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Abstract 

Workflow management systems (WfMSs) are 
software platforms that allow the definition, 
execution, monitoring, and management of 
business processes. WfMSs log every event that 
occurs during process execution. Therefore, 
workflow logs include a significant amount of 
information that can be used to analyze process 
executions, understand the causes of high- and 
low-quality process executions, and rate the 
performance of internal resources and business 
partners. In this paper we present a packaged 
data warehousing solution, coupled with HP 
Process Manager, for collecting and analyzing 
workflow execution data. We first present the 
main challenges involved in this effort, and then 
detail the proposed approach. 

1. Introduction and motivations 

Workflow Management Systems (WfMSs) are being 
increasingly used by many companies to improve the 
efficiencies of their processes and reduce costs . WfMSs 
log many events that occur during process executions, 
including the start and completion time of each activity, 
its input and output data, and the resource that executed it. 
The analysis of such precious information could allow 
business and IT manager to detect problems and 
inefficiencies, and to identify solutions.  However, most 
WfMSs only offer basic log analysis functionality, such as 
the ability of retrieving the number of process instances 
completed in a given time period and their average 
execution time. To get more comprehensive reports, users 

have to configure commercial reporting tools and write 
queries on the logs to retrieve data of interest.  

While this approach does provide basic reporting 
functionality, it requires a considerable configuration 
effort (it is very difficult to write the “right” queries and 
to extract the desired information). In addition, WfMSs 
logs were not designed for OLAP applications, may 
contain incorrect information that must be checked and 
cleaned1, and do not provide support for aggregating data 
from multiple data sources.  

In order to overcome the above limitations, we 
designed and implemented a warehouse of workflow 
execution data (called Workflow Data Warehouse, or 
WDW in the following). The goal of our work was to 
develop a packaged solution, optimized for HP Process 
Manager (HPPM) but generally applicable to any WfMS. 
Hence, the WDW must be easy to install and use, and 
must perform adequately under different conditions, (e.g., 
different log sizes, or different data loading and 
aggregation requirements). In addition, the problem of 
warehousing workflow data present several challenges: 
− Multiple related fact types. Workflow executions 

may generate different kinds of facts about workflow 
activities, resources, and instances. These facts are 
related among each other. For example, activities are 
executed in the context of a specific workflow 
instance. The presence of multiple, related types of 
facts affects both the design of the warehouse schema 
and the data loading process, due to the need of 
ensuring semantic correctness, avoiding information 
loss, and guaranteeing an acceptable performance.   

− Conceptually complex aggregations: the definition of 
summary tables is a complex problem in itself. As an 
example, the problem of generating aggregate data 
that allow rating workflow resources has been the 
subject of an entire research internship at HP.  

                                                                 
1 For example, some WfMS may write special codes in the 
activity completion time (e.g., Jan 1, 1970) to denote failures. 
The presence of a single occurrence of this value, if not 
appropriately handled, would invalidate any aggregate data 
concerning the activity execution time. 
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− Diversity and evolution management: Workflow 
models are in continuous evolution, and commercial 
products often add new features to the model they 
support. While it is  possible to focus the design on 
current models, the drawback is that even simple 
modifications to the workflow models may require a 
major warehouse redesign effort. In addition, the 
WDW should ideally be able to host data from any 
WfMS, in addition to HP Process Manager    

 
In this paper we present the design of the WDW and 

detail how we addressed these challenges. Due to space 
limitations, we omit a discussion on workflow models and 
workflow execution logs. The interested reader is referred 
to [Leymann00] for an introduction to workflows, to 
[HPPM-PD] for the specific of the HPPM process model, 
and to [HPPM-TR] for the HPPM logs.  

The development of a workflow data warehouse is 
part of a larger effort, aiming at developing a Business 
Process Intelligence (BPI) solution. The goals of BPI are 
to enable business and IT users to extract knowledge 
hidden in the WfMS logs and to be alerted of critical 
situations or foreseen quality of service degradations. An 
additional, long-term goal is the ability of dynamically 
optimizing workflow definitions and executions. Details 
on the BPI effort are provided in [Casati01]. 

2. Warehouse Design 
Following "traditional" data warehousing techniques, we 
structure the WDW design according to a (relational) star 
schema, where data are described in terms of " facts" to be 
analyzed and "dimensions", i.e., perspectives under which 
the facts are analyzed. A design based on a star schema 
enables multidimensional analysis and allows the use of 
many query optimization techniques.  

We have worked with customers and consultants to 
identify the structure and relationships of facts and 
dimensions in order to optimize performance for many 
typical analysis needs. The WDW design is summarized 
in Figure 1. Workflow dimensions are shown in the 
Figure and not detailed further due to space limitations. 
They are relatively stable across workflow models and do 
not present particular issues. The only exception is 
represented by the behavior dimension, which is very 
useful for analysis  and will be detailed later in the paper. 
Instead, we next examine workflow facts. 

2.1 Process and Node facts 

In a business process, happenings of interest are changes 
in the process and node execution states. Hence, we 
consider state changes as the facts of the warehouse. 
WDW only includes facts about completed process 
instances, to simplify data archival and loading and to 
provide a simple framework in which to analyze data.  

The definition of the structure and relationship among 

facts is complicated by the variety of node types present 
in most workflow models. For instance, the HPPM 
process model includes a work and a route node, to model 
service invocation and routing decisions, respectively. 
These nodes have different attributes that need to be 
described in the WDW schema. For example, a work node 
execution may be related to the service invoked or to the 
resource that executed the service, while a route node 
execution may be characterized by the set of arcs fired. In 
addition, different workflow models (or different versions 
of the same model) may have different types of nodes, as 
well as different attributes for a process. Hence, we are 
faced with the problem of designing fact tables so that all 
process and node facts can be represented, while still 
enabling easy maintenance and satisfactory performance.  
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Figure 1 - WDW schema.  Facts are depicted with a thicker 
border, while dimensions have a thin border 

In order to address this issue, we designed generic 
(node type- and model-independent) fact tables that 
include not only attributes common to most models or 
node types, but also attributes often needed by typical 
queries (although they may have null values for some 



workflow models or node types). In this way, most data 
aggregation and reports can be computed based on this 
table, thereby simplifying view definitions and avoiding 
the need of joining several tables to compute the results 
(see Figure 1). Facts tables that are specific to a node type 
or to a process model can also be added to the warehouse, 
to allow storing attributes that are not included in the 
generic tables but that can be occasionally required for 
specific reporting needs.  

An additional problem to be handled is modeling data 
modifications. In fact, changes to process instance data 
could be of interest to the analyst. For instance, analysts 
may want to observe facts related to purchases of cars 
above 20,000$. Data modifications are not included in the 
process and node fact tables. In fact, different processes 
and nodes modify different data. Hence, it is unfeasible to 
store them horizontally in the relation. Instead, data 
modifications are stored in the ProcessDataFacts and 
NodeDataFacts relations, that include tuples detailing the 
process or node state change in correspondence of which 
the data modification occurred (e.g., a node completion), 
the data item name, and the old and new value.  

Note that in general there is no need to log all data 
items. The analyst may only be interested in a fraction of 
them, and complete data logging could be a very heavy 
burden for the warehouse. Hence, WDW administrators 
can specify which data modifications are to be loaded, 
based on the data item name, and on the process and work 
node in the context of which the modifications take place. 

2.2  Behaviors 

The availability of process and node information in the 
WDW enables many data analysis functionalities. 
However, more interesting information can be extracted 
by including in the WDW data at a higher level of 
abstraction. Indeed, very frequently, analysts are not only 
interested in analyzing node activations and data 
modifications. Instead, they want to analyze process 
instances that exhibit specific behaviors, and to 
understand the causes of such behaviors. Examples of 
behaviors of interest are supply chain process instances 
that last more than 20 days, Expense Approval process 
instances that include more than 3 approval cycles, Claim 
Management instances in which node "Examine 
expenses" was executed by a manager, or processes 
instances related to order for goods over 20,000$. 

The WDW approach is agnostic about the behaviors 
that users may be interested in analyzing. Indeed, we 
allow users to define the behaviors to be monitored. The 
system will then take care of identifying which processes 
exhibit a specific behavior and of analyzing them.  

Behavior types are (conceptually) defined by Boolean 
conditions over process and node execution data available 
in the warehouse. Behavior conditions are parametric, and 
can be configured to monitor a specific behavior for a 
specific process definition. Completed process instances 

for which the condition is true are considered as being 
affected by the behavior. For instance, a ProcessDuration 
behavior type may be defined as “instance of a process 
definition PD that lasts more than D days”. In this case, 
PD and D are parameters that can be defined to detail 
which processes should be monitored and the exact 
behavior to be detected. Multiple specific behaviors to be 
monitored (on different processes) can be defined for each 
behavior type, and a process can be analyzed for multiple 
behaviors. In the prototype implementation, conditions 
are defined by SQL scripts that label process instances 
affected by the exceptional behavior under consideration.  

Processes to be monitored and behavior configuration 
parameters are stored in a behavior type-independent 
table. The table includes many attributes, to allow the 
configuration of a variety of behavior types. If a 
parameter is meaningless for a behavior type, then it is 
left unspecified. Labeling information are detected by 
executing the scripts on warehouse data and by storing the 
results in a ProcessBeahvior table that couples process 
instance identifiers with behavior identifiers.  

WDW includes a wide set of built-in behavior types, 
such as processes lasting less (more) than a specified 
duration, being in the slowest (fastest) x%, including more 
(less) than n activations of a specific work node WN, or in 
which work node WN has (not) been executed by a 
resource in group G. Users can define new behavior types 
by simply providing the corresponding script.  

 

 
Figure 2 – Analysis of correlations among behaviors.  

By detecting behaviors of interest, analysts can 
perform multidimensional analysis to understand the 
causes of "good" and "bad" process executions, and take 
actions accordingly. In particular, a very useful analysis 
consists in examining correlations among behaviors. The 
WDW includes a set of views that supports users in this 
analysis. As an example, Figure 2 shows a report build 
with Oracle Discoverer through a simple projection query 
on a WDW view. The report shows the analysis for a 
behavior B of ProcessDuration type, configured to detect 
instances in the slowest 10% for the Expense Approval 
process. The report shows which other behaviors were 
detected in instances affected by behavior B, and what are 
the correlated2 and uncorrelated behavior hit rates.
                                                                 
2 I.e., the percentage of instances affected by a behavior b1 
among those also affected by behavior b2. 
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Figure 3 – WDW load process. Optional components are depicted with a dashed border 

This kind of analysis is very useful in showing cause-
effect relationships among behaviors, and therefore in 
identifying the causes of behaviors. An extension of this 
approach is presented in [Casati01], where business 
intelligence techniques are used to provide a more 
automated discovery of the causes of behaviors, although 
at the price of increased complexity and cost, due to the 
need for data mining tools and techniques.  

2.3  Views  

One of our design requirements was to make it very easy 
for users to obtain reports from the WDW. For this 
reason, the WDW includes a large set of views (providing 
partially overlapping and redundant information), to 
account for the large majority of reporting needs. Analysts 
only need to write simple projection and selection queries 
to get the report they need. In addition, we provide 
configuration files for the most common reporting tools, 
such as Oracle Discoverer or MS Excel, so that using the 
WDW requires minimum configuration effort.  

In order to provide acceptable performance while at 
the same time avoid explosion in disk space usage, 
reporting views are not materialized. Instead, a smaller set 
of materialized views is defined, joining and aggregating 
data in different ways to support the needs of several 
reporting views. Through the query rewrite mechanisms, 
Oracle automatically uses materialized views (where 
possible) to speed up queries on the reporting views, 
thereby reducing the execution time. 

3. Loading the Workflow Data Warehouse 
We now describe the process of extracting data from 
workflow logs and loading the WDW, shown in Figure 3. 
This process is performed by a set of ETL scripts 
provided with the WDW. We assume that log data are 
available in the form of log files, extracted from WfMS 
logs (typically stored in relational databases).  The first 
step consists in extracting data from the files and restoring 
the content in relational format. Then, a sequence of 
cleaning operations can be applied. WDW provides a set 

of data checking/cleaning modules that process data 
without changing the structure. The advantage of this 
approach is that cleaning modules can be plugged in and 
out depending on the cleaning needs of the users. The 
addition of each cleaning module causes delays in the 
load process, but can guarantee data consistency, absence 
of duplicates, and other properties that are crucial for 
WDW integrity.  

Data are then inserted into WDW shadow database, 
i.e., a database that has the same schema of WDW. 
Preparing shadow table instead of directly loading the 
warehouse has several motivations: 
− Once data are in the shadow table, then the WDW 

can be quickly loaded by means of simple inserts or 
partition exchanges, reducing the WDW downtime. 

− Shadow tables have a WfMS-independent schema, 
and can be used to execute, WfMS-independent 
cleaning operations 

− Dimensions as well as relationships between facts 
and dimensions can be computed from the shadow 
tables. For example, shadow tables can be used to 
collect timestamps of facts, and load the Time 
dimension table, to extract load statistics and to 
perform higher-level operations, such as detecting 
behaviors.  

Once cleaning and transformation operations have 
been completed, data are loaded into the WDW. 
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