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Abstract

Many modern database applications require
content-based similarity search capability in
numeric attribute space. Further, users’ no-
tion of similarity varies between search ses-
sions. Therefore online techniques for adap-
tively refining the similarity metric based on
relevance feedback from the user are neces-
sary. Existing methods use retrieved items
marked relevant by the user to refine the sim-
ilarity metric, without taking into account
the information about non-relevant (or un-
satisfactory) items. Consequently items in
database close to non-relevant ones continue
to be retrieved in further iterations. In this
paper a robust technique is proposed to incor-
porate non-relevant information to efficiently
discover the feasible search region. A de-
cision surface is determined to split the at-
tribute space into relevant and non-relevant
regions. The decision surface is composed
of hyperplanes, each of which is normal to
the minimum distance vector from a non-
relevant point to the convex hull of the rel-
evant points. A similarity metric, estimated
using the relevant objects is used to rank and
retrieve database objects in the relevant re-
gion. Experiments on simulated and bench-
mark datasets demonstrate robustness and su-
perior performance of the proposed technique
over existing adaptive similarity search tech-
niques.

Keywords : Information retrieval, Database brows-
ing, Database navigation, Ellipsoid query processing,
Relevance feedback, Non-relevant judgement
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1 Introduction

In many modern database applications, it is neces-
sary to be able to pose queries in terms of similarity
of data objects rather than relational operations like
equality or inequality. Examples include finding sets
of stocks that behave in approximately the same (or
for that matter opposite) way in a temporal database
[16]; searching for structurally similar proteins from a
spatial database which can cause a particular medi-
cal condition [13]; retrieval of 3D objects from a CAD
database [2], finding similar objects based on content
from multimedia databases containing audio, image or
video [11]. Also, several approximation schemes have
been developed to efficiently process similarity queries
using multidimensional indexing structures [19, 1, 3].
In this paper, we focus on accuracy improvement of
similarity based retrieval of database objects using rel-
evance feedback.

To support similarity based modern database appli-
cations, multidimensional attribute or feature vectors
are extracted from the original object, and stored in
the database. Given a query object (associated with it
an attribute vector), database objects whose attribute
vectors are most similar to the query vector are re-
trieved for the user. Usually k top matches are re-
trieved. For text applications, vector space model with
cosine similarity metric is being widely used [17],[4].
The cosine similarity is defined as, S(~x, ~q) = ~x.~q

||~x||||~q|| ,
where ~u.~v stands for inner-product of ~u and ~v, and
||~v|| denotes the magnitude of ~v. On the other hand,
in metric space model of information retrieval, second-
order (L2) distance metrics are typically used. The
second-order L2 norm is a quadratic distance met-
ric and is defined as D(~x, ~q, Q) = (~x− ~q)T Q(~x− ~q).
Imposing constraints on the structure of the matrix
Q, metrics like Euclidean (Q is the identity matrix),
weighted Euclidean (diagonal Q) and generalized Eu-
clidean (symmetric Q with off-diagonal entries) are ob-
tained. Examples of application of quadratic distance
metrics include Euclidean metric in discrete wavelet
transform (DWT) based attribute space for time-series
stock data [16], color histogram space for color im-
age databases [11], Fourier descriptors (FD) for shape
databases [2]; weighted Euclidean metric for multime-



dia object retrieval [18], and generalized Euclidean dis-
tance metric for spatial databases [10]. Applicability
of L2 norms requires that the users’ information need
be modeled by a compact convex set in the feature
space.

The query by example paradigm is typically used for
similarity based search and retrieval from databases.
In many emerging database applications, the notion of
similarity cannot be predetermined, and needs to vary
across search sessions to satisfy information need of the
user (it is not likely that a user would be able/willing
to supply the similarity metric). For example in an
online car shopping scenario, a buyer starting with an
initial query (e.g. Jeep Cherokee), may be interested
in “weekend getaway vehicle” (based on cargo capac-
ity, wheelbase, and torque considerations), whereas an-
other buyer starting with the same initial query may
instead be looking for an inexpensive family vehicle
(based on engine size, weight, and price considera-
tions). In these scenarios the retrieval processes pro-
ceeds as follows. The system presents a set of objects
from the database to the user based on an initial sim-
ilarity metric. The user expresses his liking/disliking
of the retrieved set of objects. Based on this rele-
vance feedback from the user, the similarity metric is
adapted, and a new set of objects that are likely to
be more relevant to the user are retrieved. This pro-
cess continues until the user is satisfied. Most of the
existing systems [18, 10] use only relevant objects to
refine the similarity metric. Since information about
the non-relevant objects is not used, other database
objects close to the non-relevant objects are also typi-
cally retrieved.

In this paper we propose a novel means of incorpo-
rating non-relevant judgement for improving the per-
formance of similarity based retrieval. Non-relevant
information is not used for ranking similar items in
our approach. We, instead use non-relevant informa-
tion to define a feasible region in the feature space.
Relevant objects are used to estimate the parameters
of the similarity metric. Similar objects are ranked
and retrieved from within the feasible region only.

The remainder of this paper is organized as fol-
lows. Existing work that attempted to incorporate
non-relevant judgement in similarity retrieval is pre-
sented in Section 1.1. A mathematical formulation of
our approach is presented in Section 2. The proposed
solution and retrieval algorithm is presented in Sec-
tion 3. The performance of the proposed approach
is experimentally demonstrated using simulated and
benchmark datasets in Section 4. Finally we summa-
rize our contributions and mention some future direc-
tions for research in Section 5.

1.1 Related Work

We now analyze approaches considered in the past to
incorporate non relevant information. Relevance feed-

back was first introduced by Rocchio in the context of
incremental (iterative) text categorization using key-
words [17]. Each document is associated with an at-
tribute vector, each component (term) of which rep-
resents the normalized frequency of occurrence of the
corresponding keyword. Rocchio presented the follow-
ing formula to compute the new query,

~qnew = α~qcurr +
β

|G|
∑
~xi∈G

~xi − γ

|B|
∑
~yi∈B

~yi (1)

where ~qcurr is the current query vector, G is the set of
relevant objects and B the set of non relevant objects.
Values for α, β and γ are empirically chosen for the
document set. Documents in the database are ranked
based on their cosine distances from the estimated
query ~qnew. The parameter values that give good over-
all performance for a document set requires careful fine
tuning. Even in case of 2-D feature space, it is easy
to construct cases where for a fixed set of parameters,
a large number of non-relevant judgements move the
query vector toward the non-relevant region. Sing-
hal et.al. [5] propose a dynamic query zoning scheme
for learning queries in Rocchio’s framework by using a
restricted set of non-relevant documents in place of the
entire set of non-relevant documents. In a recent study
[6], Dunlop concludes that with Rocchio’s formula us-
ing non-relevance feedback, the results show behaviors
that can hardly be justified and vary widely. Hence
recent approaches have chosen to ignore non-relevant
documents [12]. Even though Rocchio’s formula is pri-
marily designed for use in the context of vector space
models, it is straightforward to extend the formula for
metric space models [10]. Problems with unpredictable
performance similar to the vector space model still per-
sist.

Nastar et al. [15] use two non-parametric density
estimates to model the probability distribution for the
relevant and non-relevant classes. The relevance score
of a given database object is defined as,

RelScore(x) =
Prob(~x ∈ relevant)

Prob(~x ∈ nonrelevant)
. (2)

The intuition behind this formula is that points in fea-
ture space either having large probability of being rel-
evant or small probability of being non-relevant should
receive high relevance scores. It is easy to see that even
though the probabilities obtained through maximum
likelihood estimates are well behaved, the relevance
score being a ratio is not guaranteed to give consistent
results. For example consider a point in the feature
space with a small estimated probability of being rel-
evant and with nearly zero estimated probability of
being non-relevant, this point will receive a very high
relevance score which may far exceed that of a point
whose probability of being relevant is high (≈ 1) and
probability of being non-relevant is a small non zero



value.
A similar heuristic has also been proposed by

Brunelli et al. [7] where they suggest the following dis-
tance function,

D(~x,G,B) = D(~x,G)
[
D(~x,G)
D(~x,B)

]γ

(3)

D(~x, S) =
∑
~y∈S

||~x− ~y||2. (4)

The database points that are either close to relevant
objects or far from non-relevant objects should have
small net distance D. Since the distances D are ob-
tained through summation over all relevant or non-
relevant objects, the net distance is sensitive to the
size of relevant and non-relevant sets. Also the result-
ing distance D function is not well behaved and can
lead to unpredictable results.

Our key contribution in this paper is the use of non-
relevant judgements to delineate the relevant region in
the feature space, ensuring that the restricted search
space does not contain any non-relevant objects. Rele-
vant judgements are used to estimate a similarity met-
ric which then is used to rank and retrieve database
objects in the relevant region. In machine learning lit-
erature, decision trees [8] are routinely used to achieve
a partitioning of the feature space. Inducing a deci-
sion tree on the relevant and non-relevant objects may
result in multiple disconnected relevant regions. Dis-
connected relevant regions are clearly incompatible for
ranking using a single quadratic distance metric. One
can envision a technique wherein a similarity metric
is estimated independently for each relevant region.
However it would be difficult to obtain robust esti-
mates for the similarity metrics given the small number
of relevant judgements in each of the relevant regions.
Decision trees are also known to perform poorly with
small training sets.

Support Vector Machines are popularly used to
solve 2-class classification problems [9]. SVMs trans-
form the original feature space using a kernel (usually
a Gaussian kernel) and estimate a optimal hyperplane
to separate the two classes in the new feature space.
The distance from the hyperplane is used as a measure
of belonging to a class. The local nature of the map-
ping results in the ranking function (in the original
feature space) having bumps at relevant objects and
being relatively flat elsewhere, to attenuate this effect
a large and representative training set is essential.

To overcome these issues, the partitioning of the
feature space in the proposed algorithm is achieved by
using a piecewise linear decision surface that separates
the relevant and non-relevant objects. Each of the hy-
perplanes constituting the decision surface is normal
to the minimum distance vector from a non-relevant
point to the convex hull of the relevant points. Our al-
gorithm robustly estimates the hyperplanes that con-

Symbol Definition
D The database
nd Dimensionality of the database
G Relevant set retrieved in the current

iteration
~v Goodness scores assigned by user to

relevant objects. (1 if user only iden-
tifies relevant objects).

B Non-relevant set retrieved in the cur-
rent iteration

k Number of data objects retrieved per
iteration

~qcurr, (~qopt) Query center for the current itera-
tion, optimal solution with current
set of feedback

Qcurr, (Qopt) Inverse covariance matrix for the cur-
rent iteration, optimal solution with
current set of feedback

d(., ., .) Generalized Euclidean distance func-
tion

Table 1: Symbol usage

stitute the decision surface even when the size of feed-
back is small. The relevant region is obtained as the
result of intersection of half spaces and hence forms a
convex subset of the feature space. This ensures that
we can use any similarity metric to rank and retrieve
database objects inside the relevant region. Since the
estimated relevant region is convex and the quadratic
distance metric is a convex function on the feature
space, we are ensured that there are no ’pockets’ in
the feature space where unpredictable relevance scores
are possible.

We experimentally demonstrate the effectiveness of
the proposed algorithm to improve precision and re-
call. In over 50% of the experiments there is a signif-
icant performance improvement over using only rele-
vant objects. In rest of the experiments improvement
was not visible because relevant sets were compact
enough compared to the distribution of non-relevant
points in their neighborhood. In small fraction of the
experiments, there is an inconsequential (around 0.05)
performance degradation due to approximation of the
feasible region using piecewise linear surfaces.

2 Problem formulation

At each iteration of relevance feedback the judgements
provided by the user constitute a relevant set G and
a non-relevant set B. If the user provides different de-
grees of desirability for the relevant objects, then this
information is available as a vector of goodness scores
~v. If user only marks relevant objects then the good-
ness scores for all relevant objects are set to 1. All
objects seen by the user and marked neither relevant
nor non-relevant are not considered for further com-



putation.
Let ~x and ~q represent the feature vectors corre-

sponding to a database object and the estimated cen-
ter of the query1. Then a quadratic distance function
to measure the distance of ~x from ~q is defined as

d(~x, ~q,Q) = (~x− ~q)T Q(~x− ~q) (5)

MindReader [10] estimates the parameters (~q,Q) to
minimize the total distance of objects in the relevant
set G. This can be written as,

min
~q,Q

∑
~xi∈G

vid(~xi, ~q,Q). (6)

Subject to:
det(Q) = 1 (7)

Consider the ellipsoid E defined by the estimated pa-
rameters (~qopt, Qopt) and radius equal to the largest
value of dopt distance for relevant objects. k items now
need to be presented to the user to obtain the next set
of relevance judgements. The items to be presented
are obtained by expanding E till k database items are
enclosed inside the ellipsoid. However, during this ex-
pansion, the exclusion of non-relevant objects is not
guaranteed.

To ensure that non-relevant objects are not re-
trieved, we formulate a new optimization problem
with additional constraints as follows, (abbreviating
d(~x, ~q,Q) as d(~x))

min
~q,Q,c

∑
~xi∈G

vid(~xi) (8)

Subject to :

∀~x ∈ G, d(~x) ≤ c (9)
∀~x ∈ B, d(~x) > c (10)

|{~x : ~x ∈ D, d(~x) ≤ c}| ≥ k (11)
c > 0 (12)

det(Q) = 1 (13)

Let the optimal solution be (~qopt, Qopt) and the opti-
mal distance function be dopt. Consider the ellipsoid
E defined by (~qopt, Qopt) with a radius corresponding
to the largest value of dopt for relevant objects (we can
also use copt as the radius for E). Equations 9 and 10
ensure that E partitions the feature space with all rel-
evant points inside and non-relevant points outside.
Equation 11 ensures that E captures enough objects to
present to the user, and along with Equation 10 this
also ensures that no non-relevant objects are shown
to the user. The minimization of distances of relevant
objects ensures that relevant objects are ranked higher
than other items in the database.

Whereas the above formulation is sufficient to uti-

1The symbols used are defined in Table 1.

lize non-relevant information effectively, a straightfor-
ward solution of Equation 8 is difficult to obtain. The
formulation is a quadratic optimization problem with
quadratic constraints. Considering the quadratic na-
ture of the constraints it is likely that the feasible re-
gion for the parameters (~qopt, Qopt) is not convex, lead-
ing to numerous local minima. Also constraint Equa-
tion 11 involves items from the database. When this
constraint is expanded, we get an additional constraint
for each database item. This makes the problem very
expensive to solve in the current form.

To decrease the computation required, we simplify
the above formulation as follows. The problem is first
split into two independent subproblems,

Subproblem 1 Find a decision boundary that sepa-
rates the relevant from non-relevant objects. The
boundary should be sufficiently close to the non-
relevant objects to maximize the size of the rele-
vant region.

Subproblem 2 Find a distance function that mini-
mizes the total distance of relevant objects.

We approximate the decision boundary by a piecewise
linear surface. This reduces computation time and also
allows the convexity constraint for the relevant region
to be easily incorporated. The second subproblem is
the same as MindReaders’ formulation and hence their
results hold in this case.

It is easy to see that the convex hull (CH) of the
relevant points is one of the many possible piecewise
linear surfaces that satisfy Equations 9 and 10. To
satisfy Equation 11 we need to “expand” the convex
hull so as to obtain k database items inside. Note
that during expansion we must also ensure that Equa-
tions 9 and 10 hold for the new surface. This process
is not efficient since items from the database need to
be accessed in each expansion step.

2.1 Proposed solution

Rather than using an incremental scheme to refine
the decision surface, we create a decision surface that
maximizes the size of relevant region. For each non-
relevant point (~b) we create a hyperplane (H) normal
to the shortest distance vector from ~b to CH. H is
positioned a small distance (ε > 0) from ~b. Figure 1
illustrates an example. The positive halfspace of each
such H contains the relevant objects and the negative
halfspace contains the non-relevant example. The rel-
evant region R is obtained as the intersection of the
positive halfspaces obtained for all non-relevant ob-
jects. A distance metric dnew estimated using only
the relevant objects is then used to present top k of
those database items that belong toR. Actual compu-
tation of CH is not necessary, the point in CH closest
to ~b is obtained by solving an optimization problem
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Figure 1: Illustrates feature space partitioning using
one non-relevant object, see Section 4.3.1 and Figure 8
for an realistic example.

(Equation 14). Note that in some casesRmay not sat-
isfy Equation 11, i.e, there are fewer than k database
items in R. Since this result is the best possible with
a piecewise linear surface, a set of size less than k can
be presented to the user, in our experiments we obtain
the remaining objects by picking top ranked objects
from the non-relevant partition.

3 Proposed Algorithm

In this section we describe the proposed method. As
described in Section 2.1, the proposed algorithm has
two independent steps. The first step is that of ob-
taining a surface that separates the relevant from
non-relevant examples thereby partitioning the feature
space into relevant and non-relevant regions, this step
is detailed in Section 3.1. The second step involves
using relevant examples to estimate a distance metric,
this step is detailed in Section 3.2. The final step in-
volves ranking and retrieval of items from the database
to present to the user and is detailed in section 3.3.

3.1 Partitioning the feature space

The proposed method separates the relevant and non-
relevant objects with a piecewise linear surface. Each
of the non-relevant objects is used to create a hyper-
plane as described in Section 2 and illustrated in Fig-
ure 1. For each non-relevant point ~bi ∈ B, the closest
point ~pi in the convex hull CH of the relevant points is
computed as follows. Let G = [~g1, . . . , ~g|G|], columns
of G represent the feature vectors of the relevant ob-
jects in G. The vector ~pi can be written as a linear
combination of the relevant points as ~pi = G~λ, where
~λ=[λ1, . . . , λ|G|]T and

∑
j λj = 1. The computation of

~pi can hence be formulated as,

min
λ

|G~λ−~bi|2 (14)

subject to

|G|∑
j=1

λj = 1 (15)

∀j, λj ≥ 0 (16)

Equation 14 is a convex quadratic problem with linear
constraints. We use the reduced gradient method out-
lined in Appendix A to obtain the optimal value of ~λ.
The closest point on the hull ~pi can now be obtained.
The corresponding hyperplane (Hi) can be represented
as in Equation 17.

Hi = { ~x : (~pi −~bi) · (~x−~bi) = ε } (17)

where ~a ·~b = ~aT~b

|~a| |~b| (18)

H+
i = { ~x : (~pi −~bi) · (~x−~bi) > ε } (19)

H−
i = { ~x : (~pi −~bi) · (~x−~bi) < ε } (20)

Here, ε is a small positive constant. In cases where the
non-relevant point~bi lies inside CH, the closest point ~pi

will equal ~bi, no hyperplanes are constructed for such
cases. Each hyperplane Hi partitions the feature space
into a positive halfspace (H+

i , Equation 19) contain-
ing the relevant objects and a negative halfspace (H−

i ,
Equation 20) containing the non-relevant point~bi. The
intersection of the positive halfspaces H+

i defines the
relevant region and the union of negative halfspaces
H−

i defines the non-relevant region.

3.2 Estimating the similarity metric

The parameters of the distance metric in Equation 5
are estimated using only the relevant objects (G) along
with their associated goodness scores (~v). The param-
eters (~q,Q) are estimated independent of the feature
space partitions. This permits the usage of any scheme
like MindReader [10] or MARS [18] to estimate the
new set of parameters.

The estimates used by MindReader [10] are as fol-
lows,

~qnew =

∑
~xi∈G vi~xi∑
~xi∈G vi

(21)

Qnew = det(C)
1

nd C−1 (22)

C is the weighted covariance matrix of the relevant
objects, given by

C = [cjk], cjk =
∑
~xi∈G

vi(xij − qj)(xik − qk) (23)

MARS [18] is a special case of MindReader, where

Qnew = [Qjj ], Qjjα
1

σj
2

(24)



Input: G, B the set of relevant and non-relevant
objects.
Output:The next set of k data objects.
∀bi ∈ B {

Find ~pi by solving (14)

Hi defined as (~pi −~bi) · (~x−~bi) = ε, (Eqn. 17)
}
Compute (~qnew,Qnew) using Equations 21 and 22.
∀~xi ∈ D {

if ( (~pi −~bi) · (~x−~bi) > ε , ∀bi ∈ B ){
/* xi lies in the relevant region */
Disti = d(~xi, ~qnew, Qnew), Equation. 5

} else {
/* xi lies in the non-relevant region */
Disti = ∞

}
}
Return top k objects in D in increasing order of
their distances (Dist).

Figure 2: Algorithm to retrieve top k relevant database
items.

σj
2 being the variance of the jth feature over all objects

in G.

3.3 Ranking and retrieval

Figure 2 illustrates one iteration of the retrieval pro-
cess. Given a vector ~x representing an item in the
database, it is determined if ~x belongs to the relevant
region by checking if ~x lies in the positive halfspace for
each hyperplane Hi. Distances for items in the rele-
vant region are computed using the estimated distance
function dnew. k items having the smallest distances
are presented to the user for further feedback.

4 Experimental Setup

We tested our relevance feedback algorithm incor-
porating non-relevant objects on synthetic and real
datasets. The experiments demonstrate that our al-
gorithm effectively uses the non-relevant objects to
restrict the search space. Many non-relevant objects
that would be retrieved by conventional algorithms are
rejected, improving the retrieval accuracy.

Four datasets were used for the experiments, one
dataset was synthetically generated and the other
three were real. In our experiments, feedback is pro-
vided by labeling a retrieved object as either relevant
or non-relevant. To enable simulation of real users,
following assumptions are made. Each object in a
database is associated with a class. Note that these
class labels are used for the purpose of simulation only,
in a real world setting each user has a distinct notion
of the set of objects matching her requirements and
hence assigning class labels is not useful. For each
simulation run, an object class is chosen to be the tar-
get class. An object from the target class is used to

start the relevance feedback loop. The user’s feedback
is simulated by labelling objects from the target class
as relevant and labelling objects from other classes as
non-relevant. We also assume that the user provides
feedback on a fixed number of retrieved objects, the
objects to be labelled picked randomly from the re-
trieved set.

As discussed in Section 1, changing the structure
of the Q matrix of the quadratic distance function,
we obtain different distance metrics. In practice there
is a tradeoff between increased flexibility and the ro-
bustness with which parameters can be estimated. We
chose MARS over the MindReader metric as the num-
ber of parameters to be estimated is an order smaller
and hence can be more robustly estimated when there
are very few (< nd) relevant objects. To demonstrate
that it is still feasible to use MindReader for small
dimensions, we use the generalized ellipsoid distance
metric for experiments with the synthetic 2D dataset.

4.1 Datasets

A brief description of the datasets used for our exper-
iments follows,

• Synthetic 2D dataset To make analysis
and visualization easier, we synthesized a two-
dimensional dataset. This dataset is plotted in
Figure 3. There are 400 relevant points and 2500
non-relevant points.

• Digits dataset The public domain PEN dataset2
for pen-based recognition of handwritten digits
has 10 classes, each class represents a digit. Digits
are represented by 16 dimensional attribute vec-
tors. We use 100 objects from each class to create
our dataset.

• Letter recognition The Letter Recognition
Dataset 2 has 26 classes corresponding to the let-
ters of the English alphabet. Letters are repre-
sented by 16 attributes, we choose 100 objects
from each class to constitute the dataset.

• CAR dataset This dataset consists of auto-
mobile specifications extracted from online car
stores. A car is represented by 24 numerical at-
tributes. Price, torque, weight are examples of
the attributes present. We do not use nominal at-
tributes such as transmission (takes values man-
ual or automatic). We use the vehicle type (ex.
Midsize Sedan, Fullsize SUV, Sport Hatchback) as
the class label for a car. We choose 21 vehicle
types, each having atleast 25 distinct cars to con-
stitute a dataset of 1270 cars.

2UCI Machine Learning Repository,
http://www.ics.uci.edu/˜mlearn/MLRepository.html
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vance feedback.
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feedback. For the proposed algorithm
the actual retrieved region is obtained
by intersecting the ellipse with half-
spaces, see Section 4.3.1 and Figure 8.

4.2 Measuring retrieval effectiveness

Precision and recall are standard metrics used for mea-
suring retrieval effectiveness. Recall and precision are
defined as

recall =
|relevant ∩ retrieved|

|relevant| (25)

precision =
|relevant ∩ retrieved|

|retrieved| (26)

4.3 Results and Discussion

4.3.1 Results for Synthetic 2D dataset

In this section we compare performance of the pro-
posed retrieval algorithm using generalized ellipsoid
distance metric with MindReader for the Synthetic
2D dataset. In Figure 4, the precision obtained at
0.8 recall in successive iterations is compared. Us-
ing non-relevant objects to restrict the search space
significantly improves precision. Figures 7 provide a
visual representation of the distance metrics for the
two experiments. An ellipse represents the region to
be retrieved to achieve 0.8 recall. The target ellipse
represents all objects of the target class.

In the case of the proposed algorithm, the actual
retrieved region is obtained by intersecting the ellipse
with the estimated relevant region. A set of hyper-

planes each corresponding to a non-relevant point is
determined as detailed in Section 3. The relevant re-
gion is then obtained as the intersection of the positive
half spaces of each of the hyperplanes (Figure 8). The
parameters of the MindReader metric estimated us-
ing the relevant objects is used to rank objects in the
relevant region. Referring to Figure 8, each separat-
ing plane corresponds to a non-relevant object. The
unshaded area represents the relevant region obtained
as the intersection of the positive half-spaces. The
shaded area forms the non-relevant region. The solid
ellipse represents the distance metric to achieve 0.8 re-
call and corresponds to the ellipses drawn in Figure 8.
The intersection of the interior of the solid ellipse and
the unshaded area represents the retrieved region to
achieve the specified recall.

We now compare the convergence of the estimated
distance metrics to the target metric. We chose two
parameters to evaluate convergence.

1. Query point movement: This parameter captures
how quickly the centers of the estimated distance
metric converge to the target center. Figure 5
plots the Euclidean distance between the esti-
mated centers and the target center for the two
algorithms. The faster convergence of the pro-
posed algorithm is evident.

2. Alignment: This parameter is used to compare
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Figure 8: Restricted search space and similairty metric at different iterations of relevance feedback for 2d dataset.

the speed of convergence of the matrix parameter
Q (of the distance metric) to the target Q. The
dot product of the major axis of the estimated
and the major axis of the target ellipse indicates
the degree of alignment of the two metrics. The
dot products for the two algorithms are compared
in Figure 6. Here again the proposed algorithm
shows faster convergence. Note that even though
the difference in dot products is quite small the
larger difference in angle is manifested in Figure 7.

4.3.2 Real Dataset

We now demonstrate the improvement in performance
of the proposed algorithm using the weighted Eu-
clidean distance metric over the MARS algorithm on
three real datasets.

4.3.3 Improvement in average precision

Figures 9(a),9(b),9(c) plot the average precision for
the three datasets. The size of relevance feedback per
iteration is 15, the feedback provided is accumulated
over successive iterations. Precision is computed from
100 top ranked objects. The precision statistics for a
dataset are computed using trials conducted with each
class in the dataset as the target class. For a partic-
ular target class, trials are repeated using each object
in the target class as the starting point for the rele-
vance feedback loop. For the same set of experiments,
Figures 9(d),9(e),9(f) plot the average precision after
6 relevance feedback iterations with increasing number

of retrieved objects. This is equivalent to computing
precision with increasing recall values. The proposed
algorithm shows a consistent improvement in precision
for all datasets, both with relevance feedback itera-
tions and with large number of retrieved objects.

In Figure 10, we plot the average size of the rele-
vant partition computed by the proposed algorithm.
In the Digits dataset with 10 classes, each class consti-
tutes 10% of the dataset, whereas in the Letter dataset
each class constitutes ≈ 4% of the whole dataset. The
average size of a class in the CAR dataset is ≈ 5%.
These variations in the size of the target class as frac-
tion of the dataset lead to differences in the size of
the estimated relevant regions in the above plot. The
accuracy of the estimated relevant region is shown in
Figure 11. The fraction of objects from the target
class that lie in the estimated relevant region serves
as a measure of accuracy of the partioning scheme.
It is clear from the above plots that the proposed al-
gorithm effectively utilizes non-relevant objects to ac-
curately constrain the search space. The accuracy of
the estimated relevant region improves with relevance
feedback iterations demonstrating that the proposed
algorithm is able to refine the relevant region to match
the true distribution. The relatively poor accuracy in
the case of the Letter dataset is due to the the mul-
timodal distribution of the objects in a class, i.e. the
objects in a class do not constitute a convex set.
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(a) Letter dataset, 2600 trials
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(b) Digits dataset, 1000 trials
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(c) CAR dataset, 1270 trials
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(d) Letter dataset, 2600 trials
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(e) Digits dataset, 1000 trials
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Figure 9: Precision for MARS and the proposed algorithm (Section 4.3.3). (a)-(c) plots precision in top 100
retrieved objects at successive relevance feedback iterations, (d)-(f) compares precision measured with increasing
number of retrieved objects at the 6th relevance feedback iteration.

4.3.4 Improvement in precision, (0.4 recall, 50
feedback per iteration)

Here, the parameter of interest is the improvement I
in precision achieved by the proposed algorithm over
MARS after the same number of relevance feedback
iterations with the same starting point.

I = PrecisionProposed − PrecisionMARS . (27)

The range of I over all experiments is split into a fixed
number of bins. Each experiment is assigned to a bin
based on the value of I for the experiment.

In order to accurately quantify the improvement,
we plot in Figures 13(a),13(b),13(c) the improvement
in precision I against the precision achieved by MARS
(PrecisionMARS) for the same test. In Figure 13(a)
we see that the percentage of cases where I > 0.3
reduces with increase in PrecisionMARS . This is
expected since the scope for improvement decreases
at higher precision values, such cases are shifted to
smaller bins resulting in an increase in the % of tests
showing smaller improvements (0−0.3) at larger values
of precision.

4.3.5 Improvement in precision at different
recall values across multiple tests

These experiments are similar to those of Section 4.3.4
except that the experiments are repeated for differ-
ent values for recall. The improvement in precision

I (Equation 27) is binned to create a histogram for
each value of recall. Consider Figure 14(c), at larger
values of recall there is an increase in percentage of
cases where the proposed algorithm gives lower preci-
sion (I < 0). Suppose that the objects in the target
class are not contained in a convex set, i.e. objects
from other classes overlap with the target class. A
partition estimated by the proposed algorithm in this
case will incorrectly prune some relevant objects caus-
ing lower precision than MARS (which is not prevented
from retrieving those examples at large recall). The
percentage of cases with I = 0 (no improvement) is
larger at small recall values (Figure 14(c),14(b)). In
most of these cases MARS achieves a precision of 1
and hence no further improvement is possible.

4.3.6 Improvement in precision with different
sizes of feedback (fixed recall)

In real systems users typically provide only a small
number of relevance judgements at each iteration.
Hence a retrieval algorithm must perform consistently
with very small sizes of feedback. We performed exper-
iments with number of relevance judgements varying
from 5% to 50% of the size of target class. Note that
both relevant and non-relevant feedback count as rele-
vance judgements. Plots in Figure 15 show percentage
of cases with I > 0 and percentage cases with I < 0.

The improvement achieved by the proposed algo-
rithm at all feedback sizes is clear. Larger feedback
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Figure 10: Plots the average size of
relevant region for the proposed al-
gorithm with 15 feedback provided
per iteration (Section 4.3.3). The
fraction of database objects in the
relevant partition is used as an es-
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Figure 11: Plots the average ac-
curacy of the relevant region esti-
mated by the proposed algorithm
(Section 4.3.3). The fraction of ob-
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Figure 13: Plots illustrate the histogram of I for different values of the precision of MARS. Refer to Section 4.3.4.

sizes lead to more cases with I > 0. This demonstrates
that the proposed algorithm has successfully utilized
additional non-relevant information to accurately re-
fine the search space. The percentage of cases with
I > 0 increases with iterations of relevance feedback
demonstrating the effectiveness proposed algorithm.

4.3.7 Execution time of the proposed algo-
rithm

Figure 12 plots the time required for parameter esti-
mation and for ranking and retrieval using the Letter
dataset with 10 feedback per iteration on a 1000Mhz,
Intel PIII processor. Since feedback is accumulated
over iterations, the size of the training set increases
with relevance feedback iterations. The MARS algo-
rithm has the least processing requirement and shows
no visible performance degradation for both parameter
estimation and ranking with larger training sets. The
training time for the proposed algorithm grows rapidly
with the number of relevant objects in the training set.
This is due to the complexity of the constrained opti-
mization procedure. Since an object in the database is
evaluated against hyperplanes corresponding to each
of the non-relevant objects, the retrieval time grows
linearly with the number of non-relevant objects in

the training set.

5 Conclusion

We have proposed a novel technique for improving the
accuracy of adaptable similarity based retrieval by in-
corporating negative relevance judgement, and demon-
strated excellent performance and robustness of the
proposed scheme with a large number of experiments.
The experiments also demonstrate that the proposed
scheme improves performance when the size of feed-
back is small. Ad-hoc techniques have been proposed
and studied in the past for using both relevance and
non-relevant judgements during similarity based re-
trieval. Past studies have reported that such methods
frequently lead to unfavorable performance, because
incompatible information conveyed by the relevance
and non-relevance judgements are combined to derive
the ranking function. Instead we have proposed a two-
step approach, where non-relevant objects in conjunc-
tion with relevant objects have been used to define the
feasible search space. The ranking function, estimated
using only the relevant objects was used to retrieve
top k matches from inside the feasible search region.
This enables the search to explicitly move away from
the non-relevant region, while keeping close to the rel-
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Figure 14: Illustrates the histogram of I for different recall values. In all the above plots, each bar represents
the % of tests where the difference in precision (I) falls in a specified range. Bars corresponding to negative
differences shown inverted for clarity.
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(a) Letter dataset (iteration# 1)
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(b) Digits dataset (iteration# 1)
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(c) CAR dataset (iteration# 1)
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(d) Letter dataset (iteration# 3)
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(e) Digits dataset (iteration# 3)
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Figure 15: Effect of size of feedback on precision. Plots % cases where the difference PrecisionProposed −
PrecisionMARS is postive (improvement), negative (deficient) for different sizes of feedback. Precision computed
at 0.4 recall.

evant region. Note that our proposed method does not
depend on database-specific parameter tuning. More-
over, it is usable on top of existing schemes, e.g., Min-
dReader and MARS.

Implementation of the proposed ellipsoid query pro-
cessing with search space pruning on multidimensional
indexing structures is of further interest to us for im-
proving the processing speed. Our ongoing work in-
cludes dimensionality reduction to address inadequate
number of relevance judgements in high-dimensional
feature space during a typical search session, and query
expansion with non-relevant information so that multi-
modal (multiple disjoint ellipsoids) information need of
a user can be supported.
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A Reduced gradient algorithm

Consider the minimization problem:

min
λ

(G~λ−~b)T (G~λ−~b) (28)

Subject to : ~e T ~λ = 1 and λi ≥ 0, ∀i (29)

where ~e = [1 . . . 1]T . The problem can be rewritten as,

min
λ

1
2
~λT D~λ−HT~λ (30)

Subject to : ~e T ~λ = 1 and λi ≥ 0, ∀i (31)

where D = 2GT G and H = 2~b T G.
Let n = |G|. Specifying any n − 1 λi’s uniquely

determines the value of the nth λ (using Equation 31).
Hence we split ~λ into (λy, ~λz), where ~λz is an indepen-
dent (n− 1) sized vector and λy is a scalar dependent
on λz. λy is chosen to be one of the strictly positive
components of ~λ. See [14] for a detailed description of
the algorithm. The problem now reduces to :

min
λy,~λz

1
2
~λT D~λ−HT~λ (32)

Subject to : λy + ~e T ~λz = 1 , λy ≥ 0, ~λz ≥ 0 (33)

where ~e = [11 . . . 1]T . We now use a modified steep-
est descent method using the reduced gradient. The
reduced gradient at a point λ = (λy, ~λz) is obtained as

r = ∇~λz
f(λy, ~λz)−∇λy

f(λy, ~λz)B−1C (34)

The centroid of the relevant points whose correspond-
ing ~λ is given by ~λinitial = [ 1

n
1
n . . . 1

n ], can be used as
a feasible starting point for the iterative process.
One iteration of the reduced gradient method is as fol-
lows :

1. Compute r(~λ) using Equation 34

2. Let ∆λzi
=

{ −rzi
if rzi

< 0 or λzi
> 0

0 otherwise
If ∆~λz = 0, then return current ~λ as the solution,
else find ∆λy = −B−1C∆~λz.

3. Find α1, α2, α3 so that,

α1 = max{α : λy + α∆λy ≥ 0}
α2 = max{α : ~λz + α∆~λz ≥ 0}
α3 = min{α1, α2, α

′}

where α′ = −∆~λT (D~λ−H)

∆~λT D∆~λ
.

Set ~λ = ~λ + α3∆~λ.

4. If α3 < α1 then goto step 2 else incorporate λy

into ~λz and mark one of the strictly positive λz’s
as λy.


