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Abstract 

Using functions in various forms, recent database 
publications have assigned “scores”, “preference values”, 
and “probabilistic values” to object-relational database 
tuples. We generalize these functions and their 
evaluations as sideway functions and sideway values, 
respectively. Sideway values represent the advices 
(recommendations) of data creators or preferences of 
users, and are employed for the purposes of ranking query 
outputs and limiting output sizes during query evaluation 
as well as for application-dependent querying. 

This paper introduces SQL extensions and a sideway 
value algebra (SVA) for object-relational databases. SVA 
operators modify and propagate sideway values of base 
relations in automated and generic ways. We define the 
SVA join, and a recursive SVA closure operator, called 
TClosure. Output tuples of the SVA join operator are 
assigned sideway values on the basis of the sideway 
values and similarities of joined tuples, and the operator 
returns the highest ranking tuples. TClosure operator 
recursively expands a given set of objects (as tuples) 
according to a given regular expression of relationship 
types, and derives sideway values for the set of newly 
reached objects.  

We present evaluation algorithms for SVA join and 
TClosure operators, and report experimental results on the 
performance of the operators using the DBLP 
Bibliography data and synthetic data. 
1 Introduction 

Recent database applications on the web have 
necessitated the attachment of (a) functions to relations of 
object-relational databases, and (b) function evaluations to 
tuples of object-relations.  Using functions in various 
forms, recent publications have assigned “scores” 
[Coh98], “preference values” [AW00, HKP01], and 
“probabilistic values” [BMP92] to object-relational 
database tuples. We refer to these values and the functions 
that generate them as sideway values and sideway value 
functions, respectively. Sideway functions and sideway 
values represent the recommendations of data creators. 
We illustrate with a web querying example. 

Example 1.1 Consider a web resource that is modeled (using 
metadata extracted from it by data mining techniques) in terms 
of topics, relationships among topics (metalinks), and topic 
occurrences (i.e., topic sources) within information resources 
[A+01]. Topics have names (a keyword or a phrase) as well as 
types and domains and other attributes. Arbitrarily specified 
words/phrases are allowed for topic names. Topics, topic 
sources, and metalinks are assigned real-valued importance 
values (i.e., sideway values) in the range of [0, 1], which the 
users employ in specifying their queries. Different sets of topics, 
metalinks, and topic sources, together with their importance 
values, constitute the advices of different “experts”. Topics and 
Metalinks relations of each expert contain the topics and 
metalinks defined by the expert, respectively. A certain web 
document (or, a part of it) is designated as a topic source for a 
topic. Metalinks represent relationships among topics (not 
sources); i.e., metalinks are “meta” relationships. E.g., Given  
two topic names, “query optimization” and “sort-merge join”,  
the Prerequisite metalink instance “query optimization �Pre 
sort-merge join, with importance value 0.8” states that 
“prerequisite to (viewing, learning, etc. sources on) query 
optimization is (viewing, learning, etc. sources on) sort-merge 
join”, and this metalink instance is deemed to have the 
importance (sideway) value of 0.8. 

Sideway functions and sideway values are selectively 
employed by users for two purposes:  
(a) User-guided query output ranking and size control. 
Users choose in their queries which sideway values to 
consider and in which manner, for ranking and limiting 
query output sizes. And, unlike the previous approaches, 
the sideway values can be used to provide not only final 
query output size controls, but also intermediate query 
output size controls. 
(b) Querying. Users query sideway values as if they were 
attribute values. E.g., for web querying, users compare in 
their queries the importance values of two topics. 

Sideway values are not necessarily maintained as a 
column of base relations; sometimes, they can be defined 
by functions (e.g., “preference functions” [HKP01]) and 
attached to the base relations of the database in different 
forms: (a) Open form [Coh98, AW00] where, for each 
tuple, a value is specified, (i.e., sideway values are stored 
in a column of the base relation), (b) Closed form 
[HKP01] where each tuple’s sideway value is derived 
from a closed function. (E.g., for a relation R with 
attributes X and Y, we may have f (X,Y) =  a.X + b.Y 
where a and b are constants), (c) Semi-closed form where 
the function specifies a value for a set of tuples identified 
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through regular expressions. As an example, for the web 
resources of the National Institute for Health (US), an 
SVA function f() for topics is f(<TName = “*kidney 
complications*, TType =  *, TDomain=*>) =0.9 which  
states that any tuple with a topic name containing the 
string “kidney complications”, regardless of type and 
domain, is at the importance level of 0.9. 

SVA queries specify the propagation and modifications 
of sideway values of input relations to query output 
relations in automated ways. Once the desired sideway 
values are selected, the query output sizes can be 
controlled in three ways: (i) for the final output size 
control, a ranking threshold k (i.e., output only the top-
ranking k tuples [CK97, CK98, CG99, CH02]), or (ii) for 
intermediate and final output size controls, a sideway 
value threshold Vt (i.e., output all the tuples with sideway 
values above the threshold Vt), or (iii) both the ranking 
threshold k and the sideway value threshold Vt are 
specified. 

Following recent works (e.g., [Coh98]), we integrate 
approximate (similarity) comparisons into our querying 
framework. In this paper, we concentrate on the similarity 
of textual phrases; and, to compare them, we use the TF-
IDF model [Salt89] from the IR domain. We illustrate 
with an example. 
Example 1.2 Consider the web resources DBLP Bibliography 
[DBLP01] and the ACM SIGMOD Anthology. Assume that 
information about papers (e.g., paper titles, index terms, author 
names, etc.) in the DBLP Bibliography and ACM SIGMOD 
Anthology are collected as topics, and stored into the Topics 
relation, as illustrated in Table 1.1(a). As an example, the tuple 
with tuple id T08 is the 1980 paper of E.F. Codd [Codd80].  
And, the importance of the tuple with tuple id T01 is 0.9. 
Assume that the user asks for all database researchers with a 
name similar to “E. Codd”, and the similarity between “ Edward 
Codd” and “E. Codd” is judged to be 0.7. Then the tuple T01 is 
returned to the user with the revised importance value of 
0.9*0.7=0.63. 

TId TName TType Tdomain TImp 
T01 E. F. Codd researcher database 0.9 

T08 data models 
database 

management 

research 
paper 

database 0.8 

(a) Topics relation 
Mid MType AntecedentId ConsequentId 
M01 ResearchPaperOf T01 T08 

(b) Metalinks relation 
Table 1.1 Topics and Metalinks relations of a database 

This paper defines SQL extensions and a Sideway Value 
Algebra (SVA) for the object-relational model, which (a) 
allow users to selectively modify and propagate sideway 
values of base relations in automated and generic ways, 
and (b) employ them for efficient query processing. We 
focus on three new SVA operators here and present 
evaluations of two of them (see [O+02] for details): 
• SVA join with text similarity modifies sideway values 
on the basis of the textual similarity of tuples. We 

discuss SVA join evaluation algorithms that terminate 
their evaluations early, by using sideway values. 

• The recursive SVA closure operator. We describe this 
operator within the context of web querying, and 
illustrate it for querying the DBLP Bibliography and the 
ACM SIGMOD Anthology. The operator, called Topic 
Closure, starts with a set X of topics, a regular 
expression of metalink types, and a relation M 
representing metalinks M involving topics, expands X 
using the regular expression and metalink axioms, and 
terminates the closure computations selectively when 
“derived” sideway values of newly “reached” topics 
either get sufficiently small or are not in the top-k output 
tuples. That is, the derived topic importance values get 
smaller than a threshold Vt or are guaranteed not to 
produce top-k-ranking output tuples.  
In section 2, we discuss SQL extensions, logical query 

trees, and the SVA selection, join, and topic closure 
operators with examples (using the queries of SQL-TC, 
“topic-centric” SQL [A+01]). Section 3 discusses nested-
loops-based SVA join algorithms. In section 4, we discuss 
TClosure algorithms where the regular expression is 
reduced to a single metalink type. Section 5 is the 
experimental results. 
2 SQL Extensions and Sideway Value Algebra 

We illustrate SQL extensions and the SVA with 
examples. 
Example 2.1 Consider the query “Based on the advice at 
www.expert.com/advice, find the topic ids of 20 highest topic-
importance-ranked papers having index terms with similarity 
above 0.9 to “join algorithms”. Employ a product-based 
importance propagation function that uses only topic importance 
values”. 

select  M.ConsequentId 
using advice at www.expert.com/advice as database DB 
from  DB.Topics T, DB.Metalinks M 
where   T.TType=”Index Term” and    
             M.MType=”IndexedBy” and 
             T.TId is-in M.AntecedentId and  
             T.TName ≅(0.9) ”join algorithms” 
propagate importance as product function of T 
stop after 20 most important 

where DB denotes the topic advice database at 
www.expert.com/advice, Topics is the topics relation in DB, 
with attributes TId, TName, and TType; Metalinks is the 
metalinks relation in DB, with attributes MType, AntecedentId, 
ConsequentId; and IndexedBy metalink type has the signature 
IndexedBy: SetOf IndexTermId � PaperId (i.e., for this 
metalink type, AntecedentId is IndexTermId, and ConsequentId 
is PaperId). The last atomic formula, ≅(0.9), of the where clause 
states that the topic (index term) name of T is similar to “join 
algorithms” with similarity above 0.9. We assume that the 
similarity between an index term name and the phrase “join 
algorithms” is evaluatable by information retrieval techniques, 
e.g., by using the vector space model and the TF-IDF weighting 
scheme [Salt89] to represent the topic names (see section 3.1). 
The “propagate importance” clause specifies the sideway value 
function for output tuples. In this example, the clause states that 



 

the importance values of output tuples are computed from the 
importance values of the base relation T using a “product” 
function revised with similarities. Table 2.1 lists possible 
propagate-importance clauses and the corresponding SVA 
output function specifications. Other output sideway value 
functions such as numeric maximum, numeric median, etc., are 
possible. We assume that the possible choices for output 
sideway value functions are small and known a priori. Note that 
this query uses only the topic importance values, but not 
metalink importance values, as specified by the “propagate 
importance” clause. And, in this query and others, there is no 
direct information resource access (to simplify the presentation 
and examples); i.e., here, only topic (paper) ids, but not the 
paper sources, are output. 
 

SQL clause Effect 
product flin * frin * sim() 

numeric average Ave(flin , frin) * sim() 
geometric average Sqrt(flin * frin) * sim() 

Table 2.1 Examples of output sideway value function fout for a 
join with (i) two input relations R and S having the sideway 
value functions flin and frin , respectively, and (ii) a text 
similarity join condition between R and S with similarity 
function sim(). 

The sideway value function of base relations is denoted 
by fin, and has the normalized range [0, 1]. During SVA 
operations, we materialize the output sideway function of 
an operator, i.e., convert it into the open-form from the 
other two forms, and keep it as a (new) column while 
processing queries. 
2.1 SQL Extensions 

We define a generic, user-guided, and system-enforced 
mechanism for users to control query output sizes, by 
using sideway values. In Example 2.1, we presented three 
clauses for SQL, namely,  
(a) The clause using advice at www.xx as database which 
specifies the database,  
(b) The clause propagate importance as xx function of 
which specifies a generic formula for propagating 
sideway values of output tuples, and 
(c) the clause stop after k which specifies the ranking 
threshold, or stop with threshold Vt which specifies the 
sideway value threshold, or stop after k and with 
threshold Vt, which specifies both types of stopping 
conditions. 

The clause in (a) is self explanatory.  
A. Propagating Sideway Values. The clause in (b) is 
used to propagate importance values of input relations to 
the output tuples. The general form is:  
Propagate importance as <type> function of <arg list>  
where type is one the specific function types (e.g., min, 
max, product, arithmetic average (avg), geometric average 
(gavg), etc.), and argument list is a sublist of relations 
listed in the From clause of the SQL query. 
As an example, in the SQL query:  
Select … From R, S, T, V …  
Where …Propagate importance as Product  function of (R, S)  

the propagate-importance clause states that, when 
propagating sideway values of relations R and S, the 
system will use a product function, and the tuple sideway 
values of T and V are suppressed (not used). That is, 
consider an intermediate relation ei, obtained during the 
execution of the above query, which is an output of a 
relational algebra expression Ei. Then, ei will have tuple 
sideway values iff Ei has at least one of R or S as its input 
arguments. Next, we define the execution semantics of the 
propagate-importance clause for a binary operator (such 
as join or Cartesian product—we omit unary operators to 
save space) with operands E1 and E2, where E1, E2 denote 
intermediate relations (resulting from algebra expressions 
with zero or more operators):   
(i) E1 and E2 are either R or S, respectively, or each has at 
least one of R or S as an argument: If Ei is R (or S) then 
the tuple sideway values of Ei are the same as R; 
otherwise they are computed recursively by considering 
the operators in E1 and E2. Then, the tuple sideway values 
for the output of the binary operator are computed as the 
product of the tuple sideway values for E1 and E2. 
(ii) Neither E1 nor E2 is R (or S), and neither has at least 
one of R or S as an argument: In this case, neither of the 
operands E1 and E2 have tuple sideway values (i.e., they 
are suppressed). Hence, output tuples do not have tuple 
sideway values either. 
(iii) Only one of E1 or E2 is R or S, or has at least one of R 
or S as an operand: Let E1 be the operand involving R or 
S. Then E1 has tuple sideway values, and E2 doesn’t. 
Then, the tuple sideway value of a tuple t of E1 is simply 
passed to the output tuples of the binary operator that t 
contributes. 

Thus, we have presented unambiguously a single-
clause-based (i.e., propagate-importance) sideway value 
propagation technique, and its effects on the construction 
of the logical query trees. Having propagated sideway 
values to the nodes of logical query trees in turn allows us 
to introduce size-controls at the intermediate nodes of 
logical trees, and perform query optimization. 
B. Propagating Stopping Conditions. We extend SQL 
with stopping conditions, whose utility is to significantly 
lower the query processing times. Ideally, we want 
stopping conditions to be propagatable to the intermediate 
nodes of the logical query tree (i.e., to the algebra 
operators), in which case the query processing times of all 
SVA operators are drastically reduced. Unfortunately, the 
clause stop after k, which specifies the size of the final 
query Q output (i.e., the top-k query), is difficult to 
propagate to intermediate logical query tree nodes of Q 
during query processing [CK97, CK98]. In contrast, the 
clause stop with threshold Vt (i.e., output all tuples with 
sideway values above Vt) always propagates to all logical 
query tree nodes of query Q (as a single operator stopping 
condition) when the sideway value propagation function 
returns a value less than its input sideway values. Note 
that the product function used in this paper satisfies this 



 

property. As an example, in the logical query tree of 
example 2.4, the stopping condition with threshold 
Vt=0.95 is propagated into the two selection and one join 
in the logical tree, as shown in figure 2.3. 

Another approach to specifying stopping conditions that 
propagate to logical query tree nodes naturally is to attach 
stopping conditions to the where clause predicates of 
SQL. As an example, the users may request that (a) the 
number of top-sideway-valued tuples (objects) that satisfy 
a certain predicate p (e.g., PersonCity =  “Cleveland” or 
PersonAddress = ”*Cleveland*”) is k, or (b) all of the 
tuples that satisfy a given predicate p have sideway values 
above a threshold Vt. In such cases, the predicate-attached 
stopping conditions naturally propagate to the logical 
query tree nodes where the predicates appear.  

Once the stopping conditions are propagated to the 
logical query tree nodes (i.e., individual SVA operators), 
what remains is the evaluation of individual SVA 
operators, which we discuss in sections 3 and 4. Next, we 
illustrate SQL extensions, logical query trees, and the 
SVA operators with examples. 

In the logical query tree examples discussed next, we 
use the following notation: Operators with superscript * 
are SVA operators. Operators without superscript * are 
normal relational algebra (RA) operators. A unary RA 
operator without * in its superscript simply carries (into 
its output tuples) the sideway values of its only operand 
relation. A binary operator RA without a superscript * 
may carry (into its output tuples) sideway values of either 
its left (hand side) relation or its right (hand side) relation, 
indicated by superscript L or R, respectively. 

For each RA operator, there is an SVA counterpart 
extended with an output sideway value function fout and 
the output threshold β, which is either the integer-valued 
ranking threshold, or the real-valued sideway value 
threshold Vt in the range [0, 1]. 
2.2 SVA Selection:   σ* 

C, fout, ββββ (R)   
The selection operator σ * takes as input a relation R 

(with a sideway value function fin in open, closed, or 
semiclosed form), a selection condition C, an output 
sideway value propagation function fout, and the output 
threshold β where β is either a positive integer k as the 
ranking threshold, or the real-valued sideway value 
threshold Vt in the range [0, 1], or the two-tuple (k, Vt). 
The operator σ * returns, in decreasing order of output 
sideway values, either (i) top k fout-ranking output tuples 
that satisfy the selection condition C (when β is k), or (ii) 
all tuples of R with an fout-sideway value greater than Vt 
and satisfy the selection condition C (when β is Vt), or 
(iii) top k fout-ranking output tuples that satisfy the 
selection condition C and with an fout-sideway value 
greater than Vt (when β is the two-tuple (k, Vt)). 
Example 2.2 The logical query tree of example 2.1 is shown in 
figure 2.1. The notation )t(

~= denotes text similarity-based 

equality formula with the similarity acceptance threshold of t; 
i.e., )t(

~= returns True/False. The function sim() computes the 

text similarity of two strings, and returns a value in the range [0, 
1]. Here, sim() is used to modify the importance values of output 
tuples according to their Tname similarity to “join algorithms”, 
as illustrated in Table 2.1. Note that, as specified in the 
propagate importance clause, this query does not use metalink 
importance values. In this example, the SVA selection operator 
has the β value of 0; therefore this operator returns all qualified 
output tuples.  

                                   STOP AFTER (20)
                                                            ΠConsequentId 
   
                                              ORDER BYImportance                 
                                            L 
                                  L.TId in R.AntecedentId                                                   

 
                                                        IndexedBy"" MTypeσ =

 σ*
TName ≅(0.9) “join algorithms” and TType=”Index Term”,  

           fout=fin*sim(TName,”join algorithms”), β = 0.0                                   
 
                   DB.Topics                          DB.Metalinks  

Figure 2.1 Logical Query Tree of Example 2.1. 

2.3  SVA Join:   (L)        
*

β fout, B, θA  (R) 
The join operator takes as input two relations L and R 

with sideway value functions flin and frin respectively, a 
join condition θ on attributes A and B of relations L and 
R, respectively, a sideway value propagation function fout 
for the output tuples, and an output threshold β. The join 
operator then produces joined tuples of L and R with 
sideway values of output tuples computed as specified by 
fout, and satisfying the output threshold β.  

We illustrate the SVA join operator with two examples. 
Example 2.3 Using the advice at www.expert.com/advice, find 
five researchers who (a) published papers with index terms 
having similarity to “join algorithms” above 0.9, and (b) have 
the highest importance values computed using the geometric 
averages of all involved importance values. 

select  M.ConsequentId 
using advice at www.expert.com/advice as  database DB 
from  DB.Topics T, DB.Metalinks M 
where TType=”Index Term” and 
          M.MType=”ResearchTopicOf”and  
          T.Td is-in M.AntecedentId  and 
          T.TName ≅(0.9) “join algorithms” 
propagate importance as gmtrc-average function of T, M 
stop after 5 most important 

The logical query tree of example 2.3 is shown in figure 2.2. 
ConsID and AntId are consequent and antecedent attributes of 
the Metalinks relation. We assume that ResearchTopicOf is a 
metalink type that specifies the relationship between index terms 
of papers and the authors of these papers (obtained by mining 
the ACM Anthology digital library). The signature of the 
metalink type is ResearchTopicOf: SetOf IndexTermId � 
ResearcherId. Due to the clause “propagate importance”, this 
query chooses researchers on the basis of a geometric average of 
the importance values of researchers (topics) and their 



 

ResearchTopicOf type metalinks. The SVA join in this case is 
exact (i.e., no similarity computations are involved). 
                                          STOP AFTER (5) 
 
                               Π ConsequentId  
                         ORDER BYImportance                               
                                                                                        
                          * 
              L.TId in R.AntecedentId, fout=sqrt(flin*frin), β = 5   

 
 σ*

TName ≅(0.9) “join algorithms”              picOf"ResearchTo" MTypeσ =
     and  TType=”Index Term”,                 
      fout=fin*sim(TName,”join algorithms”), β = 0.0 
 
             DB.Topics      DB.Metalinks  

Figure 2.2 Logical Query Tree of Example 2.3. 
Example 2.4. Using the advices at www.expert1.com/advice 
(DB1) and at www.expert2.com/advice (DB2), find the titles and 
URLs of pairs of papers advised by DB1 and DB2 such that (a) 
the derived importance value of the paper pair (as defined by the 
max function) is of importance above 0.95 and in the top-5-rank, 
and (b) the topic name of the paper from DB1 has a similarity of 
0.98 or above to the topic name of the paper from DB2. Employ 
a max-based importance propagation function that uses all of the 
involved importance values. 

select T1.TName, T1.URL, T2.TName, T2.URL 
using advice at www.expert1.com/advice as database   
         DB1,  www.expert2.com/advice as database DB2 
from  DB1.Topics T1, DB2.Topics T2 
where  T1.TType=”Paper” and T2.TType=”Paper”  
             and T1.TName ≅(0.98)T2.TName 
propagate importance as max function of T1, T2 
stop after 5 most important and with threshold 0.95 

The logical query tree of example 2.4 is shown in figure 2.3. 
Note that the SVA join is similarity-based, and the sideway 
value threshold of 0.95 is propagated to all of the three 
operators, namely, the two SVA selections and one SVA join. 
2.4 SVA Topic Closure 

Next we define a recursive operator that takes into 
account the sideway values of its input tuples. This 
operator, called the “topic closure” operator, is motivated 
by web querying; thus, we describe this operator, within 
the context of topics and metalinks, not generically.   
Notation: TClosure*

R,  Metalinks, FPath, FPathMerge, β (X) 
The topic closure operator computes the topic closure X+ 
of a set X of topics with respect to a regular expression R  
of metalink types (and, thus, wrpt the set of axioms 
characterizing the metalink types in R), a metalink 
instance relation Metalinks (containing all metalink 
instances). More specifically, the topic closure operator 
takes as input (1) two relations, namely, the relation X of 
topics with a sideway value function fX and the relation 
Metalinks with a sideway value function fM, and (2) four 
parameters: (a) the regular expression R , (b) a path-based 
importance value propagation function FPath that 
specifies how to compute the importance values of newly 
reached topics with respect to a single path, (c) the 

function FPathMerge that specifies how to merge the 
importance values of a given topic obtained through 
different paths, and (d) the output threshold β. It then 
computes the closure X+ of X with respect to < R, 
Metalinks, fX, fM, FPath, FPathMerge, β > where each new 
topic in the closure is represented as an output tuple, and 
has a derived importance value satisfying the output 
threshold β. 

                                           STOP AFTER (5)

                                 ΠL.TName, L.URL, R.TName, R.URL 

              ORDER BYImportance 
           * 
       

(5,0.95) R.TName),e,Sim(L.TNam*),(outf

 R.TName,(0.98)L.TName

==

≅

βinfrinflMax

 

 
σ* TType=”Paper”, fin=fout,   β=0.95         σ* TType=”Paper”, fin=fout, β=0.95

DB1.Topics                      DB2.Topics 
Figure 2.3 Logical Query Tree of Example 2.4. 

R is a regular expression of metalink types. E.g., the 
regular expression PrerequisitePapers*IndexedTerms finds 
the index terms in all the prerequisite papers (of a given 
paper topic). Next we illustrate the notion of paths that 
satisfy R  with an example. 
Example 2.5 Let A, B, C, D, and T denote single topics. The 
metalinks A�

RelatedTo B, B�RelatedTo C and C�RelatedTo T 
constitute a path P = {A, M1, B, M2, C, M3, T} where all nodes 
are single topics and all metalinks M1, M2, and M3 have the type 
RelatedTo (i.e. R = RelatedTo). As another example, metalinks 
AB �Pre C, C �Pre DE, and DE�Pre T form a path P={AB, M1, 
C, M2, DE, M3, T} that starts with a set of topics AB, followed 
by a single topic C, then a set of topics DE, and ends with a 
single topic T. The path P satisfies R = Prerequisite since all of 
its metalinks M1, M2, and M3 are of type Prerequisite.  

FPath is the derived importance value propagation 
function with respect to a single path. In this paper, we 
use the product function as FPath. As an example, assume 
that the topic t is reached from a topic x in X using a path 
P = <x m1 a m2 t> where a is a topic with importance 
value va, m1 and m2 are metalinks with importance values 
vm1 and vm2, and the metalink types of m1 and m2 satisfy 
the regular expression R. Assume FPath is Product. Then, 
the derived importance value of t with respect to P, 
denoted by Impd(t, P, R), is computed as the product of all 
the importance values in P that satisfies R, i.e., 
vx*vm1*va*vm2*vt, where va and vt are the importance 
values of x and t, respectively. 

The intuition for the semantics of derived topic 
importance values is as follows: assume topic t is reached 
through path P. The derived importance value of t in the 
closure should be a function of the length and the type of 
path P, and less than or equal to the importance value of t. 



 

As the length of P increases, the derived importance value 
of t should decrease because t is farther away from (and is 
less related to) the topics in X, the original set of topics 
listed by the user. Thus, Impd(t, P, R) with respect to path 
P should be a monotonically decreasing function of the 
length of path P (i.e., path-monotone). 

FPathMerge is one of Product, NumAve, Min, Max, 
etc., specifying how to compute the derived importance 
value Impd (t, R) of topic t in X+ in terms of the Impd(t, P, 
R) values obtained with respect to each path P. 

We now specify the execution semantics of TClosure* 
procedurally as follows:  
(a) Locate metalink paths P from a topic in X to a topic t 

not in X, where P “satisfies” the regular expression R, 
and compute Impd(t, P, R) values. 

(b) Compute the derived importance value of t as 
sv=Impd(t, R), and add the new topic t to the closure of 
X if sv satisfies the sideway value threshold β. That is, 
If β is a positive integer k as the ranking threshold, then 
sv satisfies β if sv is among the top-k output sideway 
values. If β is the real-valued sideway value threshold 
Vt in [0, 1], then sv satisfies β if sv > Vt. 

Importance-value driven topic closure operator has 
similarities to the recently introduced focused crawling 
techniques on the web [DLGG89] in that the search space 
of topic sources are crawled in a focused manner. 

Example 2.6. Using the advice at www.expert.com/advice, find 
the titles and URLs of five highest importance-valued papers 
such that the selected papers (a) are either papers with titles 
similar to “Advances in Spatial Databases” with a similarity 
above 0.85, or their prerequisites (recursively), and (b) have the 
highest importance values computed using a product function as 
FPath, and min function as FPathMerge. 
select  T2.TName, T2.URL 
using advice as www.expert.com/advice as database DB 
from DB.Topics T1,  DB.Topics T2,   DB.Metalinks M 
where T1.TName≅(0.85)“Advances in Spatial databases”  
   and M.MType=”PrerequisitePapers” and 

  T2.TId =any(PrerequisitePapers*,Product, Min, T1.TId, M) 
propagate importance as product function of T1, T2, M 
stop after 5 most important  
The logical query tree for example 2.6 is given in Figure 2.4. 

2.4.1 Metalink Axioms  
Some metalink types have associated axioms; for 

example, RelatedTo is both transitive and reflexive. IsIn is 
transitive, but not reflexive; SubTopicOf is transitive. 
Therefore, when a user asks for topics that are RelatedTo 
topics in X, we need the topic closure X+ of X with 
respect to the metalink type RelatedTo, which is formed 
of all topics that are logically implied by the set X. 

Computing topic closures requires a sound and 
complete set of axioms for metalink types, and a 
polynomial-time algorithm that computes the topic 
closure using the axioms. Consider the Pre(requisite) 

metalink type. In [O+01], we gave the following 
axiomatization for the Pre metalink type. 
                                                           STOP AFTER (5)

                                       ΠTName, TURL                                   
                                                                                    
                             ORDER BYImportance 
                                      L 
                                                  
                      .TId=R.TId    
                                                               DB.Topics 
   TClosure*

PrerequisitePapers, DB.Metalinks, Product, Min, β=5 

*

0.0)," DatabasesSpatial in Advances" Sim(TName,*infoutf
," DatabasesSpatial in Advances"(0.85)TNameσ

==
≅

β

   DB.Topics  
Figure 2.4 Logical Query Tree of Example 2.6. 

Case 1. Prerequisite metalinks are not left-hand-side 
(LHS) decomposable (that is, A, B→Pre C is not 
equivalent to the metalink A→Pre C and the metalink 
B→Pre C), and are allowed to be cyclic. 
Axioms: Let X, Y, and Z denote sets of topics. 

• Subset-Reflexivity. If Y ⊆ X then X�
Pre Y. 

• Augmentation. If X�
Pre Y then XZ �Pre YZ for any 

Z. 
• Transitivity. If X�

Pre Y and Y�
Pre Z then X�

Pre Z 
These are the so-called Armstrong’s axioms [RG00]. 

Case 2. Prerequisite metalinks are not LHS-decomposable 
and are acyclic. 
Axioms: Let X, Y, Z and W denote sets of topics. 

• Pseudo-transitivity. If X→Pre Y and WY→Pre Z then 
WX→Pre Z. 

• Split/join. If X→Pre YZ then X→Pre Y and X→Pre Z, 
and vice-versa. 
[O+01]  proves that above axioms are sound and 

complete. 
Case 3. Prerequisite metalinks are LHS-decomposable. 
We first decompose the LHS of all metalinks so that all 
metalinks have a single topic in the left and the right hand 
sides. And, then the only axiom is  

• Transitivity. If A�
Pre B and B�Pre C then A�

Pre C 
where A, B, C are topics. 

In all three cases, the topic closure X+ of a set X of 
topics wrpt the type Prerequisite can be found by using an 
O(n.l) topic closure algorithm where n is the number of 
prerequisite metalinks, and l is the length of the encoding 
for a prerequisite metalink [O+01]. For all metalink types, 
we assume the existence of sound and complete axioms.  
3 Evaluating the SVA Join 
3.1 Text Similarity Metrics  

For those functions that require the similarity 
comparison ≅, we assume that a vector space based 
similarity model is employed [Coh98]. The vector space 
model first creates a vocabulary (W) of all words (i.e., 



 

terms) included in the document collections, and then 
represents each document with a vector v of |W| terms. 
The vector entries are real numbers representing term 
weights. Let vt denote the vector v element for term t. We 
use the weighting scheme TF-IDF, which assigns a zero 
weight for those terms that do not appear in the document, 
and computes the weights of the other terms using the 
formula vt = (log (TFv, t) + 1). Log(IDFt), where TFv, t 
(term frequency) is the number of occurrences of term t in 
the document represented by v, and IDFt is the inverse 
document frequency that is defined as the ratio of the 
number of all documents to the number of documents 
including t. We focus on attributes with short phrases 
such as topic names. The TF-IDF values are normalized 
and the similarity of two documents represented with 
vectors v and u is the cosine of the angle between them, 
which is defined as Cosine (u, v) = ∑t in W

 vt * ut  
We assume that term vectors that correspond to string-

based attributes of tuples, as well as the vocabulary, are 
computed a priori. In this section, we assume that 
vocabulary is small enough to fit in the main memory, 
whereas all other input and output relations may be 
arbitrarily large.  

Since pipelining is preferable for threshold-based query 
processing algorithms [RG00], and the nested-loop join 
algorithm does not disrupt pipelining [Graef93], next, we 
discuss nested loops-based SVA join algorithms. 
Moreover, the nested-loop join is appropriate with 
arbitrary join conditions.  
3.2  Nested-Loops-Based Sideway-Value-Threshold 

Join algorithms 
We now discuss SVA join algorithms that return joined 

tuples with derived values above a specified sideway 
value threshold. We sketch two algorithms for join 
conditions specifying (i) an arbitrary (user-defined) 
predicate θ over the join attributes, or (ii) an approximate 
match in terms of the similarity of the join attributes.  
Definition. Monotone fout. Let svt denote the sideway 
value of tuple t. Given relations R and S with tuples r and 
s respectively, let fout(r, s) denote the sideway value of the 
joined output tuple r.s. Then, ∀r1, r2 ∈ R and ∀s1, s2 ∈ S, 
if fout (r1, s1) ≤ fout (r2, s2) whenever svr1 ≤ svr2 and svs1 ≤ 
svs2, the function fout is said to be monotone with respect to 
input sideway values of R and S. 

   Functions product, numeric average and geometric 
average are monotone with respect to their input sideway 
values. 

Algorithm NLoopSVT 

Input : Sorted Relations R and  S wrpt sideway values;  
fout() function; join condition r.A θ s.B; sideway value 
threshold Vt 
Output: {r.s | r∈R and s∈S and fout(r, s) ≥ Vt and r.A θ s.B}   
{i := 1; 

while (fout (ri, s1) ≥ Vt and i ≤ |R|) 
{ j := 1; 

           while (fout (ri, sj) ≥ Vt and j ≤  |S|) 
    { if ri.A θ sj.B then add ri.sj into the output; 
          j++ }    i++ } } 

Figure 3.1 NLoopSVT algorithm 
Given a query involving a join with a monotone fout 

function, we improve the nested-loop join algorithm by 
enforcing new stopping conditions while processing the 
inner and outer loops, as shown in the NLoopSVT 
algorithm in Figure 3.1. 

In the NLoopSVT algorithm, the inner loop exits 
whenever the fout() value of the output tuple r.s is below 
the threshold Vt, where r is in R and s is in S. Similarly, 
the outer loop exits at the ith iteration whenever the fout() 
value of the output tuple ri.s1 is below the threshold Vt, 
where ri is in R and s1 is the first tuple in S.  

In an ordinary block-nested loops (BNL) join [RG00], 
assuming that the size of R is M pages with p tuples per 
page, the size of S is N pages with q tuples per page, and 
the memory has B+2 buffer pages, we can read B pages of 
the outer relation R, and scan the inner relation S by using 
one of the remaining two buffer pages, leaving the last 
page to collect the output tuples. In this case, the disk 
access cost of the BNL algorithm is M + (M*N/B) 
[RG00]. In the worst case, the disk access cost of the 
NLoopSVT algorithm is the same with the disk access cost 
of the BNL algorithm. However, in the expected case, the 
disk access cost of the NLoopSVT algorithm will be 
reduced depending on how large Vt is. Assume that we 
revise the allocation of buffer pages as B/2 pages each to 
the relations R and S; the sideway values in R and S are 
uniformly distributed; and fout() is the product function, 
which is monotone.  Thus, the tuples in the first B/2 
blocks of R have sideway values in the range of [(1 ─ 
B/2M), 1]. Similarly, the tuples in the first B/2 blocks of S 
have sideway values in the range of [(1 ─ B/2N),1]. 
During the first outer loop iteration, the inner loop will 
terminate in the jth iteration when the lowest expected 
sideway value of a join tuple in the buffer is equal to (or ε 
less than) the sideway value threshold Vt. That is,  

(1 ─ B/2M) * (1 ─ j*B/2N) = Vt 
Rearranging the above equality, we have  
                      )

2
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Assuming N>>B and M ≈ N, the above equality reduces 
to j=(N/(B/2))*(1-Vt). That is, in the expected case, for 
Vt=0.9, the inner loop terminates with 10% of the disk 
block accesses from S. Since R sideway values are sorted 
and decreasing in value, for any outerloop tuple of R, S 
will always be accessed at most for the first 
bS=(N/(B/2))*(1-Vt) blocks. And, since the above 
computations are symmetric for R and S, in the expected 
case, NLoops SVT algorithm will terminate with 
bR=(M/(B/2))*(1-Vt) disk block accesses from R as well. 
Thus, the expected number E of disk accesses is  
E = (B/2)* bS + (B/2)( bS ─ (B/2)) + (B/2)( bS ─ 2(B/2))+ 
… + (B/2)( bS ─ (bR ─ 1)* (B/2)) 
Assuming bS = bR = b, we have 



 

E = (B/2)*b2 ─ (B/2)2*((b2 ─b)/2) 
This, as shown in the experimental results section, is 
significantly less than the cost of the BNL algorithm.  
 When the join condition specifies an approximate 
matching (based on the similarity of the text-valued join 
attributes being above a given threshold tsim), we cannot 
directly make use of the similarity function sim(r, s), as it 
is not monotone, and thus makes fout non-monotone. 
However, we can still use the NLoopsSVT algorithm of 
Figure 3.1 with provisions: (a) the functions fout (ri, s1) and 
fout (ri, sj) in the outer and the inner while loop conditions 
are replaced by svri * svs1 and svri * svsj , respectively, 
where svri, svs1 and svsj are the sideway values of tuples ri, 
s1 and sj. (b) In the inner while loop, we check if fout (ri, 
sj)= svri*svsj.sim(ri.A, sj .B) ≥ Vt  and sim(ri.A, sj .B) ≥ tsim 
where A in R and B is S are the join attributes. If so, the 
tuple ri.sj is output. 

Note that, so far, the join algorithm has not employed 
the similarity function in improving its running time. We 
now summarize an algorithm that uses the vector-space 
model and the similarity function in improving the 
efficiency of the join algorithm. 
Remark 1. Let ur = <u1 u2 … ux> be the term vector 
corresponding to the join attribute A of tuple r of R, 
where ui represents the weight of the term i in A.  Assume 
that the filter vector fS = <w1 .. wx> is created such that 
each value wi is the max weight of the corresponding term 
i among all vectors of S. Then, if Cosine (ur, fS) < Vt then 
r can not be similar to any tuple s in S with similarity 
above Vt.  

In this paper, the value Cosine (ur, fS) is called as the 
maximal similarity of a record r in R to any other record s 
in S. The maximum value of a term for a given relation is 
determined while creating the vectors for the tuples, and 
the filter vector for each relation may be formed as a one-
time cost.  In figure 3.2, we summarize the NLoopSim-SVT 
algorithm which makes use of the sorted order of relations 
R and S by svr * Cosine (ur , fS), and svs, respectively (also 
one-time costs). Note that, with both while loop 
conditions, false drops are possible; that is, a tuple r in R 
and a tuple s in S may satisfy the while loop conditions, 
only to be eliminated from the output in the if statement 
within the inner while loop (the if condition tests the 
values of the actual fout() and sim() functions). On the 
other hand, while loop conditions do not allow false 
dismissals; that is, a join tuple that is in the output will be 
added into the output.  
Algorithm NLoopSim-SVT 
Input : Relations R and  S;  
text-valued join attributes r.A and s.B;  Buffers BS and BR; 
sim function sim()=Cosine();    sim threshold tsim  

Output: {r.s | r∈R and s∈S and  fout(r, s) ≥ Vt and  
                Cosine(ur , uS) > tsim }  
1. Sort R by svr * Cosine(ur , fS);   Sort S by  svs; 
2. Read tuples from the top of R into a block BR where, for each 

ri in BR,  svri * svs1 * Cosine(uri, fS) ≥Vt ; 

3. Repetitively, read tuples from the top of S into a block BS, 
where, for each sj in BS,   svr1* svsj * Cosine(ur1, fS) ≥ Vt, and 
compare and join tuples in BR and BS: 
   for each r ∈BR do  for each s ∈ BS do 
       if (svr * svs * Cosine (ur , us)≥ Vt and Cosine (ur , us)≥ tsim) 
                   then add r.s into the output;   

4. Repeat 2-3 until  svri * svs1 * Cosine(uri, fS) < Vt 
 Figure 3.2   NLoopSim-SVT Algorithm 

3.3 Nested-Loops-Based Ranking-Threshold  
(Top-K) Join Algorithms 

It is easy to give an SVA join algorithm with top-k 
output sideway values. Assume that (i) input relations are 
sorted with respect to sideway values, and (ii) the fout() 
function is monotone. The algorithm NLoopsTop-k begins 
in a nested loop like manner, and computes the first k (but 
not top k yet) joined output tuples, referred to as the 
“Top-k-Set”. And, the sideway value of the kth joined 
tuple becomes the lower bound (minSV); i.e., no tuple 
with a sideway value below this lower bound can be in the 
top-k output. The algorithm proceeds in a nested-loops 
manner, and updates the lower bound and the current 
Top-k-Set whenever it computes a join output with a new 
sideway value larger than the minimum sideway value of 
Top-k-Set.  

Similar to the algorithm NLoopSim-SVT, the algorithm 
NLoopTop-k can be revised for a ranking-threshold 
algorithm NLoopSim-Top-k with approximate matching 
conditions, which, to save space, is not presented here. 
4 Evaluating the Topic Closure 

 We now summarize TClosure algorithms to compute 
the topic closure X+ for the simplest case where the 
regular expression R is a single metalink type M (For full 
algorithms, see [O+02]). Each metalink V �M Tid is 
represented by a tuple in the Metalinks table, where V is a 
set of topic identifiers and Tid is a topic identifier. If a 
metalink type is LHS-decomposable then each metalink 
with V in the left-hand-side is decomposed into multiple 
metalinks with a single topic in the left-hand-side.  
4.1 Sideway-Value-Threshold-based Topic Closure 

We create an index MIndex for all metalink instances; 
and the TClosure algorithm uses only MIndex to find the 
closure of a given set of topics. We assume that all 
metalinks are right-hand-side decomposed.  

The index MIndex has five attributes: MType, Tid1, 
Imp(Tid1), ParentList, and ChildList. The MType 
attribute specifies a metalink type. The Tid1 attribute 
contains the topic identifier of the topic from which the 
metalink originates, and the attribute Imp(Tid1) is the 
importance value of the topic Tid1. The attribute 
ParentList is a list of topic identifiers of topics from 
which there are metalinks of type MType to the topic 
Tid1. The attribute ChildList is a list of triplets <Tid2, 
Imp(Tid2),Imp(Mid)> where the triplet <Tid2, Imp(Tid2), 
Imp(Mid)> represents a metalink that has Mid as its 
metalink identifier, the topic with Tid1 as its antecedent 



 

node, the topic with Tid2 as its consequent node, the type 
MType as its metalink type, Imp(Tid2) as the importance 
value of the topic with Tid2, and Imp(Mid) as the 
importance value of the metalink. 

The key for MIndex is the two attributes metalink type 
MType and topic identifier Tid1. Therefore, the MIndex 
entries with the key (MType, Tid1) contains all metalinks 
of type MType that have the topic with Tid1 as its 
antecedent. The entries of MIndex are sorted by (MType, 
Tid1) so that the metalink of the same type are together 
within the index. Table 4.1 shows the initial index 
MIndex for the Metalinks relation graphically illustrated 
in Figure 4.1.  
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Figure 4.1. A graphical representation for the metalinks in 

Example 4.1. 
While creating MIndex, if there are metalinks which are 

not LHS-decomposable then we create a second index 
H(yper)Index, to maintain all nodes that are not 
decomposable; and the topic closure algorithm uses 
HIndex to compute the closure of a given set of topics. 
The HIndex table has two attributes Tid and NodeList. 
The attribute Tid is the topic identifier of a topic t within 
the nondecomposable node. The NodeList attribute is a 
list of pairs <TidSet, Hid> where the pair <TidSet, Hid> 
represents the Tid’s of the nondecomposable (hyper) node 
(which contains Tid), and Hid is a new topic identifier for 
the node. Table 4.2 illustrates HIndex for the 
nondecomposable node {T3, T4} in Example 4.1. We 
generate a new entry in MIndex for each 
nondecomposable node with the identifier Hid as its Tid1 
value, and with a set of topic ids that it contains as its 
“ParentList”. For example, in Table 4.1, the entry with 
Tid1 value of H1 and the ParentList value of {T3, T4} 
represents the nondecomposable (hyper) node H1 in the 
HIndex table. 

In this section, to simplify the presentation, we assume 
that the metalink type M has only the transitivity axiom, 
but may or may not be LHS-decomposable. And, the 
product function is used to compute FPath=Impd(t, P, R). 

The topic closure of a set X of topics wrpt R = M and a 
sideway value threshold Vt is computed as follows. For 
each topic t in the topic closure X+, we create a triplet of 
the form <t.Tid, Impd(t, R = M), {p | p is a path  of type M 
from a topic or topics in X to t}>. We use a set-valued 
variable DiscoveredTids to contain the topics already in 
the closure, but not yet checked for paths emanating from 
them. We construct X+ by repetitively computing X(0), 

X(1), …, X(i) where 1 ≤ i. In the first iteration, for each 
topic t in X, a triplet <t.Tid, Impd(t, R), {t}> is created in 
X(1) and the topic identifier Tid of t is added into the 
DiscoveredTids variable. 

MType Tid1 Imp(Tid1) ParentList 
ChildList 

<Tid2, Imp(Tid2), 
Imp(Mid)> triplets 

Pre T1 0.9 {} <T3,0.85,0.95>, 
<T4,0.95,0.9> 

Pre T3 0.85 {T1} - 
Pre H1 Avg(0.9, 

0.95)= 0.925
{T3, T4} <T5,0.7,0.9> 

RelatedTo T1 0.9 {T2, T3, 
T4} 

<T2,0.8,0.6>,<T3,0.85, 
0.95>, <T4,0.95,0.9> 

Table 4.1 MIndex Table 
 

Tid NodeList  <TidList, Hid> 
T3 <{T3,T4}, H1> 
T4 <{T3,T4}, H1> 

Table 4.2.  HIndex Table 
In each iteration of the closure algorithm, a topic t1 is 

removed from the DiscoveredTids, and all metalinks that 
emanate from topic t1 are visited. A triplet <t2,Impd(t2,R), 
t2.paths> for the consequent topic t2 of each visited 
metalink is added into the currently computed topic 
closure X(i), if the triplet does not exist in X(i). If the triplet 
exists then new paths into t2.paths are added and 
Impd(t,R) is recomputed. The topic t2 is then added into 
DiscoveredTids. If the metalink type MType, for which 
the topic closure is to be computed, is not LHS-
decomposable then the algorithm checks if topic t1 is in 
the LHS of a metalink of type M. The algorithm uses the 
HIndex table to find all HIndex entries that contain topic 
t1 as a member of their LHS set of topics. For each such 
HIndex, if all of its LHS topics are in the currently 
computed topic closure X(i) then new hyperpaths are 
created and new derived importance values are computed 
for every metalink that emanates from the HIndex. When 
the DiscoveredTids is empty, the algorithm stops, and 
X+=X(i). We refer to this algorithm as the 
ThresholdTClosure algorithm. 
Example 4.1 (Topic Closure Computation for a LHS-
Decomposable Metalink Type). We use the MIndex instance in 
Table 4.1. Assume that we have the axiom: If A�

Pre B then 
A�

RelatedTo B where A and B are topics. Also, assume that we 
want to compute the topic closure for the set X={T1} with SV 
threshold Vt=0.4 using the metalink type M=RelatedTo. Also, 
assume that the average function is used for FPathMerge. Since 
X={T1}, X(1)={<T1, 0.9, {T1}>} and DiscoveredTids={T1}. 
Note that the RelatedTo metalink type is LHS decomposable. In 
the first iteration, topic T1 is removed from DiscoveredTids. 
Topic T2 has a path T1.T2, obtained using the metalink 
T1(0.9)� RT(0.6) T2 (0.8), and its derived importance value is 
Impd(T2,RelatedTo)= 0.9 * 0.6 * 0.8 = 0.43. Therefore, the 
triplet <T2, 0.43, {T1.T2}> is added into X(1). After the first 
iteration, X(2) ={<T1, 0.9,{T1}>,<T2, 0.43, {T1.T2}>} 
and  DiscoveredTids = {T2}. Next, the algorithm 
terminates since there is no RelatedTo metalink emanating 
from topic T2, therefore, DiscoveredTids becomes empty, 
and the output of the closure operator is {<T1,0.9>, <T2, 
0.43>}. 



 

Example 4.2 (Hyperpath) In Figure 4.1, {(T1�Pre T3),(T1�Pre 

T4)}�Pre T5 forms a hyperpath of type Pre from topic T1 to 
topic T5. In order to compute the topic closure of type Pre for 
topic T1, the topic T5 should be considered if both topics T3 and 
T4 are added to the topic closure.  
Example 4.3  (Topic Closure Computation for a Non-Left-
Hand-Side Decomposable Metalink). Compute the topic closure 
for a set of topics X={T1} with sideway value threshold Vt=0.7 
using the metalink type M=Pre. Assume that (a) FPathMerge is 
max, and (b) the geometric average is used to compute the 
derived importance value of a hypernode. Again, we use the 
MIndex instance in Table 4.1 to compute X+ as {<T1, 0.76>, 
<T3, 0.727>, <T4, 0.729>}. 

During closure computations, a metalink instance (i.e., a 
tuple in MIndex) can be visited more than once if there 
are multiple paths to the left-hand-side topic node of the 
metalink. To avoid visiting the same metalink more than 
once, we use the parent-child relationship between topics. 
A topic node with Tid1 is in the parent list of another 
topic node with Tid2 in the metalink M if there is a 
metalink Tid1 �

M Tid2. In the ThresholdTClosure 
algorithm, we use a set-valued variable PostponedTids to 
add the restriction that a topic node can not be 
“processed” until all nodes in its parent list is processed.  

The algorithm ThresholdTClosure needs to maintain all 
paths from the set of input topics X to a given topic 
instance a in order to compute the derived importance 
value of a using a generic function. However, some 
functions, such as max, need to maintain only a single 
path to compute the derived importance value of a given 
topic. One can give an algorithm ThresholdTClosureMax 
that does not maintain the path information for any topic, 
and computes the derived importance value of a topic x by 
comparing its “current” derived importance value with 
respect to that of the “currently visited” path P. Clearly, 
ThresholdTClosureMax is much more efficient than 
ThresholdTClosure. 
4.2 Ranking-based Topic Closure 

The RankingTClosureMax algorithm is used to compute 
the top k-ranked topic closure using the maximum 
function. The algorithm finds the topics with the k highest 
derived importance values in the topic closure of a set X 
of input topics. It first computes the initial candidate top k 
ranked topics from the input topics X. Then, in each 
iteration i, it extracts the ith top-ranked topic from the 
current k-i+1 candidate top-ranked topics and updates the 
current candidate topics by processing all emanating 
metalinks from the ith topic. Therefore, the algorithm 
needs k iterations in order to compute the top-k-ranked 
topic closure of a set X of input topics. 

The RankingTClosureMax algorithm maintains two 
lists X+ and CandidateTopics of size at most k.The 
algorithm requires at most Ω(k * |X|) time to compute the 
initial CandidateTopics list, where |X| is the size of the 
input topic set X. Then, the algorithm iterates k times in 
order to compute the top-k-ranked topic closure, and, in 
each iteration, it finds the next top k topics and updates 

the CandidateTopics list by appling the metalinks that 
emanate from a given top-k topic. Therefore, the expected 
running time of this algorithm is very fast. 

5  Experimental Results 
5.1 SVA Join Operator 

To evaluate the four SVA-Join algorithms discussed in 
Sections 3.2 and 3.3, we first extracted the titles of journal 
and conf. papers from the DBLP [DBLP01] data set into 
two different files, R and S. File R contains more than 
91000 journal paper titles (12 Mbytes in size), and file S 
contains more than 132000 conference paper titles (18 
Mbytes in size). Next, we eliminated the stopwords (i.e., 
removed words like “the”, “a”, “of”, etc.) from the words 
in each title, stemmed them and created the word list 
(vocabulary) for the whole collection (including about 
43000 words).  The word list was kept in the main 
memory. Then, we created the vectors for each record of 
R and S, which were added to paper title records in files R 
and S. The SVA values for R and S records were 
generated randomly.  

Below, we provide the experimental evaluation of the 
SVA-join algorithms in terms of the number of tuple-
comparisons for a given query. The number of 
comparisons gives an idea about both the number of 
tuples read from each relation and the in-memory 
optimizations we apply (as in the case of NLoopSim-SVT 
and NLoopSim-Top-k). Results involving disk-accesses and 
execution times are clearly symmetric with the number of 
comparisons made, and not reported here due to the lack 
of space.  

All experiments have been performed on a dual-
processor Pentium IIII 800 PC with 1-GB main memory 
running WindowsNT 4.0. The input and output buffer 
sizes were simulated to hold 10,000 tuples. 

A.  Evaluating NLoopSVT and NLoopTop-k : The 
algorithms NLoopSVT and NLoopTop-k join tuples of R and 
S on the basis of an arbitrary join condition (predicate) θ, 
and return the joined tuples that are over a given threshold 
Vt or ranked in the top-k results. For the following 
experiments, fout() is specified as the product of the 
sideway values of joined tuples. We assume that join 
condition θ is a user-defined predicate, which states that a 
conf. paper tuple is to be joined with a journal paper if 
they have at least one author in common and the conf. 
paper is published at most 2 years before the journal 
paper. Clearly, this predicate can be specified as a user 
defined function (UDF) (syntax omitted to save space). 

To evaluate a join with such an arbitrary predicate θ, an 
ordinary block-nested loops (BNL) algorithm compares 
each and every tuple, computes the sideway values for 
those tuples satisfying the user defined predicate, and 
finally retrieves the ones that are above the specified 
threshold or in the specified top-k set. On the other hand, 
NLoopSVT and NLoopTop-k evaluate the arbitrary predicate 



 

only for those tuples with a derived sideway value that 
satisfies the query constraints. In Figures 5.1 and 5.2, we 
demonstrate the performance of these algorithms, 
compared against the “blind” BNL approach. Note that, 
the savings of the proposed algorithms increase, as the SV 
threshold value increases or, inversely, as the k value 
decreases. For instance, when the SV threshold value is 
0.9, the number of tuple comparisons performed by 
NLoopSVT is approximately 300 millions, 1/40 of the BNL 
approach which makes 12 billion comparisons. For this 
case, NLoopSVT reads only 15% of R and S from the disk, 
whereas BNL reads all tuples of the relations. The saving 
in terms of execution time is in the order of magnitudes 
(i.e., seconds vs. hours). Furthermore, the savings increase 
as the complexity of user defined predicate increases. 
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Figure 5.1 Performance values of BNL, NLoopSVT and 
NLoopSim-SVT and algorithms. 
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Figure 5.2 Performance values of BNL, NLoopTop-k and 
NLoopSim-Top-k algorithms. 
B.  Evaluating NLoopSim-SVT  and NLoopSim-Top-k : The 
algorithms NLoopSim-SVT and NLoopSim-Top-k perform 
similarity-based (approximate) joins. In the following 
experiments, the tuples of R and S are joined if they have 
titles similar to each other with a similarity value greater 
than a specified threshold (90%). In this case, fout( ) is 
specified as the product of the sideway values of joined 
tuples and this derived value is further multiplied with the 
similarity value of tuples, obtained using the cosine 
similarity measure.  

Figures 5.1 and 5.2 illustrate the performance 
superiority of NLoopSim-SVT and NLoopSim-Top-k with 
respect to the BNL. For instance, to retrieve tuple pairs 
with titles that are 90% similar and have a derived 

sideway value greater than 0.9, BNL achieves a total of 
12 billion comparisons, whereas NLoopSim-SVT makes only 
23 million comparisons. This improvement is due to the 
fact that similarity based algorithms are tailored to exploit 
the vector-space model to its greatest extent. Max- 
similarity filters reduce the number of tuples to be 
compared. Finally, we create an in-memory inverted 
index [Salt89] for the tuples of outer relation on the fly, 
and compare tuples that only have common words in their 
titles.  

To summarize, for arbitrary predicates and monotone 
SV functions, algorithms NLoopSVT and NLoopTop-k 
improve the performance of BNL considerably. For the 
special case of similarity-based joins, the algorithms are 
further optimized and more gains are obtained.  

5.2 SVA Topic Closure Operator  
For the TClosure algorithm, we synthetically generated 

the data for the Topics file, Metalink file, and the set X of 
input topics. A disk-based MIndex file (see section 4.1) is 
generated from the topic and metalinks files. In order to 
efficiently retrieve a tuple from the MIndex file, we used 
in-memory LRU buffer and a sparse index table. In 
implementations of the topic closure algorithms, we used 
max as the FPathMerge function. 

We generated a topic file with N tuples. Each tuple is 
100Bytes, and has a random importance value in [MinT, 
1.0], where MinT is the minimum topic importance value. 
In the Metalinks file, we generated N* R decomposable 
acyclic metalinks (i.e., without hypernodes), where R is 
the ratio of metalinks to topics. We divided the topics of 
the Topics file into groups, each of random size between 
50 to 100 topics. For each group G of topics, we 
generated |G| * R randomly distributed metalinks with 
random metalink importance values in [minM, 1.0], 
where MinM is the minimum metalink importance value 
in the Metalinks file. In a given group G of topics, 80% of 
the metalinks are from group G to the next group G+1 and 
the remaining 20% are from group G to the other groups. 
Also, we selected a set X of input topics randomly from 
the Topics file, and generated random importance values 
in [MinX, 1.0] for each topic, where MinX is the min. 
derived importance value of the set X of input topics. 

To evaluate the algorithms, we used a topic file with N, 
1000 ≤ N ≤ 100,000, topics (i.e., file size is between 
100KB and 10GB) and topic importance values are in 
[0.4, 1.0]. The Metalinks file has metalinks/topics ratio of 
3 (i.e., R=3), and metalink importance values are in [0.4, 
1.0].  The size of the set X of input topics is 100 topics, 
and their topic importance values are in [0.5, 1.0]. Also, 
we used an in-memory buffer of size 100KB and a sparse 
index table of size 1000 tuples.  

The experimental results for the number of disk accesses 
for threshold-based topic closure algorithm and ranking-
based topic closure algorithm are illustrated in figure 5.4 
and figure 5.5, respectively. In both figures, the difference 
between the disk accesses of two different N values 



 

increases when the sideway threshold value is decreased 
or the value of k is increased. 
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Figure 5.4 Number of Disk Accesses for Sideway-Value-
Threshold-Based Topic Closure 
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Figure 5.5 Number of Disk Accesses: Ranking-based TClosure 
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Figure 5.6 Threshold-Based Topic Closure: Different parameters 

To evaluate with different parameters, we changed one 
parameter at a time, and compared the results with those 
in figures 5.4 and 5.5. Figures 5.6 and 5.7 illustrate the 
experimental results with N=10,000 topics (i.e., 1GB file).  
In figure 5.6, the number of disk accesses increase sharply 
when the ratio R of metalinks to topics is changed from 
R=3 to 7, the importance values are increased, the size of 
the buffer is decreased, or the size of the input topics X 
are increased. Figure 5.7 shows that the ranking-based 
algorithm is less sensitive to the changes of these 
parameters; there is only small change in the disk accesses 
when one of the parameters is changed. 
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Figure 5.7 Ranking-based TClosure: different parameters 
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