
A Data Warehousing Architecture for Enabling Service Provisioning Process

Yannis Kotidis

AT&T Labs-Research
kotidis@research.att.com

Abstract

In this paper we focus on the following problem
in information management: given a large collec-
tion of recorded information and some knowledge
of the process that is generating this data we want
to build a compact, non-redundant collection of
summary (aggregate) tables and indices to facil-
itate flexible decision support analysis. The ad-
ditional knowledge is depicted as a graph called
the sketch that is supper-imposed over the pro-
cess and indicates particular parts that we want
to analyze. We first show how to select a min-
imum set of views to answer queries with path-
expressions over the given sketch. For queries
that also include aggregations, we define two par-
tial orders among the views. The first is used to
pick the minimum set of aggregate views to an-
swer any query with no false dismissals, while
the second describes an augmented set that al-
lows fewer false positives. Computing a non ma-
terialized aggregate is done through appropriate
rewriting of the user query. We describe two in-
dexing schemes that use phantom aggregate val-
ues and allow us to query a view efficiently even
for non-materialized aggregates. Experimental re-
sults show these schemes to perform well on syn-
thetic and real datasets.

1 Introduction
The astonishing success of information technology has led
to an explosive growth in the amount of data that is be-
ing recorded in daily basis on various domains. Often
data is recorded internally in an organization for provi-
sioning certain business related tasks. For example accept-
ing a new customer for long distance service involves sev-
eral steps from entry and verification of personal data to

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

third party verification (a process in which a designated
third party confirms the customer’s intention to chance ser-
vice), and finally placing a new entry in the company’s
billing database. A process known as revenue assurance
verifies the beginning-to-end completeness, accuracy, and
integrity of the capture, recording, billing, and reporting
of all revenue-producing events from customer order entry
through collection.

A service provisioning database contains a large collec-
tion of customer records. Each record describes a sequence
of events that captures the interaction between a customer’s
order and various components of the organization. Presum-
ably, there is a well defined workflow that describes the
flow of events for incorporating a customer’s order [14].
Each customer record is an instance of some part of this
workflow process annotated with timing information and
other business related attributes.

When trying to apply conventional data warehousing
techniques for a service provisioning process we are faced
with the problem of mapping the recorded data into a re-
lational schema in a way that allows complex analytical
queries over the recorded information with respect to the
structural properties of the process that generates these
records. Our work has been motivated from related liter-
ature on recursive queries (e.g. [10, 12, 15, 16]) and work-
flow systems (e.g. [2, 6, 14]). We assume that the user ex-
presses his intention to analyze the data at a particular res-
olution for some portion of the process by providing what
we call a sketch of the process. Given such a sketch, we
explore how can we build a compact, non-redundant col-
lection of summary tables and indices to facilitate flexible
decision support analysis. Our contributions are outlined
bellow:

� conventional relational implementations are incapable
of providing flexible analysis of the recorded data with
respect to a given sketch [5]. In this paper we intro-
duce pair-wise aggregate queries as a mean to describe
the scope of an interesting aggregation. Such a query
consists of a path expression over the sketch that col-
lects relevant recorded information and a user-defined
aggregate function

�
that consolidates this data. We

then show how to express more complex expressions
and evaluate them as a series of pair-wise queries.

� evaluating pair-wise aggregate queries on-the-fly can

Create

TPV LEC

Billing Complete

Figure 1: Telephone Service Provisioning example

be prohibitively costly. Materialized views can be
used to speed up query processing and also shield the
user from the details of mapping a complex aggregate
expression to the underlying relational schema. We
optimize evaluation of queries with path expressions
based on a non-redundant collection of views materi-
alized as bitmapped indexes [3, 13, 17]. For queries
that also contain aggregations we propose the use of
pair-wise aggregate views that contain pre-computed
results of pair-wise queries and discuss different ma-
terialization policies. We then show how to rewrite
queries to use these views based on a partial order
that we define among them. This rewriting works ef-
ficiently using an indexing scheme that partitions the
records of a view on non-materialized phantom ag-
gregates, in a way that allows efficient evaluation of
subsequent queries against these aggregates.

The rest of the paper is organized as follows: Section 2
motivates the problem from two practical examples. Sec-
tions 3, 4 introduce the notion of the sketch and define pair-
wise queries. In section 5 we show the shortcomings of
various relational models for the service provisioning data
and then introduce materialized pair-wise views, while in
sections 6 and 7 we show how to choose from, index and
query these views for answering user queries. Finally sec-
tion 8 contains the experiments and in section 9 we draw
the conclusions.

2 Motivation
We here present two examples of service provisioning that
will help us better motivate the discussion:

Telephone Service Provisioning: this operation in-
cludes several steps, starting with the reception of cus-
tomer’s order and ending with the establishment (or modifi-
cation) of service. The workflows related to this process are
typically very complicated because orders require process-
ing by many departments. Figure 1 provides a simplified
high level view of this workflow for long distance orders.
There are five major states modeled in this example. Create
involves all actions related to the reception and creation of a
new order. TPV stands for third-party verification and LEC
stands for Local Exchange Carrier. The latter state includes
all communications with the LEC to establish the caller as
a new customer. State Billing involves all actions related
to creation or modification of a customer’s billing record.
Finally, state Complete denotes the successful completion
of the whole process. A customer’s order is modeled as an
entity that flows through this process. States TPV and LEC
are only used for orders that involve creation of a new long

SS H1 H2 H3 TT

H0

Figure 2: Delivery Service Provisioning example

distance service. Orders of customers that call to modify
their plans (e.g. sign to a new promotion) skip these states.

Each of the five main states can be expanded and mod-
eled in more details. Depending on the application, we
might want to “drill-down” and analyze the flow of records
at a finer granularity.

The user expresses his intention to analyze the data at
a particular resolution for some portion of this process by
providing what we call a sketch. A sketch is a directed
acyclic graph (DAG) describing states and transitions that
he is interested in (later on we extend our discussion for
sketches with cycles). For example if the user is interested
in the five depicted states of the workflow of Figure 1 his
sketch is simply a DAG representation of the process in
which each state is mapped to a node and each transition
is mapped to an edge. In this example the process at this
particular level happens to be acyclic too but this is not re-
quired in general.

A sketch is an abstraction of the whole process and is
used to filter those events that flow through the specified
nodes and edges of the DAG. For example if there were a
Failed state in the process that is not included in the sketch
then the analysis will only target records of orders that have
successfully completed. Analysis will be based on the at-
tributes of the data collected by the recording mechanisms
as well as the structural properties of the given sketch. Ex-
amples of such queries include:

1. retrieve all orders that passed through states TPV and
LEC (e.g. new long distance customers).

2. find all orders for which an intermediate transition
from state Create to state Complete took more than
8 hours, while the order was completed in less than a
day (e.g. trace “hidden delays”).

3. find all orders that were modified (possibly due to ini-
tial data entry errors) more than once between states
TPV and Billing.

Query (1) is an example of a path-query, discussed in
section 6. Query (2) inquires timing information recorded
as the the order flows though the process. This is criti-
cal for most service ordering systems as user satisfaction
is primarily based on timely processing of his orders [2, 6].
For query (3) we exploit a version attribute attached to each
record that counts all modifications to the customer’s order.

Delivery Service Provisioning: Figure 2 depicts a
number of “hubs” ��� that are used to interconnect two sites�

and � . Connecting paths may have different capaci-
ties, bandwidth, latencies etc. Also some connections are

AA BB CC DD EE

FF

Figure 3: Simple Sketch

bi-directional while others not, as shown in the Figure. As-
suming that we want to provision delivery of services from
element

�
to element � , our sketch is obtained by making

all bi-directional edges in the Figure be pointing from left
to right. Given this sketch, the queries that we are interested
in include:

4. find all flows from
�

to � that utilized hub ��� .

5. find all flows from
�

to � that stopped at least at 3
hubs.

6. find all flows from �
	 to ��� for which each transition
required at least 1 day.

Query (4) is a simplified path-query on a single node.
In query (5) we ”aggregate” multiple paths from

�
to � by

counting the number of intermediate hubs in a flow from�
to � . An equivalent way to state the query is to ask for

all flows of the form
�
� �
	 � ��� � ��� � � ,

�
�
��� � �
	 � ��� � ��� � � or

��� ��� � �
	 �
��� � � . Finally query (6) requests a specific path from
the sketch along with additional timing constraints.

3 Data Model

We first give a formal definition of a sketch. Given a pro-
cess that is being provisioned, a sketch is a directed acyclic
graph ����������� with the following properties: each node �
in � corresponds to a particular state of the process (seen at
the desirable resolution). An edge ����� �"!#�$�#%&� represents
a valid transition between corresponding states �"! and �#% in
the process that we are observing. There is a set

�
' � of
starting nodes in the sketch i.e. nodes that have no incom-
ing edges in ���(�)�*��� . Similarly all nodes with no outgoing
edges form a set of terminal nodes � . In section 6.2 we
extend the definition to graphs that include cycles.

A record + is called relevant to a sketch ����������� if it
describes a transition from some starting node , '-�

to a
terminal node . ' � through nodes of �0/ � /-� using
edges in � . For this model we assume that information is
being recorded at every edge traversed in + and stored in at-
tributes called measures. For simplicity in the notation we
will only refer to examples with a single numeric measure
denoted as 1 . In that case, a record + is an ordered set of
pairs:

+2��34��� ! �$1 ! ���6575657�7���&8:9;��1<8:9;�$= (1)

>
denotes the whole collection of records that are relevant

to the sketch. Sometimes, specific nodes may have measure
data recorded too. This is useful in order to trace intra-node
processing. In these cases, we replace such a node � with
a linked pair � ! , � % . Edge � � ! ��� % � is then used to store the
intra-node measure. When information is only recorded
at the nodes, we use notation (1) on the dual graph of the
sketch (e.g. by switching nodes and edges).

As a running example we will be using the sketch of
Figure 3. Node ? is a starting node and nodes @ , � are
terminal nodes.

4 Pair-wise Queries

In order to analyze the data we need to specify parts of
the sketch as the scope of our analysis and then compute
interesting aggregates on the relevant measures. Since � is
acyclic, any two distinct nodes A and � for which there is a
path A � �B�C� A��D� ! �$� % �756575E���;8��F�G� from A to � in �
define a selection filter over the stored records:

Definition 4.1 A pair-wise selection filter
�IHKJML

returns all
records that contain a transition from A to � . For each
qualifying record +M�D3N�O�;!P�$1Q!K�*�7565757�6�O� 8 94�$1 8 9;�$= there existR ��S such that 	UT R T
SVTXW4Y and � � �Z�OA[�]\#�����7^_�`�(\;���G� ,
where \ denotes a “don’t care” value.

An additional operator is needed to gain access to the
measures collected along the path A � � for each qualify-
ing record in

� H&J2L ��aU� :
Definition 4.2 The projection operator b HKJML � +N� returns
the recored measure data along the path A � � :b HKJML � +N�c� 3;3P1d�e�6575657�$1 ^ ="f g R ��S s.t. 	hT R T SiTW Y and �K�[��� Aj�:\#���*� ^ �k�(\;�$�d�$= .

Having subset the input dataset on a portion of the pro-
cess we can then apply any interesting aggregate function
like ,7A<lm�e� , nEoKA<pQ.]�e� , l R pq�e� , lsrN1I�e� , ls�Kt R rNpq�e� e.t.c over
the selected measures.

Definition 4.3 Let
� H&J2L

=
� ��b H&J2L � +N�$� = � �O1 � �6575757�$1u^4�

be the result of aggregate function
�

when applied to
measures 1 � �6575756�$1v^ collected along a path A � � for
record + . A pair-wise aggregation query w2T � H&J2L TCx
retrieves all records + 's� HKJML � > � for which the evaluated
measure data satisfies the inequality’s bounds w , x .

The definition is also extended to strictly
greater-than/less-than operators and single-sided
queries. For example query 2 of section 2 can be
stated as: lBrN1<y Y:ze{:| z J y[}�~��]� z(| z � � hours AND,6Adlsy Y:ze{:| z J y[}�~��]� z(| z�� 	 day. We further define�QH&J2H � > � to return the records that contain node A . Then
the binary function �P1 R ,6. HKJML

simply evaluates to 1 (true)
for each record returned by

�IH&J2L � > � .

5 Relational Design

A natural attempt to store this data in a relational sys-
tem is to break each record into a list of (record-id, edge-
id,measure) triplets using table:

> �O+ ��� ��� ��� �$1�� . This verti-
cal representation has an excellent effect when querying on
transitions between two adjacent nodes: a pair-wise query� H&J2L

, where �OA[���G� ' � can be easily computed given an
index on � ��� . However, for paths A � � with one or more
“hops” the query requires a number of self-joins of

>
equal

to the length of the path in order to “collect” all measures
along the path. Furthermore, in case there are more that one
paths between the selected nodes, the user has to implicitly
write an SQL sub-query for each one of them. For exam-
ple query ,6A<ls� JM�X�
�

returns the union of the following
expressions:�P���

select � �]� �E���
, � �]� ��� ��� � �

from � �N��� ��� �
where � � � �E����� � � � �E��� and � � � �7���

= ‘‘BC’’
and ��� � �E��� = ‘‘CD’’ and � �:� � � ��� � ��¡m¢� � �
select � � � ���

, � � �
from � �
where � � �7���

= ‘‘BD’’ and � � ��¡m¢
An alternative horizontal representation of the data is:>V£ � + ��� �$1¤z$¥#�757565E�$1¤z:¦ §d¦ � , where 1¤z©¨ is the measure for edge� � . If a record does not contain a transition the correspond-

ing 1 z ¨ value is null. Compared to the vertical representa-
tion, the horizontal schema avoids the need for self-joins,
but the user is still required to implicitly describe all paths
between the end-points A , � .

For aggregate functions like ,6Adlm�e� and n7oKAdpQ.]�$� we can
exploit a dual prefix-representation [8, 9] of the record:� �ª �¬«#­¯®#° ¥� �e±K²��:­¯®#°(³� ��´µ­¯�<��²©²����]�:�:�]­¯® °(¶ 9� �©´·­¯�<¸P�:�*�:�:�©�v¹ 97º � ²©²��­¯® ° ¶ 9� ��´µ­¯�<¸6�]�:�:�:�(�v¹ 9 ²©²e»

(2)

The prefix-
�

representation allows us to compute the ag-
gregation by subtracting the prefix-representation of the
measure at the ending node from the prefix-representation
at the starting node using table

> �¼ �O+ ��� �$� ��� ��1 ¼ � .
A common restriction of all three representations is that,

in many cases, we can not use an index for the predicate
on the measures (e.g. query ½&!). If the predicates on the
measures based on values w , x are highly selective (which is
the case when we are looking for outliers) indexing on the
path information through indexes on �#��� or �;�¾� will not be
sufficient. Querying the dataset is also cumbersome for the
user, as he has to compose his query appropriately to reflect
the part of the sketch that he is interested in. Materialized
views can be used to accelerate query performance and also
ease navigation through the dataset.

For some aggregate function
�

let view ¿ ¼ compute all
pair-wise aggregates

� HKJML
for each A and � for which there

is a path A � � in ����������� : ¿ ¼ = 36Aj�$�<�$+P�¾�4� � ��b H&J2L �O+4���$= .
Using the view it is straightforward to express query wUT� H&J2L T-x with selections on columns A and � . In addition
to these attributes, indexes on the derived function values� �Ob HKJML � +N�$� can be used to accelerate retrieval of matched

 xx aa y bb SS TT

Required path

Forbidden path

Figure 4: Required and forbidden paths in a sketch (case 1)

records. The view requires asymptotically Àµ�*f �Bf %ÂÁ f > fÃ�
space, where f �Äf is the number of nodes in the sketch andf > f the number of records. The complete pair-wise collec-
tion of values in ¿ ¼ will probably be prohibitively large to
compute and store. In the following sections we show that
there is a lot of redundancy in the values of this view that
we use to reduce the space requirements. For referring to
appropriate subsets of view ¿ ¼ we use the following nota-
tion:

Definition 5.1 Given a pair A[��� for which there exists a
path A � � in ���(�)�*��� we define view ¿ ¼¤Å7ÆqÇ as the pro-
jection of all records in ¿ ¼ that contain these states.

6 Processing Path Queries

For a start we assume that
� �È�P1 R ,6.]�$� , i.e. we are only

interested in the transitions stored in the records and not in
the actual measures. A pair-wise path query �61 R ,7. HKJML ��	
retrieves all records that include a path from A to � .1 View¿Iz©É ��Ê | Å7ÆqÇ lists all records that are returned by that query.
The view can be stored as a list of record-ids or even better
as a (compressed) bitmap of length f > f :
Definition 6.1 ¿[z©É ��Ê | Å7Æ)Ç is a bitmap of length f > f with
bits set at position

R
, for every record + � 'Ë� HKJML � > � .

We now investigate the problem of selecting the mini-
mum subset of views ¿ z©É ��Ê | Å7ÆqÇ to be materialized so that
subsequent pair-wise path queries can be answered from
these views without accessing the dataset. We first define
the notion of equivalence among two views:

Definition 6.2 Given two pairs of nodes � 1[�$Ì<� and �Or<�*ÍK�
s.t. there is a path from 1 to Ì and from r to Í in �����������
we say that ¿ z©É �¾Ê | Î Æ)Ï is equivalent (Ð) to view ¿ zeÉ ��Ê | Ñ ÆqÒ
if they contain the same records for any instance of

>
.

The definition implies that ¿ z©É ��Ê | Î Æ)Ï ÐÓ¿ zeÉ ��Ê | Ñ ÆqÒ if
each valid record that contains a path 1 � Ì also contains
a path r � Í and vice-versa. This means that there is a
path 1 � r or r � 1 in ����������� . Assuming that the first
is true (otherwise we swap � 1[�$Ì<� and ��r<�*ÍP�) the following
condition verifies that 1 is always included in a record that
contains a path r � Í :

1. Ô g a path , � r for all , '��
in ���(�
/s361I=4�*�Õ/Ä� É � 2

Figure 5: A Service Provisioning Tree

Depending on the relative position of the remaining
nodes in the sketch we have the following cases:

Case (1): g a path Ì � r in ����������� . Because the
graph is acyclic, this implies that nodes r and Í are reached
after departing nodes 1 and Ì in the specified order. We
denote this as: 1 � Ì � r � Í . In this case ¿[zeÉ ��Ê | Î Æ�Ï Ð¿Iz©É ��Ê | Ñ Æ)Ò if (i) after leaving node Ì we always pass throughr and Í and (ii) any path , � r includes Ì . Thus, the
following additional constraints must be met:

2. Ô g a path Ì � . for all . ' � in ���(�F/¬3KrG=N���Ö/m��{"�
3. Ô g a path Ì � . for all . ' � in ���(�D/¬3&ÍP=4�*�X/Õ��×E�
4. Ô g a path , � r for all , 'Ë�

in �����X/
3PÌd=N���
/��ÂØN�
Figure 4 depicts the required and forbidden paths in a
sketch for case 1 to hold. Super-nodes

�
and � correspond

to all starting and terminal nodes.
Case (2): g a path r � Ì in ����������� . We denote this

as: 1 � r � Ì � Í . In this case we verify conditions (1),
(3) as well as:

5. Ô g a path 1 � Ì in ���(�D/¬3Krd=4���Ö/Õ�Â{4�
6. Ô g a path r � Í in �����D/Ù36Ì<=N���Ö/m�ÂØN�
Case (3): g a path Í � Ì in ����������� . This is denoted

as 1 � r � Í � Ì . In this case we test conditions (1), (5)
as well as:

7. Ô g a path Í � . for all . ' � in �����D/Ù36Ì<=4�*�X/Õ� Ø �
8. Ô g a path 1 � Ì in ���(�D/¬3&ÍP=4�*�X/Õ��×]�

These tests require at most �df � fGÚ`� Depth-First-Search
scans of the graph for every pair �O1I��Ìd� and �Or<�*ÍP� . We
stretch here that these tests are only performed once when
the sketch is specified. For a sketch with

� � vertices and	6�4� edges they take 45 secs in a 600Mhz Pentium III PC.
The Ð relation partitions the views in equivalent classesÛ¿ ! � Û¿ % �757565 . In the graph of Figure 3 we have the following

four classes:ÜÝ � �¬« Ý °(Þ ��ß(à¯á Æ�â � Ý °(Þ �ãß�à¯ä Æ�â � Ý °(Þ ��ß(à âuÆ)å � Ý °�Þ �ãß(à âuÆ § »
ÜÝ � �¬« Ý °(Þ ��ß(à¯á Æ�æ � Ý °(Þ ��ß(à¯ä Æ)æ »
ÜÝdç �¬« Ý °(Þ ��ß(à¯á Æ�å � Ý °(Þ ��ß(à¯á Æ § � Ý °�Þ �ãß(à�ä Æ�å � Ý °(Þ ��ß(à¯ä Æ § �

Ý °(Þ ��ß(à ådÆ § »
ÜÝdè �¬« Ý °(Þ ��ß(à á Æ ä »

All views belonging to the same class
Û¿�� contain exactly

1Similarly, é�ê&ë¯ì$íïîPðòñ�ósô retrieves all records without such a transi-
tion. When the predicate is omitted, we assume it is ó�õ .

2 öø÷�ù
úBû�üPý7þ©ÿÕú ÿ ñ � is the graph obtained if we remove node ü
from the sketch and all its incident edges, e.g. ÿ ñ ó û7÷ãü � þ ü � ��� ÿ s.tü � ó ü OR ü � ó üPý

55 10 15 20 25 30 35 40
00

55

10

15

20

25

30

#of nodes

#o
f c

la
ss

es

Figure 6: Number of classes

the same bitmap for any instance of
>

. Thus, only
one of these views is needed to be materialized. For a
view ¿ z©É �¾Ê | Å7ÆqÇ , we denote as

Û¿ z©É �¾Ê | Å7Æ)Ç the materialized
representative of its class. We also denote the number of
classes of equivalent views in ����������� as f Û¿_f . In the graph
of Figure 3, f Û¿ f;��� .

In the previous discussion we assumed that there is a
path from A to � in ���(�)�*��� . If this is not true then¿Iz©É ��Ê | Å7ÆqÇ is empty by default. These views belong to a
virtual class

Û¿�� . The representative of this class contains
no records. On the opposite site, when transition A � �
exists in all records for any instance of

>
(like ? �	�

in our example), the corresponding view indexes the whole
dataset and

Û¿ zeÉ ��Ê | á Æ ä
is not materialized. In order to see

whether the representative
Û¿ z©É �¾Ê | Å7ÆqÇ of a class trivially in-

dexes all records in
>

the following condition is tested:

9. Ôeg path , � . for all , 'k�
and . ' � in ���(�C/3PA[���G=N���Ö/m� H /m� L �

For the sketch of our example just 3 representative views
are needed whose combined size is �df > f (uncompressed)
bits. In practice f Û¿ f depends on the complexity of the
sketch. Business processes often have parts with sequen-
tial actions � ! � � % � 57565 . As an example processing
of a customer’s order spawns several processes (possibly
on different departments) that are executed in parallel. We
model this scenario in the following way: starting with a
set of W nodes that are lined in a chain, we pick a random
non-terminal node, generate a new branch from that node
of length T W and repeat several times. Figure 5 shows a
possible result for W�� �

and four iterations. Processes of
this form are common in the telephone service provision-
ing domain. In Figure 6 we plot the number of classes f Û¿ f
versus the number of nodes in a sketch that we generate
this way. We varied W between � and
 , generated a sample
set of 100 graphs and averaged the number of classes for
sketches with the same number of nodes. Clearly for this
case the number of classes is linear in the number of nodes
and the combined size of all views is about the same as the
size of a single index on � �¾� . We believe this to be true in
many practical cases.

6.1 Evaluating more Complex Path Queries

We now define the selection operator
�IL ¥ J��
�
� J2L�� � > �

that returns all records that visit nodes � ! 56575E����� in the
specified order. A multi-node path query �P1 R ,6. L ¥ J��
�
� J2L��

evaluates to 1 for all records in
� L ¥ J��
�
� J2L � � > � and is com-

puted as follows:

pË�k	 : We answer the query by ORing the bitmaps of all
views

Û¿Iz©É �¾Ê |�� ÆqÇ ¥ �*, '-�
. Alternatively we could use

views
Û¿ z©É ��Ê | Ç ¥ Æ�� �$. ' � . Overall, we need to OR at-

most l R pq�*f � f��Pf �·f��Kf Û¿ÂfÃ� bitmaps.

pË�Ö� : We simply answer the query using view
Û¿IzeÉ ��Ê | Ç ¥ ÆqÇ ³ .

p � � : We AND bitmaps of views
Û¿[z©É ��Ê | Ç ¨ ÆqÇ ¨��"¥ � R �

	4�757565E�$pµ/m	 . Up to l R pq� pµ/m	;�Pf Û¿ fÃ� bitmaps are read.
This is a crude upper bound as many of these views
belong to the same class.

More complex path queries can be expressed as series
of multi-node expressions. For example, if we want all
records that pass through nodes ?U� � ���Ë��� but not from �
we compute: �P1 R ,6.�� J � J2��J��

AND NOT �P1 R ,6. y J y �Û¿Iz©É ��Ê | á Æ ä
AND

Û¿[z©É ��Ê | ä Æ�å AND
Û¿Iz©É �¾Ê | å<Æ § AND NOTÛ¿Iz©É ��Ê | á Æ�â � Û¿Iz©É �¾Ê | á Æ § AND NOT
Û¿Iz©É �¾Ê | á Æ�â .

A path query can be answered using bit-mapped in-
dices on the nodes present in a dual representation of a
record. There is a direct way to translate the optimized
view expression to an optimized expression of bitmaps on
the nodes. The details of this reduction are omitted due to
space limitations.

6.2 Processing Path Queries in a Digraph

A digraph ���(�)�*��� is used as a sketch if each weakly
connected component has a non-empty set

����' � of nodes
with no incoming edges and a non-empty set � �_' � of
nodes with no out-going edges. The definition of a record is
now changed to be an ordered multi-set of (edge,measure)
values. Query

� H&J2H
is defined to aggregate all measures

between the first occurrence of node A and the last occur-
rence of node � in the record.3

Since the sketch may contain cycles, we need to add
additional constraints in the evaluation of pairs �O1I�$Ì<� and�Or<�:ÍP� for computing the Ð relation:

Case (1): Constraints (1)–(4) ensure that nodes r and Í
are visited after nodes 1 , Ì in a record. In an acyclic graph
this is enough to guarantee a path 1 � Ì � r � Í in the
record. In a digraph we may also see paths: 1 � Ì � Í �
r , Ì � 1 � r � Í and Ì � 1 � Í � r that should be
excluded. For that we add the following two tests:

10. Ô g a path Ì � Í in �����D/Ù3Prd=N���Ö/m��{N�
11. Ô g a path , � Ì for all , 's�

in ���(�È/Õ3P1�=N���
/�� É �
Case (2): The relative order of the nodes can not change

if all four constraints are met.
Case (3): We need to secure the order of nodes 1 and Ì

with the following test:

3other definitions are possible depending on the context.

12. Ô g a path 1 � Í in �����D/Ù3Prd=4�*�X/Õ��{4�
When evaluating a multi-node path query as described

in section 6.1 the resulting bitmap describes more records
that are actually in

��L ¥ J �
�
� J2L!� � > � as the evaluation pro-
cess does not guarantee an order between paths �4� � �#�#" ! .
Thus, we use the optimized expression as a dirty filter and
evaluate the retrieved records at a latter step to eliminate
possible false positives. Compared to using bitmapped in-
dices on the nodes, we can prove the following:4

Lemma 6.3 Evaluation of a multi-node path query�P1 R ,6. L ¥ J��
�
� J2L �
in a digraph using bitmap indexes on the

nodes � � results in at least as many false positives as the
optimized expression of pair-wise path views.

7 Processing Pair-wise Aggregate Queries
We now address the problem of using materialized views
for answering pair-wise aggregate queries of the form:

wjT � { J ×�T
x (3)

when
�

= ,6Adlm�e�*��nEoKA<pQ.]�e�*�$lsr41[�e�*�$l R pq�$� . A pair-wise
aggregate view ¿ ¼ Ñ Æ)Ò contains pairs of �O+ �¾� � � ��b[É J Ø �O+4���$�
values. We can implement this view as a B-tree with the
second value used as a key and the first value used to point
to the appropriate records in

>
.

If another view ¿ ¼ Ñ ÆqÒ with �O1I��Ìd�hÔ� �Or<�*ÍP� and¿Iz©É ��Ê | Ñ Æ)Ò Ð ¿IzeÉ ��Ê | Î Æ�Ï is materialized it can be used to
locate all records with a transition from r to Í . This how-
ever is inefficient if the numeric predicates on the aggregate
are highly selective, e.g. when many records contain a path
from r to Í but few of them satisfy w T � �Ob { J × �O+N�$�øT
x .

In general we may be able to exploit the aggregates
stored in view ¿ ¼ Ñ ÆqÒ when evaluating query (3) if nodes r
and Í are contained in a path from 1 � Ì . Containment is
not a mandatory condition for view equivalence as defined
in the previous section. It is described as 1 � r � Í � Ì
in case (3). When all four conditions for this case are met
then for distributive aggregate functions, the stored aggre-
gate value along path 1 � Ì can be expressed as:

´·­%$ Þ ð'& ­¯�K²©²��m´)(O­�´µ­%$ Þ ð'* ­¯�K²©²��O´µ­%$ *Eð'+ ­¯�P²©²��(´·­%$ +Oð,& ­¯�K²©²©²
(4)

where
� �

=
�

for
� � lsrN1I�$���$l R pq�e�*�*,6Adlm�e� and�

’= ,7A<lm�e� for
�

= nEoKA<pQ.]�e� . This well know property of a
distributive function is frequently exploited to share com-
putation of data cube aggregates [1].

For any two pairs of nodes � 1[�$Ì<� and ��r<�*ÍP� for which
case (3) is true we denote that ¿ ¼ Î Æ)Ï.- ¿ ¼ Ñ Æ)Ò . The -
relation is reflexive, transitive and antisymmetric. Thus,
it defines a partial order on the views. The antisymmetry
comes from the containment requirement. For the sketch
of Figure 3 the - relation is shown in Figure 7.

4In many practical scenarios pair-wise views do not add false positives
in evaluation of path-expressions over digraphs. In-fact, we can detect all
pathological cases by analyzing the sketch in a similar manner.

AE

AD

BD

BE

DE

CE

CD

AC

BC

AF

BF

AB

 R

Figure 7: The - partial order

AE

AD

BD

BE

DECE

CD

AC

BC

AF

BF

AB

 R

Figure 8: The / partial order

For a view ¿ ¼¤Å7ÆqÇ the top-level ancestor, i.e. the higher
view ¿ in the hierarchy s.t. ¿ ¼¤Å7ÆqÇ - ¿ is denoted as0¿ ¼ Å7ÆqÇ . For example

0¿ ¼ å<Æ § � ¿ ¼ á Æ § . The number of
top-level views is denoted as f 0¿�f , and is 5 in our example.

7.1 Weaker Condition

We can relax the path equivalence requirement at the ex-
pense of getting more false positives. We define that¿ ¼ Î Æ�Ï / ¿ ¼ Ñ ÆqÒ if (i) 1 is required to reach r and (ii)
any path from Í to a terminal node includes Ì . Thus, only
tests (1) and (7) are required. The / relation is also a par-
tial order and implies that

� { J ×6� > �,1 � É J Ø � > � . For the
sketch of Figure 3 the / partial order is depicted in Fig-
ure 8. The top-level views of the order are denoted as 2¿
and their number as f�2¿_f . In this example f32¿�f;�X� .

Based of the definition of relations Ð , - and / the fol-
lowing observations are made:

� ¿ ¼ Î Æ�Ï�- ¿ ¼ Ñ Æ)Ò implies that ¿IzeÉ ��Ê | Î Æ�Ï Ðk¿IzeÉ ��Ê | Ñ ÆqÒ
and therefore f Û¿_f"TDf 0¿�f .

� Views
0¿ ¼ Î Æ�Ï answers exactly path queries in a DAG

and with possible false positives in a digraph.

� ¿ ¼ Î Æ�Ï4- ¿ ¼ Ñ ÆqÒ implies that ¿ ¼ Î Æ�Ï / ¿ ¼ Ñ ÆqÒ and

therefore f�2¿ fuTDf 0¿ f .
� Views 2¿ ¼ Î Æ�Ï is the smallest set of pair-wise views

that answer any pair-wise path/aggregate query with
no false negatives without looking at the data. How-
ever, these views may introduce false positives in path
expressions both in a DAG and a digraph.

AA
BB

CC

DDXX11 XX22

XX33
XX44

Figure 9: Sketch with Parallel Parts

7.2 Pair-wise sum-Queries

Pair-wise sum-queries are queries of the form: w T,6Adl { J × TDx . We assume that at least the top-level views0¿IÊ H ~ Å7ÆqÇ of the - hierarchy of Figure 7 are materialized
and we explore how queries on the remaining pairs can be
translated and executed efficiently using these views.

If view ¿ Ê H ~ Î Æ�Ï is not computed we are using ma-
terialized view ¿ Ê H ~ Ñ Æ)Ò � 0¿ Ê H ~ Î Æ�Ï as a dirty filter to
find candidate records that we retrieve and evaluate from>

in a latter step. Along with the views we store in
the database the dependency graph of Figure 7. This
graph has a size of Àµ�*f � f % � , which we consider insignif-
icant. For each node in the graph we maintain the min-
imum and maximum value of the ,6A<l��$� function evalu-
ated over the stored records that contain the specified tran-
sition. For instance node �Ä� will store the following
two numbers: l R p ,6A<l ��J�� � l R pq�(,7A<lm�Ob ��J�� �O+4���$�
and lsrN1 ,6A<l �øJ�� �FlsrN1I�(,7A<lm�Ob ��J�� �O+N�$�$� for all + '�Q��J5� � > � . These statistics are easy to maintain in an
append-only scenario, while we load new records in the
data warehouse. In fact, many service provisioning datasets
are obtained from recording tools and data is indeed ap-
pend only. Using equation (4) query wòTk,7A<l�{ J ×UT�x is
re-written as:5

6 (� 6 �.7�8%9 :<;=7 Þ ð>* �.7�8%9 :<;=7 +Oð'&@?:<;=7 Þ ð'& ?BA �47�C#� :<;=7 Þ ð>* �47DC#� :E;F7 +Oð,& � A ((5)

Because of the - relation using the view is equivalent
for the path-requirement r � Í and is therefore at least as
good as using any type of indices on the node/edge-ids of
the records.

7.2.1 Handling Parallel Paths

In business workflows it is common to have multiple sub-
tasks that are spawn from a node. Consider for example
the sketch of Figure 9. State ? spawns two parallel pro-
cesses that are being synchronized later at state � . An
event that leaves state ? collects measures 1 � along all
four edges ��?M� � ���6� � ���s���6�O?U���·� and �G� ���s� . In order for
our framework to apply for this case we need to define the
meaning of an aggregation for pair ��?M���s� (similar to path-
aggregation in [15]). If timing information is of use then,6Adlm�Ob � J2� �O+4��� can be defined as lBrN1I�O1 ! ÚV1 % ��1IH¤ÚV1KJ#� .
If on the other hand some cost-related weights are stored
in the edges we may define ,6Adlm�Ob � JM� � +N�$� to be 1 ! Ú1 % Ú�1LHqÚÕ1KJ . As long as we provide a succinct way to de-
scribe theses aggregations, the same framework is directly
applicable for this data.

5we assume that MÂëON ì�P�M îPðòñ óQMSR7ê ìTP�M î6ðòñ óBô if P ó ü .

7.2.2 Using Phantom Aggregates to Optimize Perfor-
mance on non-Materialized Views

Each top-level view ¿ of Figure 7 defines a poset �VU with
all views ¿ � - ¿ . Let WXU be the set of lower bounds in �YU .
For example W U � ÅEZ á Æ § � 3K¿IÊ H ~ ä Æ)å �*¿IÊ H ~ ådÆ § = . One
can prove that for each top-level view ¿ in the - order, W U
contains views on non-overlapping paths in ����������� . Our
key-idea is to use the values of these views to cluster the
records of ¿ in a way that will allow fewer false positives
due to the rewriting. We propose two methods for storing
the view based on partitioning its records on the values of
the aggregates in WXU . We call these values phantom aggre-
gates as they don’t appear in ¿ . Both methods maintain a
hybrid data-structure, in which the upper part describes a
partitioning scheme based on the phantom aggregates and
the lower part implements a collection of B-trees on the
values of ¿ , using one tree per partition. The upper parti-
tioning scheme is fixed (e.g. we make no attempt to mod-
ify it during updates). This is not a problem as phantom
aggregates have a suggestive value during query rewriting.
In practice we can periodically modify the partitions when
the dataset or the query workload change.

kd-tree method. For some small
�

, we generate
�

par-
titions for the values of ¿ � ¿ Ê H ~ Å7ÆqÇ in the following
manner: we treat each value of ¿ as an f W>Uøf -dimensional
point with coordinates defined by the phantom ,7A<lm�e� ag-
gregates of views in W>U . We then build the first wOo\[I] ^K_L]¾� � �
levels of a kd-tree tree for these values. Each node at levelw o\[K] ^I_I]¾� � � contains a pointer to a partition of the origi-
nal values in ¿ with all records whose phantom aggregates
fall in the sub-space specified by the path from the root
to that node in the kd-tree. Each partition is organized as
a B-tree having ,6A<l���b H&J2L �O+4��� as the key and the corre-
sponding +P��� s as values. At the root of each tree we store
the l R p ,6Adlm�e� and lBrN1 ,6A<l��$� values for the partition,
for each phantom aggregate.

Querying this structure for any view ¿ � - ¿ is done
using the top-level kd-tree nodes for pruning the search.
Queries on values of ¿ ignore these levels and access all
the underlying B-trees. In the presence of multiple disks,
all these trees can be efficiently searched in parallel. The
space requirement for the first w o\[I] ^ _]¾� � � levels of the kd-
tree is � Á � � /Z	#� , which fits in a single data page for
small

�
s. Figure 10 shows the hybrid structure for view¿IÊ H ~ á Æ § .

Grid-based method. We create a hybrid data-structure,
which partitions the records of the view by super-imposing
a f WXU�f -dimensional grid on its values. The simplest way to
do this is to partition the aggregates of each view ¿ �I' WXU
by computing appropriate quantiles [7, 11]. Multidimen-
sional index loading techniques like [4] are also applicable.
Notice that the goal is not to equi-split the tuples of the
view, but to impose a partitioning scheme that will benefit
the expected workload on the phantom aggregates. After
the grid is decided, a single B-tree on the records of ¿ is
built for each cell.

 bd

 bd bd

 de de de de

 de

 bd bd

 de de de de

 de

B=16

B−trees on sumA−>E

Figure 10: Implementation of view ¿ Ê H ~ á Æ §
7.3 Pair-wise count-Queries

For evaluating query wµT nEoKAdpQ.�{ J ×BT x we first list all
possible paths `Q!K�657565E��` 8 from r to Í in ����������� with the
appropriate number of transitions. As described in sec-
tion 6.1 we can find all records that contain path ` � by
accessing up to f Û¿ f appropriate bitmaps. This results in
a bitmap

� � for each path. The answer to the query is
then computed by ORing all bitmaps

� � . This method re-
quires no access to the dataset

>
and generates no false

positives/dismissals. The method is applicable when views0¿ ¼ Î Æ�Ï (for any function
�

) are available. The answer is
similarly computed by merging appropriate lists of records
ids. If views 2¿ ¼ Î Æ�Ï are used then the answer may include
false positives.

7.4 Pair-wise min/max-Queries

Pair-wise max/min queries are treated similarly to the
pair-wise sum queries. The rewriting in this case
will be: w � = � �Ow$�$l R p � É J {4�$l R p � × J Ø �CT � É J Ø T� ��xI�$lsr41 � É J {N�$lsr41 � × J Ø � = x � for

�
= l R pq�e�ba&lBrN1[�e� .

8 Experiments
8.1 Evaluate Rewriting Using the - Partial Order

In this set of experiments we focus on a specific portion of
a sketch that contains psÚD	 nodes: � ! �7575657������" ! forming
a chain. Business workflows frequently contain parts with
such local sequential actions. We denote as 1¤� the measure
value collected on edge �O�;���$�#�#" ! � . Each measure describes
arrival times that are following an independent exponen-
tial distribution. We assume that ¿jÊ H ~ Ç ¥ ÆqÇ � �N¥ is the only
view materialized. Due to space limitations we defer ex-
periments with other aggregate functions to the full version
of this paper.

The first two experiments evaluate how efficient the
view can be for answering pair-wise sum queries of the fol-
lowing two practical classes:

� queries for outliers: these are queries of the form:

:<;=7 ñ ¨ ðòñTc �N¥ ¡Bd5e � � �gfEf<fE�Ë��h<i#�kjml�d@n�e � � �gfEf<fE�Ë��h<i
(6)

11 22 33 44 55 66

00

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Index Scan

Exact View (n=2)

n=3

n=4

n=5

n=6

kk

#r
ec

or
ds

 r
et

rie
ve

d

Figure 11: Querying for outliers

W is a user defined parameter that describes how selec-
tive the query is. Conceptually, this type of queries ac-
cess ”sparse” areas of the p -dimensional space formed
by the measures, looking for outliers.

� queries on hot-spots: these are queries of the form:

d�e � � �Õ�:�:�©�3hEi=oQjpl�dSn�e � � �Õ�:�:�(��hEi ?:<;=7 ñ ¨ ðòñbc �N¥ ?d�e � � �Õ�:�:�©�3hEi;�kjpl�dSn�e � � �Õ�:�:�(��hEi (7)

These queries ask for aggregates close to the expected
value of the combined distribution and evaluate the
rewriting when querying a ”dense” area of the data.

For the first experiment we varied p and tested query-
ing view ¿ Ê H ~ Ç ¥ ÆqÇ � �"¥ for computing outliers on the first
two transitions: ,6A<l L ¥ J2L�q ��1¤! ÚÈ1d% � �sr 1¤! Ú
1d%ut¤ÚWv�Ä�·�sr 1¤!�Ú�1d%ut . We used a synthetic dataset of 1,000,000
records with a transition �N! �xwuwuw�� � ��" ! . In Figure 11
we report the number of records returned from the view
varying parameters W and p . The flat line represents the
number of records returned if instead of the view we do in-
dex look-ups in

>
for the two edges. This number is con-

stant as all 1,000,000 records qualify. Two observations are
made from this graph: (i) performance of the view degrades
with the length of the path due to ”noise” from measures1IH4�756575E��1I� and (ii) performance gets better when we are
looking for extreme outliers (e.g. as W increases).

In Figure 12 we experiment with queries on hot-
spots using as an example query �sr 1�!<tq/ÖWv�Ä�U�sr 1Q!<t�T,6Adl L ¥ J2L ³ T �yr 1 ! t[ÚDWv�Ä�U�yr 1 ! t , varying W from �v5 �v	
to �v5 �;� and p from 	 (exact view) to
 . For these queries,
view ¿IÊ H ~ Ç ¥ ÆqÇ � �"¥ is not as effective as when querying for
outliers. For p � � , the view is about as bad as using the
index. In a second run, we used the grid-based index of
section 7.2.2 with � and � partitions per phantom aggre-
gate 1 % �7575657��1I� . For the first case we partitioned on the
expected median of each 1¤� , that is �G5
mz;� for this distri-
bution, and for the latter the break-points where set to �G5
{
and 	;5 � to better reflect the query pattern. The size of

0.01 0.05 0.1 0.15 0.2 0.25 0.3
00

250000

500000

750000

1000000 Index Scan
Exact View

n=2

n=3

n=4

n=5

n=6

n=2 (2 part)
n=3 (2 part)

n=4 (2 part)

n=5 (2 part)

n=6 (2 part)

n=2 (3 part)

n=3 (3 part)
n=4 (3 part)

n=5 (3 part)

n=6 (3 part)

kk

#r
ec

or
ds

 r
et

rie
ve

d

2 partitions

3 partitions

Figure 12: Querying on hot-spots

view ¿ Ê H ~ Ç ¥ ÆqÇ � �"¥ was 11.61MB when stored as a single
B-tree, 11.73MB when stored using a 2x2x2x2x2x2 grid
and 14.31MB for the 3x3x3x3x3x3 grid6. This is compa-
rable to the size of a B-tree on � �¾� (11.6MB).

8.2 Evaluating Rewriting Using the / Partial Order

We now modify the initial sketch by adding a cross-
over edge � � ! �$����" ! � . As a result now ¿[Ê H ~ Ç ¨ ÆqÇ c �N¥ /¿ Ê H ~ Ç ¥ ÆqÇ � �"¥ . We generated 1,000,000 new records vary-
ing the probability b of a record using the edge � �u!&��� ��" !P� .
The measure along the new edge was following the same
exponential distribution. We executed query ,6A<l L ¥ J2L!q �
�sr 1¤!vÚÄ1d%|t:Ús
 Á �Ä�U�Vr 1¤!vÚÄ1d%|t (for p =6) using the view or
an index on � ��� , as shown in Figure 13. For b =0 no record
uses the cross-over path and the index returns all records.
With b increasing the index scan becomes more selective
but the same is happening for the view.

8.3 Experiment with Real Data

For the next experiment we used real traces from a busi-
ness workflow with 6 states, forming a chain. The dataset
had 42754 records. Measures 1 � record timing information.
In Figure 14 we normalize the number of records retrieved
from view ¿ Ê H ~ Ç ¥ ÆqÇb} , those retrieved from an index on � �¾�
as well as the exact answer size, over the dataset size for all
possible queries of formula (6) with

R ' r�	;� � t��(S ' r R � � t
and W �~� . The x-axis in the Figure represents pairsR ��S . For the view we used a grid with 2 partitions per
measure. We experimented with two setups for the grid:
the first indicated as part-1 used as break-points the aver-
age value of each measure, while for part-2 we used value�sr 1d��teÚ�W Á �Ä�U�yr 1<�%t . part-2 did better in most cases, as ex-
pected, but not always as the optimal break-point per mea-
sure is not necessarily optimal for multi-measure queries
(e.g. when S � R

). Overall, the view in all but 2 cases man-
aged to filter-out more than 90% of the dataset. Its size was
652KB while the size of the B-tree index on � ��� s 521KB.

6we also tested a grid of the form 3x3x1x1x1x1 that was slightly worse
on queries on ê �

but used only 11.62MB of disk space

00 0.25 0.5 0.75

00

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Index Scan

View (n=6)

cross−over probability (P)

#r
ec

or
ds

 r
et

rie
ve

d

Figure 13: Testing the / Partial Order

9 Conclusions

In this paper we showed how to apply data warehousing
techniques for organizing service provisioning data. Our
solution was based on the notion of a sketch as a used-
defined description of the underlying process that gener-
ates the records. We explored the implications of storing,
indexing and querying this data in a relational engine. Our
observation was that materialized (aggregate) views can be
effectively used to query and index such records. We in-
vestigated the problem of selecting a minimum (under dif-
ferent requirements) set of aggregate views for answering
user queries and also discussed effective indexing mecha-
nisms for their records that achieve superior performance
over index scans.

10 Acknowledgements

The author would like to thank Ken Church, Divesh Shri-
vastava as well as the VLDB referees for their helpful com-
ments and suggestions.

References

[1] S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the Computation of Multidimensional Aggregates. In
Proc. of VLDB, pages 506–521, Bombay, India, 1996.

[2] C. Bettini, X.S. Wang, and S. Jajodia. Free Sched-
ules for Free agents in Workflow Systems. In Proc. of
TIME, pages 31–38, Nova Scotia, Canada, July 2000.

[3] C. Y. Chan and Y. Ioannidis. Bitmap Index Design
and Evaluation. In Proceedings of SIGMOD, pages
355–366, Seattle, Washington, June 1998.

[4] J. Van den Bercken, B. Seeger, and P. Widmayer. A
Generic Approach to Bulk Loading Multidimensional
Index Structures. In Proc. of VLDB, August 1997.

[5] J. Eder. Extending SQL with General Transitive Clo-
sure and Extreme Value Selections. TKDE 2(4),1990.

(1,1) (1,2) (1,3) (1,4) (1,5) (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

00

10

20

30

40

50

60

70

80

90

100

Index Scan

Exact View

View 1−>6 (part 1)

View 1−>6 (part 2)

query

re
co

rd
s

re
tr

ie
ve

d
(%

)

Figure 14: Querying for Outliers, Real Data

[6] J. Eder, E. Panagos and M. Rabinovich. Time Con-
straints in Workflow Systems. In CAiSE, June 1999.

[7] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J.
Widom. Computing the Median with Uncertainty. In
STOC, pages 602–607, Portland, Oregon, May 2000.

[8] S. Geffner, D. Agrawal, A. El Abbadi, and T. R.
Smith. Relative Prefix Sums: An Efficient Approach
for Querying Dynamic OLAP Data Cubes. In ICDE,
pages 328–335, Sydney, Australia, March 1999.

[9] C. T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range Queries in OLAP Data Cubes. In Proceedings
SIGMOD, pages 73–88, Tucson, Arizona, May 1997.

[10] P. Larson and V. Deshpande. A File Structure Sup-
porting Traversal Recursion. In SIGMOD, June 1989.

[11] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Ap-
proximate Medians and other Quantiles in One Pass
and with Limited memory. In Proc. of SIGMOD,
pages 426–435, Seattle, Washington, June 1998.

[12] I. S. Mumick, H. Pirahesh and R. Ramakrishnan. The
Magic of Duplicates and Aggregates. In Proceedings
of VLDB, pages 264–277, Australia, August 1990.

[13] P. O’Neil and D. Quass. Improved Query Perfor-
mance with Variant Indexes. In SIGMOD, May 1997.

[14] S. Ozeki and N. Ikeuchi. Customer Service Evalua-
tion in the Telephone Service Provisioning Process. In
Proceedings of Winter Simulation Conference, pages
1341–1348, Arlington, Virginia, December 1992.

[15] A. Rosenthal, S. Heiler, U. Dayal and F. Manola.
Traversal Recursion: A Practical Approach to Sup-
porting Recursive Applications. In SIGMOD,1986.

[16] S. Sudarshan and R. Ramakrishnan. Aggregation and
Relevance in Deductive Databases. In Proccedings of
VLDB, pages 501–511, Barcelona, Spain, 1991.

[17] M. Wu and A. P. Buchmann. Encoded Bitmap Index-
ing for Data Warehouses. In Proc. of ICDE, 1998.

