
IBM® DB2® Spatial Extender - Spatial data within the RDBMS 
 

David W. Adler 

IBM Corporation 
2455 South Rd 

Poughkeepsie, NY  12601  
USA  

dadler@us.ibm.com 
 

 
 

Abstract 

Much of the data that we encounter has a spatial 
(geographic locational) aspect yet this has not 
been readily exploited by traditional RDBMS.   
Over the past five years there has been a 
confluence of Geographic Information System 
(GIS) technology, RDBMS architecture and SQL 
standards that has fostered the implementation of 
spatial processing within the RDBMS.   
 
This paper will present a brief overview of 
spatial processing and the evolution of 
technology leading to the development of the 
IBM DB2 Spatial Extender that exploits the IBM 
DB2 Universal Database (UDB) object-relational 
support to implement a standards-based SQL 
spatial capability.  

1. Introduction 

It is said that 80% of the data stored in computers has a 
spatial aspect [1].  This typically is associated with the 
location of a customer, office, property or even a mobile 
device.  Most often the location is defined by an address 
consisting of a house number, street name, city, country 
and postal code which is not a representation conducive to 
spatial processing other than simple aggregation by postal 
code or city. 

Spatial processing is nothing new – it dates back over 
two thousand years to the creation of the first maps and 
traders planning their routes.  Aside from advances in 

accuracy and the mathematics of cartography, this has 
remained a manual and visual process until the age of 
computing. 

We would like to be able to pose business queries like: 
“Which customers are within the territory of my most 
profitable store?”  or “What is the average revenue per 
square mile of  sales territory?”.  One might imagine 
possible manual solutions using paper maps but they 
quickly become impractical for useful data volumes. 

 

2.   Evolution of Spatial Processing 

The origin of computer-based spatial processing goes 
back to the 1970s with the development of Automated 
Mapping and Facilities Management (AM/FM) systems 
developed primarily for utilities to keep track of real-
world features such as pipes, transmission lines and 
transformers.  At the same time, GIS systems were 
developed to analyze and maintain environmental and 
cadastral features such as rivers and parcels.  Common to 
these systems is the geometry of each of these features 
which is generally a point, line or polygon composed of 
one or more geographic location (coordinate) values. 

Initially these AM/FM/GIS or more simply, GIS 
systems were implemented on standalone workstations 
using proprietary interfaces and data representations on 
simple file systems.  This is shown in figure 1 as First 
Generation. Although the spatial functionality may be 
sufficient for application needs, it is not an open system 
amenable to enterprise solutions.   

In the early 1990s with the acceptance of RDBMS 
technology and greater need for enterprise data 
access/sharing, major GIS vendors such as IBM [2], 
ESRI® [3] and MapInfo® [4] developed middleware 
products that used an RDBMS as the spatial data 
repository.  These products provided to applications the 
RDBMS benefits of concurrency, data backup/recovery 
and client/server capability.  All the intelligence for 
spatial indexing and geometry representation was 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 
Proceedings of the 27th VLDB Conference, 
Roma, Italy, 2001 



embedded in the middleware that was constrained to use 
basic SQL operations and generic datatypes such as 
Integer or BLOB.  A disadvantage is that applications are 
still constrained to a proprietary GIS API.  This is referred 
to as Second Generation.  

The customer demand for interoperable solutions not 
dependent on proprietary APIs and for business 
applications that could exploit the full RDBMS capability 
has lead to the development of Third Generation systems.  
These systems move primary data management into the 
database and use expanded standard SQL to operate on 
the data.   This is discussed later in the context of SQL 
and Spatial Standards.  

GIS
Application

GIS Tools 
GIS Data Engine

File 
System

GIS 
Application

GIS Data 
Engine

Spatial 
Application

Extended RDBMS that 
understands spatial data 

and functions

RDBMS
SQL

Proprietary
GIS API

Proprietary
data format

First Generation:

Second Generation:

Third Generation:

SQL

GIS 
Tools

Proprietary
GIS API

Proprietary
GIS API

GIS 
Tools

GIS 
Application

Proprietary
GIS API

 
Fig 1: Evolution of GIS environments 

 

3.   Spatial Data 

The creation of spatial data has been a very high-cost 
process involving largely manual data conversion from 
paper maps or survey information, especially when high 
precision (meter or sub-meter) is required as is the case 
for utility and cadastral applications.  The cost inhibited 
many business applications that didn’t require this degree 
of precision but had no other source of data. 

The breakthrough in the cost and availability of spatial 
data for business applications came through the 
involvement of the public sector, the availability of low-
cost, reasonable accuracy GPS devices and the 
development of geocoding technology.   

In order to meet mandated governmental tasks such as 
census taking and map production, national governments 
have born the cost of developing spatial representations of 
census blocks, political districts, cities, states, highways, 
and street addresses.  United States Census Bureau has 
made much of this available at nominal cost through the 
TIGER [5] data. The private sector has added value by 
offering TIGER data derivatives in common spatial data 
formats and enhanced data validation.  Other national 
spatial data infrastructures and public/private sector 
cooperation are making spatial data increasingly available 

on a worldwide basis.  Current GPS devices allow 
businesses to collect additional spatial data at very low 
cost with approximately 10-meter precision. 

Geocoding is the process of algorithmically converting 
a street address to a spatial location by referencing spatial 
street data that has associated address range information 
for each street segment.  Numerous vendors have 
provided geocoders for countries that have consistent 
street addressing schemes.  The value of geocoders 
include: 

1. Exploitation of existing databases containing 
addresses as spatial data sources. 

2. Correction of inconsistently represented addresses 
(‘street’ vs ‘st’ vs ‘str’).   

3. Reduction of storage required by only storing 
street segments and not every known address. 

 

4.   SQL and Spatial Standards 

Each GIS vendor has defined it’s own proprietary 
representation for spatial data.  National governmental 
organizations have defined ‘standard’ representations for 
spatial data that for the most part have not been widely 
accepted.  The result has been that application developers 
have had great difficulty integrating data from different 
sources and could not provide applications independent of 
specific GIS vendor interfaces.   

The Open GIS Consortium (OGC) was founded in 
1994 with the mission “to deliver spatial interface 
specifications that are openly available for global use.”   
The OGC is composed of approximately 200 members 
from industries, governmental agencies and academia 
who work together in a consensus process.  For our 
consideration here, the “OpenGIS® Simple Features 
Specification for SQL” [6] is of critical importance.  This 
specifies an object model for the implementation of 
spatial datatypes and operations in the SQL RDBMS 
environment.  The OGC also operates a specification 
conformance process that has been used to certify the 
implementation of this specification by leading GIS tool 
and database vendors. 

The ISO (International Organization for 
Standardization) is the authoritative body producing SQL 
standards implemented by RDBMS vendors.  There are 
two standards of particular importance to spatial 
processing: 

1. SQL99 [7] that provides a mechanism for the 
creation of user-defined types in the SQL 
environment.  This is a prerequisite for the 
definition of a spatial object model. 

2. SQL/MM Spatial [8] which is closely based on the 
“OpenGIS® Simple Features Specification for 
SQL”, providing the same functionality but as a 
recognized international standard. 

 



5.   DB2 Spatial Extender 

The DB2 Spatial Extender [9] brings together a number of 
key capabilities for supporting spatial processing within 
the domain of the RDBMS: 

1. Standards-based geometry model using object-
relational technology. 

2. Standards-based geometry functionality 
3. Spatial indexing 
4. Integration of geocoding 
5. Import / export of common spatial data formats. 
6. Integration of spatial administration and 

documentation with DB2 UDB. 
Each of these capabilities will be addressed in more detail 
below. 

5.1 Standards-based geometry model 

The DB2 UDB object-relational capability allows a 
developer to define new user-defined structured types 
(UDT) composed of existing relational types, sub-types 
that inherit and extend user-defined types and to provide 
user-defined functions (UDF) at the appropriate levels in 
the type hierarchy.  The DB2 Spatial Extender builds on 
this to define spatial datatypes and functions that conform 
to the ISO spatial standard. 

One of the first steps is to create the user-defined types 
corresponding to each of the geometry types defined in 
the ISO spatial standard.  It also creates all of the 
functions associated with the geometry types.  This is all 
performed by invoking a stored procedure to spatially-
enable the database. 

Figure 2 shows the type hierarchy that is created.  The 
shaded boxes indicate types that are not instantiable, 
similar to an abstract class in object-oriented terminology.  
Non-instantiable types can be specified as database 
column types and can have functionality associated with 
them.  For example, a column of type ST_Geometry can 
contain values of ST_Point, ST_LineString, ST_Polygon, 
etc.  The unshaded boxes indicate types that can be 
directly instantiated. 

 
Fig 2 – Spatial datatypes 
 

With this capability, we could define tables such as: 
CREATE TABLE STORES ( 

SNAME CHAR(20), 
REVENUE DOUBLE,  
TERRITORY  ST_POLYGON) 

and 
CREATE TABLE CUSTOMERS  ( 

CNAME CHAR(20), 
  LOCATION ST_POINT)  

 

5.2 Standards-based geometry functionality 

The ST_Geometry type has associated with it 20 
functions such as ST_AsText, ST_Distance, 
ST_Intersects, etc which are applicable to all sub-types.  
Each of the subtypes has additional type specific 
functionality.  For example, ST_Polygon has functions 
such as ST_Area and ST_Centroid that are specific to this 
type. 

If we wanted to get a list of customers within the 
territory of each store ordered by store revenue, we could 
write an SQL query like: 
SELECT SNAME, CNAME 

FROM CUSTOMERS, STORES 
WHERE  

ST_Intersects(TERRITORY,LOCATION)=1 
ORDER BY REVENUE 
 
Constructor functions are provided to easily create 

geometry values from standard datatypes. For example: 
 

1. ST_Point(-73.5, 42.3) 
or 

2. ST_LineFromText(‘linestring(10 10, 20 20)’) 
 

The first example creates an ST_Point value from two 
numeric values representing the longitude and latitude. 

The second example creates an ST_LineString value 
using what is defined in the OGC and ISO standards as 
the “well-known text” representation for each of the 
geometry types, a character string containing coordinate 
pairs. 

Similarly, any geometry can be returned to the 
application as a character string in “well-known text” by 
using the method ST_AsText. 

5.3 Spatial indexing 

The multi-dimensional nature of spatial data is not 
amenable to efficient indexing by directly using the B-tree 
commonly used for alphanumeric data in RDBMS. 

There are many indexing approaches for spatial data, 
the most common of which include “grid” (used by DB2 
Spatial Extender), “quadtree” and “R-tree” which attempt 
to cluster spatial data by proximity. 

Although the Second Generation and Third Generation 
GIS environments both use the same types of spatial 
indexing, by implementing the spatial index within the 
RDBMS, it is possible to incorporate this index 
knowledge into the query optimization, as implemented in 
DB2 UDB V7.  This can result in significantly better 
query performance. 



5.4 Spatial data import / export 

There is a large body of existing spatial data that is 
available via the Internet or on physical media in shapefile 
format, a de-facto spatial data standard defined by 
Environmental Systems Research Institute (ESRI).  

The DB2 Spatial Extender provides a utility that can 
import data in shapefile format, creating the appropriate 
table and populating both alphanumeric and spatial 
columns. 

Similarly, any table containing a spatial column can be 
exported to shapefile format for use with other 
applications. 

5.5 Geocoding  

As described above, geocoding is the process of 
converting an address to a geographic location.  When a 
spatial column is defined, the developer can associate a 
geocoder that will take as input other columns containing 
the street address.  The geocoder can either be run in 
batch mode, processing all rows in the table, or in 
automatic mode, when triggers defined on the address 
columns detect that a value has changed. 

A default geocoder for the United States is provided 
but geocoders for other countries and with other 
characteristics can be registered using an open interface. 

5.6 Integration with DB2 UDB 

DB2 UDB provides a graphical user interface (“Control 
Center”) for administering databases.  One can create 
databases and tables, perform backup/recovery, etc.  
When the DB2 Spatial Extender is installed, spatial-
specific functionality is integrated smoothly with the 
Control Center to perform operations like spatially-
enabling a database, specifying a geocoder or adding a 
spatial column to a table.  An example is shown in Fig 3. 

The DB2 Spatial Extender documentation is installed 
and made available through the DB2 Information Center, 
a common interface for accessing task, reference, 
troubleshooting and other information. 

 
Fig. 3 – DB2 UDB Control Center 

6.   Conclusion 

A large segment of the VLDB community is focused on 
techniques for improving the function and performance of 
Data Warehousing, Data Mining and OLAP applications 
implemented with an RDBMS. 

By providing a native spatial data capability within the 
RDBMS, a new dimension is added which can be 
exploited for each of these application areas, extending 
the business intelligence possibilities for VLDBs. 

Emerging technologies such as wireless location-
based services can generate huge volumes of spatial data.  
Assuming that the privacy issues are addressed, one can 
imagine applications that mine a log of all cellular phone 
or PDA transactions to develop marketing campaigns 
based on call location.  This type of application would 
now be possible with DB2 Spatial Extender. 

 

7.   References 

 
[1] Daratech. Geographic Information Systems Markets 

and Opportunities. Daratech, Inc., 2000. 
[2] IBM. geoManager® Relational Database System 

General Information.  June 1990. 
[3] ESRI Spatial Database Engine.  

http://www.esri.com/software/sde/index.html 
[4] Mina Chebel. MapInfo SpatialWare® a Spatial 

Information Server for RDBMS, Proceedings of 
the 24th VLDB Conference, New York, USA, 1998.   
http://www.vldb.org/dblp/db/conf/vldb/Mina98.html 

[5] U.S. Census Bureau.  http://tiger.census.gov 
[6] OpenGIS Consortium, Inc. OpenGIS® Simple 

Features Specification for SQL, Revision 1.1. 
OpenGIS Project Document 99-049.  May 1999. 

[7] ISO Final Draft International Standard, Database 
Language SQL – Part 2: Foundation, ISO/IEC 
FDIS 9075-2:1999, March 1999. 

[8] ISO International Standard, Information 
technology - Database languages - SQL 
Multimedia and application packages - Part 3: 
Spatial, ISO/IEC 13249-3:1999, December 1999. 

[9] IBM DB2 Spatial Extender.  
http://www.software.ibm.com/data/spatial. 

 
 

 


