Transaction Timestamping in (Temporal) Databases

Christian S. Jensen David B. Lomet
Aalborg University Microsoft Research
Fredrik Bajers Vej 7TE One Microsoft Way
DK-9220 Aalborg @st, Denmark Redmond WA 98052, USA
csj@cs.auc.dk lomet@microsoft.com

states. This type of database support is desirable in appli-
cations where accountability or trace-ability are important,
Abstract which is the case in financial, insurance, and medical ap-

plications, to name but a few.
Many database applications need accountability We consider a transaction-time relation as consisting
and trace-ability that necessitate retaining previous of a set of data items, which may be thought of as
database states. For a transaction-time database sup+ecords. Each data itethhas two system-maintained at-
porting this, the choice of times used to timestamp tributes, denoted byl. TT" (start time) andd. TT™ (end
database records, to establish when records are or weretime). These two values define a closed-open time interval
current, needs to be consistent with a committed trans- [d.TT",d.TT™) during which data itemi was part of the
action serialization order. Previous solutions have cho- current database state. So, the first of these records when
sen timestamps at commit time, selecting a time that data itemd became part of the current state, and the latter
agrees with commit order. However, SQL standard records whenl ceased to be part of the current state.
databases can require an earlier choice because a state- To obtain this semantics, modification statements update
ment within a transaction may request “current time.” these times as follows. A statement that inserts a data item
Managing timestamps chosen before a serialization or- d setsd. TT" to the “current time,” denoted ., ren:. FOr
der is established is the challenging problem we solve now, t..,-.,; Mmay be thought of as the value of the sys-
here. tem clock when current time is referenced, here when the
insertion is executed; the remainder of the paper discusses

trol, we can delay a transaction’s choice of a times- the actual choice of.,,,..: in substantial detail. Next, the

tamp, reducing the chance that transactions may need insertion setel. TT™ to now, which denotes a variable that
to be aborted in order keep timestamps consistent with _eva_luates to th? current time [2].' The pair of timestamps
a serialization order. Also, while timestamps stored indicates that! is a current data item and remains so un-
with records in a transaction-time database make it Ul this is changed explicitly by a delete or update state-
possible to directly identify write-write and write-read ~ MeNt. A statement that deletes data iténsimply sets
conflicts, handling read-write conflicts requires more. ‘?'TT 10 tcurrent, indicating t.ha'rd ceases to b.e current at
Our simple ausxiliary structure conservatively detects UM fcurren:. Update operations are usually implemented
read-write conflicts, and hence provides transaction &S deletions of the original items to be updated, followed
timestamps that are consistent with a serialization or- PY insertions of the updated items.
der. A common query, termed a timeslice, is to ask for the
set of data items that were current in an argument rela-
1 ducti tion as of some timg not exceeding the current time.
ntroduction This is answered by finding each data iteirfor which

A conventional database relation contains a set of tupled, € [d-TT™,d.TT7) (if &.TT ' is now, the current ime plus

or records. Insertions, updates, and deletions render th@n€ time unit is used in its place). So the timeslice with
set time-varying. When introducing transaction-time sup-time parametet returns the state that was current at time
port to such a relation, not only is its evolving current state When user-specified transactions are supported, it is

available, but so also are previously current, and now pastlso necessary to use the satng...: value for all state-
ments in the same transaction. Otherwise, the atomicity
Permission to copy without fee all or part of this material is granted pro- Of transactions is compromised—it would be possible for a
vided that the copies are not made or distributed for direct commercialtimeslice to return a transaction internal, and thus inconsis-
sartage e VLD copynt i ndhe e o LAt Wi, Gatabase state. Using the same.. for al siate-
Very Large Data Base Endowment. To copy otherwise, or to republishmMents of a transaction makes all actions of a transaction
requires a fee and/or special permission from the Endowment. conceptually take place at the same time. This is a neces-
Proceedings of the 27th VLDB Conference, sary refinement of the SQL standard, whose current defini-
Roma, Italy, 2001 tion allows different statements in the same transaction to

By building on two-phase locking concurrency con-

use separate. . en; values. It is easy to avoid the above anomalies if a transaction
The specific choice of current time that is used for times-1"s timestamp can be established at the time at wiidh
tamping the data items is also essential to ensuring that angommitting, as the timestamp can then be chosen to agree
previous state that can be retrieved via a timeslice with with the commit ordering of the transactions [8, 12, 13].
as its parameter is indeed the state that was current at tinfgut if one is forced to choose the time at an earlier point
t. If the transaction timestamp order does not agree withn the transaction execution, e.g., when the transaction asks
a serialization order, it can happen that the answer to théor the current time, keeping the timestamp order consistent
timeslice query never existed as a current state. with a valid transaction serialization order can become a
In the SQL database language [9], a query or modifi-substantial problem.
cation can reference current time,,,.;. As described Indeed, it is not straightforward how to accomplish
above, current time can be stored as an attribute in thimestamping in the face of user transactions and early
database or used to query the database, e.g., retrievirignestamp choice, while avoiding excessively restricting
the state that was current ten minutes ago. Referencingotential concurrency and excessive transaction aborts.
teurrent IN @ query can force the database management syd-he paper solves this problem. Prior studies of transac-
tem (DBMS) to choose this time before the transactiontion timestamping (covered in some detail in Section 2 and
commits. This exposes the transaction to the risk that thehore broadly in Section 5) either did not address early
t.urrent Value given to it and the values given to other trans-timestamp choice or failed in one of the respects mentioned
actions are not ordered in a way consistent with a valichere.
transaction serialization order. Our solution, which exploits timestamps, ensures that
the order of .,.,..,; Values used by the transactions is con-

“Te fix tCWGZ} & sistent with the order of transaction commit. More specif-
2 w((z,10,[1, now))) ically, the choice 0f curent in OUr solution satisfies three
3 fiX £ puurront requirements. First, if a transach@hhastcu’rmt =t ther_l
4 w((y, 31,[3, now))) T has started and not yet committed at timeSecond, if
5 comr’nit7 ’ transactior?} has been assigned,.,: = ¢1 and transac-
6 tion Ty has been assigneg, ... = t2 andt, < ¢, thenTy
7 r((y,31,[3, now))) cannot see data |tem§ written BYy. Th|_rd, if the same con-
8 w((z 14,1, now))) ditions hold, we require that an equivalent serial schedule
9 comfnit o exists wherel; is beforeTs.

By ensuring that transaction timestamp order agrees
with transaction serialization order, we avoid the two
anomalies exposed in Figure 1. The contents of a timeslice

Figure 1 illustrates the above problem. For simplicity of cannot change because subsequent writers of data items in
exposition, we elide the writes done to delete old versions timeslice are required to have later timestamps than the
when updates occurs. A read-write conflict on data item timestamp used by the timeslice, so as to enforce read-write
between transactiori§, and T, putsT; beforeT; in any conflict order. Also, because timestamp order agrees with
serializable schedule involving these two transactions. Irserialization order, each timeslice "sees” a transaction con-
addition, 71 chose itslcyen: Value at time 1, in prepara- sistent version of the database.
tion for the write statement at time 2, while, chose its Our solution does not use timestamp order to serialize
teurrent Value at time 3. Note also that this schedule istransactions, but rather enforces timestamp order as an ad-
allowed by two-phase locking. This results in serializationdition to the two-phase locking normally used to enforce
order being different from timestamp order, and causes tweransaction serializability. The solution improves upon
potential problems. First, a timeslice ffy, ~} for time 2, prior solutions for the problems that originate when a trans-
issued at time 6, returnig = yo,2 = 20} sinceT> hasa action is assigned a timestamp early in its execution.
time later than time 2 and; has not yet committed or even
accessed yet. However, the same timeslice (i.e., for time
2), instead issued at time 10, returfis = yo,2z = 14}
because it sees thewritten byT,. Second, clearly one of
these timeslice results (the later one in this case) is not a
transaction consistent view of the database. This is unac-
ceptable.

Figure 1: Schedule with Early Choice of Current Time

1. We choose a transaction timestamp as late as logically
possible. We exploit the fact that timestamps are not
used to provide concurrency control. Rather, we as-
sume that the database system uses two-phase locking
for concurrency control. Our method only needs to
keep transaction timestamps consistent with the seri-
alization order resulting from two-phase locking. In
particular, we use locking to avoid the need to have a

lwhile the standard fixes the value within a statemevttich fixed

value to use is left entirely to the implementor. General Rule 3 of Sub-
clause 6.8<datetime value function of the SQL-92 standard states “If

an SQL-statement generally contains more than one reference to one or
more<datetime value functions, then all such references are effectively
evaluated simultaneously. The time of evaluation of #tatetime value

function> during the execution of the SQL-statement is implementation- 2.

dependent.” [9, p. 110].

timestamp as of transaction start. Locking will serial-
ize active transactions that do not have a timestamp.
We describe how to do this in Section 3.

We offer a range of granularities for the bookkeeping
of timestamp constraints, hence controlling the trade-

off between the chances that the constraints canndiVe can adapt outASTmethod to the case where a trans-
be satisfied, leading to abort, and the cost of book-action’s timestamp may be chosen earlier as follows. As
keeping. It is thus not necessary to provide times-each subsequent transaction with- LAST commits, we
tamps for every data item, which has high bookkeep-setLASTto the new (larger) value. We abort transactions
ing cost. Rather, we can be conservative to vary-with timestampg < LAST. This enforces that timestamp
ing degrees in our timestamp testing. Hence, a readrder agree with all conflict orders between transactions,
timestamp T needs not be uniquely assigned to ex-including read-write conflicts. Unfortunately, it also has
actly one data item, but can apply to some set of datahe effect of aborting a large number of transactions.
items. While this imprecision increases the probabil-

ity of abort somewhat, we can control this probability 2.2 Timestamp Concurrency Control

by varying the granularity. In Section 4 we describe

. . . Timestamp order concurrency control (TO) enforces that
our simple technique for this. P Y (TO)

transactions commit in timestamp order—when the com-
It is helpful in our presentation to discuss some of the;nt;to(r)fe%tr?:zi?]lﬁgt\':tl:gr'r?l?tgggi/seowgrk’)tohuengggstﬁg't?:];_
past solutions right away, in Section 2, while deferring cov- : P '

erage of the remaining solutions to Section 5. Section éamps of all prior ransactions in a single varablaST,

describes how to assign current-time timestamps to trand WOrst case value. With TO, we are much more precise
§bout the timestamps of prior conflicting transactions, and

actions, detailing first a solution that delays this assignmen e can hence provide larger accentable ranaes of values for
as long as possible. This solution is then refined, enablin¥¥] P - 9 P 9
ost transactions’ timestamps.

the initial assignment of ranges of timestamps, as this fur- o X .

ther improves performance. The solution uses read times-eg/rlgrﬁ]s%igggglslyihzoﬂ’n\]"gls'g‘ mrgf ae)'ilrséltr?gafcc;iroﬁb;tuittszo
tamps in addition to the write timestamps that are require tart (or ’at least by the time of its first data access) and
for timestamping of the data. Section 4 offers techniquesS y

that aim at offering better performance in the managemengzs\:\?glsz;g@;Qiit:mgr;owfi?tfn't?rrpasn\év;cet% ;Zegaﬁrgcgzasz
of these read and write timestamps. Finally, Section 6 sum- y i

marizes and points to directions for future research. dat_a n .confl|ct|ng ways, and a §o|utlon that keeps trans-
action timestamps consistent with a transaction serializa-

tion order needs to handle three forms of conflict: write-
2 Prior Timestamping Approaches write, write-read, and read-write. TO associates a write
timestamp ¢.TT") and a read timestamg.T?) with each
data itemd, hence trying to minimize aborts resulting from
ransaction ordering conflicts by maintaining precise times-
imp constraints for each transaction.
Y In transaction-time databases, the valUET" is stored
%ersistently with the data, to capture previous states and
thus support timeslice queries. This provides the write
timestamps that allow us to handle write-write and write-
2.1 Commit Time Choice of Timestamp read conflicts. But to handle read-write conflicts requires
that we also maintain read timestampg". Hence, when-
everd is read by transactioX with timestampt x that is

Let us begin by describing prior timestamping techniques
Our approach, while new both in the specific problem it
solves and in its major elements, borrows selected eIemenf
of these prior techniques. Itis useful to describe these earl
both to help in describing how these elements attack th
problem and to contrast these approaches with ours.

If we are willing (or able) to delay the choice of timestamp
until transaction commit then it is possible to very simply) R .
choose a timestamp. We simply choose a timestamp that réé—}r%er th?nd S Clérrentc_lr.'lR' . (anﬂ(;thus C;a}ggrdthan thf tlmgs
flects the order in which transactions have committed. Thaf Ibs ear |er_reia ?rs)z.t ftlﬁ s(ej ¢ g : oes no gee t ask
is, we issue the transaction a timestamp that reflects its timi 0€ a persistent part of the database, as queries do not as

of commit. This requires that we use something other tharffIbOUt times when data is read. So TO methods can exploit

H R
timestamp ordering for our concurrency control technique,a volatile da“’! structure that paptydﬁ for eachd.
A transaction compares its timestamp to the data

h as two-ph locking. .) . :
such as two-phase focking . . ._.__itemd's read timestam@.T® in the volatile structure and

In [8], timestamps that agreed with transaction senahza—its write timestampl. TT", which is stable in a transaction-
tion order were used to optimize two-phase commit (2PC),. j e . .

. . S time database, to determine timestamp consistency. We
A single variabld ASTwas maintained by a database, rep-

resenting the time that the last transaction was committea‘?re only concerned with current data items, i.., items with

_{ .
Each subsequent transaction that attempts to commit WahSqTat Z:rlluseev%z?tlefqmow’ because these are the only items

given a timestamp greater th&aST, andLAST was up-

dated to that later timestamp. e When transactiotX attempts to read data itedy we
The problem we have with late timestamp choice is that require thattx > d.TT". Further, iftxy > d.TR,

it does not permit us to be responsive to a request, by a thend. TR is set tot x, to permit us to validate updater

statement in a transaction, for the “current time.” Such a timestamps (see the nextitem)z}f < d.TT", a later

request means that we cannot simply choose atime at com- transaction wrote iterd, so the transaction came too

mit, but need to make our choice when the request occurs. late and aborts.

e When transactiotX attempts to write data item) we transaction that created it. We also assume that a read
require thatty > d.T® andtx > d.TT" as well. timestampd. T® is associated in some way with each cur-
Otherwise, transactioX aborts. This enforces both rent data item via a volatile data structure, which we define
write order and that a previous readerdfead the and consider in detail in Section 4.

correct version. During the execution of a transaction, two-phase lock-
) ing (2PL) [1, 5] blocks transactions from reading data that
TO presents two problems in our context. is being written by an uncommitted transaction, and from

1. Each transactiorX needs to have a timestanig writing data being read or written by an uncommitted trans-
when it starts, so that it can use in the times- action. Thus, timestamps need play no role in protecting
tamp consister’my testing above. However timestampgata of an active transaction. This is essential to our strat-

should be chosen as late as possible in the transa€9Y Of delaying the assignment of timestamps. Only after
tion's execution, ideally when the transaction is aboutCOMmMit is it essential that timestamps be associated with

to commit. so as to minimize the chance of abort. Atdata, to ensure that subsequent transactions have times-
’ tamps that are consistent with the ordering resulting from

that point,tx can be chosen to be consistent with the , X ; , :
the write-write, read-write, and write-read conflicts.

order in which the transaction is committing. By forc-

ing the choice of x at transaction start, one signifi- Ve need to describe what happens before a transaction
cantly increases the chances that the timestamp cor@S @ timestamp, how a timestamp is assigned, what hap-
sistency checking will fail, resulting in an abort. pens after the transaction has a timestamp, and what we

need to do at commit time to ensure that the timestamps
2. While d.T® needs not be stable, the number of dataof subsequent transactions are appropriate. Our initial de-
items is potentially enormous. The access structurescription will assume that, when a transaction requests the
for thed. T®’s needs to provide efficient access for all current time, it receives back a full precision time that will
current (or at least a large number of) data itelyend ~ be used as its timestamp. We subsequently discuss how to
needs to be a dynamic structure that can grow in sizeelax this requirement.
as more data items are included in it. At some point, During the execution of a transaction, we need to re-
its growth needs to be limited so that it can be reasontain information to use when selecting its timestamp, and to
ably maintained in volatile memory. TO methods haveprovide information that governs the selection of the times-
exploited “garbage collection” to prune this structure. tamps for other transactions. Data accesses define a lower
The garbage collection technique in [1] deletes timesboundt¢; on the value that can be chosen as the transac-
tamps that are older than sorie That is, any read tion’s timestamp. We initialize; to ¢, the execution start
timestampl. TR < (t.umen: — 9) iS deleted. If atrans- time for the transaction, so that the chosen timestamp will
action with a timestamp less théh.,,en. — d) is still not be before the start of the transaction. We also remem-
active and references a data item with no stored timesber the set of item#¥% read by the transaction, the dét
tamp, it is aborted, as all data items without an explicitof new items inserted by the transaction, and thd/sgof
read timestamp are implicitly given a read timestampitems deleted by the transaction. An update is treated as a
equal to(tcurrent — 0). This risks additional aborts. delete followed by an insert in the same transaction. These

. _ _ sets are initialized to the empty s@t,
The solution presented in the remainder of the paper

avoids the first problem of selection a transaction’s times- 11 Before Ti Assi
tamp at transaction start, as well as the second problem o 1-1 Before Timestamp Assignment

maintaining a pOtentially enormous structure for the reaCBefore a timestamp has been assigned' a transaction is

timestamps of transactions. never aborted due to timestamping constraints because
) _) these are never violated. A timestamp can always be cho-
3 Deferring Timestamp Choice sen later that satisfies the necessary constraints. So, if

e are not forced to choose a timestamp, we delay as
of a transaction’s timestamp, until the moment when th ong as possible in providing a timestamp for the transap-
timestamp is needed by a statement in the transaction n. This delay reduces th_e chances that_ the transaction
until the transaction commits. We detail the actions thatWIII be aborted because of timestamp consistency require-

nents. However, even before timestamp assignment, we

must be taken before a timestamp is assigned, the procén i X : .
dure for assigning a timestamp, the actions that must b eed to update information that determines the constraints

taken after a timestamp is assigned, and the procedure r&pat the eventual timestamp must satisfy. This updating oc-

commit processing. Section 3.2 improves on this machin®Us when our transactioX attempts to read or write a

ery, by allowing the use of initially imprecise timestamps. data item.

This section describes how it is possible to delay the choic

Read(): If d is locked because of an active transaction
write, the transaction blocks. Once we can access

Each data itend in a transaction-time database has a write d, we need to ensure that our transaction will not be

timestampd.TTH, which is set to the timestamp of the given atimestampy < d.TT". Thus, ifd. TT™ > ¢,

3.1 Late Timestamp Assignment

thent; «— d.TT". We setVg « Vi U {d} to remem-
ber that we have read| for commit-time processing.

3.1.3 After Timestamp Assignment

After the timestamp for the transaction is fixed, we now

Write(d): If d is locked because an active transaction™" the risk that timestamp constraints will be violated. As
is reading or writingd, then the transaction blocks. Pefore, let the timestamp of a transactidhbe ¢x. We
Once we can access we need to ensure that our NOW describe how this transaction proceeds as it reads and
transaction will not be given a timestamp, < Writes data items. Basically, we abort the transaction if a

max(d. TR, d.TT"). Thus, ifmax(d.TR, d.TT") > ¢, timestamp constraint is violated.
thent; «— max(d.TR,d.TT"). We setV; « V; U {d}
when the write is an insert to remember that we have
insertedd, and we seVp — Vp U{d} when the write

is an delete to remember that we have deléteafjain

for commit-time processing.

Read(): If d is locked because of an active transaction
write, the transaction blocks. Once our transaction is
able to accesd by placing a read (share mode) lock
ond, we then perform our timestamp checktjf <
d.TT" then we abort the transaction. Otherwise, we
proceed as usual. We 3ét <« VzrU{d} to remember

3.1.2 Timestamp Assignment that we have read, for commit-time processing.

When we choose a timestartyp for our transaction’, we Write(d): If d is locked because an active transaction
choose it so that all accesses to data within the transaction is reading or writingd, then the transaction blocks.
satisfy the following constraints. This is always possible. When our transaction is able to accesby placing

a write (exclusive mode) lock od, we then perform
our timestamp check. fxy < d.TR orty < d.TT"
then we abort the transaction. Otherwise, we proceed
as usual. For inserts, we sét «— V; U {d} to re-
member that we have insertddand for deletes, we
setVp « VpU{d} to remember that we have deleted
d, once again for commit-time processing.

Reads:tx > d.TT" for all d € V. This constraint en-
forces write-read conflicts. Note that, because reads
are commutative, we do not require that > d.TR.

Writes:tx > d.TR andtx > d.TT foralld € V; U Vp.
These constraints enforce read-write and write-write
conflicts, respectively.

This information is captured in the varialile which serves 3.1.4 Commit Processing

as a lower bound for the value of the timestampthat At commit, we need to ensure that the database and our
we can assign to the transaction. Since we have not (yeBuxiliary data properly reflect that transaction with
provided an upper bound fok , we can at this point always timestampt x has committed. This involves posting times-
assign an acceptable timestamp, i.e., one that satisfies ot&mp information with the data items that have been read
timestamp constraints. and written by the transaction, so as to ensure that subse-
A transaction may be assigned a timestamp in the midsguent transactions can be assigned appropriate timestamps.
of its data accesses. So a transaction can change from of@e following is required.
without a timestamp to one with a timestamp at any time.) .
This is important in our effort to delay the choice of times- Reads: Seil.T = i for all %ata itemsi € VE (those
tamp. Only when a request for the current time, e.g., CUR- we have read) for WQ'CH'T < tf(' Note that we are
RENT_TIME in SQL [10], is made are we compelled to as- allov(\j/ed tg makﬁi.T fo{) othe“rds greater tpan 'ghey
sign a timestamp prior to commit. Otherwise, we can wait neeR to be. This can be a conservative” action, as
until transaction commit, at that time assigning a timestamp d'T does not play a permanent role in a transaction-
time database, but is only used to enforce the read-

that agrees with transaction conflict order. write ordering. If the transaction aborts, nothing needs
Monotonically increasing timestamps in which the 9- : ’ 9
be done about data items that were read.

timestamp assigned is greater than all previously issued
timestamps will provide us with ax that satisfies all
prior timestamp constraints. However, we achieve tighter

Writes: These are used for inserts and deletes. For each
d € Vp, those items we have deleted from the current

bounds by remembering the largesTT" for any d that
has been accessed, and the largeBt for any d that has

been updated, which is what we do by maintaining variable

t;. Then we set the timestamp > ¢;.
It is especially useful to select a minimutix when

state, we setl. TT' = ¢x. For eachd € V7, those
items that we inserted into the current state, we set
dTT" = tx (andd.TT" = now). Table 1 describes
the use of writes. If the transaction aborts, we do not
revisitd, at least in some scenarios. We will describe

timestamp assignment immediately precedes commit as
there will be no further opportunity for this transaction to
violate timestamp constraints. An earlier time will improve 32 Incremental Timestamp Refinement
the chances that other transactions will satisfy their times=" P
tamp constraints because earlier timestamps make it easiés with delaying timestamp choice, keeping the timestamp
for a later transactioy” to find a timestampy for itself as imprecise as possible reduces the likelihood of transac-
that is greater. tion abort. Up until now, we have merely put a lower bound

this briefly in the next section.

| user-level operatior) low-level operation(s) denote by(t;,t,). After timestamp range assignmerat

deleted w(d, old, [, tx)) tran_saction may.continue to access datq, via reading and

insertd w(d, new, [tx, now)) writing. As_prewously, we al:_)ort transactions that cannot

updated w(d, old, [t, tx)) satisfy the timestamp constraints, now expressed as bounds
w(d, new, [tx, now)) on the timestamp. A transaction aborts wheneyer ¢,,.

Table 1: Writes by a Transaction X with Timestaip 322 Committing with Timestamp Ranges

At commit time, it is advantageous to choose transaction
's timestamp, if not yet specified with full precision, to
ety = tl+, one unit larger at the finest precision avail-
g_ble than the lower bound of the timestamp range. This
choice is acceptable for transactidh and makes it easier
for other transactions to find an acceptable timestamp as it
minimizes the value ofyx. Hence it permits subsequent
uetrgnsactions that read or write this data to preserve some-
Rihat larger timestamp ranges, which increases the proba-
bility that they will escape timestamp-induced aborts.
WhenX is a distributed transaction, it is possible to use

t; on the timestampx that we choose for transactiox.
While there was, perhaps, an implicit assumption that w
chose the precise timestarp when the current time was
requested, or at commit time, we have not discussed a sp
cific strategy for selecting a transaction timestamp.

What we describe here is how, instead of fully speci-
fying a timestamp for a transaction when the current tim
is requested, we instead use the request to provide an
per bound on the value @f,,.: for transactionX, and
hence on its timestamfy . Only when a fully precise time

ﬁefgﬁ;zgg 'St.lfﬁ}";e}‘ar?#g Sege?(lafiltidlya?g?inﬁzgfaeﬁw fuélr){oice a timestamping commit protocol to determine a transaction
: P P timestamp for all transaction participants [8]. Each partic-

T oo sxssston. Ysorais e aniaJPAES “rEpATGE vte ncludes a (mesiamp range wifi
y 9 - mp Y, which the participant guarantees that it can commit. The

usually need not be completely defined until the transaaio%oordinator intersects all voted ranges, and then chooses a

commits. At commit, we must post the timestamp to da.‘tatime tx within that range as the timestamp for the transac-
items that have been read and written by the transaction, | " o rmallyt will again bet
. i

and so require a precise timestamp at that point.
Working with a timestamp range that has upper bound4

t, as well as a lower bound captures this imprecision. The Timestamping Data

initial value fort;, is co. The goal that led us to assigning timestamps to transactions
is to provide transaction-time database functionality, mean-
3.2.1 Impact of Time Requests ing to retain all previously current database states, making

them available for queries such as “what was the balance

When a transaction in an SQL-compliant database requesfg John's checking account on June 30, 1999?” To provide
the current time, it is possible to request this time with athjs functionality, we must

designated precision. For example, if the transaction asks)) o)
for CURRENT.DATE, only the day is provided. If CUR- e associate a pair of transaction timestamps with each
RENT.TIME or CURRENT.TIMESTAMP is requested, data item in the database, and

one can specify a.precisior}. What_ever precision is re- e choose timestamps for transactions so that the times-
quested, the result is to provide candidate upper and lower tamps reflect a serialization order for transactions.
bounds.
. . ifi i + 4 -
The result of a current-time request is whatever the sysSPecifically, timestampg. TT~ andd.TT™ must be asso
tem clock says it is, truncated to the specified precisionc'ate‘j with all data in a transaction-time database. In ad-

. " R X
The lower bound is that time extended by ‘0’b’s to the max-dition, we needl.TT" andd.T™ to ensure that timestamp
imum time precision, provided it is greater than the previ_qrder agrees vF\{nth serialization order. Itl follows that r_ead
ous lower bound; the upper bound is that time extended byimestampsl.T™ are only needed for the timestamp assign-
‘I'b’s to the maximum time precision, provided it is less MeNt process, and we can dispense with them once their
than the previous upper bound role in that process has been completed.
. - . : R

For example, if CURRENTDATE is requested then the _ Providing and managing read timestamp$™ is the
timestamp upper bound becomes the last time instant (ore challenging issue, so we first describe a new approach
maximum precision) for the day that is returned. The or this that has some significant advantages. While there
lower bound constraint provided by this time request is the?r€ iSSues associated with the timestarps™ andd.TT"
first instant of the day. When CURRENTIME or CUR- of data |tems,_ wh|.ch' we addrgss at the epd of this section,
RENT TIMESTAMP are requested at less than maximumWe can exp_I0|t existing techniques for this, though we do
precision, similar considerations apply. suggest an improvement on the method that we prefer.

We now relate timestamp ranges to our previous pro, 4 Read Timestamps
tocol. Instead of assigning a fully precise timestamp dur-" P
ing timestamp assignment, we assign a timestamp rang#®ye have only described abstractly that the system main-

with upper and lower bounds as just described, which weains ad.T® value for each data iteni that is read by a

transaction. Clearly we need to deal with this concretelyas a transaction has a timestamp. Indeed, when checking
Ideally, we prefer a technique for managing these value®TT, it is possible to detect the need to abort a transaction
that is simple to implement, has high performance, andis soon as there is an upper bodpduch that, < TE.
minimizes aborts. Thus, we would like an approach that iHowever, the better question to ask is “when is it desirable
more flexible than th& ASTtechnique and lower in over- to check or updat®TT?” Our answers follow.

head than the prior TO approach. We propose such an ap-
proach, then consider the impact of system crashes.

4.1.1 The Read Timestamp Table (RTT) Approach

We must (conservatively) enforce that timestamp order is
consistent with read-write conflict order. This leads us to
suggest that theTvalues be provided via a hash table that
we call the Read Timestamp Table RF T for short, where
each entry determines d&"Walue for a set of data item3;

i.e., we map a set af’s (via, e.g., a hash function) to an
identifier I p for the setD, i.e.,hash(d) = Ip. Ip then is
used to accesRTT and determine the commorf*Tvalue

for all members oD, i.e.,RTT(hash(d)). TheRTTs size
can be varied depending upon the desired trade-off between
storage overhead and abort rate. The larger the table, the
smaller is each seb that is coalesced and managed with
the same T value.

Each data iterd that a transactioX” writes requires that
we check that the read-write conflict order betwééiand
earlier read transactions agrees with their timestamp order.
We can only do this when we know the timestatapfor
X. Hence, writes require that we check RE€T. Each data
item thatX reads requires that we update RET so as to
be able to subsequently ensure that the read-write conflict
order betweernX and subsequent write transactions agrees
with the timestamp order.

We cannot check or updalTT, however, untilX has
been given a timestamp. Fortunately, whilés executing,
locking ensures serializability of transactions, and transac-
tion atomicity ensures that we, as late as commit time, ca
enforce timestamp order, by transaction abort if necessary.

updating RTT: It is never desirable to updaRTT ear-

lier than commit time. Read locks prevent subsequent
writers from writing any read data ited so there is

no possibility of a timestamp order violation involv-
ing d until after a transaction commits. Indeed, early
update ofRTT[hash(d)] will increase the number of
false timestamp order violations because the times-
tamp associated witRTT[hash(d)] will associate the
later timestamp (off) with all data items inD.

checkingRTT: Itis always desirable to che€kKTTas soon

as a transactioX has a fully specified timestanig .
Suppose thaX wrote data itemd. X'’s write lock
prevents any subsequent (later) reader from reading
So a precisel. TR cannot increase in value for
the duration of the transaction. However, the value
of RTT[hash(d)] can be updated because some other
transaction reads & with hash(d') = hash(d), and
this might lead to an unnecessary abortXof By
checkingRTThash(d)] as early as possible, we re-
duce the window in which this kind of update can oc-
cur. So, at timestamp assignment time, it is desirable
to useVy, to check the entries dRTT immediately.
In addition, when there is a subsequent write of a data
item d’, we checkRTThash(d’)] immediately, with-
out exploiting our bit vector. This early check also
identifies transactions that need to be aborted as early
as possible, meaning that there is less wasted work
done by the doomed transaction.

1.2 Impact of System Crashes

So let us first describe how @ TT checking and updating We need to understand the impact that a system crash has
can be done at commit time. on our method. Since tHRTTis used in an essential way

To perform the appropriate read timestamp checkingonly to help choose the timestamps of transactionsRie
at commit time, we need only remember the hash valuesloes not need to be stable so long as we can ensure that
i = hash(d) for all d that were written by the transaction. we can identify the latest possible timestaST (recall
With anRTTthat consists of a few hundred entries, we canLAST from Section 2) used by any committed transaction
remember this set via a bit vectdk;; denoting the vari- prior to the crash. This information must be available in the
ables written, which reflects the hash values for all items inecovery log, as we must be able to timestamp versions of
Vp U V7. An RTTwith 512 entries would then require a data written by every committed transaction, i.e., to write
Vv of 64 bytes for each transaction. Each em®¥T[i| in for each writtend also itsd. TT" (and perhaps it§. TT™).
which Viy-[i] ="1'b is accessed at commit time and com- Transactions that were active at the time of the crash
pared with the transactial's timestamp x. If any of the are aborted, so their activities have no effect. We initialize
RTT[i] > tx, we abort the transaction. all entries ofRTTwith LAST. While this is conservative, in

To perform the appropriate read timestamp updating athat the pre-crasRTT entries might have had earlier times-
commit time, we likewise need only remember the hashtamps, no additional local transactions will be aborted by
valuesi = hash(d) for all d that were read by the trans- this process, as all post-crash local transactions will have
action. This is a second bit vectdfz of, e.g., 64 bytes, timestamps greater tham\ST.
yielding a total bit vector space overhead of 128 bytes. So We need AST (rather than using, e.gZERQ because
the overhead need not be large. t}f > RTT;] when it is possible that some non-local distributed transactions
Vg[i] ='1'b, thenRTT[i] «— tx. have timestamps earlier th&AST. Using LAST guaran-

Itis possible to check and update entrieRIifiT as soon tees that we prevent read-write order violations, whereas

ZEROdoes not guarantee that. These distributed transa@erhaps on transaction time [8]. Hence, we re-visit the data
tions may be aborted because read timestamps are now laiegms written by committing transactioX after it com-
than they might otherwise have been. Thus, a local cohomnits and we are guaranteed to know its timestamp viajue
of a distributed transaction would surely havASTas a Placingtx in X’s commit record ensures that the connec-
lower bound on its commit time. A distributed transactiontion between transaction id and timestamp is stable. Then
X might, at another of its cohorts, be forced to choose alata items inserted (or deleted) are re-visited, and transac-
t, < LAST, e.g. because of a CURRENIIME request tion id is replaced by x. In the normal course of system
by the cohort, thus requiring that the transaction be abortedperation, pages containing these records “find their way”
But this is a low probability occurrence, in any event. to the disk and become stable in that way.

The bottom line is that there is little point in making We strongly endorse this “traditional” approach. How-
theRTTstable. Correct behavior is always (conservatively)ever, note that posting timestamps to written data items af-

assured, and the probability of extra aborts is low. ter transaction commit leads to a double access to all writ-
ten data items, once to post the write and, after commit, to
4.2 Write Timestamps post the transaction timestamp that overwrites the transac-

For completeness, we describe here how to handle writdon .'d' .
timestamps, summarizing previous published solutions that Flnallly note that the degcrlptlon_here has been phrased
we believe are effective. As with read timestamps, we Con_mostly In terms of_a dat.a iterd havmg a timestamp that
sider the impact of system crashes. mgr_ks the tlme'of its writing transaction. The time of the
writing transaction is used as the TValue for a new data

item d’ when an insertion occurs (with the end time ™ TT
having the variableiwow as its value). The timestamp for
Timestampsi.TT" are stored with each data itetiy de- the writing transaction is used as the (new) Walue when
noting the time at which each is inserted. Transaction-timean existing data item is being deleted. An update is accom-
databases store in addition an end time for their data itemslished by two writes, one to delete the existing data item
as described in Section 1. Thus, with each data i#ei$1 and one to insert the new data itefn We have been main-
also stored!. TT™ denoting the time at which it is deleted. taining the set of inserted iteni§ and deleted item&}, to
A write transaction has to post both new data values an@nable this commit time processing.
these timestamps. Since we may not have the transaction’s
timestamp when the write occurs, we need to record thesg 2.2 Impact of System Crashes
writes in some other way, completing the writes when we
have sufficient information.

One way to deal with this is to create amentions list

4.2.1 Second Access for Timestamping

Unlike the situation with read timestamps, write times-
tamps for data need to be permanently assigned to the data

of inserted or deleted data items that records both the ideﬁ’yritte.n by every committed transaction.. S_yste_m crashes
tities and values of the items each transactiérwrites. can interfere with the process of associating timestamps

The writes remembered in the intentions list are then postelﬂ"th data. We need to ensure that the timestamps that

when sufficient information is later available. Such an in-&€ needed in order to support the desired transaction-

tentions list has two disadvantages, however. time database functlonal.lty aﬁer a crash indeed survive the

crash. And we need to identify those timestamps that are

1. Data values can be very large, and so storing intenno longer needed, and justify that they are not. Storing a

tions lists for all uncommitted data can be costly in transaction’s timestamp in its commit record is a start at

main memory consumption. making its timestamp stable, but only a start.

o . ~ Here we summarize two previous approaches [12, 13]

2. Atransaction is expected to see its own updates. Withor how to complete the timestamping of transactions after

the intentions list approach, every data access needgmmit. Both provide a persistent table that maps com-

to look at the intentions list to determine whether the mitted transaction id's to their corresponding timestamps,
transaction has previously updated a data item. which we call the timestamp table ®6T. The approaches

We avoid intentions lists by posting an update in '[hedncfer in how they manage theSTtable subsequently.

appropriate database page at the time of the write. The 1 |4 [13], TST contains the timestamps for all transac-
2PL protocol protects these uncommitted and yet-to-be- {jons. When an unstamped data item is réB8T is

timestamped writes. Since a transactirdoes not neces- consulted and the transaction id is replaced with the
sarily know its timestamp early in its execution, these data timestamp found in th&ST. The difficulty with this
items are initially tagged wittX''s transaction idwhen the approach is that th&ST can get very large, and ac-

write occurs. We re-visit these data items later, when we cessing it can add to disk I/O.
know X''s timestampt x .

We are not guaranteed to kna¥'s timestamp until it 2. In [12], only the transaction entries needed for un-
commits. For a distributed transaction, it may be impossi- stamped data are maintained in th&T. Entries
ble to choose a timestamp prior to execution of the commit for which timestamping is complete are garbage col-
protocol when all transaction cohorts “vote” on commit and lected. There is both an execution cost and a system

complexity cost tof STgarbage collection, as the sys- The Postgres DBMS [13, 14] supports transaction time
tem needs to maintain information about unstampedy timestamping after commit. Specifically, Postgres uses
data to know whaT STentries to keep or purge. eight extra attributes in each relation in order to associate
with each database modification both the id and commit

On balance, it seems better to us to do the garbage colleéime of the transaction that effected the modification. Ini-

tion and prune th@ST. tially, only the transaction id is associated with a modifica-
tion. The transaction-time values are left unassigned when
Garbage CollectingTSTEntries atuple is initially stored in the database [13]. When a trans-

)) o) action commits, its commit time is stored in a spegiahe
In [12], the identity of each unstamped data itéiis main- taple. This enables the subsequent revisitation of tuples in
tained in a list associated with the timestamp that is needegrder to apply the permanent timestamps. This revisitation
by d. As data items are timestamped, they are removegs gone lazily or not at all [13]. When the transaction time
from the list. The subtlety, as explained in [12], lies in en-of 5 tuple is needed, but is not stored in the tuple;Tinee
suring that this bookkeeping information is itself persistent.iapje is consulted. There is no discussion of the use of tem-
And the advantage of retaining this list of data items is thayorary values of the timestamp attributes in Postgres.
We can choosg, via referencing the data_ items., to complete Salzberg [12] demonstrated that to achieve a trans-
the timestamping and remove the associated timestamp €l¢tion-consistent view of previous database states, it is

tryll;rom theT_SfTat any “”.‘If- liahtly | necessary to use the same timestamp for all modifications
TSTowrt]aver, It we are wi '”lg to acclept %S ghtly 1arger \yihin a transaction. Further, this timestamp must be after
» where we cannot simply complete the timestampingy, o time at which all locks have been acquired; otherwise,

at our ?'Sﬁret'g.n’ Wehcan repl_ace tge .I'St of |tems(,jw\|/tvhh 8the timestamps will not properly reflect the serialization or-
count of the objects that remain to be timestamped. Whelye of yransactions. Again, the use of current time prior to

a page is written to disk, we create a log record that debommit is not considered

scribes the write and its impact on timestamp counts. This The techni qi follow th .
log record contains, for each timestamp, the number of pre-. € techniques proposed in our paper follow the prin-

viously unstamped data items in the page that were giveﬁ'ples put forwgrd by Salzberg and use principles similar
that timestamp. Thus, we can (almost always) persistentlt those usetlal In Elostgres, bui eXtdef‘dS thetg,e tol solvet.the
maintain counts of the unstamped data for each timestamp,© ¢ 9éneral probliem encountered in practice. In partic-
If a crash occurs between the write of a page and the writé‘lar’ we Qeal W'.th the fact that user requests can force an
of the log record describing the write, the only result is eaf'Y choice of tlmes_tamps. o o

that some timestamp entries in th&Tare not garbage col- ~ Finger and McBrien [4] studied timestamping, includ-
lected, which is probably not very important. ing the use of the valid-time variableow. Like Salzberg,

We can make persistent reference counting precise bj'éy argue that the value forow should remain constant
writing to the log our intention to write pages in a “system Within a transaction. However, they rule out using the com-
transaction” start log record, then writing the pages, and fimit time for imestamping the valid-time dimension and in-
nally committing this “system transaction” after all listed Sté@d suggest using the start time or the time of the first up-
pages are stable on the disk. We include with the list ofdate as the value foow. They showed that this choice may
pages being written the changes in reference counts for uA¢@d tonowappearing to be moving backwards in time and
stamped data in the start log record, and would redo thhat the serialization of transactions can be violated. They
“transaction” were the system to crash and there were ngu99est ignoring the problem of time moving backwards or

commit record in the stable log. making transactions serializable on their start times.
This differs quite substantially from our solution where
we use the commit time. Further, it has been shown that
5 Related Work

ignoring the phenomenon aiow moving backwards may

The predominant assumption in past work on temporallylead to violation of the isolation principle of transactions
enhanced data models and query languages as well as ifAnd that transaction executions cannot be serializable in
plementation techniques for temporal data management [he order of their start times, if concurrency is to be al-
11] has been that there is no support for user-specifietpwed [16].
transactions, making individual modification statements In recent related work, Torp et al. [16] consider the
the units of work. In perhaps the most relevant contributiontimestamping of data items assuming a layered architec-
based on this assumption, Clifford et al. [2] offer a seman+ure, where support for a temporal query language is pro-
tic foundation for associating the variabt®w, denoting vided, essentially, by an application that uses the SQL in-
the current time, with data items. Our proposal follows thisterface of a conventional DBMS. With no access to the in-
foundation, but assumes the presence of transactions. ternals of the DBMS, the possible solutions are more re-

Transaction support in temporal databases has only beetricted. They use the commit time of a transaction as the
addressed in a handful of works. We review these nextcurrent-time value given to all requests for the current time
also describing how this paper’s contribution builds on andfrom statements in the transaction. As in our paper, and
extends these. unlike Salzberg and Stonebraker, they permit statements

in a transaction to reference current time. Since the comAcknowledgments

mit time is unknown until the transaction has exhausted a”‘l’he authors would like to thank Richard Snodgrass for his

giﬁ;ﬁf_’ trpn?gt\s,a?ﬂg :: Lesae?jy ;OaﬁqoeTn:géassgglri’ ttifnrgpx;%r articipation in the research that led to this paper, including
' y Y articularly his role in initiating this work.

the current time is first needed by a statement in the trans- Christian S. Jensen was supported in part by the Danish
action. Techniques that generalize the revisitation approad?echnical Res-earch Council through grant 9700780 and by

outlined for Postgres are supported. X :
While performance experiments demonstrate that this‘?1 grant from the Nykredit corporation.

timestamping approach has good performance, the restri eferences
tions imposed by the assumed architecture renders the ap-
proach only approximately correct. In contrast, our paper, [1] P. Bernstein,, V. Hadzilacos, and N. Goodma@oncur-
by augmenting the two-phase locking mechanism withread rency Control and Recovery in Database Systefwiglison
timestamps, ensures correctness. Wesley, 1987. _

Finally, the values ... andnow used, but specified [2] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and

only abstractly in our paper may be represented and manip- R T- SnodgrassOn the Semantics of ‘Now’ in Databases
ulated as described in detail in [16]. ACM TODS, 22(2):171-214, June 1997.

[3] O. Etzion, S. Jajodia, and S. Sripada (edsJemporal
. . Databases: Research and PraticeNCS 1399, Springer
6 Summary and Research Directions Verlag, 1998.

. S I . _ [4] M. Finger and P. McBrien.On the Semantics of 'Current-
In practical database applications, it is frequently impor Time’ in Temporal Databasesin 11th Brazilian Sympo-

tant to retain a perfect record of past database states. For g1 on Databases, pp. 324-337, 1996.

example, this need mirrors the practi.ce in finance where [5] J. Gray, and A. ReuterTransaction Processing: Concepts
accountants correct errors, not by using an eraser, but by’ * 414 Techniquesviorgan Kaufmann, 1993.
posting compensating transactions to the books. In medi-(g] . s. Jensen and C. E. Dyreson (eds). The Consensus Glos-

cal applications, documenting the basis on which decisions sary of Temporal Database Concepts. In [3], pp. 367—405,
were made by such a record may guard against wrongful ~ 1998.

malpractice lawsuits. [7]1 C. S. Jensen and and R. T. Snodgrass. Temporal Data
By building on past work in concurrency control, re- ManagementEEE TKDE 11(1):36-44, January/February
covery, and temporal databases, we provide the first full 1999.

solution to the problem of correctly supporting transaction [8] D.Lomet. Using Timestamps to Optimize Two Phase Com-
timestamping of databases in a realistic setting, where user- ~ Mit. Proceedings of the PDIS Conferendanuary 1993,

specified transactions are allowed and concurrency control __ PP: 48-55.
and recovery are accomplished using two-phase locking [°] iél\élzelton.Database Language—SQBNSI X3.135-1992,
and logs, respectively. Particular care has been given to ob :

. : P _10] J. Melton and A. R. SimonUnderstanding the New SQL:
tain a solution that does not significantly decrease the Ieve[A Complete GuideMorgan Kaufmann, 1993,

.Of concurrency and ngmber of aborts of a nNo-pha§e IOCk'{11] G. Ozsoydlu and R. T. Snodgrass. Temporal and Real-
ing system, that only mtroduces modest bookke_eplng,_tha Time Databases: A SurveylEEE TKDE 7(4):513-532,
ensures that recovery is accounted for, and that is consistent August 1995.
with the SQL standard. [12] B. Salzberg. Timestamping After CommProceedings of
Specifically, our solution to transaction timestamping the PDIS Confereng&September 1994, pp. 160-167.
generalizes the approach of choosing the transaction timeg13] M. Stonebraker. The Design of the POSTGRES Storage
tamp at commit time, enabling a transaction to choose its System. Proceedings of the VLDB Conferen&@eptember
timestamp at any time after transaction start, which is re- 1987, pp. 289-300.
quired because SQL transactions may request the “currerii4] M. Stonebraker, L. A. Rowe, and M. Hirohama. The Imple-
time.” It permits us to delay a transaction’s choice of a mentation of PostgredEEE TKDE 2(1):125-142, March
timestamp as long as possible, reducing the risk that trans- ~ 1990.
actions may need to be aborted in order to make the choiced>! A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
of timestamps consistent with a serialization order. To fur- ~ @nd R. T. Snodgrass, (edsJemporal Databases Ben-
ther reduce the likelihood of aborts, imprecise timestamps __ 1amin/Cummings, 1993. o
may be used initially. Next, to handle read-write conflicts, [16] K. Torp, C.S. Jensen, and R. T. Snodgrass. Effective Times-
in addition to write-read and write-write conflicts, our solu- tamping in Databases.VLDB Journal 8(3-4):267-288,

. . . - . 2000.
tion uses a simple and flexible auxiliary structure with read [17] C. Vassilakis, N. A. Lorentzos, and P. Georgiadis. Imple-

timestamps. - . . mentation of Transaction and Concurrency Control Support
As future research, it is of interest to ensure indepen- in a Temporal DBMS. Information Systems23(5):335—
dence of the granularity of the time domain, which we be- 350, 1998.

lieve may be achieved by enabling the solution to allow 1g) v wy, s. Jajodia, and X. S. Wang. Temporal Database
non-decreasing timestamps to be assigned to consecutive ~ pipjiggraphy Update. In [3], pp. 338-366, 1998.

transactions instead of strictly increasing timestamps.

