
Navigating large-scale semi-structured data in business
portals

Mani Abrol Neil Latarche Uma Mahadevan Jianchang Mao Rajat Mukherjee
Prabhakar Raghavan Michel Tourn John Wang Grace Zhang

Verity, Inc. 892 Ross Drive, Sunnyvale, CA 94089
{nlatarch,jmao,rmukherj,pragh,jwang,gzhang} @verity.com

Abstract

This paper presents several paradigms by
which users of Verity business portals (from
within as well as from outside an enter-
prise) discover and navigate relevant semi-
structured data in corpora with millions of
documents. These paradigms include (i) com-
bining free-text and structured queries, (ii)
automatic classification, and (iii) personaliza-
tion.

1 Introduction

It is estimated that there are about 4 billion static web
pages on the internet. The web is rapidly growing at
a rate of about 7.3 million new pages per day [2]. In
fact, the information in enterprises dwarfs the volume
and growth on the web, as evident from trends in the
growth of storage shipments. The enormous growth
stems from documents on corporate file systems, ap-
plication servers, and various data bases. In order to
provide users unified access to this vast amount of in-
formation, business portals have become increasingly
popular.

The following characteristics are typical of business
portals:
1. The need to access information in diverse repos-

itories including file systems, HTTP web servers,
Lotus Notes, Microsoft Exchange, content man-
agement systems such as Documentum, as well as
relational databases.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

2. The need to respect fine-grained individual access
control rights, typically at the document level;
thus two users issuing the same search/navigation
request may see differing sets of documents due to
the differences in their privileges.

3. The need to index and search a large variety
of document types (formats), such as PDF, Mi-
crosoft word and Powerpoint files, etc., and dif-
ferent languages (such as, English, European and
Asian languages).

4. The need to seamlessly and scalably combine
structured (e.g., relational) as well as unstruc-
tured information in a document for search, as
well as for organizational purposes (clustering,
classification, etc.) and for personalization.

We briefly review how these features are addressed
in Verity’s flagship K2 Enterprise product for busi-
ness portals. The first two items above are handled
through “gateway” interfaces for each repository, in-
gesting access control information as documents are
spidered from the repository. Verity provides state-
of-the-art spider and gateway technologies which al-
low users to gather and index documents from HTTP
web servers, file systems, Lotus Notes, Microsoft Ex-
change, Documentum, and various ODBC databases.
K2 Enterprise incorporates Verity’s KeyView technol-
ogy that can automatically detect and filter over 250
document formats. Comprehensive multiple-language
capabilities allow users to search documents in 24 lan-
guages. This paper will not discuss these technologies.
Our focus here will be on the fourth item: organiz-
ing, searching and navigating a corpus of millions of
documents containing semi-structured information.

We discuss three principal methods for this purpose,
drawn from Verity’s K2 Enterprise portal infrastruc-
ture product.
1. Arbitrary combinations of text and data cube

queries. Consider the query: Give me documents
that contain the term “LAN”, are of type “product
sheet”, language “French”, format “pdf”, prod-
uct family “routers”, speed 10Mbps, price <
1000. Clearly this query has a text/unstructured

component (to match the term “LAN”) as well
as a structured component (the restrictions on
type, language, format, product family, speed and
price). We discuss how Verity’s Parametric Search
Engine handles this type query in Section 2.

2. Automatically classifying documents by textual
content as well as structure derived from meta-
data. Verity’s automatic classifier can classify
documents based on any combination of human-
maintained rules or rules “learned” from exem-
plary documents; depending on the domain and
expertise of those maintaining the information in
a business portal, one or the other method is em-
phasized. This is discussed in Section 3.

3. Delivering personalized views of information by
re-ranking search results, recommending docu-
ments to a user, locating experts on the query
subject, and discovering community. Both ex-
plicit profile information and implicit behavioral
patterns are exploited in the personalization en-
gine. This is discussed in Section 4.

2 Combined Text and Structured
Queries

In product catalog databases, each document (corre-
sponding to a product in the catalog) has some un-
structured text as well as a number of structured at-
tributes. Note that some of these attributes may as-
sume numerical values; for instance, a description of
an automobile might have the year in which the car is
manufactured and its price. A typical query is a con-
junction of an arbitrary text query (e.g., the query
mentioned in the introduction). Whereas the text
query is the purview of classical information retrieval
systems, the parametric query is traditionally handled
using relational database systems. In a number of
emerging applications, it is desirable to retrieve and
rank documents that simultaneously meet both the
unstructured and the structured query components,
without recourse to two retrieval systems. Such appli-
cations include electronic commerce and marketplaces
where scalability and performance play critical roles.
Using an RDBMS to solve the problem would result
in query responses that would be unacceptably poor.
In addition to retrieving documents that meet the text
and parametric queries in a scalable fashion, it is im-
portant to be able to rank the results not only by text
query scores, but also by sorting along field values
(e.g., price). This allows for the efficient navigation
of a results list, allowing the user to further refine (or
relax) the query at hand.

Our solution consists of augmenting a full-text in-
dex with an auxiliary parametric index that allows for
fast search, navigation and ranking of query results.
We now describe the elements of this index, and how
they are organized in order to support all of the oper-
ations described above.

Each field is represented as a set (known as a Buck-
etSet) and each unique item in that field is represented
as a member of that set along with position and fre-
quency information (this datum is known as a Bucket).
A set of BucketSet structures make up a completed
structure known as the parametric index which maps
directly to the corpus from which it was generated.
Extra meta-data are stored along with the BucketSets
to allow ranges (either text, numeric or date) to be ex-
tracted for speed, enhanced data retrieval and clarity.

It is the mechanism by which the BucketSets and
Buckets interact (through their parametric represen-
tation) that allows complex set operations (based on
nested intersects and unions) to be applied to them.
This mechanism results in: (a) real time cardinality
statistics for these operations, and (b) an iterative re-
finement of the operations applied to the database,
which can result in the reduction of old Buckets and
the inclusion of new Buckets (depending on the se-
mantics applied). In the simple case where A and B
are both Buckets of the same set, “A

⋂
B” can remove

items, whilst “A
⋃

B” can add items.
We can also express the text search in the para-

metric domain (i.e., a text search maps to a Bucket-
Set where each item (hit) is considered as a separate
unique Bucket in that set with no context until applied
to a parametric index). Both kinds of BucketSets can
interact with the same set of operators. Extra speed
is obtained by performing query optimizations in real
time – for instance, by examining the relative sizes
and complexities of the BucketSets when intersecting
them and ensuring that the smallest or least complex
(when taking into account the free text representation)
controls the query optimization. The text search com-
ponent is built on Verity’s VDK kernel [5] with a K2
search engine on top [3].

The system has been tested on numerous examples
with over a million documents with 6-10 fields of struc-
tured attributes. Interactive performance is feasible
for several concurrent users, using a standard desktop
PC as the server.

3 Automatic Classification

While searching provides an efficient way for users to
find relevant information in business portals if they
know what to search for, there is a different need for
browsing and navigating information. Taxonomies are
the most popular way for organizing documents into
navigable structures. With a taxonomy, users can
easily navigate / sift through the category hierarchy
to find relevant information. Search within a cate-
gory typically produces more relevant results than un-
scoped search.

There are two main phases in deploying taxonomies
in a portal environment: taxonomy construction, and
maintenance. The former defines the category hierar-
chy, and the latter populates documents into the tax-

onomy once it is built, and modify the taxonomy struc-
ture when needed. Verity refers to a populated taxon-
omy as a knowledge tree which consists of a taxonomy
of browsable categories and databases that store the
relationships of documents and categories.

Taxonomy construction and maintenance is a chal-
lenging problem that works best with sufficient domain
knowledge. Fully automatic construction and main-
tenance often leads to unsatisfactory results. Con-
sequently, most taxonomies are built and maintained
manually by human experts. Well-known examples in-
clude the directory structures of Yahoo! and Open Di-
rectory Project. Manual classification produces higher
accuracy than machine because library scientists un-
derstand the content, context and nuances of domain
information. However, manual population of a large
volume of documents is a prohibitive task, and is very
costly.

Verity’s Intelligent Classification technology com-
bines human intellect and machine efficiency, thus
strikeing a balance between manual construction and
automatic generation. Depending on the domain and
expertise of those maintaining the information in a
business portal, one or the other method can be em-
phasized.

Verity Intelligent Classifier [6] provides several tax-
onomy construction methods, each of which can also
be used to categorize documents into a taxonomy, i.e,
to generate a knowledge tree:
1. Construct a taxonomy manually through Verity

Intelligent Classifier’s graphic user interface;
2. Extract a hierarchy of categories of a taxonomy

from URL paths or file paths; This method en-
ables administrators to mirror the web site or file
system structure in the taxonomy.

3. Fetch categories from a collection field (e.g., meta
data); This method can be used when the cate-
gories are explicitly listed in a field in the collec-
tion. This is the case, for example, when cate-
gories are specified in a META tag inside HTML
documents that is indexed into a collection field.

4. Generate a taxonomy from document clusters pro-
duced by Verity’s clustering algorithm. Each doc-
ument in the collection (or in a selected subset)
is represented by a feature vector. The clustering
algorithm groups similar documents into clusters.
A hierarchy of clusters are generated by recur-
sively breaking large clusters into smaller clusters.

Verity Intelligent Classifier provides the following
methods for defining classification rules for each cate-
gory in the taxonomy.
1. Manually construct classification rules using Ver-

ity’s powerful query language;
2. Learn classification rules for categories automati-

cally from exemplary documents associated with
these categories in the taxonomy;

3. Interactively refine classification rules by provid-
ing relevance feedback to the test results of previ-
ously built rules.

The core technology that supports these automatic
features is Verity’s regularized Logistic Regression
Classifier (LRC). LRC automatically learns a classi-
fication rule from a set of documents that are labelled
as relevant or irrelevant to a category. Let a document
be represented by a feature vector x = [t1, t2, · · · , td]T ,
and r be the relevancy measure of the document with
respect to the topic, 0.0 ≤ r ≤ 1.0. Given a set of
relevant documents and a set of irrelevant documents
for a category, the LRC learning algorithm learns a
regression function

log(r/(1− r)) = w1t1 + w2t2 + + wdtd + b = f(w,x)

such that the separation between these two sets of doc-
uments is maximized. This is done by introducing a
regularized term ||w||2 in the cost function. Structure
risk minimization theory [7] guarantees a minimized
upper bound on the classification error on future doc-
uments.

Once the regression function is determined, a fu-
ture document can be assigned to the category if the
relevancy score r for the document is greater than a
pre-specified threshold (usually 0.5). The relevance
score can be computed as follows.

r = 1/(1 + exp{−f(w,x)})
This classification rule can be conveniently represented
by Verity’s powerful query language. Our experi-
ment shows that on Reuter’s bench-marking data set,
LRC achieves the state-of-the-art performance at 88%
precision-recall break-even rate [1].

Once a knowledge tree is defined in Verity Intelli-
gent Classifier, it can be exported to Verity Knowl-
edge Organizer [4]. Administrators can configure how
to display search results and the category structure to
end users. End-users can browse through the docu-
ments in a collection by category and drill down to a
subject of interest. They can also limit the scope of
their searches only to the categories of interest.

4 Personalization Engine

The Verity Personalization Engine enhances the end-
user’s information discovery, or product discovery ex-
perience to the next level beyond search and tax-
onomies. It uses a tensor space model that represents
different entities in the system, such as products, docu-
ments, users and queries as vectors in the vector space.
These vectors adapt to latent patterns in user behav-
ior in order to dynamically personalize the results of
subsequent searches in different ways, as outlined be-
low.

By tracking user choices, or transactions, in a con-
figurable manner, the engine allows for refinement of

search, allowing usage feedback to overcome the va-
garies intrinsic in data sets, and allowing search results
to adapt over time to domain specific knowledge. Fur-
ther, by tracking individual user behavior, the engine
effectively constructs user profiles so that effective and
representative recommendations can be served.

A Transaction comprises a set of vectors that are
updated in the engine in such a way that reduces the
distance between them. Some examples of transac-
tions are:

User <joe> bought <Toaster X> upon query
<“toaster”>

User <john> viewed <Document Y> upon
query <“personalization”>

Figure 1 depicts the vector space, with multiple vec-
tor entities, and the effects on this vector space of
transactions that explicitly feed back user choices to
the personalization system.

Figure 1: Effects of Transactions on Vector Space.

Figure 2 shows the relationships between the en-
tities that the Personalization Engine currently sup-
ports. Other types of vector entities can be supported
by this technology in the future, e.g., cluster/category
vectors, etc. These relationships result in the following
features that the personalization engine supports.

• Adaptive Ranking - multiple selections of an item
for a given query causes the relevance of the item
to be boosted for all users.

• Product/Document Recommendation - Prod-
ucts/Documents are recommended based on a
combination of the current query and the user in-
formation, based on the user’s past behavior.

• Document/Product Similarity - Documents or
products that are similar to a selected item are
recommended.

• Expert Location - Based on a document that is
being viewed, or a query that has been issued, ex-
perts/users in the organization are recommended,
based on the proximity to the subject area.

• Community - A dynamic user community can be
presented, based on the current user’s profile, and
possibly, other information.

Figure 2: Functions Supported by the Personalization
Engine.

5 Conclusions

We have presented three principal methods, drawn
from Verity’s K2 Enterprise family of portal infras-
tructure products, for searching, navigating, organiz-
ing, and personalizing information resided in a cor-
pora of millions of semi-structured documents. Ver-
ity’s Parametric Search Engine is capable of serving
arbitrary combinations of text and data cube queries
without hitting any back-end databases. Verity’s In-
telligent Classifier balances the best of human exper-
tise and the state-of-the-art machine learning algo-
rithm to efficiently and accurately classify information
for easy navigation and scoped searches. Our Per-
sonalization Engine uses an innovative tensor space
model to provide various personalized services, includ-
ing adaptive re-ranking, recommendations, expert lo-
cation, and community discovery.

References

[1] Susan T. Dumais, John Platt, David Heckerman,
and Mehran Sahami. Inductive learning algorithms
and representations for text categorization. In
Georges Gardarin, James C. French, Niki Pissinou,
Kia Makki, and Luc Bouganim, editors, Proceed-
ings of CIKM-98, 7th ACM International Confer-
ence on Information and Knowledge Management,
pages 148–155, Bethesda, US, 1998. ACM Press,
New York, US.

[2] Cyveillance Inc. Sizing the internet. July 2000.

[3] Verity Inc. K2 Toolkit (K2): API Reference Guide.
V2.0. 1999.

[4] Verity Inc. Knowledge Organizer, V2.0. 2000.

[5] Verity Inc. Verity Developer Kit (VDK): API Ref-
erence Guide. V3.1. 2000.

[6] Verity Inc. Intelligent Classifier, V2.6. 2001.

[7] V. Vapnik. The Nature of Statistical Learning The-
ory. Springer-Verlag, 1995.

