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Abstract

Bulk loading refers to the process of creating an
index from scratchfor agivendataset. This prob-
lem is well understood for B-trees, but so far,
non-traditional index structures received modest
attention. We are particularly interested in fast
generic bulk loading techniques whose imple-
mentations only employ a small interface that is
satisfied by a broad class of index structures.
Generic techniques are very attractive to extensi-
ble database systems since different user-imple-
mented index structures implementing that small
interface can be bulk-loaded without any modifi-
cation of the generic code.

Themaincontrikution of thepapeiis the pro-
posalof two new genericandconceptuallysimple
bulk loading algorithms. These algorithms recur-
sively partitiontheinputby usingamain-memory
index of the same type as the target index to be
build. In contrasto previousgenericbulk loading
algorithms, the implementation of our new algo-
rithms turns out to be much easier. Another
advantage is that our new algorithms possess
fewer parametersvhosesettingshave to betaken
into consideration.

An experimental performance comparison is
presentedvheredifferentbulk loadingalgorithms
are investigated in a system-like scenario. Our
experiments are unique in the sense that we
examine the same code for different index struc-
tures (R-tree and Slim-tree). The results consis-
tently indicate that our new algorithms outper-
form asymptoticallyworst-caseoptimal competi-
tors. Moreover, the search quality of the target
index will be better when our new bulk loading
algorithms are used.
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1 Introduction

Recentlytherehasheenanincreasingnterestin designing
methoddgor processing setof homogenousperationon
an index in bulk. Among the different bulk operations,
bulk loadingof anindex hasattractedmostof theresearch
attention. In this paper, we address the problem of bulk
loadinganindex for agivendatasetasfastaspossible We
areprimarily interestedn creatingindexesfrom non-tradi-
tional index structures which are suitable for managing
multidimensional data, spatial data or metric data. For
these kinds of data, it isin general not advisable or even
not possible to apply classical sort-based bulk loading
where first, the data set is sorted and second, the tree is
built in a bottom-up fashion. In the context of non-tradi-
tionalindex structuresthemethodof bulk loadingalsohas
a serious impact on the search quality of the index. We
thereforeaim for a bulk loadingmethodthatgivescompa-
rable or better search performance than tuple-loading
where an indeis kuilt up by inserting tuples one by one.

In addition to sort-based methods, there has been
another two broad classes of bulk loading techniques. The
one class called Buffer-based bulk loading employs the
buffer-treetechniqugArg 95] which cangenerallybeused
to preserve efficiency of main-memory algorithms when
the data does not fit into memory anymore. Due to this
technique, bulk loading can be performed as fast as exter-
nal sorting (in an asymptotic sense) on index structures
which supportaninsertionof arecordin logarithmictime.
The second class called sample-based bulk loading
employs asamplethatfits into memoryto build up thetar-
getindex. Althoughbulk loadingis of interestfor ary kind
of index structuremostof theavailablemethodsverepre-
sented in the context of R-trees or closely related index
structures. Little attention has been given to other index
structuresalthoughit mightbeimportantfrom theperspec-
tive of an extensible database system to provide a generic
bulk loading method which will be applicable not only to
mary differentindex structuresurrentlyavailablebut also
to index structures that will be @eloped in the future.

In this paper, we present two new sample-based bulk
loadingtechniquesvhich areapplicableto abroadclassof
tree-basedhdex structuresBoth techniquesregenericin
thesensdhatthey make useof aninterfacethatis satisfied
by a broad class of index structures. While the one



approachs applicableto mary tree-basedhdex structures
like B+-trees, R-trees [Gut 84], M-trees [CPZ 97] and S
trees [Dep 86], the other technique can be used for bulk
loading almost any kind of tree-based index structure that
uses the concept of node splitting, including KDB-trees
[Rob 81] and their relatives hB-trees [LS 90] and LSD-
treeg[HSW 89]. Thenew techniquesreconceptuallysim-
pler than most of the previous ones and therefore, their
implementation is not too difficult. We implemented our
new methods as well as the most promising competing
methodswhich have beenpreviously proposedOur exper-
imentsindicatethatour new methodsperformfastin most
cases, but, as known from other algorithms based on sam-
pling, their performancés alsoinfluencedy thequality of
the sample. Moreover, the search performance of the trees
generatedy our sampling-basethethodds generallybet-
ter in comparison to others.

Our performance comparison is unique in the sense
that all index structures and bulk loading techniques are
implemented by using the same building blocks that are
part of our fully documented and public available library
XXL [BBD+ 01], [BDS 00]. Thelibrary providesa power-
ful andflexible infrastructurefor implementingquerypro-
cessingunctionality suitablefor comparingheruntimeof
different algorithms. Though the absolute timings of the
bulk loading methods are of minor relevance, we believe
that the relative timings are excellent indicators for a per-
formance comparison of the different bulk loading meth-
ods.

The paper is organized in the following way. In Sec-
tion 2, our most important notation is introduced. More-
over, we give areview of the current research results on
bulk loading. In Section 3, we present Path-based bulk
loading, a new bulk loading algorithm applicable to the
broad class of Grow& Post-trees. Section 4 is dedicated to
Quickload, a special algorithm for bulk loading index
structures from an important subset of Grow& Post-trees.
The results from a preliminary performance comparison

* chooseSubge Givenadatarecordandanindex node.
Compute the reference to the subtree where an insert
operation of the record should be famnded to.

* grow. Given a datarecordanda datanode.Insertthe
record into the node.

* gsplit&post Given an overflovn node. Split the node
into two and post the information about the split (e.g.
the nev reference) to the parent node.

* seach: Given a query and data node (index node).
Return all data records (references) stored in that node
being relgant to the query

An insertionof anew recordinto a GP-trees performedn
thefollowing way. First chooseSubgeis iteratively called
startingat theroot of thetreeuntil adatanodeis retrieved.
Then,the datarecordis insertednto thedatanode,i.e, the
node grows by one record. When this causes an overflow,
the node isfirst split into two and then, the relevant infor-
mation about the split is posted to the parent node. If the
root node is split the tree grows by one level. The most
prominent example of a GP-tree is the B+-tree which sup-
ports one-dimensional queries. However, many of the
well-known multidimensional index structures [GG 98]
like the KDB-tree [Rob 81], hB-tree [LS 90], R-tree
[Gut 84], MV B-tree [BGO+ 96], M-tree [CPZ 97] and
Slim-tree [TTSF 00] also satisfy the interface of the GP-
tree.

An importantsubclas®f GP-treess theclassof over-
lapping-predicate-tred®P-treeg. In additionto thefunc-
tionality of a GP-tree, an OP-tree also supports insertions
of entire trees whose height is lower than the height of the
targettree.An insertionof atreeis generallyperformedoy
inserting the reference of its root node into an appropriate
node of the target index whose level is equal to the height
of the tree to be inserted. If the root of the inserted treeis
not sufficiently full, an additional merge has to be per-
formedwith asibling node.This additionalfunctionalityis
possibledueto the propertythatnodepredicatesn anOP-
tree may overlap where the node predicate of an index

are reported in Section 5. Section 6 concludes the.paper nodeis satisfied by all recordsin the Corresponding sub-

2 Preliminaries

In this section, we introduce the basic assumptions which
are required from the index structures in order to use our
generic bulk loading techniques. Moreover, we also
present the underlying cost model. At the end, we give a
brief review of the lulk loading techniques.

2.1 Grow&Post-Trees

In thefollowing, we assumeanindex structureto beatree.
Associated to each node of the tree is a reference that,
except for the reference of the root, is stored in the parent
node.Datarecordsarestoredin the datanodeswhich cor-
respond to the leaves of the tree, whereas the index nodes
are internal nodes

Most tree-based index structures show great similari-
tiesin their internal interface. In common with [Lom 91]
we assume that a tree is a Grow& Post-tree (GP-tree)
where the follving operations are supported:

tree. For the R-tree, the node predicate is represented as a
minimum rectilinear rectangle that covers the recordsin

the subtree. Since the predicates of an OP-tree may over-

lap, it is possibleto designspecificbulk loadingalgorithms
that create an index structure level by level bottom-up. In

addition to the R-tree, the M-tree, S-tree and Slim-tree

belong to this important class of indstructures.

2.2 1/0 Model

We assume that a disk is partitioned into pages of fixed
size, with random access to each page at unit cost. Our
goalis to build upanindex ondisk andtherefore anodeof
the tree al'so corresponds to a disk page where at most B
records (data objects) can be stored. Each access to disk
transfers one page; we denote this as one 1/0. Our generic
bulk loading algorithms simply use the available imple-
mentations of the GP-tree interface. These implementa-
tions generally determines the CPU-cost of bulk loading
GP-trees and therefore, we are primarily interested in



reducing the 1/0O-cost. As a conseguence, the performance
of our algorithms is measured in the number of I/0s
requiredfor performinga sequencef N insertionsIn par-
ticular, we are not interested in the I/O-cost of asingle
insertion.

An important parameter of bulk loading algorithmsis
the amount of available main memory that can be used. In
the following, we assume that main memory is managed
by a database buffer that follows the LRU replacement
stratgy. Let M bethe maximumnumberof recordsthatfit
into the available main memory. The I/O cost of the algo-
rithms is expressed in terms of N, M and B, i.e., none of
these three parameters is viewed as a constant. We will
abbreviate N/B andM/B by n andm, respeciiely.

For the 1/0 model described above it was shown
[AV 88] thatexternalsortingrequires@(n log,,n) 1/Osin
the worst-case. The 1/0 cost of bulk loading a one-dimen-
sional index structure that preserves the ordering of data
(e.g., B+-tree) is therefore asymptotically optimal in the
worst-caseif it meetsthe lower boundof externalsorting.
Therefore, our goal is to achieve this bound for bulk load-
ing multidimensional index structures, without sacrificing
searchperformanceSpecialcareconcerninghis trade-of
has to be taken for OP-trees. They may be built naively
level by level bottom-up by packing the data records into
nodes without performing any kind of preprocessing (e.g.
sorting). This bulk loading approach requires @(n) 1/Os
only, but the search performance of such an index will be
unacceptable, in general. Thus, athough there existsalin-
ear-time bulk loading algorithm for OP-trees, we are pri-
marily interested in bulk loading algorithms whose 1/0
compleity meets the lver bound of gternal sorting.

2.3 Review of Previous Techniques

In the following, we give a brief overview of the different
approaches to bulk loading and discuss their unique prop-
erties.In orderto compareghesemethodsdifferentaspects
have to betakeninto accountSomeof themethodsequire
that the data source is entirely on disk, whereas other
methods may also accept a source directly delivered from
an iterator [Gra 93]. Some of the methods are memory-
adaptive, whereas others require a fixed amount of mem-
ory during the entire runtime. There are also methods
whicharenotlimited to bulk loadingonly, but alsosupport
bulk insertions Anotherissueis the primarydesigngoal of
the methods: should be the search quality of the target
index or the build time of the index most important? We
primarily distinguish the different bulk loading methods
with respect to their main internal techniques (sorting,
buffering, sampling into three diferent classes.
Sort-based bulk loading is a well established tech-
nique sinceit is used in commercial database systems for
creating B+-trees from scratch. Bulk loading of a B+-tree
first sortsthe dataandthenbuilds theindex in abottom-up
fashion. For each level of the index, the nodes can be
packed entirely full, except for the right most node. It is
however advisabldo leave someemptyspacen thenodes,
when further insertions are expected right away after bulk
loading. The runtime of this approach is dominated by the

cost of sorting which requires O(n log,n) I/Os. Assum-
ing that an appropriate ordering exists, sort-based bulk
loadingis notlimited to one-dimensionahdex structures,
but canalsobe appliedto OP-treessinceOP-treesupport
insertions of entire trees. For multidimensional index
structures like R-trees, the question arises what kind of
ordering results in the tree with best search performance.
One of the first approaches [RL 85] suggests to sort the
data with respect to the minimum value of the objectsin a
certain dimension, whereas [KF 93] suggest to order w.r.t.
the Hilbert-value of the centers. It is also shown in experi-
ments [KF 93] using spatial data that the Hilbert-ordering
gives better performance. Other experiments [DKL+ 94]
revealedthatthesearctperformancef the R-treeshuilt by
using Hilbert-ordering is inferior to the search perfor-
mance of the R*-tree [BKSS 90] when the records are
inserted one by one. In a data warehouse environment
wherethe dimensionsarequitedifferent(andhenceit may
bedifficult to comeup with awell-definedHilbert-value)it
might still be better to select a dimension and to sort the
data according to this dimension [KR 98]. The primary
reason for using this approach in a data warehouse is the
fact that primarily bulk insertions should efficiently be
supported. Several methods are available for supporting
bulk insertions on indexes which rely on alinear ordering
of the data ([JD®9], [INS+97], [KR 98], [MNPW 00]).

Anothersort-basednethodfor bulk loadingR-treess
presentedn [LEL 97]. The methodsstartssortingthedata
sourcew.r.t. thefirst dimension(e.g.usingthe centerof the
spatial objects). Then, (N/B)ll contiguous partitions are
generated, each of them containing (almost) the same
numberof objects.In thenext step,eachpartitionis sorted
individually w.r.t. the next dimensionAgain, partitionsare
generated of almost equal size and the process is repeated
until each dimension has been treated. The final partitions
will eventually contain at most B objects. In [LEL 97] it
wasshavn thatthis methodof sort-basedbulk loadingcre-
ates R-trees whose search quality is superior to those R-
trees which have been created w.r.t. the Hilbert-ordering.
However, the methodalsorequiresheinput beingsortedd
times.

Quite a different approach to bulk loading is based on
sampling.The bulk loadingmethodof the M-tree[CP 98],
for example followsthisidea. Themethodrandomlysam-
ples objects, we call them representatives, from the input
and builds up a structure also known as a seeded-tree
[LR 98]. Then, the remaining records of the input are
assignedo oneof therepresentaties.For eachrepresenta-
tive, the associated data objects are treated again in the
sameway. Theresultof this approachs basicallya M-tree
of M-trees and hence, the structure offers some structural
properties (underfilled nodes, unbalanced structure) that
violatestheinvariantsof theoriginal M-tree[CPZ 97]. The
authors discuss different strategies to obtain the desired
structuralbehavior. For example,second-leel treeswith a
small number of objects are deleted and their objects are
assignedo otherrepresentaties. This evenmayresultin a
structurewhereonly onerepresentati exists. In this case,
[CP 98] suggests to start again with a different sample.



Note that the M-tree and related structures like the Slim-
tree [TTSF 00] deals with metric data and therefore, there
is no natural ordering of the data. Consequently, a sort-
basedulk loadingcannotdirectly beappliedto bulk load-
ing an M-tree. An alternative might be to map the metric
datainto vector data using for example fast map [FL 95]
andthenapplyingagain sort-basedbulk loading.However,
the quality of the M-tree might substantially suffer from
such an approach.

Another approach based on sampling is given in
[BBK 98] where a kd-tree structure is built up using a fast
external algorithm for computing the median (or a point
within an interval centered at the median). The sampleis
basically used for computing the skeleton of a kd-tree that
is keptasanindex in aninternalnodeof theindex structure
asit is known from the X-tree [BKK 96]. The method
however relies on a recursive partitioning of the data set
into two as it is known from Quicksort. Thisresultsin a
large I/O overhead since the data set has to be read and
written quite often. However, sequential 1/0s can be used
in order to reduce the total I/O cost.

Buffer-based bulk loading algorithms as presented in
[BSW 97] and [AHVYV 99] are completely different from
those algorithms described above. The methods employ
external queues (so-called buffers) that are attached to the
internal nodes of the tree except for the root node. An
insertionof arecordcanbeviewedasaprocesghatis tem-
porarily blocked after having arrived at a node. Instead of
continuing the traversal down to the leaf, the record is
insertednto thebuffer. When&erthenumberof recordsin
abuffer exceedsa pre-definedhreshold alarge portion of
the records of the buffer is transferred (viaindividual calls
of chooseSubtree) to the next level. The bulk loading
methodof [BSW 97] builds up thetreelevel by level andis
therefore restricted to OP-trees, whereas the method of
[AHVYV 99] can aso be used for GP-trees. The number of
I/0s for both methods is O(n log,,,n) which is asymptoti-
cally equal to the lower bound of external sorting. An
advantage of the method [AHVYV 99] isthat it can easily
beextendedo supporiothertypesof operationse.g.inser-
tion, in bulk. A disadvantage of [AHVV 99] is however
that from the available m main memory pages only
BL'°9sM| areactuallyused.n otherwords,thealgorithms
only uses n/B main memory pages in the worst case. The
ohviousquestionve addressn our experimentds how the
performancef bulk loadingis influencedby thebadmem-
ory usage. Moreover, the implementation complexity of
Buffer-based bulk loading is high, particularly, when the
implementation is not tightly coupled to a specific index
structure.

A dlightly modified version of the buffer-based meth-
odsis presentedn [JDO 99] for B+-trees.Theuniquefea-
ture of the method is that the buffers are not emptied in a
final phase, but remain attached to the nodes. Since the
buffers are organized in a special way, the index (with its
buffers) also supports processing of on-line queries.
Genericityis howeverlostfor thatmethodsinceit is tightly
coupled with B+-trees.

3 Bulk Loading GP-trees

In this sectionwe first presenta new genericalgorithmfor
bulk loading GP-trees. Though the algorithm does not
meet the worst-case bound of external sorting, we expect
an excellent average-case performance. As an advantage,
thealgorithmis conceptuallynuchsimplerthanits worst-
case optimal competitors.

3.1 Rath-based Bulk Loading

Path-basedbulk loadingcanbeviewedasatop-davn algo-
rithm where the data is partitioned in a recursive fashion
until the partition fits in memory. Path-based bulk loading
is applicable to any kind of GP-trees including hB-trees
[LS90] where bulk loading has been considered as an
open problem to the best of the authorswiedge.

Bulk loading an index is generally easy when the
entire input fitsin memory. The desired index is first built
in memory and then transferred to disk. If memory istoo
small, we start building an in-memory index by inserting
records from a sample until the available memory isfilled
up. Next, we associate to each leaf a bucket on disk. The
remaining records of the input are then assigned to the
buckets by calling chooseSubtree repeatedly until aleaf
has been reached. Note that nodes are not split during this
phase of the algorithm. In case of OP-trees, however, it is
still necessaryo updatetheroutinginformationof theref-
erences. When all the data records have been processed,
the nodes in main memory are written to disk. Moreover,
the pairs of non-empty buckets and the references to their
correspondindeaf nodesarewrittenin ato-do-liston sec-
ondary storage. The algorithm isillustrated in Figure 1
assuming that main memory consists of 4 pages. On the
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FIGURE 1: Example of Path-based lulk loading for
m=4

input data

index nodes

leaves

buckets

left hand side the situation is depicted where the index is
built up in memory, but where data records still have to be
processed. The right hand side refers to the situation after
having processed the entire data set.

In the next phase, a pair is taken from the to-do-list.
The corresponding bucket is considered as the source and
the records from the bucket are processed as described
above in arecursive fashion. For GP-trees which are not
OP-trees, e.g. kdB-trees, the insertions of these records
will be on asingle path of the index that has been created
previously. Therefore, many insertions can be performed
until theavailablemainmemoryis fully utilizedagain. The
algorithm for this kind of tree is given as pseudo code
belowv in Algorithm 1.

For OP-trees, this approach seems to be not efficient
sincetheinsertionsof recordsfrom a singlebucket arenot
restricted to a single path. In order to improve efficiency,



thealgorithmis modifiedsuchthatinsertionsarelimited to
those nodes which are newly created or belong to the path
from the root to the corresponding leaf.

Another technical feature of the modified version is
that insertions do not start at the original root, but at a
pseudo-root which isfirstly set to the corresponding leaf.
Whenever the pseudo-root is split, the parent node of the
pseudo-root is set to be the new pseudo-root. In order to
keepthealgorithmicdescriptionsimplewe did notinclude
these issues in Algorithrh

Algorithm 1: PathBasedBulkLoading

PathBasedBulkLoading f€etreg Iteratorsource, int maxNodes{
let toDoListbe a (&ternal) queue;
loop{
insertObjectdfee souice maxNodestoDolLis);
if toDoListis empty
return;
remove the ngt pair fefeence budket) from toDoList
perform a query using an object storedbiiket to find theleaf
referenced byefeence
setsourceto an iterator omudket,

}

void insertObjects (fBetreg Iteratorsource, int maxNodes
QueuetoDolis {

while sourceisn’t empty and the number of nodes in memory is less

thanmaxNodeg
take the net objectfrom source
insertobjectinto tree

}
flush all lexes from main memory to disk;
while sourceisn't empty {
take the n&t objectfrom source
insertintoBuclet(treg objec);

foreachreferencestored in inde nodes residing in main memory
and pointing to a leaf {
let bucket be the bffer associated withefelence
if bucketisn't empty
insert the pairreference budket) into toDoList

}
flush all index nodes from main memory to disk;

void insertintoBuckt (Treetree Objectobjec) {
let refelencebe the reference pointing to the rootrele
while refelencedoesnt reference a leaf node {
let nodebe the node referenced iBfeence
setreferenceto the result of applying chooseSubtreadde
usingobject

insertobjectinto the lucket associated witreference

Ontheaveragethemethodperformsfastin practiceasit is
shown by our experiments. The performance of the algo-
rithm will be excellent as long as the distribution of the
input among the buckets is uniform. In order to verify this
statement, let us assume that the N input records are
equally distributed among the m buckets such that each
bucket receives N/m records. It follows that the total num-
berof 1/Osis 8(n [og,n) . Hence thetotal costmeetshe
lower bound of external sorting. It is obvious that such a
perfect distribution of records will seldom occur in prac-
tice. However, the central limit theorem tells us that the
occupation of alicket is close to the meamaeN/m
The worst case arises when only one of the buckets
receives records and the other buckets remain empty. The
runtime of the algorithm then degenerates to 6(n2/m).
When applying Path-based bulk loading to one-dimen-
sional index structures (B+-trees), the worst case occurs

e.g. for sorted input. For multidimensional structures, it is
more difficult to come up with a data distribution where
the performance is paor

In comparison to worst-case optimal methods, there
are afew other advantages with respect to memory man-
agement. First, the method completely employs the avail-
able main memory, whereas the worst-case optimal
method presented in [AHVV 99] might use only a small
fraction.In generalwe expectthatruntimeof themethods
will improve when more memory can be used. Moreover,
it might also be possible to adapt the amount of memory
during runtime. The memory in use (except the memory
for buffering a path) can be determined for each call of
insertObjectsndividually.

4 Bulk Loading OP-trees

OP-trees represent an important class of index structures
including R-trees [Gut 84], S-trees [Dep 86], M-trees
[CPZ97] andothers A referenceof an OP-treeconsistof

apredicatesayP, andapointerto a subtreavhereeachof

the records in the subtree satisfy P. Predicates within an

index may overlap, i.e., anew record may satisfy more

thanonepredicatgor noneof the predicates)As a conse-
guence, OP-trees efficiently support insertions of entire

trees whose height is lower than the height of the target

tree.This uniquepropertyalsogivesmorefreedomfor the
design of bulk loading algorithms in comparison to more

general GP-trees. An extreme approach would be to pack

the incoming data records into pages without any prepro-

cessing, one by one, and to build up the tree bottom-up.

This algorithms causes the lowest cost O(n) for bulk load-

ing an index, but the index would not support queries effi-

ciently.

4.1 Quickload

In thefollowing, we presentagenericalgorithmcalled
Quidkloadfor bulk loadingary kind of OP-treesincluding
R-treesandM-trees.Quickloadis conceptuallycloseto the
bulk loading algorithm of the M-tree [CP 98], but Quick-
load completely overcomes its serious deficiencies. The
basic idea of Quickload is as follows: a sample is first
taken to partition input data. In order to improve 1/O effi-
ciency, we do not partition the data set into only two as it
was proposed in [BBK 98], but in alarge number of parti-
tions. Quickload is then applied to each partition in a
recuisivefashion.Thesizeof thesamples choseraslarge
as the available main memory. An OP-tree (of the same
type as the target index) is used for organizing the sample
in memory Theonly differenceto anexternalindex is that
the size of the internal nodes might be set differently in
order to improve CPU performance, whereas the size of
the leaes still corresponds to a page on disk.

If the entire input fits in memory, the leaves of the in-
memory structure correspond to leaves of the target index.
Otherwise, records are inserted into the tree until memory
isfilled up. Thereafter, buckets are attached to the |eaves.
An insertionis thennotguidedanymoreto aleaf, butto the
corresponding bucket. Besides updating the routing infor-
mation being part of the references, the structure will not



be changed while the records are distributed among the
buckets. When all records of the input are treated, we dis-
tinguish two cases. If a bucket is empty, the reference to
the corresponding leaf isinserted into afile on disk. The
references contained in this file will be used later during a
subsequent pass of the algorithm to build the next upper
level of thetree.Otherwise(the bucket containsrecords) a
pair consisting of the reference to the corresponding |eaf
and a reference to the bucket is inserted into a to-do list.
The algorithm is then applied recursively to the elements
in theto-dolist. Whentheto-dolist becomegmptythefile
on disk contains exactly the references to the leaves of the
target index. These references now serve as the input for
Quickloadin orderto createthe next upperlevel of thetar-
getindex. If thereis only onereferencdeft (pointingto the
root of the target tree), the algorithm stops. Note that the
recursive processing is the reason why Quickload is lim-
ited to OP-trees.

In Figure 2, we illustrate the important aspects of the
algorithm where an OP-tree is built from the input records
Ry, ..., Ry3. We assume that at most three leaves fit in

.
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FIGURE 2: An example of Quickload when at most
three leaes fit in main memory

memory. On the left hand side, the situation is depicted
when memory is fully utilized, but some of the input
records are still unprocessed. Note that S, S, and S; refer
to predicatesvhich covertherecordsin the corresponding
leaves. On the right hand side of Figure 2 the situation is
illustrated after the remaining records are inserted into the
corresponding buckets. The leaf which belongsto S, is
already aleaf of the target index because its bucket is
empty, whereas Quickload has to be applied once again to
the other leaves assuming that the input is taken from the
corresponding buckets. The example for processing the
leaf and the bucket which belong to S;” isillustrated in
Figure3 whichresultsin two leaf pageghatwill bepartof
the taget inde.
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FIGURE 3: Recursive step of Quickload

A detailed description of the algorithm is given in
Algorithm 2.

Algorithm 2: Quickload

Quickload (OPTeetreeg Iteratorsource, int maxNodes{
let levelsbe 1;
loop {
let nextLevelRefeenceshe the queue returned by
createLeel(tree source, maxNodes
if nextLevelRefeencescontains gactly one reference {
setthe height ofreeto levels
return;

settreeto an empty tree;
increasdevelshy one;
setsourceto an iterator omextLevelRefeences
}
}
Queue createlvel (OPTeetreg Iteratorsource, int maxNodels{
let toDoListbe an (®ternal) queue;
let nextLevelRefeencesbe an (gternal) queue;
loop {
insertObjectdtee source maxNodegoDoList
nextLevelRefeencey;
if toDoListis empty
return nextLevelRefeences
remove the net tupel fefelence bucket) fromtoDoList
setthe root oftreeto the node referenced bgfeence
setsourceto an iterator ohudket,

}

void insertObjects (OREetreg lteratorsource, int maxNodes
QueuetoDolist QueuenextLevelRefeence$ {
while sourceisn’t empty and the number bk€s leares is less than
maxNodeg
take the n&t objectfrom souice
insertobjectinto tree

}
flush all lexes from main memory to disk;
while sourceisn’t empty {
take the n&t objectfrom souice
insertintoBuclet(tree objec);

foreachreferenceof treepointing to a leaf {
let bucket be the bicket associated wittefelences;
if budketis empty
insertrefelenceinto nextLevelRefeences
else
insert the tupelréfelence budket) into toDoList

delete each internal nodetogeresiding in main memory;

}
void insertintoBuckt (OPTeetreg Objectobjec) {
let refelencebe the reference pointing to the rootrefe
while refelencedoesnt reference a leaf {
let nodebe the node referenced iBfeence
setreferenceto the result of applying chooseSubtreaddefor
object
insertobjectinto the lucket associated witrefelence

}

Similarto Path-basedulk Loading,it canbeshaown easily
that the total number of I/Osis 6(n [og,n) on the aver-
age. The worst-case of Quickload arises when only one
bucket receives the records and the other buckets remain
empty. Then, the runtime of the algorithm is 8(n%/m).
Quickload can be also adaptive when the size of the avail-
able memory will change during runtime. Whenever an
element is taken from the to-do list, the algorithm can re-
allocate its memory

5 Experiments

In this sectiornwe reportexperimentakesultsfor bulk load-
ing R*-trees [BKSS 90] and Slim-trees [TTSF 00] by
using the different bulk loading approaches. Both index
structures belong to the family of OP-trees. Therefore, we



were interested not only in the cost of bulk loading an
index but also in its search performance.

We also performed several experiments for B+-trees.
Here, the classical approach of sorting the data and pack-
ing the nodes of the tree is the clear winner. This result
even holds for packing the nodes just to 2/3 of their maxi-
mum capacitysothatsearchperformancés comparableo
the other hblk loading algorithms.

The cost of bulk loading an index was measured in
milliseconds of elapsed time. This gives a more realistic
impression than just counting 1/0- or CPU-cost. Please
keep in mind that we are not interested in the absolute
amounts of time needed. In order to compare the search
performance of the created indexes, we treated every 10th
record inserted into the tree as a query. Following the
results of [LL 98], we measured query performance by
countingthenumberof pageshatwerereadandwrittento
disk.

Throughout the experiments, we used data sets from
the TIGER files [Bur 96] containing rectangles reflecting
the borders of environmental objects. While these real
world datasetsarepredestinedo be usedfor bulk loading
R*-trees, we mapped the rectangles to a four dimensional
data space to be used in the context of Slim-trees. We will
present the results for the CAL_HYDRO data set (360.000
hydrographical features from California), the
TEX_HYDRO data set (360.000 hydrographical features
from Texas)andthe EAST_RAIlldataset(360.000railroad
items from the east of the US). However, for many bulk
loading algorithms the cost of bulk loading as well as the
query performance is highly influenced by the order in
which the objectsareprocessedlo demonstratéhis prop-
erty, we once sorted the data sets according to a Hilbert

spacilling curve andoncecreateda randompermutation.

In the following, we will refer to a sorted data set by
appending the suffix sorted to its name and to a permuted
one by appendinghufled

Thoughwe characterize®Path-basedbulk loadingand
Quickload to be based on sampling, our implementations
arerestrictedin thatthe samplealwaysconsistf thefirst
objectsdeliveredby thedatasourceln ourexperimentsve
show that even for highly clustered data both algorithms
perform fairly well. Another point is that sampling
requires the data set to be materialized. However, in case
of datadeliveredby aniterator[Gra 93] this would require
to store the data first beforalk loading can be applied.

Due to its greater flexibility, we decided to prefer the
Buffer-based algorithm according to [AHVYV 99] to the
one presented in [BSW 97]. This decision influenced the
differentsettingsfor theamountof mainmemoryprovided
for the lulk loading algorithms.

5.1 Implementation Details

All experiments were performed on a PC running under
Windows NT 4.0 with an Intel Pentium I11-Processor
clockedat500Mhz and256 MBytesof mainmemory The

I/O-device was a Maxtor Diamond Plus 6800 using DMA.

The main memory available to the bulk loading algo-
rithmswasorganizedasa databaséuffer of m pageausing

the LRU strategy. The size of the disk pages was set to 2
Kbytes.

We tried to achieve afair comparison of the different
bulk loading approaches by using the same set of classes
from ourlibrary XXL for all implementationsThe classes
representing index structures were derived from generic
classes modeling GP- and OP-trees supporting the inter-
face given in chapter 2.1. The generic bulk loading algo-
rithms were devel oped independently from special tree
classes and do not use specific properties of the given
index structure to be bulk loaded. As a consequence, it is
very easy to apply the same generic algorithm to different
index structures deved from the generic tree classes.

5.2 Bulk Loading R*-trees

Before presenting the comparative results of different

algorithms, we examine the impact of parameters on the

runtime of the individual algorithms. We are interested in

those parameter settings where the created index provides
fast bulk loading on the one hand and good search perfor-

mance on the other hand. We performed our experiments

with each of the three TIGER data sets. However, we

obsenedverysimilarbehaior of thealgorithmsaccording
to the data set.

5.2.1 Rirameter Settings

Let usfirst consider Quickload. Here, the question arises
how to choose the fanout of the internal nodes of the in-
memory trees that are used to partition the data. We per-
formed experiments for two settings of the fanout. First,
we set the fanout in such a way that the size of the nodes
corresponds to 2 KBytes which is also the size of the |eaf
nodes. Secondthe fanoutwassetto 5. As onecanexpect,
a smaller value may reduce the CPU-cost, because the
algorithms chooseSubtree and split& post have linear and
supetlinearruntime,respectiely. However, asmallfanout
decreases the possibilities for placing new records in the
tree which may also reduce search performance. In our
experiments, we observed exactly this behavior, but the
performance difference of the two settings was less than
1%in mostcaseskor sake of simplicity, we decidedo use
a node size of 2 KBytes.

In caseof the Buffer-basedapproachpnehasto deter-
mine the buffer capacity p. In our experiments, we
obseneda valueof m/2 asanoptimal settingfor p regard-
ing the bulk loading time one the one hand and query per-
formance on the other

Another parameter is also the amount of datato be
cleared from an overflown buffer. We distinguished two
strategies, a pessimistic and an optimistic one. The pessi-
mistic strat@y, asdescribedn [BSW 97] and[AHVV 99],
processetherecordsof p pageof anoverflown buffer and
propagates the records one level down. Even in case that
all of those records are directed to just one of the child
buffers, this buffer will not contain more than 2p pages
afterwards. However, it is more likely that the records are
distributed more uniformly among the child buffers. Thus,
in mostcasest is possibleto processnorethanp pagesof
aoverflown buffer at once. This optimistic approach how-



ever requires to stop clearing the buffer if a child buffer
contains 2p pages. Note that both strategies result in a
worst-case optimaludk loading algorithm.

We figured out in our experiments that, especially
whenprocessinginiformly distributeddata,the optimistic
strategy behaves superior to the pessimistic one. With
respecto thesearchyuality of thegeneratedhdexes,there
was no difference between the two strategies. Therefore,
we used the optimistic one throughout oxperiments.

5.2.2 Comparing the Algorithms

In the following, we compare the different bulk loading
approaches for R*-trees. In addition to the generic
approachesye alsoinvestigatedtwo approachebasedon
sorting rectangles w.r.t. Hilbert values. Sort-based bulk
loading [KF 93] refers to the classical approach of sorting
and packing the nodes of the R*-tree. The other approach,
which we call Sorted-Tuples-based bulk loading, is even
simpler. The data records are first sorted and then inserted
into the tree one by one. Correspondingly, Tuple-based
bulk loading simply inserts the records into the tree with-
out ary kind of preprocessing.

As depictedn Figure4, eachof thebulk loadingalgo-
rithms performs significantly better than the Tuple-based
approach. The ranking of the bulk loading algorithms
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shavn hereis alsoquitetypical for otherexperimentsThe
well-known Sort-based approach is the clear winner,
which is more than three times faster than the second best
approachQuickload).However, whenwe considersearch
performance, Sort-based bulk loading shows major defi-
ciencies, see Figure 5. Among the generic algorithms,
Buffer-based bulk loading requires most time to create an
index, while Quickload is faster by a factor of 1.5. Path-
basedoulk loadingperformsjustin betweensimilarto the
Sorted- Tuples-based approach. Figure 5 shows the search
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performancdor the samesettings.The pricethathasto be
paid for using Sort-based bulk loading is its rather poor
search performance. Interestingly, in case of the

CAL_HYDRO_shuffled data set, both Quickload and
Path-based bulk loading create trees that show a better
search performance than those obtained by just inserting
the records one by one. This observation could also be
made for may other parameter settings.

In case of clustered data sets like the TEX_HYDRO
data set (Figure 6), results changed quite dramatically.
-
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Once again, the Sort-based approach is the clear winner,
but the Tuple-based approach comes next. The original
data sets show similar behavior to the sorted ones, result-
ing in high locality whenrecordsareinserted Becauséahe
main memoryavailableto the algorithmsis organizedasa
LRU buffer, most of the node accesses do not cause disk
accesses. Furthermore, the Tuple-based approach does not
need any further processing, which results in a better per-
formance than the remaining algorithms. Though the data
is almost sorted, Quickload performs faster than Buffer-
basedulk loading,while Path-basedbulk loadingis influ-
enced more strongly by the fact that the sample quality is
poor. Once again, the TEX_HY DRO data set resultsin
trees that are very similar according to their search perfor-
mance.

In the last set of experiments with R*-trees, we were
interested in memory utilization of the different
approaches. In Figure 7, we varied the amount of memory
m from 2*fanout to fanout?/2. While both Quickload and
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Path-based bulk loading benefit from this additional
amount of memory, Buffer-based bulk loading shows only
minor decreasem theindex constructiortime. Thereason
is that Quickload and Path-based bulk loading are able to
use the entire memory very effectively, while in case of
Buffer-basecdulk loadingthefanoutof thetreedetermines
theusageof memory Form= fanout/2, everylevel of the
tree still has to be equipped with buffers. Only when mis
greater than fanoutz, Buffer-based bulk loading is able to
exploit more memory since buffers will only occur on
every second heel of the tree.



5.3 Bulk Loading Slim-trees

M-trees and its relatives like Slim-trees [TTSF 00] are
much more CPU-bound than the members of the R-tree
family. As aconsequencehe only bulk loadingalgorithm
dedicated to the M-tree family developed so far [CP 98]
tries to cope with this special property. In contrast to R*-
trees, we were hence more interested in the impact of our
algorithms on the trees’ search performance.

When repeating the experiments presented in section
5.2 for Slim-trees, we found that the relative performance
of the differentalgorithmsdid not change However, some
of the results for the CAL_HYDRO_shuffled data set are
quite interesting. Note that none of the approaches relying
on sorting the data are applicable to Slim-trees.

In Figure8, thegraphggive the costfor creatingSlim-
trees from the CAL_HYDRO_shuffled data set. Similar to
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the results of the R*-tree, each of the generic algorithms
performs significantly better than Tuple-based bulk load-
ing. Remember that these generic algorithms primarily
reduce disk accesses, thus for Slim-trees which are CPU-
bound the performance improvements are not very high.
Once more, Quickload and Path-based bulk loading out-
perform Bufer-based blk loading by adctor of 1.5.

A very interesting result is shown in Figure 9. Com-
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paredto Tuple-basedbulk loading,the searctperformance
of treescreatedby QuickloadandPath-basedbulk loading
is much better (by afactor of 1.8). On the other side, the
quality of trees suffers much from applying Buffer-based
bulk loading to the CAL_HY DRO_shuffled data set.
Hence, for Slim-trees it is much more important than for
R*-trees to take the index quality into consideration when
comparing blk loading algorithms.

In our second set of experiments, we used a 9-dimen-
sional data set WEATHER containing weather data
obtained by satellites. Because the size of each of the data
objectsis fairly high, we decidedio enlagethe disk pages
to 8 Kbytes. Figure 10 shows that for high dimensional
data the overall bulk loading time is determined by the
CPU-time. Therefore, our generic algorithms do not show
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any advantages over Tuple-based loading. However, the
overheadf theBuffer-basedapproachs muchhigherthan
thatof theothergenericalgorithms(Figure11).In contrast
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to the results of the CAL_HY DRO_shuffled data set, the
search performance of Quickload and Path-based bulk
loadingis quitesimilarto thatof Tuple-basedbulk loading.
On the other hand, Buffer-based bulk loading once again
produces trees withavse search performance.

6 Conclusions

In this paper, we outlined several types of generic bulk
loading algorithms applicable to the broad class of
Grow& Post-trees (GP-trees) which includes R-trees, M-
trees S-treesMVB-trees, KDB-trees hB-treesandothers.
Special attention was paid to overlapping-predicate trees
(OP-trees) which is an important subset of GP-trees. We
presented two generic bulk loading algorithms where the
Path-based method is applicable to GP-trees and Quick-
load is limited to OP-trees. Both methods employ alarge
sample to bild up a tree.

We found that Path-based bulk loading as well as
Quickload are easy to implement, whereas a generic
implementation of a worst-case optimal method turns out
to be difficult. In a performance comparison with real
world datasetswe demonstratethattheaveragecaseper-
formance of Path-based bulk loading and Quickload is
consistently superior to the performance of worst-case
optimalmethodsThis evenholdsfor casesvherethesam-
ple quality is poor (e.g. the first tuples of a sorted
sequence). For OP-trees, we also examined the search
quality of theindex andfoundthatthe quality of thetarget
index is substantially better for Quickload in comparison
to atreebuild from aworst-caseptimalmethod In partic-
ular for bulk loading M-trees, we observed that the search
quality of the resulting trees differs considerably. In sum-
mary, each of our new generic methods provides excellent
performance with a i@ implementation werhead.
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