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Abstract

In recent years, due to the increasing popular-
ization of data broadcasting, the volume and
variety of data being broadcast are rapidly
increasing. In this environment, as it is
di�cult for users to search for information
from a large amount of broadcast data, there
is an increasing demand for �ltering tech-
niques that automatically extract only the
necessary data. Consequently, a number of
�ltering methods have been proposed. How-
ever, mathematical representation of these
methods does not exist. Thus, it is not
possible to qualitatively evaluate various �l-
tering methods, optimize processing methods
in �ltering, or design a declarative language
for �ltering processes. In this paper, we
de�ne �ltering as a function, and express
the properties of �ltering methods by the
constraints satis�ed by this function. By
showing the inclusion relation of constraints
representing the properties of �ltering, we
clarify the relationship between the properties
of �ltering. Using the framework proposed in
this paper, we are able to categorize the actual
�ltering systems. By applying the appropriate
processing method for each category accord-
ing to its properties, more e�cient �ltering
systems can be achieved.
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1 Introduction

In recent years, due to the launching of new satellites
and the digitization of ground wave, a large number
of broadcast services are being supplied. In this
environment, the amount of data and the variety of
data broadcast are rapidly increasing. However, users
often need only a small amount of speci�c data, and
retrieving the information they are interested in from
a large amount of broadcast data is very di�cult.
Therefore, various mechanisms that automatically �l-
ter data and a user-request description language for
�ltering have been proposed[1, 2, 6, 12]. These �ltering
mechanisms �lter data by di�erent methods with
the use of keyword matching or relevance feedback,
etc. However, no mathematical foundation for these
�ltering processes exists.

Generally, �ltering systems determine whether a
user needs the broadcast data and �lter data each
time it is received. With this method, the �ltering
system must process a vast amount of sequentially
received data one after another, so the processing cost
is very high. To lower the processing cost, distribut-
ed and batch processing are useful. In distributed
processing, multiple receivers separately receive and
process broadcast data. In batch processing, a receiver
accumulates a certain amount of data to process
in bulk. Moreover, when there is too much data,
preprocessing is done to decrease the data size to be
stored in order to achieve higher e�ciency.

To apply these processes practically, we have to
assure that changing the processing method to dis-
tributed processing or batch processing does not alter
the �ltering results. However, the properties of
�ltering mechanisms proposed up to this day have
not been qualitatively represented. Therefore, it is
not clear how changing processing methods may a�ect
�ltering results and what conditions are necessary to
assure consistency.

In this paper, we de�ne �ltering function as a
function that represents �ltering, and express the
properties of various types of �ltering mechanisms
according to the constraints satis�ed by this function.



By de�ning actual �ltering methods as functions, we
establish a mathematical foundation for �ltering. On
the basis of this foundation, we can evaluate various
�ltering methods qualitatively, optimize processing
methods in �ltering, or design a declarative language
for �ltering processes. Moreover, we can qualita-
tively represent the properties of �ltering with the
constraints of function. By showing the interrelation
between the constraints of function, we clarify the
relationship between the properties of the �ltering
methods. Using the relationship between the prop-
erties revealed in this paper, we are able to judge
whether one �ltering system that satis�es a property is
equivalent to another �ltering system that satis�es an-
other property, and to replace the processing method
with a more e�cient one. Furthermore, if adding
a particular condition to a �ltering system makes it
satisfy another property that enables a more e�cient
process, we can make the �ltering system process more
e�cient by adding this condition.

This paper is organized as follows. Section 2
de�nes and describes the properties of the �ltering
function. The relationship between these properties
is clari�ed in Section 3. Section 4 de�nes the �nite
�ltering function. In this section, another property is
introduced and the relationship between this property
and the other properties is examined. Section 5
considers the relationship between the �ltering process
properties and related work through the interrelation
between the properties. Finally, we conclude our paper
in Section 6.

2 Filtering Function

In this section, we categorize the processing methods
of �ltering into several patterns. We then de�ne
the �ltering function as a function, and represent
the properties each processing method satis�es by the
constraints that the �ltering function satis�es.

2.1 Categorization of the Filtering Process

In this paper, we categorize the �ltering methods in
the real world into several patterns, as follows.

� Batch processing

In a system which uses batch processing, a receiv-
er accumulates broadcast data and �lters them in
bulk.

� Sequential processing

In a system which uses sequential processing, the
newly received data and the previous �ltering
results are merged and �ltered. This is a common
�ltering method that compares newly received
data with the set of data that has already been
stored to estimate whether the newly received
data is necessary.

� Distributed processing

In a system which uses distributed processing, the
received data set is divided into multiple arbitrary
data subsets, and each subset is �ltered separately
before the results are merged. An example is
a system where, for each broadcaster, di�erent
receivers are used to �lter broadcast data.

� Parallel processing

In a system which uses parallel processing, the
merged �ltering results of distributed processing
are re-�ltered.

2.2 De�nition of Filtering Function

In this subsection, we de�ne �ltering function as
follows.

Let T be a set of data items. We de�ne the proper-
ties, decreasing property and idempotent property, for

function f on 2T as follows.1

Let T be an arbitrary subset of T.

D: decreasing
f (T ) � T .

ID: idempotent
f (f(T )) = f(T ):

The decreasing property, D, signi�es that the result
of applying the function to a data set includes only
elements in the original data set. The idempotent
property, ID, signi�es that once a function is applied
to a data set, its result never changes no matter how
many times the same function is applied.

The function satisfying D is the decreasing function.
The function satisfying ID is the idempotent function.

Function f on 2T is a �ltering function if and only if
it satis�es both D and ID.

2.3 De�nition of Properties of Filtering

In this subsection, considering the properties of �lter-
ing processing described in Section 2.1, we de�ne the
properties of �ltering function f as follows.

Let S; T be arbitrary subsets of T.

M: monotone
if S � T then f (S) � f (T ):

DI: distributed increasing
f (S [ T ) � f (S) [ f(T ):

DD: distributed decreasing
f (S [ T ) � f (S) [ f(T ):

PI: parallel increasing
f (S [ T ) � f (f(S) [ f (T )):

PD: parallel decreasing
f (S [ T ) � f (f(S) [ f (T )):

SI: sequential increasing
f (S [ T ) � f (S [ f(T )):

SD: sequential decreasing

1In this paper, A � B means that A is a subset of B
(including the case where A = B).



f (S [ T ) � f (S [ f(T )):
C: consistency

f (S) � f (S [ T ) \ S:

The monotone property,M, signi�es that the result
of �ltering a subset of a data set is included in
the result of �ltering the original data set. This
corresponds to the case where there is no correlation
between the data, and the �ltering is done per data
item. The �ltering system satisfying M, for example,
expresses the user's preference and broadcast contents
by keywords and logical operations. Since this system
judges a data item without referring to the data items
to be �ltered, it satis�es M. On the other hand, if there
is a correlation between the data, the �ltering system
does not satisfy M because the criterion of the �ltering
changes depending on the data sets to be �ltered.

The distributed decreasing property, DD, signi�es
that the result of distributed processing is smaller
than and included in the result of batch processing.
The distributed increasing property, DI, signi�es that
the result of distributed processing is larger than
and includes the result of batch processing. If a
�ltering function satis�es both DI and DD, the result
of batch processing is equivalent to that of distributed
processing.

The �ltering system that limits the number or size
of data to be stored satis�es DI, as data are stored
in proportion to the number of data subsets into
which the data are divided. On the other hand, the
�ltering system that does not store the data unless
additional data exist satis�es DD because if such data
are received distributedly, they can not be stored.

The parallel decreasing property, PD, signi�es that
the result of parallel processing is smaller than and
included in the result of batch processing. The parallel
increasing property, PI, signi�es that the result of
parallel processing is larger than and includes the
result of batch processing. If a �ltering function
satis�es both PI and PD, the result of batch processing
is equivalent to that of parallel processing.

If a piece of data item for deleting a previously
received data item is received by a di�erent receiver in
a parallel processing system, the previously received
data item is not deleted. Therefore, this �ltering
system satis�es PI. On the other hand, if there is a
correlation between the data and the evaluation value
of the data gets higher when they are together, then
parallel processing systems do not store the data that
would be stored in batch processing, as such data are
processed separately in parallel processing. Therefore,
this system satis�es PD.

The sequential decreasing property, SD, signi�es
that the result of sequential processing is smaller
than and included in the result of batch processing.
The sequential increasing property, SI, signi�es that
the result of sequential processing is larger than and

includes the result of batch processing. If a �ltering
function satis�es both SI and SD, the result of the
batch processing is equivalent to that of sequential
processing.

The consistency property, C, signi�es that the data
item that is selected from a data set must also be
selected from its subset, as a result of �ltering, if this
subset contains this data item. Systems that satisfy C
are those that do not consider the correlation between
data, or in which fewer data are stored as the data
set to be �ltered becomes larger. Moreover, in a data
broadcast system that uses the data carousel method,
the �ltering system also satis�es C, as it evaluates the
data using a threshold value if the system degrades
the evaluation value of previously stored data after
receiving updated data. On the other hand, if there
is a correlation between data, and the system raises
the evaluation value of data when they are together,
it does not satisfy C.

By examining the relation of the properties showed
above, we can clarify the relationship between �ltering
processes. In other words, we can decide how the
processing in a �ltering system can be carried out by
looking at the property it satis�es.

3 Relationship between the Properties

In this section, we reveal the relationship between
the properties of �ltering described in the previous
section by introducing theorems and lemmas about
them. The omitted proofs of the theorem and lemmas
are included in the appendix.

First of all, we introduce the following theorem
about the monotone and distributed decreasing prop-
erties.
Theorem 1. The monotone and distributed decreas-
ing properties are equivalent.
Proof. This theorem can be proved by the follow-

ing two lemmas.

Lemma 1. If a �ltering function satis�es
the monotone property, then it satis�es the
distributed decreasing property (M)DD).2

Lemma 2. If a �ltering function satis�es
the distributed decreasing property, then it
satis�es the monotone property (DD)M).2

2

Next, we show the following theorem about the
consistency, sequential increasing, parallel increasing
and distributed increasing properties.
Theorem 2. The consistency, sequential increasing,
parallel increasing and distributed increasing proper-
ties are equivalent.
Proof. This theorem can be proved by the follow-

ing four lemmas.

Lemma 3. If a �ltering function satis�es
the consistency property, then it satis�es the
sequential increasing property (C ) SI).



Proof. By C,
f(S [ f (T ))
� f(S [ f(T ) [ T ) \ (S [ f(T ))
= f(S [ T ) \ (S [ f(T )) (.:.D)
� f(S [T )\ (S [ (f (S[T )\T )) (.:.C)
= (f(S[T )\S)[(f(S[T )\f(S[T )\T )
= (f(S [ T ) \ S) [ (f(S [ T ) \ T )
= f(S [ T ) \ (S [ T )
= f(S [ T ): (.:.D) 2

Lemma 4. If a �ltering function satis�es
the sequential increasing property, then it
satis�es the parallel increasing property (SI
) PI). 2

Lemma 5. If a �ltering function satis�es the
parallel increasing property, then it satis�es
the distributed increasing property (PI )
DI). 2

Lemma 6. If a �ltering function satis�es
the distributed increasing property, then it
satis�es the consistency property (DI ) C).

Proof. Assume that S, T satisfy DI for all
S; T � T and there exist S0; T0 � T where C
is not satis�ed, that is,

f (S [ T ) � f (S) [ f(T ) (DI)

f (S0) 6� f (S0 [ T0) \ S0: (:C)

Thus there exists x 2 f (S0 [ T0) \ S0 where

x 62 f (S0): (1)

Also, from x 2 f (S0 [ T0) \ S0, it can be
derived that

x 2 f (S0 [ T0) (2)

x 2 S0: (3)

Now, let
T1 = T0 � S0:

Both T1 and S0 must satisfy DI, that is,
f(T1 [ S0) � f (T1) [ f (S0). The left and
right side can be written correspondingly as
follows:

f(T1 [ S0) = f(S0 [ T0); (4)

f (T1) [ f(S0) = f(T0 � S0) [ f (S0):(5)

Next we examine the inclusion relation be-
tween (4) and (5). From (2) and (4),

x 2 f(T1 [ S0) (6)

is derived. From (3),

x 62 T0 � S0: (7)

Hence by (1), (5) and (7), it is known that

x 62 f (T1) [ f (S0): (8)

Therefore, it is deduced from (6) and (8) that

f (T1 [ S0) 6� f (T1) [ f (S0);

which contradicts DI. 2

2

The following theorem is about the monotone,
distributed decreasing and sequential decreasing prop-
erties.
Theorem 3. The �ltering function that satis�es the
monotone or distributed decreasing property satis�es
the sequential decreasing property, but the reverse
does not always hold true.
Proof. It can be proved by the following two

lemmas that the �ltering function that satis�es the
monotone property satis�es the sequential decreasing
property, but the reverse does not always hold true.

Lemma 7. If a �ltering function satis�es
the monotone property, then it satis�es the
sequential decreasing property (M ) SD).2

Lemma 8. A �ltering function that satis�es
the sequential decreasing property does not
necessarily satisfy the monotone property
(SD 6) M). 2

Similarly the relationship between the distributed
decreasing and sequential decreasing properties can be
proved very easily from Theorem 1. 2

Besides, we show the following theorem about the
sequential decreasing and parallel decreasing proper-
ties.
Theorem 4. If a �ltering function satis�es the
sequential decreasing property, then it satis�es the
parallel decreasing property (SD ) PD). 2

Moreover, the following theorem is about the rela-
tionship between the consistency property (equivalent
to the sequential increasing, parallel increasing or
distributed increasing property) and either the mono-
tone (equivalent to distributed decreasing), sequential
decreasing or parallel decreasing property.
Theorem 5. There is no inclusion relation between
the consistency property (equivalent to the sequential
increasing, parallel increasing or distributed increasing
property) and the monotone (equivalent to distributed
decreasing), sequential decreasing or parallel decreas-
ing property.
Proof. First of all, we set forth the following two

lemmas.

Lemma 9. A �ltering function that satis�es
the monotone property does not necessarily
satisfy the sequential increasing property (M
6) SI). 2

Lemma 10. A �ltering function that sat-
is�es the sequential increasing property does
not necessarily satisfy the parallel decreasing
property (SI 6) PD). 2



From Theorem 1, Theorem 3 and Theorem 4, we can
easily prove, by the same counter example in Lemma
9, that a �ltering function that satis�es the distributed
decreasing, sequential decreasing or parallel decreasing
property does not necessarily satisfy the sequential
increasing property. Also, if we assume that a �l-
tering function that satis�es the sequential increasing
property satis�es the sequential decreasing property,
then, from Theorem 4, this contradicts Lemma 10.
Therefore, it can be deduced that a �ltering func-
tion that satis�es the sequential increasing property
does not necessarily satisfy the sequential decreasing
property. Similarly, from Theorem 3 and Theorem
4, a �ltering function that satis�es the sequential
increasing property does not necessarily satisfy the
monotone or distributed decreasing property.

Moreover, from Theorem 2, the same thing rea-
soning can be applied to the sequential increasing
property for the consistency, parallel increasing and
distributed increasing properties. 2

In the last place, we show the following theorem
about the consistency (equivalent to sequential in-
creasing, parallel increasing or distributed increasing),
parallel decreasing and sequential decreasing proper-
ties.
Theorem 6. If a �ltering function satis�es the
parallel decreasing property and consistency property
(equivalent to the sequential increasing, parallel in-
creasing or distributed increasing property), then it
satis�es the sequential decreasing property.
Proof. First of all, we prove that if a �ltering

function that satis�es the distributed increasing and
parallel decreasing properties, then it satis�es the
sequential decreasing property (DI, PD ) SD).

Assume that S, T satisfy DI and PD for all S; T � T

and there exist S0; T0 � T where SD is not satis�ed,
that is,

f (S [ T ) � f(S) [ f(T ) (DI)

f(S [ T ) � f (f(S) [ f(T )) (PD)

f(S0 [ T0) 6� f(S0 [ f(T0)): (:SD)

Thus, there exists x 2 T where

x 62 f(S0 [ T0) (9)

x 2 f(S0 [ f(T0)): (10)

Also, from PD and (9) it can be derived that

f (S0 [ T0) � f (f(S0) [ f(T0)) 63 x: (11)

Next, from ID and DI,

f (S0) [ f(T0) = f (S0) [ f (f(T0))

� f (S0 [ f (T0)): (12)

Moreover, from PD and ID,

f(S0 [ f(T0)) � f (f(S0) [ f (f(T0)))

= f(f (S0) [ f (T0)): (13)
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Figure 1: The relationship between the properties
of the �ltering function

Now, let

S1 = f(S0 [ f(T0));

T1 = f(S0) [ f(T0):

Both S1 and T1 must satisfy PD, that is, f(S1 [T1) �
f(f (S1)[f (T1)). The left and right side can be written
correspondingly as follows:

f(S1 [ T1) = f(T1) (.:.(12))

= f(f (S0) [ f(T0)) 63 x; (.:.(11))(14)

f(f (S1) [ f (T1))

= f(f (f(S0 [ f(T0))) [ f(f(S0) [ f (T0)))

= f(f (S0 [ f(T0)) [ f(f (S0) [ f(T0))) (.:.ID)

= f(f (S0 [ f(T0))) (.:.(13))

= f(S0 [ f(T0)) 3 x: (.:.ID; (10)) (15)

Therefore it is deduced from (14) and (15) that

f(S1 [ T1) 6� f(f (S1) [ f(T1));

which contradicts PD.
Hence, from Theorem 2, we can similarly prove

that the �ltering function that satis�es the parallel
decreasing property and consistency property (equiva-
lent to the sequential increasing or parallel increasing
property) satis�es the sequential decreasing property.

2

Figure 1 shows the relationship between the prop-
erties of the �ltering function as proved by the above
theorems. From Figure 1, it is known that the result
of distributed processing, which satis�es DI and DD,
is equivalent to that of batch processing, sequential
processing and parallel processing. Figure 1 also shows
that sequential processing, which satis�es SI and SD,
can be replaced by parallel processing, but not by
distributed processing. Moreover, since Theorem 2
implies that C, SI, PI and DI are equivalent, if the
�ltering system that satis�es C also satis�es DD, the
result of the batch processing is equivalent to that of
distributed processing. Similarly, if it also satis�es SD,



it is equivalent to that of sequential processing, and if
it also satis�es PD, it is equivalent to that of parallel
processing.

Theorem 6 implies that if the �ltering system that
satis�es PD also satis�es SI, PI, DI or C, then it sat-
is�es SD. Therefore, the system of parallel processing,
which satis�es PI and PD, can be interchanged with
sequential processing. However, whether the �ltering
system that satis�es only PD also satis�es SD is not
proved at this time. If it is proved that the system that
satis�es PD also satis�es SD, then Theorem 4 implies
that PD is equivalent to SD.

4 Finite Filtering Function

The �ltering function denoted previously can apply
to in�nite data sets, so there is no need to restrict
the broadcast data to be processed. However, general
�ltering systems process �nite sets of data items.
In this section, we consider this characteristic, and
explain the �ltering function for processing �nite
data sets. We call this function the �nite �ltering

function. In addition to the basic properties explained
in Section 2, we de�ne an additional, practicable
property of the �nite �ltering function that is weaker
than the monotone property. We de�ne this additional
property, the pseudo-monotone property, as follows.

PM: pseudo-monotone
if S � T then jf (S)j � jf (T )j:

The pseudo-monotone property, PM, is a property
that limits the monotone property M to the amount
of data. For example, a �ltering system in which the
percentage of each genre of broadcast data to be stored
is de�ned satis�es PM.

4.1 Relationship between the Properties of

the Finite Filtering Function

In this section, we set forth lemmas about the re-
lationship between the added property PM and the
previously de�ned �ltering function properties. In this
way we state the inclusion relation of the properties.

First of all, we show the following theorem about
the pseudo-monotone, monotone and distributed de-
creasing properties.
Theorem 7. If a �ltering function satis�es the
monotone or distributed decreasing property, then
it satis�es the pseudo-monotone property, but the
reverse does not always hold true.
Proof. It can be proved by the following two lem-

mas that a �ltering function that satis�es the mono-
tone property satis�es the pseudo-monotone property,
but the reverse does not always hold true.

Lemma 11. If a �ltering function satis�es
the monotone property, then it satis�es the
pseudo-monotone property (M ) PM). 2

Lemma 12. A �ltering function that satis-
�es the pseudo-monotone property does not
necessarily satisfy the monotone property
(PM 6) M). 2

Similarly, the relationship between the distributed
decreasing and pseudo-monotone properties can be
proved very easily from Theorem 1. 2

In the next place, we show the following theorem
about the consistency (equivalent to sequential in-
creasing, parallel increasing or distributed increasing),
sequential decreasing, parallel decreasing and pseudo-
monotone properties.

Theorem 8. There is no inclusion relation between
the pseudo-monotone property and either the con-
sistency (equivalent to sequential increasing, parallel
increasing or distributed increasing), sequential de-
creasing or parallel decreasing property.

Proof. It is proved by the following two lemmas
that the consistency and pseudo-monotone properties
have no inclusion relation.

Lemma 13. A �ltering function that satis-
�es the pseudo-monotone property does not
necessarily satisfy the consistency property
(PM 6) C). 2

Lemma 14. A �ltering function that satis-
�es the consistency property does not neces-
sarily satisfy the pseudo-monotone property
(C 6) PM). 2

Similarly, it can be very easily proved from Theorem
2 that there is no inclusion relation between the
pseudo-monotone property and the sequential increas-
ing property (equivalent to the parallel increasing or
distributed increasing property).

Next, we show the following two lemmas.

Lemma 15. A �ltering function that satis-
�es the sequential decreasing property does
not necessarily satisfy the pseudo-monotone
property (SD 6) PM). 2

Lemma 16. A �ltering function that sat-
is�es the pseudo-monotone property does
not necessarily satisfy the parallel decreasing
property (PM 6) PD). 2

From Theorem 4, we can easily prove, by the same
counter example in Lemma 15, that a �ltering function
that satis�es the parallel decreasing property does
not necessarily satisfy the pseudo-monotone property.
Also, if we assume that a �ltering function that
satis�es the pseudo-monotone property satis�es the
sequential decreasing property, then this contradicts
Lemma 16. Therefore, it can be deduced that a
�ltering function that satis�es the pseudo-monotone
property does not necessarily satisfy the sequential
decreasing property. 2



The next theorem is about the consistency (equiva-
lent to sequential increasing, parallel increasing or dis-
tributed increasing), pseudo-monotone and sequential
decreasing properties.
Theorem 9. If a �ltering function satis�es the
pseudo-monotone property and consistency property
(equivalent to the sequential increasing, parallel in-
creasing or distributed increasing property), then it
satis�es the sequential decreasing property.
Proof. First of all, we prove that if a �ltering func-

tion that satis�es the sequential increasing and pseudo-
monotone properties, then it satis�es the sequential
decreasing property (SI, PM ) SD).

For T � T, f (T ) � T by D. Applying the union
operation with S � T to each side, we get

S [ f(T ) � S [ T:

From PM, we know that

jf(S [ f (T ))j � jf (S [ T )j: (16)

Since S; T satisfy SI,

f(S [ T ) � f(S [ f (T ))

is formed. From PM,

jf(S [ T )j � jf(S [ f (T ))j (17)

is implied. Therefore, from (16) and (17),

jf(S [ T )j = jf(S [ f (T ))j (18)

is derived. Also, from (18) and SI,

f(S [ T ) = f(S [ f (T ))

is shown. Hence,

f(S [ T ) � f(S [ f (T ))

is derived, which satis�es SD.
Thus, from Theorem 2, we can similarly prove that

a �ltering function that satis�es the pseudo-monotone
property and consistency property (equivalent to the
parallel increasing or distributed increasing property)
satis�es the sequential decreasing property. 2

Figure 2 shows the relationship between the prop-
erties of the �nite �ltering function proved by the
above theorems. We omit the notation between the
properties where no inclusion relation exists, that is,
the relationship of M-C, SD-C, PD-C, PM-SD and
PM-PD. Figure 3 shows the inclusion relation of the
properties.

Theorem 5 implies that a �ltering system that
satis�es SI, PI, DI or C does not necessarily satisfy
PD or SD. However, Theorem 4 and Theorem 9 imply
that this system satis�es SD and PD if it satis�es PM.
Therefore, in a �ltering system that satis�es SI, PI, DI
or C, but not SD and PD, it can not be assured that
the result of batch processing is equivalent to that of
sequential processing or parallel processing, but this
can be assured by adding the PM constraint.
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Figure 2: The relationship between the properties
with PM added
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Figure 3: The inclusion relation of the properties

5 Observation

In this section, we address some �ltering methods cur-
rently applied in practice, and identify the properties
each �ltering system satis�es. Moreover, we discuss
the processing methods each system can apply based
on the relationship between the properties shown
in the previous sections. Furthermore, we consider
which method is more e�cient in the existing �ltering
systems.

5.1 Relationship between the Filtering Prop-

erties and Processes

A �ltering system that �lters by keywords and logical
operations stores data that contains speci�c keywords
and does not store data that do not contain such
keywords. Therefore, this system satis�es the mono-
tone property. Similarly a system that deletes data
when it expires according to a speci�c expiration date
satis�es the monotone property. As these systems
do not consider the correlation between data during
�ltering, they also satisfy the consistency property.
Consequently, for these systems, the results of batch
processing, distributed processing, sequential process-
ing and parallel processing are equivalent.

If a �ltering system that limits the amount or size
of the data to be stored is operated with multiple
receivers, the amount of data increases in proportion
to the number of receivers, as each receiver stores this
amount of data. Therefore, this system satis�es the
distributed increasing property. On the other hand,



when data that is large in size, such as a movie,
is broadcast, the data may be divided into several
clusters and broadcast serially. In this environment,
the �ltering system satis�es the distributed decreasing
property because the data clusters processed on dif-
ferent receivers may not be stored, as the evaluation
values of the data decrease when they are processed
separately. The �ltering result of the system that
satis�es both characteristics is equivalent to that of
batch processing, distributed processing, sequential
processing and parallel processing.

When data announcing an event and data about
the event's termination are broadcast, some �ltering
systems store only the announcement data, and when
they receive the data about its termination, they delete
all the data about the event. In this �ltering system,
if the data items about the event's announcement and
termination are processed at di�erent receivers, only
the data about the announcement remains. Therefore,
this �ltering system satis�es the parallel increasing
property. On the other hand, some �ltering systems
consider the correlation between data and give some
data a higher evaluation value when they are combined
with other data. If such data are processed at
di�erent parallel receivers, the data that would be
stored in batch processing may be left out. Therefore,
this �ltering system satis�es the parallel decreasing
property. The �ltering result of the system that
satis�es both characteristics is equivalent to that of
batch processing, sequential processing and parallel
processing.

In a �ltering system that determines the 10 best
data items, if each receiver selects the 10 best data
items out of distributed data, data items are stored
in proportion to the number of receivers. Therefore,
this �ltering system does not satisfy the distributed
decreasing property. However, if it does not consider
the correlation between the data, and it holds that the
larger the �ltered data set is, the greater the amount
of unstored data is, then it satis�es the consistency
property. Moreover, the 10 best data items always
remain during the processing, and will be �nally
selected when the total results are �ltered in the last
step. Therefore, this �ltering system satis�es the
sequential increasing and sequential decreasing prop-
erties. As a consequence, in this system, the �ltering
results of batch processing, sequential processing and
parallel processing, but not distributed processing, are
equivalent.

When a �ltering system receives updated data, it
may degrade the evaluation value of the old data. This
�ltering system satis�es the consistency property be-
cause the evaluation value of data may degrade when
data are put together. Besides, if this correlated data
is �ltered in a distributed processing system, the data
whose evaluation value degrades in batch processing
may remain. Therefore, this �ltering system does not

satisfy the distributed decreasing property. On the
other hand, this �ltering system can �lter old data
and updated data together in sequential processing.
Therefore, it satis�es the sequential decreasing prop-
erty. As a consequence, in this system, the �ltering
result of batch processing is equivalent to that of
sequential processing and parallel processing.

In a �ltering system that limits the data size to be
stored, and eliminates all data whose evaluation values
are the same, all at once when the data exceeds the
limit, the data may be stored when processed individ-
ually, but may be left out when processed together.
This system satis�es the consistency property but
not the monotone and pseudo-monotone properties.
Moreover, di�erent data items may be chosen to
be deleted depending on the received-data order, so
this �ltering system does not satisfy the sequential
decreasing property. Thus, in this system, the �ltering
result of batch processing is not equivalent to that
of distributed processing, sequential processing and
parallel processing. However, if we make this �ltering
system satisfy the pseudo-monotone property, it would
also satisfy the sequential decreasing property. As
a consequence, in this system, the �ltering result of
batch processing is equivalent to that of sequential
processing and parallel processing.

5.2 Application to Related Work

The INFOSCOPE[3] and Lyric-Time[5] systems �lter
data by keyword matching. INFOSCOPE applies
to news groups, while Lyric-Time plays music in
real time. Since these �ltering systems satisfy the
monotone and consistency properties until the user's
pro�le is updated, the �ltering results of batch pro-
cessing, distributed processing, sequential processing
and parallel processing are the same. Consequently,
INFOSCOPE can decentralize the network load by
downloading news out of multiple sites in parallel. On
the other hand, when the network bandwidth on LAN
is large enough to broadcast music data, as in Lyric-
Time, batch processing reduces the server load.

In FBDA (Filtering mechanism Based on Distance
Approximation)[4] using triangle inequality, each re-
ceiver lays received data in metric space in compliance
with their content, and stores them if the distance
between the received data and the data the user is
interested in is close. If the distance is less than a
particular constant, the data is stored. Therefore,
this �ltering system satis�es the monotone property.
Furthermore, it satis�es the consistency property as it
�lters each data item independently. Thus, the �lter-
ing results of batch processing, distributed processing,
sequential processing and parallel processing are the
same. Consequently, batch processing is e�cient if the
disposal capacity of the receiver is low, and sequential
processing is e�cient if the memory capacity of the re-
ceiver is comparatively small. Distributed processing



and parallel processing can decentralize the load of the
receiver if multiple receivers can be set.

AIS (Active Information Store)[10] �lters broadcast
data by keyword matching, thus satisfying the con-
sistency property. However, since it limits the size
of the data to be stored, it satis�es the sequential
decreasing property, but not the monotone property.
Hence, the result of distributed processing may be
di�erent from that of batch processing, but the results
of batch processing, sequential processing and parallel
processing are equivalent. Consequently, the load
of receivers can be reduced if the system �lters the
data after accumulating a certain amount. Parallel
processing can also be done with two receivers if there
are many channels which broadcast data.

In ProfBuilder[11], if the user selects the collabo-
rative �ltering option, Web pages with high access
probability based on previous access patterns are
recommended to the user. This �ltering system,
which considers the correlation between pages, does
not satisfy the consistency property. Therefore, the
result of batch processing may be di�erent from that
of distributed processing, sequential processing and
parallel processing.

SIFTER[7] and Syskill & Webert[9] update a user's
pro�le based on the user's evaluation of the data
accessed, and Amalthaea[8] applies the method of
combining autonomous agents and arti�cial life in
the creation of an evolving ecosystem composed of
competing and cooperating agents. Since the �ltering
policy of these systems changes in time, the �ltering
function in this paper can not represent their proper-
ties. To represent these �ltering systems, we have to
add the concept of time. This expansion of the �ltering
function will be a part of our future work.

6 Conclusion and Future Work

In this paper, we de�ned the �ltering function and
denoted the interrelation between �ltering functions
that satisfy various properties. We established a
mathematical foundation of �ltering, so that we can
evaluate various �ltering methods qualitatively, op-
timize processing methods in �ltering, or design a
declarative language to process �ltering. Moreover, we
categorized actual �ltering systems by their properties,
and showed possible processing methods. By the
framework proposed in this paper, we can select more
e�cient �ltering processing methods that comply with
the environment.

Our future work includes the following.

� The problem of PD = SD

We proved every relationship between the prop-
erties except whether the �ltering function that
satis�es PD will de�nitely satisfy SD. This prob-
lem is not solved in this paper.

� Introducing new properties

To categorize all �ltering methods, we will in-
troduce a �ltering function that satis�es new
properties that are not de�ned in this paper, and
clarify the relationship between them and the
other properties. In this paper, for example, we
de�ned the property of the two parallel processing
systems, but we will address the case where more
than two parallel processing systems exist in the
future.

� Introducing the concept of \time" in the �ltering
function

To represent the property of a system whose
�ltering policy varies with time, we will introduce
the concept of time to the �ltering function.

� Composition of the �ltering function

Some actual �ltering systems use a combination
of methods. Therefore, we will combine �ltering
functions that satisfy di�erent properties, exam-
ine the properties they satisfy, and reveal which
processing method is possible in such systems.

� Filtering function that does not satisfy the idem-
potent property

In this paper, we de�ned the function that satis-
�es the decreasing and idempotent properties as
a �ltering function. We will consider the function
that satis�es only the decreasing property, and
clarify the relationship between the properties of
this function.
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Appendix

Proof of Lemma 1.

By S[T � S; S[T � T and M, f(S[T ) � f(S); f(S[
T) � f (T ) can be derived. Applying the union operation
to each side, f(S [ T ) � f(S) [ f(T ) is deduced. 2

Proof of Lemma 2.

For S; T � T, if S � T , let S = T [ R where R � T.
By DD, f(S) = f(T [ R) � f(T ) [ f(R) � f(T )!% 2

Proof of Lemma 4.

By SI, f(S [ T ) � f(S [ f(T )) � f(f(S) [ f(T )). 2

Proof of Lemma 5.

By PI, f(S [ T ) � f(f(S) [ f(T )) can be derived.
Moreover, by D, f(f(S) [ f(T )) � f(S) [ f(T ). As a
result, f(S [ T ) � f(S) [ f(T ). 2

Proof of Lemma 7.

For all T � T by D, T � f(T ). Applying the union
operation with S � T for each side, we get S[T � S[f(T ).
Therefore by M, f(S [ T ) � f(S [ f(T )): 2

Proof of Lemma 8.

Let T be T = fa; bg. In Table 1, �ltering function f1
shows that for all S; T � T, f(S [ T ) � f(S [ f(T )), but
f(S) � f(T ) is not satis�ed when S = fa; bg; T = fag. 2

Proof of Theorem 4.

Table 1: A counter example with two elements

x f1(x) f2(x) f3(x)
� � � �

fag fag � fag

fbg fbg fbg fbg

fa; bg fbg fa; bg �

Table 2: A counter example with three elements

x f4(x) f5(x)
� � �

fag fag �

fbg � �

fcg � �

fa; bg fag fa; bg

fa; cg fag fa; cg

fb; cg fb; cg �

fa; b; cg fag fa; bg

By SD, f(S [ T ) � f(S [ f(T )) � f(f(S) [ f(T )). 2

Proof of Lemma 9.

Let T be T = fa; bg. In Table 1, �ltering function f2
shows that for all S; T � T, if S � T , then f (S) � f (T ),
but f(S [ T ) � f(S [ f(T )) is not satis�ed when S =
fbg; T = fag. 2

Proof of Lemma 10.

Let T be T = fa; bg. In Table 1, �ltering function f3
shows that for all S; T � T, f(S [ T ) � f(S [ f(T )),
but f(S [ T ) � f(f(S) [ f(T )) is not satis�ed when S =
fa; bg; T = fag. 2

Proof of Lemma 11.

By M, if S � T , then f(S) � f(T ). Therefore jf(S)j �
jf(T )j is derived. 2

Proof of Lemma 12.

Let T be T = fa; bg. In Table 1, �ltering function f1
shows that for all S; T � T, if S � T , then jf(S)j � jf(T )j,
but f(S) � f(T ) is not satis�ed when S = fa; bg; T = fag.

2

Proof of Lemma 13.

Let T be T = fa; bg. In Table 1, �ltering function f2
shows that for all S; T � T, if S � T , then jf(S)j � jf(T )j,
but f(S) � f(S[T )\S is not satis�ed when S = fag; T =
fa; bg. 2

Proof of Lemma 14.

Let T be T = fa; bg. In Table 1, �ltering function f3
shows that for all S; T � T, f(S) � f(S [ T ) \ S, but
jf(S)j � jf(T )j is not satis�ed when S = fa; bg; T = fag.

2

Proof of Lemma 15.

Let T be T = fa; b; cg. In Table 2, �ltering function
f4 shows that for all S; T � T, f(S [ T ) � f(S [ f(T )),
but jf(S)j � jf(T )j is not satis�ed when S = fa; b; cg; T =
fb; cg. 2

Proof of Lemma 16.

Let T be T = fa; b; cg. In Table 2, �ltering function f5
shows that for all S; T � T, if S � T , then jf(S)j � jf(T )j,
but f(S [ T ) � f(f(S) [ f(T )) is not satis�ed when S =
fb; cg; T = fa; cg. 2


