
Warehousing Workflow Data: Challenges and Opportunities

Angela Bonifati

Politecnico di Milano
Via Ponzio 34/5
20133 Milano

Italy
bonifati@elet.polimi.it

Fabio Casati, Umesh Dayal, Ming-Chien Shan

HP Labs
1501 Page Mill Road
Palo Alto, CA, 94304

USA
[casati,dayal,shan]@hpl.hp.com

Abstract

Workflow management systems (WfMSs) are
software platforms that allow the definition,
execution, monitoring, and management of
business processes. WfMSs log every event that
occurs during process execution. Therefore,
workflow logs include a significant amount of
information that can be used to analyze process
executions, understand the causes of high- and
low-quality process executions, and rate the
performance of internal resources and business
partners. In this paper we present a packaged
data warehousing solution, coupled with HP
Process Manager, for collecting and analyzing
workflow execution data. We first present the
main challenges involved in this effort, and then
detail the proposed approach.

1. Introduction and motivations

Workflow Management Systems (WfMSs) are being
increasingly used by many companies to improve the
efficiencies of their processes and reduce costs . WfMSs
log many events that occur during process executions,
including the start and completion time of each activity,
its input and output data, and the resource that executed it.
The analysis of such precious information could allow
business and IT manager to detect problems and
inefficiencies, and to identify solutions. However, most
WfMSs only offer basic log analysis functionality, such as
the ability of retrieving the number of process instances
completed in a given time period and their average
execution time. To get more comprehensive reports, users

have to configure commercial reporting tools and write
queries on the logs to retrieve data of interest.

While this approach does provide basic reporting
functionality, it requires a considerable configuration
effort (it is very difficult to write the “right” queries and
to extract the desired information). In addition, WfMSs
logs were not designed for OLAP applications, may
contain incorrect information that must be checked and
cleaned1, and do not provide support for aggregating data
from multiple data sources.

In order to overcome the above limitations, we
designed and implemented a warehouse of workflow
execution data (called Workflow Data Warehouse, or
WDW in the following). The goal of our work was to
develop a packaged solution, optimized for HP Process
Manager (HPPM) but generally applicable to any WfMS.
Hence, the WDW must be easy to install and use, and
must perform adequately under different conditions, (e.g.,
different log sizes, or different data loading and
aggregation requirements). In addition, the problem of
warehousing workflow data present several challenges:
− Multiple related fact types. Workflow executions

may generate different kinds of facts about workflow
activities, resources, and instances. These facts are
related among each other. For example, activities are
executed in the context of a specific workflow
instance. The presence of multiple, related types of
facts affects both the design of the warehouse schema
and the data loading process, due to the need of
ensuring semantic correctness, avoiding information
loss, and guaranteeing an acceptable performance.

− Conceptually complex aggregations: the definition of
summary tables is a complex problem in itself. As an
example, the problem of generating aggregate data
that allow rating workflow resources has been the
subject of an entire research internship at HP.

1 For example, some WfMS may write special codes in the
activity completion time (e.g., Jan 1, 1970) to denote failures.
The presence of a single occurrence of this value, if not
appropriately handled, would invalidate any aggregate data
concerning the activity execution time.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

− Diversity and evolution management: Workflow
models are in continuous evolution, and commercial
products often add new features to the model they
support. While it is possible to focus the design on
current models, the drawback is that even simple
modifications to the workflow models may require a
major warehouse redesign effort. In addition, the
WDW should ideally be able to host data from any
WfMS, in addition to HP Process Manager

In this paper we present the design of the WDW and

detail how we addressed these challenges. Due to space
limitations, we omit a discussion on workflow models and
workflow execution logs. The interested reader is referred
to [Leymann00] for an introduction to workflows, to
[HPPM-PD] for the specific of the HPPM process model,
and to [HPPM-TR] for the HPPM logs.

The development of a workflow data warehouse is
part of a larger effort, aiming at developing a Business
Process Intelligence (BPI) solution. The goals of BPI are
to enable business and IT users to extract knowledge
hidden in the WfMS logs and to be alerted of critical
situations or foreseen quality of service degradations. An
additional, long-term goal is the ability of dynamically
optimizing workflow definitions and executions. Details
on the BPI effort are provided in [Casati01].

2. Warehouse Design
Following "traditional" data warehousing techniques, we
structure the WDW design according to a (relational) star
schema, where data are described in terms of " facts" to be
analyzed and "dimensions", i.e., perspectives under which
the facts are analyzed. A design based on a star schema
enables multidimensional analysis and allows the use of
many query optimization techniques.

We have worked with customers and consultants to
identify the structure and relationships of facts and
dimensions in order to optimize performance for many
typical analysis needs. The WDW design is summarized
in Figure 1. Workflow dimensions are shown in the
Figure and not detailed further due to space limitations.
They are relatively stable across workflow models and do
not present particular issues. The only exception is
represented by the behavior dimension, which is very
useful for analysis and will be detailed later in the paper.
Instead, we next examine workflow facts.

2.1 Process and Node facts

In a business process, happenings of interest are changes
in the process and node execution states. Hence, we
consider state changes as the facts of the warehouse.
WDW only includes facts about completed process
instances, to simplify data archival and loading and to
provide a simple framework in which to analyze data.

The definition of the structure and relationship among

facts is complicated by the variety of node types present
in most workflow models. For instance, the HPPM
process model includes a work and a route node, to model
service invocation and routing decisions, respectively.
These nodes have different attributes that need to be
described in the WDW schema. For example, a work node
execution may be related to the service invoked or to the
resource that executed the service, while a route node
execution may be characterized by the set of arcs fired. In
addition, different workflow models (or different versions
of the same model) may have different types of nodes, as
well as different attributes for a process. Hence, we are
faced with the problem of designing fact tables so that all
process and node facts can be represented, while still
enabling easy maintenance and satisfactory performance.

NodeFacts
ID
NodeInstanceID
ProcessInstanceID
ProcessDefinitionID
ProcessGroupID
ServiceDefinitionID
ServiceGroupID
NodeDefinitionID
NodeGroupID
TimeID
ResourceID
ResourceGroupID
Timestamp
OldState
NewState
DurationInState

ProcessFacts
ID
ProcessDefinitionID
ProcessGroupID
NodeDefinitionID
NodeGroupID
TimeID
ResourceID
ResourceGroupID
Timestamp
OldState
NewState
DurationInState

Model-specific
ProcessFactsA

Model-specific
ProcessFactsB

...

Node type-specific
NodeFactsA

Node type-specific
NodeFactsB

...

Resources

Time

NodeDefinitions

NodeGroups

ResourceGroups

ServiceDefinitions

ProcessDefinitions

ProcessGroups

ServiceGroups

Node Data facts ProcessData facts

ProcessBehaviors

Behaviors

Figure 1 - WDW schema. Facts are depicted with a thicker
border, while dimensions have a thin border

In order to address this issue, we designed generic
(node type- and model-independent) fact tables that
include not only attributes common to most models or
node types, but also attributes often needed by typical
queries (although they may have null values for some

workflow models or node types). In this way, most data
aggregation and reports can be computed based on this
table, thereby simplifying view definitions and avoiding
the need of joining several tables to compute the results
(see Figure 1). Facts tables that are specific to a node type
or to a process model can also be added to the warehouse,
to allow storing attributes that are not included in the
generic tables but that can be occasionally required for
specific reporting needs.

An additional problem to be handled is modeling data
modifications. In fact, changes to process instance data
could be of interest to the analyst. For instance, analysts
may want to observe facts related to purchases of cars
above 20,000$. Data modifications are not included in the
process and node fact tables. In fact, different processes
and nodes modify different data. Hence, it is unfeasible to
store them horizontally in the relation. Instead, data
modifications are stored in the ProcessDataFacts and
NodeDataFacts relations, that include tuples detailing the
process or node state change in correspondence of which
the data modification occurred (e.g., a node completion),
the data item name, and the old and new value.

Note that in general there is no need to log all data
items. The analyst may only be interested in a fraction of
them, and complete data logging could be a very heavy
burden for the warehouse. Hence, WDW administrators
can specify which data modifications are to be loaded,
based on the data item name, and on the process and work
node in the context of which the modifications take place.

2.2 Behaviors

The availability of process and node information in the
WDW enables many data analysis functionalities.
However, more interesting information can be extracted
by including in the WDW data at a higher level of
abstraction. Indeed, very frequently, analysts are not only
interested in analyzing node activations and data
modifications. Instead, they want to analyze process
instances that exhibit specific behaviors, and to
understand the causes of such behaviors. Examples of
behaviors of interest are supply chain process instances
that last more than 20 days, Expense Approval process
instances that include more than 3 approval cycles, Claim
Management instances in which node "Examine
expenses" was executed by a manager, or processes
instances related to order for goods over 20,000$.

The WDW approach is agnostic about the behaviors
that users may be interested in analyzing. Indeed, we
allow users to define the behaviors to be monitored. The
system will then take care of identifying which processes
exhibit a specific behavior and of analyzing them.

Behavior types are (conceptually) defined by Boolean
conditions over process and node execution data available
in the warehouse. Behavior conditions are parametric, and
can be configured to monitor a specific behavior for a
specific process definition. Completed process instances

for which the condition is true are considered as being
affected by the behavior. For instance, a ProcessDuration
behavior type may be defined as “instance of a process
definition PD that lasts more than D days”. In this case,
PD and D are parameters that can be defined to detail
which processes should be monitored and the exact
behavior to be detected. Multiple specific behaviors to be
monitored (on different processes) can be defined for each
behavior type, and a process can be analyzed for multiple
behaviors. In the prototype implementation, conditions
are defined by SQL scripts that label process instances
affected by the exceptional behavior under consideration.

Processes to be monitored and behavior configuration
parameters are stored in a behavior type-independent
table. The table includes many attributes, to allow the
configuration of a variety of behavior types. If a
parameter is meaningless for a behavior type, then it is
left unspecified. Labeling information are detected by
executing the scripts on warehouse data and by storing the
results in a ProcessBeahvior table that couples process
instance identifiers with behavior identifiers.

WDW includes a wide set of built-in behavior types,
such as processes lasting less (more) than a specified
duration, being in the slowest (fastest) x%, including more
(less) than n activations of a specific work node WN, or in
which work node WN has (not) been executed by a
resource in group G. Users can define new behavior types
by simply providing the corresponding script.

Figure 2 – Analysis of correlations among behaviors.

By detecting behaviors of interest, analysts can
perform multidimensional analysis to understand the
causes of "good" and "bad" process executions, and take
actions accordingly. In particular, a very useful analysis
consists in examining correlations among behaviors. The
WDW includes a set of views that supports users in this
analysis. As an example, Figure 2 shows a report build
with Oracle Discoverer through a simple projection query
on a WDW view. The report shows the analysis for a
behavior B of ProcessDuration type, configured to detect
instances in the slowest 10% for the Expense Approval
process. The report shows which other behaviors were
detected in instances affected by behavior B, and what are
the correlated2 and uncorrelated behavior hit rates.

2 I.e., the percentage of instances affected by a behavior b1
among those also affected by behavior b2.

Load

WfMS-A Logs

Clean 1

WfMS-A Logs

… Clean n

Transform

Load

WfMS-B Logs

Clean 1

WfMS-B Logs

… Clean n

Transform

Shadow
WDW

Clean 1 … Clean n Detect
Behaviors

WDW
Load WDW

Figure 3 – WDW load process. Optional components are depicted with a dashed border

This kind of analysis is very useful in showing cause-
effect relationships among behaviors, and therefore in
identifying the causes of behaviors. An extension of this
approach is presented in [Casati01], where business
intelligence techniques are used to provide a more
automated discovery of the causes of behaviors, although
at the price of increased complexity and cost, due to the
need for data mining tools and techniques.

2.3 Views

One of our design requirements was to make it very easy
for users to obtain reports from the WDW. For this
reason, the WDW includes a large set of views (providing
partially overlapping and redundant information), to
account for the large majority of reporting needs. Analysts
only need to write simple projection and selection queries
to get the report they need. In addition, we provide
configuration files for the most common reporting tools,
such as Oracle Discoverer or MS Excel, so that using the
WDW requires minimum configuration effort.

In order to provide acceptable performance while at
the same time avoid explosion in disk space usage,
reporting views are not materialized. Instead, a smaller set
of materialized views is defined, joining and aggregating
data in different ways to support the needs of several
reporting views. Through the query rewrite mechanisms,
Oracle automatically uses materialized views (where
possible) to speed up queries on the reporting views,
thereby reducing the execution time.

3. Loading the Workflow Data Warehouse
We now describe the process of extracting data from
workflow logs and loading the WDW, shown in Figure 3.
This process is performed by a set of ETL scripts
provided with the WDW. We assume that log data are
available in the form of log files, extracted from WfMS
logs (typically stored in relational databases). The first
step consists in extracting data from the files and restoring
the content in relational format. Then, a sequence of
cleaning operations can be applied. WDW provides a set

of data checking/cleaning modules that process data
without changing the structure. The advantage of this
approach is that cleaning modules can be plugged in and
out depending on the cleaning needs of the users. The
addition of each cleaning module causes delays in the
load process, but can guarantee data consistency, absence
of duplicates, and other properties that are crucial for
WDW integrity.

Data are then inserted into WDW shadow database,
i.e., a database that has the same schema of WDW.
Preparing shadow table instead of directly loading the
warehouse has several motivations:
− Once data are in the shadow table, then the WDW

can be quickly loaded by means of simple inserts or
partition exchanges, reducing the WDW downtime.

− Shadow tables have a WfMS-independent schema,
and can be used to execute, WfMS-independent
cleaning operations

− Dimensions as well as relationships between facts
and dimensions can be computed from the shadow
tables. For example, shadow tables can be used to
collect timestamps of facts, and load the Time
dimension table, to extract load statistics and to
perform higher-level operations, such as detecting
behaviors.

Once cleaning and transformation operations have
been completed, data are loaded into the WDW.

4. References
[Casati01] F. Casati, U. Dayal, D. Grigori, M.C. Shan.
Improving Business Process Quality through Exception
Understanding, Prediction, and Prevention. Procs. of
VLDB'01, Rome, Italy. Sept. 2001

[HPPM-PD] Hewlett-Packard. HP Changengine Process
Design Guide. Edition 4.4. 2000

[HPPM-TR] Hewlett-Packard. HP Changengine
Technical Reference Guide. Edition 4.4. 2000

[Leymann00] F. Leymann, D. Roller: Production
Workflow. Prentice-Hall, 2000.

