set X. Then, the algorithm iterates k times in
order to compute the top-k-ranked topic closure, and, in
each iteration, it finds the next top k topics and updates

the CandidateTopics list by appling the metalinks that
emanate from a given top-k topic. Therefore, the expected
running time of this algorithm is very fast.

5 Experimental Results
5.1 SVA Join Operator

To evaluate the four SVA-Join algorithms discussed in
Sections 3.2 and 3.3, we first extracted the titles of journal
and conf. papers from the DBLP [DBLP01] data set into
two different files, R and S. File R contains more than
91000 journal paper titles (12 Mbytes in size), and file S
contains more than 132000 conference paper titles (18
Mbytes in size). Next, we eliminated the stopwords (i.e.,
removed words like “the”, “a”, “of”, etc.) from the words
in each title, stemmed them and created the word list
(vocabulary) for the whole collection (including about
43000 words). The word list was kept in the main
memory. Then, we created the vectors for each record of
R and S, which were added to paper title records in files R
and S. The SVA values for R and S records were
generated randomly.

Below, we provide the experimental evaluation of the
SVA-join algorithms in terms of the number of tuple-
comparisons for a given query. The number of
comparisons gives an idea about both the number of
tuples read from each relation and the in-memory
optimizations we apply (as in the case of NLoopSim-SVT
and NLoopSim-Top-k). Results involving disk-accesses and
execution times are clearly symmetric with the number of
comparisons made, and not reported here due to the lack
of space.

All experiments have been performed on a dual-
processor Pentium IIII 800 PC with 1-GB main memory
running WindowsNT 4.0. The input and output buffer
sizes were simulated to hold 10,000 tuples.

A. Evaluating NLoopSVT and NLoopTop-k : The
algorithms NLoopSVT and NLoopTop-k join tuples of R and
S on the basis of an arbitrary join condition (predicate) θ,
and return the joined tuples that are over a given threshold
Vt or ranked in the top-k results. For the following
experiments, fout() is specified as the product of the
sideway values of joined tuples. We assume that join
condition θ is a user-defined predicate, which states that a
conf. paper tuple is to be joined with a journal paper if
they have at least one author in common and the conf.
paper is published at most 2 years before the journal
paper. Clearly, this predicate can be specified as a user
defined function (UDF) (syntax omitted to save space).

To evaluate a join with such an arbitrary predicate θ, an
ordinary block-nested loops (BNL) algorithm compares
each and every tuple, computes the sideway values for
those tuples satisfying the user defined predicate, and
finally retrieves the ones that are above the specified
threshold or in the specified top-k set. On the other hand,
NLoopSVT and NLoopTop-k evaluate the arbitrary predicate

only for those tuples with a derived sideway value that
satisfies the query constraints. In Figures 5.1 and 5.2, we
demonstrate the performance of these algorithms,
compared against the “blind” BNL approach. Note that,
the savings of the proposed algorithms increase, as the SV
threshold value increases or, inversely, as the k value
decreases. For instance, when the SV threshold value is
0.9, the number of tuple comparisons performed by
NLoopSVT is approximately 300 millions, 1/40 of the BNL
approach which makes 12 billion comparisons. For this
case, NLoopSVT reads only 15% of R and S from the disk,
whereas BNL reads all tuples of the relations. The saving
in terms of execution time is in the order of magnitudes
(i.e., seconds vs. hours). Furthermore, the savings increase
as the complexity of user defined predicate increases.

Tuple Comparisons

0
1500
3000
4500
6000
7500
9000

10500
12000

0 0.2 0.4 0.6 0.8 1
SV threshold

Co
m

pa
ris

on
 #

 (M
ill

io
ns

)

BNL
NLoopSVT
NLoopSimSVT

Figure 5.1 Performance values of BNL, NLoopSVT and
NLoopSim-SVT and algorithms.

Tuple Comparisons

0
1500
3000
4500
6000
7500
9000

10500
12000

0 100 200 300 400 500

Top-k

Co
m

pa
ris

on
 #

 (M
ill

io
ns

)

BNL
NLoopTopK
NLoopSimTopK

Figure 5.2 Performance values of BNL, NLoopTop-k and
NLoopSim-Top-k algorithms.
B. Evaluating NLoopSim-SVT and NLoopSim-Top-k : The
algorithms NLoopSim-SVT and NLoopSim-Top-k perform
similarity-based (approximate) joins. In the following
experiments, the tuples of R and S are joined if they have
titles similar to each other with a similarity value greater
than a specified threshold (90%). In this case, fout() is
specified as the product of the sideway values of joined
tuples and this derived value is further multiplied with the
similarity value of tuples, obtained using the cosine
similarity measure.

Figures 5.1 and 5.2 illustrate the performance
superiority of NLoopSim-SVT and NLoopSim-Top-k with
respect to the BNL. For instance, to retrieve tuple pairs
with titles that are 90% similar and have a derived

sideway value greater than 0.9, BNL achieves a total of
12 billion comparisons, whereas NLoopSim-SVT makes only
23 million comparisons. This improvement is due to the
fact that similarity based algorithms are tailored to exploit
the vector-space model to its greatest extent. Max-
similarity filters reduce the number of tuples to be
compared. Finally, we create an in-memory inverted
index [Salt89] for the tuples of outer relation on the fly,
and compare tuples that only have common words in their
titles.

To summarize, for arbitrary predicates and monotone
SV functions, algorithms NLoopSVT and NLoopTop-k
improve the performance of BNL considerably. For the
special case of similarity-based joins, the algorithms are
further optimized and more gains are obtained.

5.2 SVA Topic Closure Operator
For the TClosure algorithm, we synthetically generated

the data for the Topics file, Metalink file, and the set X of
input topics. A disk-based MIndex file (see section 4.1) is
generated from the topic and metalinks files. In order to
efficiently retrieve a tuple from the MIndex file, we used
in-memory LRU buffer and a sparse index table. In
implementations of the topic closure algorithms, we used
max as the FPathMerge function.

We generated a topic file with N tuples. Each tuple is
100Bytes, and has a random importance value in [MinT,
1.0], where MinT is the minimum topic importance value.
In the Metalinks file, we generated N* R decomposable
acyclic metalinks (i.e., without hypernodes), where R is
the ratio of metalinks to topics. We divided the topics of
the Topics file into groups, each of random size between
50 to 100 topics. For each group G of topics, we
generated |G| * R randomly distributed metalinks with
random metalink importance values in [minM, 1.0],
where MinM is the minimum metalink importance value
in the Metalinks file. In a given group G of topics, 80% of
the metalinks are from group G to the next group G+1 and
the remaining 20% are from group G to the other groups.
Also, we selected a set X of input topics randomly from
the Topics file, and generated random importance values
in [MinX, 1.0] for each topic, where MinX is the min.
derived importance value of the set X of input topics.

To evaluate the algorithms, we used a topic file with N,
1000 ≤ N ≤ 100,000, topics (i.e., file size is between
100KB and 10GB) and topic importance values are in
[0.4, 1.0]. The Metalinks file has metalinks/topics ratio of
3 (i.e., R=3), and metalink importance values are in [0.4,
1.0]. The size of the set X of input topics is 100 topics,
and their topic importance values are in [0.5, 1.0]. Also,
we used an in-memory buffer of size 100KB and a sparse
index table of size 1000 tuples.

The experimental results for the number of disk accesses
for threshold-based topic closure algorithm and ranking-
based topic closure algorithm are illustrated in figure 5.4
and figure 5.5, respectively. In both figures, the difference
between the disk accesses of two different N values

increases when the sideway threshold value is decreased
or the value of k is increased.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sideway Values Threshold [0,1]

N
um

be
r

of
 D

is
k

A
cc

es
se

s

1000 Topics
5000 Topics
10000 Topics
20000 Topics
50000 Topics
100000 Topics

Figure 5.4 Number of Disk Accesses for Sideway-Value-
Threshold-Based Topic Closure

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 500 1000 1500 2000 2500 3000

Top-K Ranking

N
um

be
r

of
 D

is
k

A
cc

es
se

s

1000 Topics
5000 Topics
10000 Topics
20000 Topics
50000 Topics
100000 Topics

Figure 5.5 Number of Disk Accesses: Ranking-based TClosure

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sideway Values Threshold [0,1]

N
um

be
r

of
 D

is
k

A
cc

es
se

s

defualt
Metalinks/topic R=7
Topics and Metalinks have Imp[0.7,1.0]
Buffer Size=1000
Input Size=500

Figure 5.6 Threshold-Based Topic Closure: Different parameters

To evaluate with different parameters, we changed one
parameter at a time, and compared the results with those
in figures 5.4 and 5.5. Figures 5.6 and 5.7 illustrate the
experimental results with N=10,000 topics (i.e., 1GB file).
In figure 5.6, the number of disk accesses increase sharply
when the ratio R of metalinks to topics is changed from
R=3 to 7, the importance values are increased, the size of
the buffer is decreased, or the size of the input topics X
are increased. Figure 5.7 shows that the ranking-based
algorithm is less sensitive to the changes of these
parameters; there is only small change in the disk accesses
when one of the parameters is changed.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500 3000
Top-K Ranking

N
um

be
r

of
 D

is
k

A
cc

es
se

s

defualt

Metalinks/topic R=7

Topics and Metalinks
have Imp[0.7,1.0]
Input Size=500

Figure 5.7 Ranking-based TClosure: different parameters
Research Acknowledgement

This research is supported by a joint grant from TUBITAK
(grant no. 100U024) of Turkey and the National Science
Foundation (grant no. INT-9912229) of the USA. A. Al-
Hamdani’s research is supported by a graduate scholarship from
Sultan Qaboos University, Oman.

6 References
[A+01] Altingovde, I.S. et al, “Topic-Centric Querying of

Web Information Resources”, DEXA’01.
[AW00] Agrawal, R., Wimmers, E.L., “A Framework for

Expressing and Combining Preferences”, SIGMOD’00.
[BMP92] Barbará, D., Garcia-Molina, H., Porter, D., “The

Management of Probabilistic Data”, IEEE TKDE, 1992.
[CH02] Chan, K., C-C, Hwang, S-W., "Minimal Probing:

Supporting Expensive Predicates for Top-k Queries",
SIGMOD'02.

[CK97] Carey, M.J., Kossmann, D., “On Saying "Enough
Already!" in SQL”, SIGMOD’97.

[CK98] Carey, M.J., Kossmann, D., “Reducing the Braking
Distance of an SQL Query Engine”, VLDB’98.

[CG99] Chaudhuri, S, Gravano, L., "Evaluating Top-k
Selection Queries", VLDB’99.

[Codd80] E. F. Codd, “Data Models in Database Management”,
Data Abstraction, Databases workshop, 1980.

[Coh98] Cohen, W. W., “Integration of Heterogeneous
Databases Based on Textual Similarity”, SIGMOD’98.

[DBLP 01] DBLP Bibliography, by Michael Ley, 2001.
[DLGG89] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles, M.

Gori, Focused Crawling Using Context Graphs, VLDB’00.
[Graef93] Graefe, G., “Query Evaluation Techniques for Large

Databases”, ACM Computing Surveys, 1993.
 [KCPA01] G. Karvounarakis, V. Christophides, D. Plexousakis,

S. Alexaki, Querying RDF Descriptions for Community
Web Portals, 17imes Journees Bases de Donnees
Avancees (BDA'01), pp. 133-144, Agadir, Maroc, 2001.

[HKP01] Hristidis, V. et al, “PREFER: A System for Multi-
parametric Ranked Queries”, SIGMOD’01.

[O+01] Ozsoyoglu et al, “Electronic Books in Digital Libraries”,
IEEE Advances in Digital Libraries Conf., 2000.

[O+02] Ozsoyoglu, G. et al, “Sideway values, SQL
Extensions, SVA”, at http://art.cwru.edu/vldb/p640

[RG00] Ramakrishnan, R., Gehrke, J., Database Management
Systems, McGraw-Hill, 2000.

[Salt89] Salton, G., Automatic Text Processing, Addison-
Wesley, 1989.

