
Abstract
Bulk loading refers to the process of creating an
index from scratchfor agivendataset.Thisprob-
lem is well understood for B-trees, but so far,
non-traditional index structures received modest
attention. We are particularly interested in fast
generic bulk loading techniques whose imple-
mentations only employ a small interface that is
satisfied by a broad class of index structures.
Generic techniques are very attractive to extensi-
ble database systems since different user-imple-
mented index structures implementing that small
interface can be bulk-loaded without any modifi-
cation of the generic code.

Themaincontributionof thepaperis thepro-
posalof two new genericandconceptuallysimple
bulk loading algorithms. These algorithms recur-
sively partitiontheinputby usingamain-memory
index of the same type as the target index to be
build. In contrastto previousgenericbulk loading
algorithms, the implementation of our new algo-
ri thms turns out to be much easier. Another
advantage is that our new algori thms possess
fewer parameterswhosesettingshave to betaken
into consideration.

An experimental performance comparison is
presentedwheredifferentbulk loadingalgorithms
are investigated in a system-like scenario. Our
experiments are unique in the sense that we
examine the same code for different index struc-
tures (R-tree and Slim-tree). The results consis-
tently indicate that our new algorithms outper-
form asymptoticallyworst-caseoptimalcompeti-
tors. Moreover, the search quality of the target
index will be better when our new bulk loading
algorithms are used.

1 Intr oduction
Recently, therehasbeenanincreasinginterestin designing
methodsfor processingasetof homogenousoperationson
an index in bulk. Among the different bulk operations,
bulk loadingof anindex hasattractedmostof theresearch
attention. In this paper, we address the problem of bulk
loadinganindex for agivendatasetasfastaspossible.We
areprimarily interestedin creatingindexesfrom non-tradi-
tional index structures which are suitable for managing
multidimensional data, spatial data or metric data. For
these kinds of data, it is in general not advisable or even
not possible to apply classical sort-based bulk loading
where first, the data set is sorted and second, the tree is
built in a bottom-up fashion. In the context of non-tradi-
tional index structures,themethodof bulk loadingalsohas
a serious impact on the search quality of the index. We
thereforeaim for a bulk loadingmethodthatgivescompa-
rable or better search performance than tuple-loading
where an index is built up by inserting tuples one by one.

In addition to sort-based methods, there has been
another two broad classes of bulk loading techniques. The
one class called Buffer-based bulk loading employs the
buffer-treetechnique[Arg 95] whichcangenerallybeused
to preserve efficiency of main-memory algorithms when
the data does not fit into memory anymore. Due to this
technique, bulk loading can be performed as fast as exter-
nal sorting (in an asymptotic sense) on index structures
which supportaninsertionof a recordin logarithmictime.
The second class cal led sample-based bulk loading
employsasamplethatfits into memoryto build up thetar-
getindex. Althoughbulk loadingis of interestfor any kind
of index structure,mostof theavailablemethodswerepre-
sented in the context of R-trees or closely related index
structures. Little attention has been given to other index
structuresalthoughit mightbeimportantfrom theperspec-
tive of an extensible database system to provide a generic
bulk loading method which will be applicable not only to
many differentindex structurescurrentlyavailablebut also
to index structures that will be developed in the future.

In this paper, we present two new sample-based bulk
loadingtechniqueswhichareapplicableto abroadclassof
tree-basedindex structures.Both techniquesaregenericin
thesensethatthey makeuseof aninterfacethatis satisfied
by a broad class of index structures. Whi le the one

An Evaluation of
Generic Bulk Loading Techniques*

Jochenvan den Bercken
IXOS SOFTWARE AG

Grasbrunn/Germany
jochen.van.den.bercken@ixos.de

BernhardSeeger
Fachbereich Mathematik und Informatik

Philipps-Universität Marburg
seeger@mathematik.uni-marburg.de

*This work has been supported by grant no. SE 553/2-1 from DFG.
Permissionto copywithoutfeeall or part of this material is grantedpro-
vided that the copies are not made or distributed for direct commercial
advantage, theVLDBcopyrightnoticeandthetitle of thepublicationand
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment.To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference
Roma, Italy, 2001

approachis applicableto many tree-basedindex structures
like B+-trees, R-trees [Gut 84], M-trees [CPZ 97] and S-
trees [Dep 86], the other technique can be used for bulk
loading almost any kind of tree-based index structure that
uses the concept of node splitting, including KDB-trees
[Rob 81] and their relatives hB-trees [LS 90] and LSD-
trees[HSW 89].Thenew techniquesareconceptuallysim-
pler than most of the previous ones and therefore, their
implementation is not too difficult. We implemented our
new methods as well as the most promising competing
methodswhichhavebeenpreviouslyproposed.Ourexper-
imentsindicatethatour new methodsperformfastin most
cases, but, as known from other algorithms based on sam-
pling, theirperformanceis alsoinfluencedby thequalityof
the sample. Moreover, the search performance of the trees
generatedby oursampling-basedmethodsis generallybet-
ter in comparison to others.

Our performance comparison is unique in the sense
that all index structures and bulk loading techniques are
implemented by using the same building blocks that are
part of our fully documented and public available library
XXL [BBD+ 01], [BDS 00].Thelibrary providesapower-
ful andflexible infrastructurefor implementingquerypro-
cessingfunctionalitysuitablefor comparingtheruntimeof
different algorithms. Though the absolute timings of the
bulk loading methods are of minor relevance, we believe
that the relative timings are excellent indicators for a per-
formance comparison of the different bulk loading meth-
ods.

The paper is organized in the following way. In Sec-
tion 2, our most important notation is introduced. More-
over, we give a review of the current research results on
bulk loading. In Section 3, we present Path-based bulk
loading, a new bulk loading algorithm applicable to the
broad class of Grow&Post-trees. Section 4 is dedicated to
Quickload, a special algori thm for bulk loading index
structures from an important subset of Grow&Post-trees.
The results from a preliminary performance comparison
are reported in Section 5. Section 6 concludes the paper.

2 Preliminaries
In this section, we introduce the basic assumptions which
are required from the index structures in order to use our
generic bulk loading techniques. Moreover, we also
present the underlying cost model. At the end, we give a
brief review of the bulk loading techniques.

2.1 Grow&Post-Trees
In thefollowing, weassumeanindex structureto beatree.
Associated to each node of the tree is a reference that,
except for the reference of the root, is stored in the parent
node.Datarecordsarestoredin thedatanodeswhich cor-
respond to the leaves of the tree, whereas the index nodes
are internal nodes.

Most tree-based index structures show great similari-
ties in their internal interface. In common with [Lom 91]
we assume that a tree is a Grow& Post-tree (GP-tree)
where the following operations are supported:

• chooseSubtree: Givena datarecordandanindex node.
Compute the reference to the subtree where an insert
operation of the record should be forwarded to.

• grow: Given a datarecordanda datanode.Insert the
record into the node.

• split&post: Given an overflown node.Split the node
into two and post the information about the split (e.g.
the new reference) to the parent node.

• search: Given a query and data node (index node).
Return all data records (references) stored in that node
being relevant to the query.

An insertionof anew recordinto aGP-treeis performedin
thefollowing way. First chooseSubtreeis iteratively called
startingat therootof thetreeuntil adatanodeis retrieved.
Then,thedatarecordis insertedinto thedatanode,i.e, the
node grows by one record. When this causes an overflow,
the node is first split into two and then, the relevant infor-
mation about the split is posted to the parent node. If the
root node is split the tree grows by one level. The most
prominent example of a GP-tree is the B+-tree which sup-
ports one-dimensional queries. However, many of the
well-known multidimensional index structures [GG 98]
l ike the KDB-tree [Rob 81] , hB-tree [LS 90] , R-tree
[Gut 84], MVB-tree [BGO+ 96], M-tree [CPZ 97] and
Slim-tree [TTSF 00] also satisfy the interface of the GP-
tree.

An importantsubclassof GP-treesis theclassof over-
lapping-predicate-trees(OP-trees). In additionto thefunc-
tionality of a GP-tree, an OP-tree also supports insertions
of entire trees whose height is lower than the height of the
targettree.An insertionof a treeis generallyperformedby
inserting the reference of its root node into an appropriate
node of the target index whose level is equal to the height
of the tree to be inserted. If the root of the inserted tree is
not sufficiently ful l , an additional merge has to be per-
formedwith asiblingnode.Thisadditionalfunctionalityis
possibledueto thepropertythatnodepredicatesin anOP-
tree may overlap where the node predicate of an index
node is satisfied by all records in the corresponding sub-
tree. For the R-tree, the node predicate is represented as a
minimum rectilinear rectangle that covers the records in
the subtree. Since the predicates of an OP-tree may over-
lap,it is possibleto designspecificbulk loadingalgorithms
that create an index structure level by level bottom-up. In
addition to the R-tree, the M-tree, S-tree and Slim-tree
belong to this important class of index structures.

2.2 I/O Model
We assume that a disk is partitioned into pages of fixed
size, with random access to each page at unit cost. Our
goalis to build upanindex ondiskandtherefore,anodeof
the tree also corresponds to a disk page where at most B
records (data objects) can be stored. Each access to disk
transfers one page; we denote this as one I/O. Our generic
bulk loading algorithms simply use the available imple-
mentations of the GP-tree interface. These implementa-
tions generally determines the CPU-cost of bulk loading
GP-trees and therefore, we are primari ly interested in

reducing the I/O-cost. As a consequence, the performance
of our algori thms is measured in the number of I /Os
requiredfor performingasequenceof N insertions.In par-
ticular, we are not interested in the I/O-cost of a single
insertion.

An important parameter of bulk loading algorithms is
the amount of available main memory that can be used. In
the following, we assume that main memory is managed
by a database buffer that fol lows the LRU replacement
strategy. Let M bethemaximumnumberof recordsthatfit
into the available main memory. The I/O cost of the algo-
rithms is expressed in terms of N, M and B, i.e., none of
these three parameters is viewed as a constant. We will
abbreviateN/B andM/B by n andm, respectively.

For the I /O model described above i t was shown
[AV 88] thatexternalsortingrequires I/Os in
the worst-case. The I/O cost of bulk loading a one-dimen-
sional index structure that preserves the ordering of data
(e.g., B+-tree) is therefore asymptotically optimal in the
worst-case,if it meetsthelower boundof externalsorting.
Therefore, our goal is to achieve this bound for bulk load-
ing multidimensional index structures, without sacrificing
searchperformance.Specialcareconcerningthis trade-off
has to be taken for OP-trees. They may be built naively
level by level bottom-up by packing the data records into
nodes without performing any kind of preprocessing (e.g.
sorting). This bulk loading approach requires I/Os
only, but the search performance of such an index will be
unacceptable, in general. Thus, although there exists a lin-
ear-time bulk loading algorithm for OP-trees, we are pri-
marily interested in bulk loading algorithms whose I/O
complexity meets the lower bound of external sorting.

2.3 Review of Previous Techniques
In the following, we give a brief overview of the different
approaches to bulk loading and discuss their unique prop-
erties.In orderto comparethesemethods,differentaspects
haveto betakeninto account.Someof themethodsrequire
that the data source is entirely on disk, whereas other
methods may also accept a source directly delivered from
an iterator [Gra 93]. Some of the methods are memory-
adaptive, whereas others require a fixed amount of mem-
ory during the entire runtime. There are also methods
whicharenot limited to bulk loadingonly, but alsosupport
bulk insertions.Anotherissueis theprimarydesigngoalof
the methods: should be the search quality of the target
index or the build time of the index most important? We
primarily distinguish the different bulk loading methods
with respect to their main internal techniques (sorting,
buffering, sampling) into three different classes.

Sort-based bulk loading is a well established tech-
nique since it is used in commercial database systems for
creating B+-trees from scratch. Bulk loading of a B+-tree
first sortsthedataandthenbuilds theindex in abottom-up
fashion. For each level of the index, the nodes can be
packed entirely full, except for the right most node. It is
howeveradvisableto leavesomeemptyspacein thenodes,
when further insertions are expected right away after bulk
loading. The runtime of this approach is dominated by the

cost of sorting which requires I/Os. Assum-
ing that an appropriate ordering exists, sort-based bulk
loadingis not limited to one-dimensionalindex structures,
but canalsobeappliedto OP-trees,sinceOP-treessupport
insertions of entire trees. For multidimensional index
structures like R-trees, the question arises what kind of
ordering results in the tree with best search performance.
One of the first approaches [RL 85] suggests to sort the
data with respect to the minimum value of the objects in a
certain dimension, whereas [KF 93] suggest to order w.r.t.
the Hilbert-value of the centers. It is also shown in experi-
ments [KF 93] using spatial data that the Hilbert-ordering
gives better performance. Other experiments [DKL+ 94]
revealedthatthesearchperformanceof theR-treesbuilt by
using Hilbert-ordering is inferior to the search perfor-
mance of the R* -tree [BKSS 90] when the records are
inserted one by one. In a data warehouse environment
wherethedimensionsarequitedifferent(andhenceit may
bedifficult to comeupwith awell-definedHilbert-value)it
might still be better to select a dimension and to sort the
data according to this dimension [KR 98]. The primary
reason for using this approach in a data warehouse is the
fact that primari ly bulk insertions should efficiently be
supported. Several methods are available for supporting
bulk insertions on indexes which rely on a linear ordering
of the data ([JDO99], [JNS+97], [KR 98], [MNPW00]).

Anothersort-basedmethodfor bulk loadingR-treesis
presentedin [LEL 97]. Themethodsstartssortingthedata
sourcew.r.t. thefirst dimension(e.g.usingthecenterof the
spatial objects). Then, (N/B)1/d contiguous partitions are
generated, each of them containing (almost) the same
numberof objects.In thenext step,eachpartitionis sorted
individually w.r.t. thenext dimension.Again,partitionsare
generated of almost equal size and the process is repeated
until each dimension has been treated. The final partitions
will eventually contain at most B objects. In [LEL 97] it
wasshown thatthismethodof sort-basedbulk loadingcre-
ates R-trees whose search quality is superior to those R-
trees which have been created w.r.t. the Hilbert-ordering.
However, themethodalsorequirestheinputbeingsortedd
times.

Quite a different approach to bulk loading is based on
sampling.Thebulk loadingmethodof theM-tree[CP 98],
for example,follows this idea.Themethodrandomlysam-
ples objects, we call them representatives, from the input
and bui lds up a structure also known as a seeded-tree
[LR 98]. Then, the remaining records of the input are
assignedto oneof therepresentatives.For eachrepresenta-
tive, the associated data objects are treated again in the
sameway. Theresultof thisapproachis basicallyaM-tree
of M-trees and hence, the structure offers some structural
properties (underfil led nodes, unbalanced structure) that
violatestheinvariantsof theoriginalM-tree[CPZ 97].The
authors discuss different strategies to obtain the desired
structuralbehavior. For example,second-level treeswith a
small number of objects are deleted and their objects are
assignedto otherrepresentatives.Thisevenmayresultin a
structurewhereonly onerepresentativeexists.In thiscase,
[CP 98] suggests to start again with a different sample.

Θ n logmn()

Θ n()

O n logmn()

Note that the M-tree and related structures like the Slim-
tree [TTSF 00] deals with metric data and therefore, there
is no natural ordering of the data. Consequently, a sort-
basedbulk loadingcannotdirectlybeappliedto bulk load-
ing an M-tree. An alternative might be to map the metric
data into vector data using for example fast map [FL 95]
andthenapplyingagainsort-basedbulk loading.However,
the quality of the M-tree might substantially suffer from
such an approach.

Another approach based on sampl ing is given in
[BBK 98] where a kd-tree structure is built up using a fast
external algorithm for computing the median (or a point
within an interval centered at the median). The sample is
basically used for computing the skeleton of a kd-tree that
is keptasanindex in aninternalnodeof theindex structure
as it is known from the X-tree [BKK 96]. The method
however relies on a recursive partitioning of the data set
into two as it is known from Quicksort. This results in a
large I/O overhead since the data set has to be read and
written quite often. However, sequential I/Os can be used
in order to reduce the total I/O cost.

Buffer-based bulk loading algorithms as presented in
[BSW 97] and [AHVV 99] are completely different from
those algorithms described above. The methods employ
external queues (so-called buffers) that are attached to the
internal nodes of the tree except for the root node. An
insertionof arecordcanbeviewedasaprocessthatis tem-
porarily blocked after having arrived at a node. Instead of
continuing the traversal down to the leaf, the record is
insertedinto thebuffer. Wheneverthenumberof recordsin
a buffer exceedsa pre-definedthreshold,a largeportionof
the records of the buffer is transferred (via individual calls
of chooseSubtree) to the next level . The bulk loading
methodof [BSW 97] buildsupthetreelevel by level andis
therefore restricted to OP-trees, whereas the method of
[AHVV 99] can also be used for GP-trees. The number of
I/Os for both methods is which is asymptoti-
cal ly equal to the lower bound of external sorting. An
advantage of the method [AHVV 99] is that it can easily
beextendedto supportothertypesof operations,e.g.inser-
tion, in bulk. A disadvantage of [AHVV 99] is however
that f rom the avai lable m main memory pages only

areactuallyused.In otherwords,thealgorithms
only uses m/B main memory pages in the worst case. The
obviousquestionweaddressin ourexperimentsis how the
performanceof bulk loadingis influencedby thebadmem-
ory usage. Moreover, the implementation complexity of
Buffer-based bulk loading is high, particularly, when the
implementation is not tightly coupled to a specific index
structure.

A slightly modified version of the buffer-based meth-
odsis presentedin [JDO99] for B+-trees.Theuniquefea-
ture of the method is that the buffers are not emptied in a
final phase, but remain attached to the nodes. Since the
buffers are organized in a special way, the index (with its
buffers) also supports processing of on-l ine queries.
Genericityis however lost for thatmethodsinceit is tightly
coupled with B+-trees.

3 Bulk Loading GP-trees
In this sectionwe first presenta new genericalgorithmfor
bulk loading GP-trees. Though the algorithm does not
meet the worst-case bound of external sorting, we expect
an excellent average-case performance. As an advantage,
thealgorithmis conceptuallymuchsimplerthanits worst-
case optimal competitors.

3.1 Path-based Bulk Loading
Path-basedbulk loadingcanbeviewedasatop-down algo-
rithm where the data is partitioned in a recursive fashion
until the partition fits in memory. Path-based bulk loading
is applicable to any kind of GP-trees including hB-trees
[LS 90] where bulk loading has been considered as an
open problem to the best of the authors knowledge.

Bulk loading an index is general ly easy when the
entire input fits in memory. The desired index is first built
in memory and then transferred to disk. If memory is too
small, we start building an in-memory index by inserting
records from a sample until the available memory is filled
up. Next, we associate to each leaf a bucket on disk. The
remaining records of the input are then assigned to the
buckets by calling chooseSubtree repeatedly until a leaf
has been reached. Note that nodes are not split during this
phase of the algorithm. In case of OP-trees, however, it is
still necessaryto updatetheroutinginformationof theref-
erences. When all the data records have been processed,
the nodes in main memory are written to disk. Moreover,
the pairs of non-empty buckets and the references to their
correspondingleaf nodesarewritten in a to-do-liston sec-
ondary storage. The algorithm is il lustrated in Figure 1
assuming that main memory consists of 4 pages. On the

left hand side the situation is depicted where the index is
built up in memory, but where data records still have to be
processed. The right hand side refers to the situation after
having processed the entire data set.

In the next phase, a pair is taken from the to-do-list.
The corresponding bucket is considered as the source and
the records from the bucket are processed as described
above in a recursive fashion. For GP-trees which are not
OP-trees, e.g. kdB-trees, the insertions of these records
will be on a single path of the index that has been created
previously. Therefore, many insertions can be performed
until theavailablemainmemoryis fully utilizedagain.The
algorithm for this kind of tree is given as pseudo code
below in Algorithm 1.

For OP-trees, this approach seems to be not efficient
sincetheinsertionsof recordsfrom a singlebucket arenot
restricted to a single path. In order to improve efficiency,

O n logmn()

B logBm

buckets

leaves

index nodes

input dataalready
processed

FIGURE 1: Example of Path-based bulk loading for
m=4

thealgorithmis modifiedsuchthatinsertionsarelimited to
those nodes which are newly created or belong to the path
from the root to the corresponding leaf.

Another technical feature of the modified version is
that insertions do not start at the original root, but at a
pseudo-root which is firstly set to the corresponding leaf.
Whenever the pseudo-root is split, the parent node of the
pseudo-root is set to be the new pseudo-root. In order to
keepthealgorithmicdescriptionsimplewedid not include
these issues in Algorithm1.

Algorithm 1: PathBasedBulkLoading
PathBasedBulkLoading (Treetree, Iteratorsource, int maxNodes) {

let toDoList be a (external) queue;
loop{

insertObjects(tree, source, maxNodes, toDoList);
if toDoList is empty

return;
remove the next pair (reference, bucket) from toDoList;
perform a query using an object stored inbucket to find theleaf

referenced byreference;
setsource to an iterator onbucket;

}
}
void insertObjects (Treetree, Iteratorsource, int maxNodes,

QueuetoDoList) {
while source isn’t empty and the number of nodes in memory is less

thanmaxNodes {
take the next object from source;
insertobject into tree;

}
flush all leaves from main memory to disk;
while source isn’t empty {

take the next object from source;
insertIntoBucket(tree, object);

}
foreachreference stored in index nodes residing in main memory

and pointing to a leaf {
let bucket be the buffer associated withreference;
if bucket isn’t empty

insert the pair (reference, bucket) into toDoList;
}
flush all index nodes from main memory to disk;

}
void insertIntoBucket (Treetree, Objectobject) {

let reference be the reference pointing to the root oftree;
while reference doesn’t reference a leaf node {

let node be the node referenced byreference;
setreference to the result of applying chooseSubtree tonode

usingobject;
}
insertobject into the bucket associated withreference;

}

Ontheaverage,themethodperformsfastin practiceasit is
shown by our experiments. The performance of the algo-
rithm will be excellent as long as the distribution of the
input among the buckets is uniform. In order to verify this
statement, let us assume that the N input records are
equally distributed among the m buckets such that each
bucket receives N/m records. It follows that the total num-
berof I/Os is . Hence,thetotalcostmeetsthe
lower bound of external sorting. It is obvious that such a
perfect distribution of records will seldom occur in prac-
tice. However, the central l imit theorem tells us that the
occupation of a bucket is close to the mean valueN/m.

The worst case arises when only one of the buckets
receives records and the other buckets remain empty. The
runtime of the algorithm then degenerates to .
When applying Path-based bulk loading to one-dimen-
sional index structures (B+-trees), the worst case occurs

e.g. for sorted input. For multidimensional structures, it is
more difficult to come up with a data distribution where
the performance is poor.

In comparison to worst-case optimal methods, there
are a few other advantages with respect to memory man-
agement. First, the method completely employs the avail-
able main memory, whereas the worst-case optimal
method presented in [AHVV 99] might use only a small
fraction.In general,weexpectthatruntimeof themethods
will improve when more memory can be used. Moreover,
it might also be possible to adapt the amount of memory
during runtime. The memory in use (except the memory
for buffering a path) can be determined for each call of
insertObjects individually.

4 Bulk Loading OP-trees
OP-trees represent an important class of index structures
including R-trees [Gut 84], S-trees [Dep 86], M-trees
[CPZ 97] andothers.A referenceof anOP-treeconsistsof
a predicate,sayP, andapointerto asubtreewhereeachof
the records in the subtree satisfy P. Predicates within an
index may overlap, i.e., a new record may satisfy more
thanonepredicate(or noneof thepredicates).As a conse-
quence, OP-trees efficiently support insertions of entire
trees whose height is lower than the height of the target
tree.This uniquepropertyalsogivesmorefreedomfor the
design of bulk loading algorithms in comparison to more
general GP-trees. An extreme approach would be to pack
the incoming data records into pages without any prepro-
cessing, one by one, and to build up the tree bottom-up.
This algorithms causes the lowest cost O(n) for bulk load-
ing an index, but the index would not support queries effi-
ciently.

4.1 Quickload
In thefollowing,wepresentagenericalgorithmcalled

Quickloadfor bulk loadingany kind of OP-trees,including
R-treesandM-trees.Quickloadis conceptuallycloseto the
bulk loading algorithm of the M-tree [CP 98], but Quick-
load completely overcomes its serious deficiencies. The
basic idea of Quickload is as fol lows: a sample is first
taken to partition input data. In order to improve I/O effi-
ciency, we do not partition the data set into only two as it
was proposed in [BBK 98], but in a large number of parti-
tions. Quickload is then appl ied to each parti tion in a
recursivefashion.Thesizeof thesampleis chosenaslarge
as the available main memory. An OP-tree (of the same
type as the target index) is used for organizing the sample
in memory. Theonly differenceto anexternalindex is that
the size of the internal nodes might be set differently in
order to improve CPU performance, whereas the size of
the leaves still corresponds to a page on disk.

If the entire input fits in memory, the leaves of the in-
memory structure correspond to leaves of the target index.
Otherwise, records are inserted into the tree until memory
is filled up. Thereafter, buckets are attached to the leaves.
An insertionis thennotguidedanymoreto aleaf,but to the
corresponding bucket. Besides updating the routing infor-
mation being part of the references, the structure will not

θ n logmn⋅()

θ n2 m⁄()

be changed while the records are distributed among the
buckets. When all records of the input are treated, we dis-
tinguish two cases. If a bucket is empty, the reference to
the corresponding leaf is inserted into a file on disk. The
references contained in this file will be used later during a
subsequent pass of the algorithm to build the next upper
level of thetree.Otherwise(thebucketcontainsrecords),a
pair consisting of the reference to the corresponding leaf
and a reference to the bucket is inserted into a to-do list.
The algorithm is then applied recursively to the elements
in theto-dolist. Whentheto-dolist becomesemptythefile
on disk contains exactly the references to the leaves of the
target index. These references now serve as the input for
Quickloadin orderto createthenext upperlevel of thetar-
getindex. If thereis only onereferenceleft (pointingto the
root of the target tree), the algorithm stops. Note that the
recursive processing is the reason why Quickload is lim-
ited to OP-trees.

In Figure 2, we illustrate the important aspects of the
algorithm where an OP-tree is built from the input records
R1, …, R13. We assume that at most three leaves fit in

memory. On the left hand side, the situation is depicted
when memory is ful ly uti l ized, but some of the input
records are still unprocessed. Note that S1, S2 and S3 refer
to predicateswhich cover therecordsin thecorresponding
leaves. On the right hand side of Figure 2 the situation is
illustrated after the remaining records are inserted into the
corresponding buckets. The leaf which belongs to S2 is
already a leaf of the target index because its bucket is
empty, whereas Quickload has to be applied once again to
the other leaves assuming that the input is taken from the
corresponding buckets. The example for processing the
leaf and the bucket which belong to S1

* is i l lustrated in
Figure3 whichresultsin two leafpagesthatwill bepartof
the target index.

A detai led description of the algori thm is given in
Algorithm 2.

Algorithm 2: Quickload
Quickload (OPTreetree, Iteratorsource, int maxNodes) {

let levels be 1;
loop {

let nextLevelReferences be the queue returned by
createLevel(tree, source, maxNodes);

if nextLevelReferences contains exactly one reference {
set the height oftree to levels;
return;

}
settree to an empty tree;
increaselevels by one;
setsource to an iterator onnextLevelReferences;

}
}
Queue createLevel (OPTreetree, Iteratorsource, int maxNodes) {

let toDoList be an (external) queue;
let nextLevelReferences be an (external) queue;
loop {

insertObjects(tree, source, maxNodes, toDoList,
nextLevelReferences);

if toDoList is empty
return nextLevelReferences;

remove the next tupel (reference, bucket) from toDoList;
set the root oftree to the node referenced byreference;
setsource to an iterator onbucket;

}
}
void insertObjects (OPTreetree, Iteratorsource, int maxNodes,

QueuetoDoList, QueuenextLevelReferences) {
while source isn’t empty and the number oftree’s leaves is less than

maxNodes {
take the next object from source;
insertobject into tree;

}
flush all leaves from main memory to disk;
while source isn’t empty {

take the next object from source;
insertIntoBucket(tree, object);

}
foreachreference of tree pointing to a leaf {

let bucket be the bucket associated withreferences;
if bucket is empty

insertreference into nextLevelReferences;
else

insert the tupel (reference, bucket) into toDoList;
}
delete each internal node oftree residing in main memory;

}
void insertIntoBucket (OPTreetree, Objectobject) {

let referencebe the reference pointing to the root oftree;
while reference doesn’t reference a leaf {

let node be the node referenced byreference;
setreference to the result of applying chooseSubtree tonode for

object;
insertobject into the bucket associated withreference;

}
}

Similar to Path-basedBulk Loading,it canbeshown easily
that the total number of I/Os is on the aver-
age. The worst-case of Quickload arises when only one
bucket receives the records and the other buckets remain
empty. Then, the runtime of the algorithm is .
Quickload can be also adaptive when the size of the avail-
able memory will change during runtime. Whenever an
element is taken from the to-do list, the algorithm can re-
allocate its memory.

5 Experiments
In thissectionwereportexperimentalresultsfor bulk load-
ing R* -trees [BKSS 90] and Sl im-trees [TTSF 00] by
using the different bulk loading approaches. Both index
structures belong to the family of OP-trees. Therefore, we

R1
R8

R2
R5

R4
R6
R7

R13, R12, R11, R10, R9

S1 S3 S2

R1
R8

R2
R5

R4
R6
R7

S*
1 S*

3 S2

R9
R11
R12

R10
R13

FIGURE 2: An example of Quickload when at most
thr ee leaves fit in main memory

R1
R8

R12, R11, R9

R1
R9

R8
R12

S4 S5

R13

FIGURE 3: Recursive step of Quickload

θ n logmn⋅()

θ n2 m⁄()

were interested not only in the cost of bulk loading an
index but also in its search performance.

We also performed several experiments for B+-trees.
Here, the classical approach of sorting the data and pack-
ing the nodes of the tree is the clear winner. This result
even holds for packing the nodes just to 2/3 of their maxi-
mumcapacitysothatsearchperformanceis comparableto
the other bulk loading algorithms.

The cost of bulk loading an index was measured in
milliseconds of elapsed time. This gives a more realistic
impression than just counting I/O- or CPU-cost. Please
keep in mind that we are not interested in the absolute
amounts of time needed. In order to compare the search
performance of the created indexes, we treated every 10th
record inserted into the tree as a query. Fol lowing the
results of [LL 98], we measured query performance by
countingthenumberof pagesthatwerereadandwritten to
disk.

Throughout the experiments, we used data sets from
the TIGER files [Bur 96] containing rectangles reflecting
the borders of environmental objects. While these real
world datasetsarepredestinedto beusedfor bulk loading
R*-trees, we mapped the rectangles to a four dimensional
data space to be used in the context of Slim-trees. We will
present the results for the CAL_HYDRO data set (360.000
hydrographi cal f eatures f rom Cal i f orni a) , the
TEX_HYDRO data set (360.000 hydrographical features
from Texas)andtheEAST_RAILdataset(360.000railroad
items from the east of the US). However, for many bulk
loading algorithms the cost of bulk loading as well as the
query performance is highly influenced by the order in
which theobjectsareprocessed.To demonstratethisprop-
erty, we once sorted the data sets according to a Hilbert
spacefilling curveandoncecreatedarandompermutation.
In the fol lowing, we wil l refer to a sorted data set by
appending the suffix sorted to its name and to a permuted
one by appendingshuffled.

ThoughwecharacterizedPath-basedbulk loadingand
Quickload to be based on sampling, our implementations
arerestrictedin thatthesamplealwaysconsistsof thefirst
objectsdeliveredby thedatasource.In ourexperimentswe
show that even for highly clustered data both algorithms
perform fai rly wel l . Another point is that sampl ing
requires the data set to be materialized. However, in case
of datadeliveredby aniterator[Gra93] thiswould require
to store the data first before bulk loading can be applied.

Due to its greater flexibility, we decided to prefer the
Buffer-based algorithm according to [AHVV 99] to the
one presented in [BSW 97]. This decision influenced the
differentsettingsfor theamountof mainmemoryprovided
for the bulk loading algorithms.

5.1 Implementation Details
All experiments were performed on a PC running under
Windows NT 4.0 with an Intel Pentium II I-Processor
clockedat500Mhz and256MBytesof mainmemory. The
I/O-device was a Maxtor Diamond Plus 6800 using DMA.

The main memory available to the bulk loading algo-
rithmswasorganizedasadatabasebuffer of mpagesusing

the LRU strategy. The size of the disk pages was set to 2
Kbytes.

We tried to achieve a fair comparison of the different
bulk loading approaches by using the same set of classes
from our library XXL for all implementations.Theclasses
representing index structures were derived from generic
classes modeling GP- and OP-trees supporting the inter-
face given in chapter 2.1. The generic bulk loading algo-
rithms were developed independently from special tree
classes and do not use specific properties of the given
index structure to be bulk loaded. As a consequence, it is
very easy to apply the same generic algorithm to different
index structures derived from the generic tree classes.

5.2 Bulk Loading R*-trees
Before presenting the comparative results of different
algorithms, we examine the impact of parameters on the
runtime of the individual algorithms. We are interested in
those parameter settings where the created index provides
fast bulk loading on the one hand and good search perfor-
mance on the other hand. We performed our experiments
with each of the three TIGER data sets. However, we
observedverysimilarbehavior of thealgorithmsaccording
to the data set.

5.2.1 Parameter Settings
Let us first consider Quickload. Here, the question arises
how to choose the fanout of the internal nodes of the in-
memory trees that are used to partition the data. We per-
formed experiments for two settings of the fanout. First,
we set the fanout in such a way that the size of the nodes
corresponds to 2 KBytes which is also the size of the leaf
nodes.Second,thefanoutwassetto 5. As onecanexpect,
a smaller value may reduce the CPU-cost, because the
algorithms chooseSubtree and split&post have linear and
super-linearruntime,respectively. However, asmallfanout
decreases the possibilities for placing new records in the
tree which may also reduce search performance. In our
experiments, we observed exactly this behavior, but the
performance difference of the two settings was less than
1%in mostcases.For sakeof simplicity, wedecidedto use
a node size of 2 KBytes.

In caseof theBuffer-basedapproach,onehasto deter-
mine the buffer capaci ty p. In our experiments, we
observeda valueof m/2 asanoptimalsettingfor p regard-
ing the bulk loading time one the one hand and query per-
formance on the other.

Another parameter is also the amount of data to be
cleared from an overflown buffer. We distinguished two
strategies, a pessimistic and an optimistic one. The pessi-
misticstrategy, asdescribedin [BSW 97] and[AHVV 99],
processestherecordsof p pagesof anoverflown buffer and
propagates the records one level down. Even in case that
all of those records are directed to just one of the child
buffers, this buffer wil l not contain more than 2p pages
afterwards. However, it is more likely that the records are
distributed more uniformly among the child buffers. Thus,
in mostcasesit is possibleto processmorethanp pagesof
a overflown buffer at once. This optimistic approach how-

ever requires to stop clearing the buffer if a child buffer
contains 2p pages. Note that both strategies result in a
worst-case optimal bulk loading algorithm.

We figured out in our experiments that, especial ly
whenprocessinguniformly distributeddata,theoptimistic
strategy behaves superior to the pessimistic one. With
respectto thesearchqualityof thegeneratedindexes,there
was no difference between the two strategies. Therefore,
we used the optimistic one throughout our experiments.

5.2.2 Comparing the Algorithms
In the following, we compare the different bulk loading
approaches for R* -trees. In addi tion to the generic
approaches,we alsoinvestigatedtwo approachesbasedon
sorting rectangles w.r.t. Hilbert values. Sort-based bulk
loading [KF 93] refers to the classical approach of sorting
and packing the nodes of the R*-tree. The other approach,
which we call Sorted-Tuples-based bulk loading, is even
simpler. The data records are first sorted and then inserted
into the tree one by one. Correspondingly, Tuple-based
bulk loading simply inserts the records into the tree with-
out any kind of preprocessing.

As depictedin Figure4, eachof thebulk loadingalgo-
rithms performs significantly better than the Tuple-based
approach. The ranking of the bulk loading algori thms

shown hereis alsoquitetypical for otherexperiments.The
wel l -known Sort-based approach is the clear winner,
which is more than three times faster than the second best
approach(Quickload).However, whenwe considersearch
performance, Sort-based bulk loading shows major defi-
ciencies, see Figure 5. Among the generic algorithms,
Buffer-based bulk loading requires most time to create an
index, while Quickload is faster by a factor of 1.5. Path-
basedbulk loadingperformsjust in between,similar to the
Sorted-Tuples-based approach. Figure 5 shows the search

performancefor thesamesettings.Thepricethathasto be
paid for using Sort-based bulk loading is its rather poor
search perf ormance. I nteresti ngl y, i n case of the

CAL_HYDRO_shuffled data set, both Quickload and
Path-based bulk loading create trees that show a better
search performance than those obtained by just inserting
the records one by one. This observation could also be
made for many other parameter settings.

In case of clustered data sets like the TEX_HYDRO
data set (Figure 6), results changed quite dramatically.

Once again, the Sort-based approach is the clear winner,
but the Tuple-based approach comes next. The original
data sets show similar behavior to the sorted ones, result-
ing in high locality whenrecordsareinserted.Becausethe
mainmemoryavailableto thealgorithmsis organizedasa
LRU buffer, most of the node accesses do not cause disk
accesses. Furthermore, the Tuple-based approach does not
need any further processing, which results in a better per-
formance than the remaining algorithms. Though the data
is almost sorted, Quickload performs faster than Buffer-
basedbulk loading,while Path-basedbulk loadingis influ-
enced more strongly by the fact that the sample quality is
poor. Once again, the TEX_HYDRO data set results in
trees that are very similar according to their search perfor-
mance.

In the last set of experiments with R*-trees, we were
i nterested i n memory uti l i zat i on of the di f f erent
approaches. In Figure 7, we varied the amount of memory
m from 2* fanout to fanout2/2. While both Quickload and

Path-based bulk loading benefi t f rom this addi tional
amount of memory, Buffer-based bulk loading shows only
minordecreasesin theindex constructiontime.Thereason
is that Quickload and Path-based bulk loading are able to
use the entire memory very effectively, while in case of
Buffer-basedbulk loadingthefanoutof thetreedetermines
theusageof memory. For m= fanout2/2, every level of the
tree still has to be equipped with buffers. Only when m is
greater than fanout2, Buffer-based bulk loading is able to
exploit more memory since buffers wil l only occur on
every second level of the tree.

FIGURE 4: EAST_RAIL_shuffled, m=2*fanout

0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

0 50000 100000 150000 200000 250000 300000 350000 400000

B
ul

k
Lo

ad
in

g
T

im
e

(m
s)

Number of insertions

Buffer-based,p = m/2, optimistic

G G G G G G G G G G G G

G
Quickload, internal node size = 2k

; ; ; ; ; ; ; ; ; ; ; ;

;
Path-based

n n n n n n n n n n n n

n
Sort-based

5 5 5 5 5 5 5 5 5 5 5 5

5
Sorted-Tuples-based

s s s s s s s s s s s s

s
Tuple-based

K
K

K
K

K
K

K
K

K
K

K
K

K

FIGURE 5: EAST_RAIL_shuffled, m=2*fanout

0

20000

40000

60000

80000

100000

120000

0 50000 100000 150000 200000 250000 300000 350000 400000S
ea

rc
h

P
er

fo
rm

an
ce

 (
di

sk
 a

cc
es

se
s)

Number of insertions

Buffer-based,p = m/2, optimistic

G G
G

G
G

G
G

G
G

G
G

G

G
Quickload, internal node size = 2k

; ;
;

;
;

;
;

;
;

;
;

;

;
Path-based

n
n

n
n

n
n

n
n

n
n

n
n

n
Sort-based

5
5

5
5

5
5

5
5

5
5

5

5

5
Sorted-Tuples-based

s
s

s
s

s
s

s
s

s
s

s
s

s
Tuple-based

K K
K

K
K

K
K

K
K

K
K

K

K

FIGURE 6: TEX_HYDR O, m=2*fanout

0

50000

100000

150000

200000

250000

300000

350000

0 50000 100000 150000 200000 250000 300000 350000 400000

B
ul

k
Lo

ad
in

g
T

im
e

(m
s)

Number of insertions

Buffer-based,p = m/2, optimistic

G
G

G
G

G
G

G
G

G
G

G
G

G
Quickload, internal node size = 2k

;
;

;
;

;
;

;
;

;
;

;
;

;
Path-based

n
n

n
n

n
n

n
n

n

n
n

n

n
Sort-based

5 5 5 5 5 5 5 5 5 5 5 5

5
Sorted-Tuples-based

s
s

s
s

s
s

s
s

s
s

s
s

s
Tuple-based

K
K

K
K

K
K

K
K

K
K

K
KK

FIGURE 7: TEX_HYDR O

0

50000

100000

150000

200000

250000

300000

350000

0 50000 100000 150000 200000 250000 300000 350000 400000

B
ul

k
Lo

ad
in

g
T

im
e

(m
s)

Number of insertions

Buffer-based,p = m/2, optimistic, m = 2*fanout

G
G

G
G

G
G

G
G

G
G

G
G

G
Quickload, internal node size = 2k, m = 2*fanout

;
;

;
;

;
;

;
;

;
;

;
;

;
Path-based, m = 2*fanout

n
n

n
n

n
n

n
n

n

n
n

n

n
Buffer-based,p = m/2, optimistic, m = fanout2/2

5
5

5
5

5
5

5
5

5
5

5
5

5
Quickload, int. node size = 2k, m = fanout2/2

s
s

s
s

s
s

s
s

s
s

s
s

s
Path-based, m = fanout2/2

K
K

K
K

K
K

K
K

K
K

K
K

K

5.3 Bulk Loading Slim-trees
M-trees and its relatives l ike Slim-trees [TTSF 00] are
much more CPU-bound than the members of the R-tree
family. As a consequence,theonly bulk loadingalgorithm
dedicated to the M-tree family developed so far [CP 98]
tries to cope with this special property. In contrast to R*-
trees, we were hence more interested in the impact of our
algorithms on the trees’ search performance.

When repeating the experiments presented in section
5.2 for Slim-trees, we found that the relative performance
of thedifferentalgorithmsdid not change.However, some
of the results for the CAL_HYDRO_shuffled data set are
quite interesting. Note that none of the approaches relying
on sorting the data are applicable to Slim-trees.

In Figure8, thegraphsgive thecostfor creatingSlim-
trees from the CAL_HYDRO_shuffled data set. Similar to

the results of the R*-tree, each of the generic algorithms
performs significantly better than Tuple-based bulk load-
ing. Remember that these generic algorithms primarily
reduce disk accesses, thus for Slim-trees which are CPU-
bound the performance improvements are not very high.
Once more, Quickload and Path-based bulk loading out-
perform Buffer-based bulk loading by a factor of 1.5.

A very interesting result is shown in Figure 9. Com-

paredto Tuple-basedbulk loading,thesearchperformance
of treescreatedby QuickloadandPath-basedbulk loading
is much better (by a factor of 1.8). On the other side, the
quality of trees suffers much from applying Buffer-based
bulk loading to the CAL_HYDRO_shuffled data set.
Hence, for Slim-trees it is much more important than for
R*-trees to take the index quality into consideration when
comparing bulk loading algorithms.

In our second set of experiments, we used a 9-dimen-
sional data set WEATHER containing weather data
obtained by satellites. Because the size of each of the data
objectsis fairly high,we decidedto enlargethedisk pages
to 8 Kbytes. Figure 10 shows that for high dimensional
data the overall bulk loading time is determined by the
CPU-time. Therefore, our generic algorithms do not show

any advantages over Tuple-based loading. However, the
overheadof theBuffer-basedapproachis muchhigherthan
thatof theothergenericalgorithms(Figure11).In contrast

to the results of the CAL_HYDRO_shuffled data set, the
search performance of Quickload and Path-based bulk
loadingis quitesimilar to thatof Tuple-basedbulk loading.
On the other hand, Buffer-based bulk loading once again
produces trees with worse search performance.

6 Conclusions
In this paper, we outl ined several types of generic bulk
loading algori thms appl icable to the broad class of
Grow&Post-trees (GP-trees) which includes R-trees, M-
trees,S-trees,MVB-trees,KDB-trees,hB-treesandothers.
Special attention was paid to overlapping-predicate trees
(OP-trees) which is an important subset of GP-trees. We
presented two generic bulk loading algorithms where the
Path-based method is applicable to GP-trees and Quick-
load is limited to OP-trees. Both methods employ a large
sample to build up a tree.

We found that Path-based bulk loading as wel l as
Quickload are easy to implement, whereas a generic
implementation of a worst-case optimal method turns out
to be difficult. In a performance comparison with real
world datasets,wedemonstratedthattheaveragecaseper-
formance of Path-based bulk loading and Quickload is
consistently superior to the performance of worst-case
optimalmethods.Thisevenholdsfor caseswherethesam-
ple qual i ty i s poor (e.g. the fi rst tuples of a sorted
sequence). For OP-trees, we also examined the search
quality of theindex andfoundthatthequality of thetarget
index is substantially better for Quickload in comparison
to atreebuild from aworst-caseoptimalmethod.In partic-
ular for bulk loading M-trees, we observed that the search
quality of the resulting trees differs considerably. In sum-
mary, each of our new generic methods provides excellent
performance with a low implementation overhead.

200000
400000
600000
800000
1e+006

1.2e+006
1.4e+006
1.6e+006
1.8e+006

2e+006

60000 80000 100000 120000 140000 160000 180000 200000 220000 240000

B
ul

k
Lo

ad
in

g
T

im
e

(m
s)

Number of insertions

Buffer-based, p = m/2, optimistic

G

G

G

G

G
Quickload, internal node size = 2k

;

;

;

;

;
Tuple-based

n

n

n

n

n
Path-based

5

5

5

5

5

FIGURE 8: CAL_HYDR O_shuffled, m=2*fanout

0

100000

200000

300000

400000

500000

600000

60000 80000 100000 120000 140000 160000 180000 200000 220000 240000S
ea

rc
h

P
er

fo
rm

an
ce

 (
di

sk
 a

cc
es

se
s)

Number of insertions

Buffer-based, p = m/2, optimistic

G

G

G

GG
Quickload, internal node size = 2k

;
;

;

;

;
Tuple-based

n

n

n

n

n
Path-based

5
5

5
5

5

FIGURE 9: CAL_HYDR O_shuffled, m=2*fanout

FIGURE 10: WEATHER_shuffled, m=2*fanout

0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

20000 40000 60000 80000 100000 120000 140000

B
ul

k
Lo

ad
in

g
T

im
e

(m
s)

Number of insertions

Buffer-based, p = m/2, optimistic

G

G

G

G

GG
Quickload, internal node size = 8k

;

;

;

;

;
;

Tuple-based

n

n

n

n

nn
Path-based

5

5

5

5

5
5

FIGURE 11: WEATHER_shuffled, m=2*fanout

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

20000 40000 60000 80000 100000 120000 140000S
ea

rc
h

P
er

fo
rm

an
ce

 (
di

sk
 a

cc
es

se
s)

Number of insertions

Buffer-based, p = m/2, optimistic

G

G

G

G

GG
Quickload, internal node size = 8k

;

;

;

;

;
;

Tuple-based

n

n

n

n

nn
Path-based

5

5

5

5

5
5

References
[AHVV 99] L. Arge,K. Hinrichs,J.Vahrenhold,J.S.Vit-

ter:EfficientBulkOperationsonDynamicR-
trees. ALENEX 1999: 328-348

[Arg 95] L. Arge: The Buffer Tree:A New Technique
for Optimal I /O-Algor i thms (Extended
Abstract). WADS 1995: 334-345

[AV 88] A. Aggarwal, J. S. Vitter: The Input/Output
Complexity of SortingandRelatedProblems.
CACM 31(9): 1116-1127 (1988)

[BBD+ 01] J. van den Bercken, B. Blohsfeld,J.-P. Dit-
trich, J.Krämer, T. Schäfer, M. Schneider, B.
Seeger: XXL - A Library Approach to Sup-
por t i ng Effi ci ent I mpl ementat i ons of
Advanced Database Queries. VLDB 2001

[BBK 98] S. Berchtold, C. Böhm, H.-P. Kriegel:
Improving the Query Performance of High-
Dimensional Index Structures by Bulk-Load
Operations. EDBT 1998: 216-230

[BDS 00] J. vandenBercken,J.-P. Dittrich, B. Seeger:
javax.XXL: A prototype for a Library of
Query processing Algor i thms. SIGMOD
Conference 2000: 588

[BGO+ 96] B. Becker, S.Gschwind,T. Ohler, B. Seeger,
P. Widmayer: An Asymptotical ly Optimal
Multiversion B-Tree. VLDB Journal 5(4):
264-275 (1996)

[BKK 96] S.Berchtold,D. A. Keim,H.-P. Kriegel: The
X-tree : An Index Structure for High-Dimen-
sional Data. VLDB 1996: 28-39

[BKSS90] N. Beckmann,H.-P. Kriegel, R. Schneider,
B. Seeger: The R* -Tree: An Efficient and
Robust Access Method for Points and Rect-
angles. SIGMODConference1990:322-331

[BSW 97] J. vandenBercken,B. Seeger, P. Widmayer:
A Generic Approach to Bulk Loading Multi-
dimensional Index Structures. VLDB 1997:
406-415

[Bur 96] Bureauof the Census:Tiger/Line Precensus
Files: 1995technicaldocumentation. Bureau
of the Census, Washington DC. 1996

[CP 98] P. Ciaccia,M. Patella: Bulk loading the M-
tree. Proc. of the 9th Austral ian Database
Conference, pp. 15-26, 1998

[CPZ 97] P. Ciaccia,M. Patella,Pavel Zezula:M-tree:
An Efficient Access Method for Similari ty
Search in Metric Spaces. VLDB 1997: 426-
435

[Dep86] U. Deppisch:S-Tree: A DynamicBalanced
Signature Index for Office Retrieval. SIGIR
1986: 77-87

[DKL+ 94] D. J. DeWitt, N. Kabra,J. Luo, J. M. Patel,
J.-B. Yu: Client-Server Paradise. VLDB
1994: 558-569

[FL 95] C. Faloutsos,K.-I. Lin: FastMap: A Fast
Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia
Datasets. SIGMOD Conference 1995: 163-
174

[GG 98] V. Gaede, O. Günther: Multidimensional
Access Methods. Computing Surveys 30(2):
170-231 (1998)

[Gra93] G. Graefe:QueryEvaluationTechniquesfor
Large Databases. ACM Computing Surveys
25(2): 73-170 (1993)

[Gut 84] A. Guttman: R-Trees: A Dynamic Index
Structure for Spatial Searching. SIGMOD
Conference 1984: 47-57

[HSW 89] A. Henrich, H.-W. Six, P. Widmayer: The
LSD tree: Spatial Access to Multidimen-
sional Point and Nonpoint Objects. VLDB
1989: 45-53

[JDO99] C. Jermaine,A. Datta, E. Omiecinski: A
Novel Index Supporting High Volume Data
Warehouse Insertion. VLDB 1999: 235-246

[JNS+97] H. V. Jagadish,P. P. S.Narayan,S.Seshadri,
S. Sudarshan, Rama Kanneganti: Incremen-
tal Organization for Data Recording and
Warehousing. VLDB 1997: 16-25

[KF 93] I. Kamel,C. Faloutsos:On Packing R-trees.
CIKM 1993: 490-499

[KR 98] Y. Kotidis, N. Roussopoulos:An Alternative
Storage Organization for ROLAP Aggregate
Views Based on Cubetrees. SIGMOD Con-
ference 1998: 249-258

[LEL 97] S. T. Leutenegger, J. M. Edgington,M. A.
Lopez: STR: A Simple and Efficient Algo-
rithm for R-Tree Packing. ICDE 1997: 497-
506

[LL 98] S.T. Leutenegger, M. A. Lopez:TheEffectof
Buffer ing on the Performance of R-Trees.
ICDE 1998: 164-171

[Lom 91] D. B. Lomet: Grow and Post Index Trees:
Roles,TechniquesandFuturePotential. SSD
1991: 183-206

[LR 98] M.-L. Lo, C. V. Ravishankar:The Design
andImplementationof SeededTrees:AnEffi-
cientMethodfor SpatialJoins. TKDE 10(1):
136-152 (1998)

[LS 90] D. B. Lomet, B. Salzberg: The hB-Tree: A
Multiattribute Indexing Method with Good
GuaranteedPerformance. TODS15(4):625-
658 (1990)

[MNPW 00] P. Muth, P. E. O'Neil, A. Pick, G. Weikum:
The LHAM Log-Structured History Data
Access Method. VLDB Journal 8(3-4): 199-
221 (2000)

[RL 85] N. Roussopoulos,D. Leifker: Direct Spatial
Search on Pictorial DatabasesUsingPacked
R-Trees. SIGMOD Conference 1985: 17-31

[Rob81] J. T. Robinson:The K-D-B-Tree: A Search
Structure For Large Mul ti dimensional
Dynamic Indexes. SIGMOD Conference
1981: 10-18

[TTSF 00] C. TrainaJr., A. J. M. Traina,B. Seeger, C.
Faloutsos: Slim-Trees: High Performance
Metric Trees Minimizing Overlap Between
Nodes. EDBT 2000: 51-65

