
Transaction Timestamping in (Temporal) Databases

Christian S. Jensen David B. Lomet

Aalborg University
Fredrik Bajers Vej 7E

DK-9220 Aalborg Øst, Denmark
csj@cs.auc.dk

Microsoft Research
One Microsoft Way

Redmond WA 98052, USA
lomet@microsoft.com

Abstract

Many database applications need accountability
and trace-ability that necessitate retaining previous
database states. For a transaction-time database sup-
porting this, the choice of times used to timestamp
database records, to establish when records are or were
current, needs to be consistent with a committed trans-
action serialization order. Previous solutions have cho-
sen timestamps at commit time, selecting a time that
agrees with commit order. However, SQL standard
databases can require an earlier choice because a state-
ment within a transaction may request “current time.”
Managing timestamps chosen before a serialization or-
der is established is the challenging problem we solve
here.

By building on two-phase locking concurrency con-
trol, we can delay a transaction’s choice of a times-
tamp, reducing the chance that transactions may need
to be aborted in order keep timestamps consistent with
a serialization order. Also, while timestamps stored
with records in a transaction-time database make it
possible to directly identify write-write and write-read
conflicts, handling read-write conflicts requires more.
Our simple auxiliary structure conservatively detects
read-write conflicts, and hence provides transaction
timestamps that are consistent with a serialization or-
der.

1 Introduction

A conventional database relation contains a set of tuples,
or records. Insertions, updates, and deletions render this
set time-varying. When introducing transaction-time sup-
port to such a relation, not only is its evolving current state
available, but so also are previously current, and now past

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

states. This type of database support is desirable in appli-
cations where accountability or trace-ability are important,
which is the case in financial, insurance, and medical ap-
plications, to name but a few.

We consider a transaction-time relation as consisting
of a set of data items, which may be thought of as
records. Each data itemd has two system-maintained at-
tributes, denoted byd.TT` (start time) andd.TTa (end
time). These two values define a closed-open time interval
[d.TT`, d.TTa) during which data itemd was part of the
current database state. So, the first of these records when
data itemd became part of the current state, and the latter
records whend ceased to be part of the current state.

To obtain this semantics, modification statements update
these times as follows. A statement that inserts a data item
d setsd.TT` to the “current time,” denoted bytcurrent . For
now, tcurrent may be thought of as the value of the sys-
tem clock when current time is referenced, here when the
insertion is executed; the remainder of the paper discusses
the actual choice oftcurrent in substantial detail. Next, the
insertion setsd.TTa to now , which denotes a variable that
evaluates to the current time [2]. The pair of timestamps
indicates thatd is a current data item and remains so un-
til this is changed explicitly by a delete or update state-
ment. A statement that deletes data itemd simply sets
d.TTa to tcurrent , indicating thatd ceases to be current at
time tcurrent . Update operations are usually implemented
as deletions of the original items to be updated, followed
by insertions of the updated items.

A common query, termed a timeslice, is to ask for the
set of data items that were current in an argument rela-
tion as of some timet not exceeding the current time.
This is answered by finding each data itemd for which
t ∈ [d.TT`, d.TTa) (if d.TTa is now , the current time plus
one time unit is used in its place). So the timeslice with
time parametert returns the state that was current at timet.

When user-specified transactions are supported, it is
also necessary to use the sametcurrent value for all state-
ments in the same transaction. Otherwise, the atomicity
of transactions is compromised—it would be possible for a
timeslice to return a transaction internal, and thus inconsis-
tent, database state. Using the sametcurrent for all state-
ments of a transaction makes all actions of a transaction
conceptually take place at the same time. This is a neces-
sary refinement of the SQL standard, whose current defini-
tion allows different statements in the same transaction to



use separatetcurrent values1.
The specific choice of current time that is used for times-

tamping the data items is also essential to ensuring that any
previous state that can be retrieved via a timeslice witht
as its parameter is indeed the state that was current at time
t. If the transaction timestamp order does not agree with
a serialization order, it can happen that the answer to the
timeslice query never existed as a current state.

In the SQL database language [9], a query or modifi-
cation can reference current time,tcurrent . As described
above, current time can be stored as an attribute in the
database or used to query the database, e.g., retrieving
the state that was current ten minutes ago. Referencing
tcurrent in a query can force the database management sys-
tem (DBMS) to choose this time before the transaction
commits. This exposes the transaction to the risk that the
tcurrent value given to it and the values given to other trans-
actions are not ordered in a way consistent with a valid
transaction serialization order.

time T1 T2

1 fix tcurrent

2 w((x, 10, [1,now)))
3 fix tcurrent

4 w((y, 31, [3,now)))
5 commit
6
7 r((y, 31, [3,now)))
8 w((z, 14, [1,now)))
9 commit

Figure 1: Schedule with Early Choice of Current Time

Figure 1 illustrates the above problem. For simplicity of
exposition, we elide the writes done to delete old versions
when updates occurs. A read-write conflict on data itemy
between transactionsT1 andT2 putsT2 beforeT1 in any
serializable schedule involving these two transactions. In
addition,T1 chose itstcurrent value at time 1, in prepara-
tion for the write statement at time 2, whileT2 chose its
tcurrent value at time 3. Note also that this schedule is
allowed by two-phase locking. This results in serialization
order being different from timestamp order, and causes two
potential problems. First, a timeslice for{y, z} for time 2,
issued at time 6, returns{y = y0, z = z0} sinceT2 has a
time later than time 2 andT1 has not yet committed or even
accessedz yet. However, the same timeslice (i.e., for time
2), instead issued at time 10, returns{y = y0, z = 14}
because it sees thez written byT1. Second, clearly one of
these timeslice results (the later one in this case) is not a
transaction consistent view of the database. This is unac-
ceptable.

1While the standard fixes the value within a statement,which fixed
value to use is left entirely to the implementor. General Rule 3 of Sub-
clause 6.8<datetime value function> of the SQL-92 standard states “If
an SQL-statement generally contains more than one reference to one or
more<datetime value function>s, then all such references are effectively
evaluated simultaneously. The time of evaluation of the<datetime value
function> during the execution of the SQL-statement is implementation-
dependent.” [9, p. 110].

It is easy to avoid the above anomalies if a transaction
T ’s timestamp can be established at the time at whichT is
committing, as the timestamp can then be chosen to agree
with the commit ordering of the transactions [8, 12, 13].
But if one is forced to choose the time at an earlier point
in the transaction execution, e.g., when the transaction asks
for the current time, keeping the timestamp order consistent
with a valid transaction serialization order can become a
substantial problem.

Indeed, it is not straightforward how to accomplish
timestamping in the face of user transactions and early
timestamp choice, while avoiding excessively restricting
potential concurrency and excessive transaction aborts.
The paper solves this problem. Prior studies of transac-
tion timestamping (covered in some detail in Section 2 and
more broadly in Section 5) either did not address early
timestamp choice or failed in one of the respects mentioned
here.

Our solution, which exploits timestamps, ensures that
the order oftcurrent values used by the transactions is con-
sistent with the order of transaction commit. More specif-
ically, the choice oftcurrent in our solution satisfies three
requirements. First, if a transactionT hastcurrent = t then
T has started and not yet committed at timet. Second, if
transactionT1 has been assignedtcurrent = t1 and transac-
tionT2 has been assignedtcurrent = t2 andt1 < t2 thenT1

cannot see data items written byT2. Third, if the same con-
ditions hold, we require that an equivalent serial schedule
exists whereT1 is beforeT2.

By ensuring that transaction timestamp order agrees
with transaction serialization order, we avoid the two
anomalies exposed in Figure 1. The contents of a timeslice
cannot change because subsequent writers of data items in
a timeslice are required to have later timestamps than the
timestamp used by the timeslice, so as to enforce read-write
conflict order. Also, because timestamp order agrees with
serialization order, each timeslice ”sees” a transaction con-
sistent version of the database.

Our solution does not use timestamp order to serialize
transactions, but rather enforces timestamp order as an ad-
dition to the two-phase locking normally used to enforce
transaction serializability. The solution improves upon
prior solutions for the problems that originate when a trans-
action is assigned a timestamp early in its execution.

1. We choose a transaction timestamp as late as logically
possible. We exploit the fact that timestamps are not
used to provide concurrency control. Rather, we as-
sume that the database system uses two-phase locking
for concurrency control. Our method only needs to
keep transaction timestamps consistent with the seri-
alization order resulting from two-phase locking. In
particular, we use locking to avoid the need to have a
timestamp as of transaction start. Locking will serial-
ize active transactions that do not have a timestamp.
We describe how to do this in Section 3.

2. We offer a range of granularities for the bookkeeping
of timestamp constraints, hence controlling the trade-



off between the chances that the constraints cannot
be satisfied, leading to abort, and the cost of book-
keeping. It is thus not necessary to provide times-
tamps for every data item, which has high bookkeep-
ing cost. Rather, we can be conservative to vary-
ing degrees in our timestamp testing. Hence, a read
timestamp TR needs not be uniquely assigned to ex-
actly one data item, but can apply to some set of data
items. While this imprecision increases the probabil-
ity of abort somewhat, we can control this probability
by varying the granularity. In Section 4 we describe
our simple technique for this.

It is helpful in our presentation to discuss some of the
past solutions right away, in Section 2, while deferring cov-
erage of the remaining solutions to Section 5. Section 3
describes how to assign current-time timestamps to trans-
actions, detailing first a solution that delays this assignment
as long as possible. This solution is then refined, enabling
the initial assignment of ranges of timestamps, as this fur-
ther improves performance. The solution uses read times-
tamps in addition to the write timestamps that are required
for timestamping of the data. Section 4 offers techniques
that aim at offering better performance in the management
of these read and write timestamps. Finally, Section 6 sum-
marizes and points to directions for future research.

2 Prior Timestamping Approaches

Let us begin by describing prior timestamping techniques.
Our approach, while new both in the specific problem it
solves and in its major elements, borrows selected elements
of these prior techniques. It is useful to describe these early,
both to help in describing how these elements attack the
problem and to contrast these approaches with ours.

2.1 Commit Time Choice of Timestamp

If we are willing (or able) to delay the choice of timestamp
until transaction commit then it is possible to very simply
choose a timestamp. We simply choose a timestamp that re-
flects the order in which transactions have committed. That
is, we issue the transaction a timestamp that reflects its time
of commit. This requires that we use something other than
timestamp ordering for our concurrency control technique,
such as two-phase locking.

In [8], timestamps that agreed with transaction serializa-
tion order were used to optimize two-phase commit (2PC).
A single variableLASTwas maintained by a database, rep-
resenting the time that the last transaction was committed.
Each subsequent transaction that attempts to commit was
given a timestamp greater thanLAST, andLASTwas up-
dated to that later timestamp.

The problem we have with late timestamp choice is that
it does not permit us to be responsive to a request, by a
statement in a transaction, for the “current time.” Such a
request means that we cannot simply choose a time at com-
mit, but need to make our choice when the request occurs.

We can adapt ourLASTmethod to the case where a trans-
action’s timestamp may be chosen earlier as follows. As
each subsequent transaction witht > LASTcommits, we
setLASTto the new (larger)t value. We abort transactions
with timestampst < LAST. This enforces that timestamp
order agree with all conflict orders between transactions,
including read-write conflicts. Unfortunately, it also has
the effect of aborting a large number of transactions.

2.2 Timestamp Concurrency Control

Timestamp order concurrency control (TO) enforces that
transactions commit in timestamp order—when the com-
mit of a transaction will violate this order, the transaction is
aborted. In our first attempt above, we bounded the times-
tamps of all prior transactions in a single variableLAST,
a worst case value. With TO, we are much more precise
about the timestamps of prior conflicting transactions, and
we can hence provide larger acceptable ranges of values for
most transactions’ timestamps.

More specifically, TO, which has existed for about 20
years [1], chooses the timestampt for a transaction at its
start (or at least by the time of its first data access) and
assigns this timestamp to data items when they are read
as well as when they are written. Transactions can access
data in conflicting ways, and a solution that keeps trans-
action timestamps consistent with a transaction serializa-
tion order needs to handle three forms of conflict: write-
write, write-read, and read-write. TO associates a write
timestamp (d.TT`) and a read timestamp (d.TR) with each
data itemd, hence trying to minimize aborts resulting from
transaction ordering conflicts by maintaining precise times-
tamp constraints for each transaction.

In transaction-time databases, the valued.TT` is stored
persistently with the data, to capture previous states and
thus support timeslice queries. This provides the write
timestamps that allow us to handle write-write and write-
read conflicts. But to handle read-write conflicts requires
that we also maintain read timestampsd.TR. Hence, when-
everd is read by transactionX with timestamptX that is
larger thand’s currentd.TR (and thus later than the times
of its earlier readers),d.TR is set totX . d.TR does not need
to be a persistent part of the database, as queries do not ask
about times when data is read. So TO methods can exploit
a volatile data structure that capturesd.TR for eachd.

A transaction compares its timestamptX to the data
item d’s read timestampd.TR in the volatile structure and
its write timestampd.TT`, which is stable in a transaction-
time database, to determine timestamp consistency. We
are only concerned with current data items, i.e., items with
TTa value equal tonow , because these are the only items
that can be written.

• When transactionX attempts to read data itemd, we
require thattX > d.TT`. Further, if tX > d.TR,
thend.TR is set totX , to permit us to validate updater
timestamps (see the next item). IftX < d.TT`, a later
transaction wrote itemd, so the transaction came too
late and aborts.



• When transactionX attempts to write data itemd, we
require thattX > d.TR and tX > d.TT` as well.
Otherwise, transactionX aborts. This enforces both
write order and that a previous reader ofd read the
correct version.

TO presents two problems in our context.

1. Each transactionX needs to have a timestamptX
when it starts, so that it can usetX in the times-
tamp consistency testing above. However, timestamps
should be chosen as late as possible in the transac-
tion’s execution, ideally when the transaction is about
to commit, so as to minimize the chance of abort. At
that point,tX can be chosen to be consistent with the
order in which the transaction is committing. By forc-
ing the choice oftX at transaction start, one signifi-
cantly increases the chances that the timestamp con-
sistency checking will fail, resulting in an abort.

2. While d.TR needs not be stable, the number of data
items is potentially enormous. The access structure
for thed.TR’s needs to provide efficient access for all
current (or at least a large number of) data itemsd, and
needs to be a dynamic structure that can grow in size
as more data items are included in it. At some point,
its growth needs to be limited so that it can be reason-
ably maintained in volatile memory. TO methods have
exploited “garbage collection” to prune this structure.
The garbage collection technique in [1] deletes times-
tamps that are older than someδ. That is, any read
timestampd.TR < (tcurrent−δ) is deleted. If a trans-
action with a timestamp less than(tcurrent − δ) is still
active and references a data item with no stored times-
tamp, it is aborted, as all data items without an explicit
read timestamp are implicitly given a read timestamp
equal to(tcurrent − δ). This risks additional aborts.

The solution presented in the remainder of the paper
avoids the first problem of selection a transaction’s times-
tamp at transaction start, as well as the second problem of
maintaining a potentially enormous structure for the read
timestamps of transactions.

3 Deferring Timestamp Choice
This section describes how it is possible to delay the choice
of a transaction’s timestamp, until the moment when the
timestamp is needed by a statement in the transaction or
until the transaction commits. We detail the actions that
must be taken before a timestamp is assigned, the proce-
dure for assigning a timestamp, the actions that must be
taken after a timestamp is assigned, and the procedure for
commit processing. Section 3.2 improves on this machin-
ery, by allowing the use of initially imprecise timestamps.

3.1 Late Timestamp Assignment

Each data itemd in a transaction-time database has a write
timestampd.TT`, which is set to the timestamp of the

transaction that created it. We also assume that a read
timestampd.TR is associated in some way with each cur-
rent data item via a volatile data structure, which we define
and consider in detail in Section 4.

During the execution of a transaction, two-phase lock-
ing (2PL) [1, 5] blocks transactions from reading data that
is being written by an uncommitted transaction, and from
writing data being read or written by an uncommitted trans-
action. Thus, timestamps need play no role in protecting
data of an active transaction. This is essential to our strat-
egy of delaying the assignment of timestamps. Only after
commit is it essential that timestamps be associated with
data, to ensure that subsequent transactions have times-
tamps that are consistent with the ordering resulting from
the write-write, read-write, and write-read conflicts.

We need to describe what happens before a transaction
has a timestamp, how a timestamp is assigned, what hap-
pens after the transaction has a timestamp, and what we
need to do at commit time to ensure that the timestamps
of subsequent transactions are appropriate. Our initial de-
scription will assume that, when a transaction requests the
current time, it receives back a full precision time that will
be used as its timestamp. We subsequently discuss how to
relax this requirement.

During the execution of a transaction, we need to re-
tain information to use when selecting its timestamp, and to
provide information that governs the selection of the times-
tamps for other transactions. Data accesses define a lower
boundtl on the value that can be chosen as the transac-
tion’s timestamp. We initializetl to ts, the execution start
time for the transaction, so that the chosen timestamp will
not be before the start of the transaction. We also remem-
ber the set of itemsVR read by the transaction, the setVI
of new items inserted by the transaction, and the setVD of
items deleted by the transaction. An update is treated as a
delete followed by an insert in the same transaction. These
sets are initialized to the empty set,∅.

3.1.1 Before Timestamp Assignment

Before a timestamp has been assigned, a transaction is
never aborted due to timestamping constraints because
these are never violated. A timestamp can always be cho-
sen later that satisfies the necessary constraints. So, if
we are not forced to choose a timestamp, we delay as
long as possible in providing a timestamp for the transac-
tion. This delay reduces the chances that the transaction
will be aborted because of timestamp consistency require-
ments. However, even before timestamp assignment, we
need to update information that determines the constraints
that the eventual timestamp must satisfy. This updating oc-
curs when our transactionX attempts to read or write a
data item.

Read(d): If d is locked because of an active transaction
write, the transaction blocks. Once we can access
d, we need to ensure that our transaction will not be
given a timestamptX ≤ d.TT`. Thus, ifd.TT` > tl,



thentl ← d.TT`. We setVR ← VR ∪ {d} to remem-
ber that we have readd, for commit-time processing.

Write(d): If d is locked because an active transaction
is reading or writingd, then the transaction blocks.
Once we can accessd, we need to ensure that our
transaction will not be given a timestamptX ≤
max(d.TR, d.TT`). Thus, ifmax(d.TR, d.TT`) > tl
thentl ← max(d.TR, d.TT`). We setVI ← VI ∪{d}
when the write is an insert to remember that we have
insertedd, and we setVD ← VD∪{d} when the write
is an delete to remember that we have deletedd, again
for commit-time processing.

3.1.2 Timestamp Assignment

When we choose a timestamptX for our transactionX, we
choose it so that all accesses to data within the transaction
satisfy the following constraints. This is always possible.

Reads:tX > d.TT` for all d ∈ VR. This constraint en-
forces write-read conflicts. Note that, because reads
are commutative, we do not require thattX > d.TR.

Writes: tX > d.TR andtX > d.TT` for all d ∈ VI ∪ VD.
These constraints enforce read-write and write-write
conflicts, respectively.

This information is captured in the variabletl, which serves
as a lower bound for the value of the timestamptX that
we can assign to the transaction. Since we have not (yet)
provided an upper bound fortX , we can at this point always
assign an acceptable timestamp, i.e., one that satisfies our
timestamp constraints.

A transaction may be assigned a timestamp in the midst
of its data accesses. So a transaction can change from one
without a timestamp to one with a timestamp at any time.
This is important in our effort to delay the choice of times-
tamp. Only when a request for the current time, e.g., CUR-
RENT TIME in SQL [10], is made are we compelled to as-
sign a timestamp prior to commit. Otherwise, we can wait
until transaction commit, at that time assigning a timestamp
that agrees with transaction conflict order.

Monotonically increasing timestamps in which the
timestamp assigned is greater than all previously issued
timestamps will provide us with atX that satisfies all
prior timestamp constraints. However, we achieve tighter
bounds by remembering the largestd.TT` for any d that
has been accessed, and the largestd.TR for anyd that has
been updated, which is what we do by maintaining variable
tl. Then we set the timestamptX > tl.

It is especially useful to select a minimumtX when
timestamp assignment immediately precedes commit as
there will be no further opportunity for this transaction to
violate timestamp constraints. An earlier time will improve
the chances that other transactions will satisfy their times-
tamp constraints because earlier timestamps make it easier
for a later transactionY to find a timestamptY for itself
that is greater.

3.1.3 After Timestamp Assignment

After the timestamp for the transaction is fixed, we now
run the risk that timestamp constraints will be violated. As
before, let the timestamp of a transactionX be tX . We
now describe how this transaction proceeds as it reads and
writes data items. Basically, we abort the transaction if a
timestamp constraint is violated.

Read(d): If d is locked because of an active transaction
write, the transaction blocks. Once our transaction is
able to accessd by placing a read (share mode) lock
on d, we then perform our timestamp check. IftX <
d.TT` then we abort the transaction. Otherwise, we
proceed as usual. We setVR ← VR∪{d} to remember
that we have readd, for commit-time processing.

Write(d): If d is locked because an active transaction
is reading or writingd, then the transaction blocks.
When our transaction is able to accessd by placing
a write (exclusive mode) lock ond, we then perform
our timestamp check. IftX < d.TR or tX < d.TT`

then we abort the transaction. Otherwise, we proceed
as usual. For inserts, we setVI ← VI ∪ {d} to re-
member that we have insertedd, and for deletes, we
setVD ← VD∪{d} to remember that we have deleted
d, once again for commit-time processing.

3.1.4 Commit Processing

At commit, we need to ensure that the database and our
auxiliary data properly reflect that transactionX with
timestamptX has committed. This involves posting times-
tamp information with the data items that have been read
and written by the transaction, so as to ensure that subse-
quent transactions can be assigned appropriate timestamps.
The following is required.

Reads: Setd.TR = tX for all data itemsd ∈ VR (those
we have read) for whichd.TR < tX . Note that we are
allowed to maked.TR for otherd’s greater than they
need to be. This can be a “conservative” action, as
d.TR does not play a permanent role in a transaction-
time database, but is only used to enforce the read-
write ordering. If the transaction aborts, nothing needs
be done about data items that were read.

Writes: These are used for inserts and deletes. For each
d ∈ VD, those items we have deleted from the current
state, we setd.TTa = tX . For eachd ∈ VI , those
items that we inserted into the current state, we set
d.TT` = tX (andd.TTa = now ). Table 1 describes
the use of writes. If the transaction aborts, we do not
revisit d, at least in some scenarios. We will describe
this briefly in the next section.

3.2 Incremental Timestamp Refinement

As with delaying timestamp choice, keeping the timestamp
as imprecise as possible reduces the likelihood of transac-
tion abort. Up until now, we have merely put a lower bound



user-level operation low-level operation(s)
deleted w(d, old, [t, tX))
insertd w(d, new, [tX ,now))
updated w(d, old, [t, tX))

w(d, new, [tX ,now))

Table 1: Writes by a Transaction X with TimestamptX

tl on the timestamptX that we choose for transactionX.
While there was, perhaps, an implicit assumption that we
chose the precise timestamptX when the current time was
requested, or at commit time, we have not discussed a spe-
cific strategy for selecting a transaction timestamp.

What we describe here is how, instead of fully speci-
fying a timestamp for a transaction when the current time
is requested, we instead use the request to provide an up-
per bound on the value oftcurrent for transactionX, and
hence on its timestamptX . Only when a fully precise time
is specified istcurrent fully specified, and hencetX fully
determined. This further exploits late timestamp choice,
extending it to permit this choice to be refined incremen-
tally during transaction execution. Importantly, the choice
usually need not be completely defined until the transaction
commits. At commit, we must post the timestamp to data
items that have been read and written by the transaction,
and so require a precise timestamp at that point.

Working with a timestamp range that has upper bound
th as well as a lower bound captures this imprecision. The
initial value forth is∞.

3.2.1 Impact of Time Requests

When a transaction in an SQL-compliant database requests
the current time, it is possible to request this time with a
designated precision. For example, if the transaction asks
for CURRENTDATE, only the day is provided. If CUR-
RENT TIME or CURRENTTIMESTAMP is requested,
one can specify a precision. Whatever precision is re-
quested, the result is to provide candidate upper and lower
bounds.

The result of a current-time request is whatever the sys-
tem clock says it is, truncated to the specified precision.
The lower bound is that time extended by ‘0’b’s to the max-
imum time precision, provided it is greater than the previ-
ous lower bound; the upper bound is that time extended by
‘1’b’s to the maximum time precision, provided it is less
than the previous upper bound.

For example, if CURRENTDATE is requested then the
timestamp upper bound becomes the last time instant (at
maximum precision) for the day that is returned. The
lower bound constraint provided by this time request is the
first instant of the day. When CURRENTTIME or CUR-
RENT TIMESTAMP are requested at less than maximum
precision, similar considerations apply.

We now relate timestamp ranges to our previous pro-
tocol. Instead of assigning a fully precise timestamp dur-
ing timestamp assignment, we assign a timestamp range,
with upper and lower bounds as just described, which we

denote by〈tl, th〉. After timestamp range assignment, a
transaction may continue to access data, via reading and
writing. As previously, we abort transactions that cannot
satisfy the timestamp constraints, now expressed as bounds
on the timestamp. A transaction aborts whenevertl ≥ th.

3.2.2 Committing with Timestamp Ranges

At commit time, it is advantageous to choose transaction
X ’s timestamp, if not yet specified with full precision, to
be tX = t+l , one unit larger at the finest precision avail-
able than the lower bound of the timestamp range. This
choice is acceptable for transactionX, and makes it easier
for other transactions to find an acceptable timestamp as it
minimizes the value oftX . Hence it permits subsequent
transactions that read or write this data to preserve some-
what larger timestamp ranges, which increases the proba-
bility that they will escape timestamp-induced aborts.

WhenX is a distributed transaction, it is possible to use
a timestamping commit protocol to determine a transaction
timestamp for all transaction participants [8]. Each partic-
ipant’s “prepared” vote includes a timestamp range within
which the participant guarantees that it can commit. The
coordinator intersects all voted ranges, and then chooses a
time tX within that range as the timestamp for the transac-
tion. NormallytX will again bet+l .

4 Timestamping Data
The goal that led us to assigning timestamps to transactions
is to provide transaction-time database functionality, mean-
ing to retain all previously current database states, making
them available for queries such as “what was the balance
in John’s checking account on June 30, 1999?” To provide
this functionality, we must

• associate a pair of transaction timestamps with each
data item in the database, and

• choose timestamps for transactions so that the times-
tamps reflect a serialization order for transactions.

Specifically, timestampsd.TT` andd.TTa must be asso-
ciated with all data in a transaction-time database. In ad-
dition, we needd.TT` andd.TR to ensure that timestamp
order agrees with serialization order. It follows that read
timestampsd.TR are only needed for the timestamp assign-
ment process, and we can dispense with them once their
role in that process has been completed.

Providing and managing read timestampsd.TR is the
more challenging issue, so we first describe a new approach
for this that has some significant advantages. While there
are issues associated with the timestampsd.TT` andd.TTa

of data items, which we address at the end of this section,
we can exploit existing techniques for this, though we do
suggest an improvement on the method that we prefer.

4.1 Read Timestamps

We have only described abstractly that the system main-
tains ad.TR value for each data itemd that is read by a



transaction. Clearly we need to deal with this concretely.
Ideally, we prefer a technique for managing these values
that is simple to implement, has high performance, and
minimizes aborts. Thus, we would like an approach that is
more flexible than theLAST technique and lower in over-
head than the prior TO approach. We propose such an ap-
proach, then consider the impact of system crashes.

4.1.1 The Read Timestamp Table (RTT) Approach

We must (conservatively) enforce that timestamp order is
consistent with read-write conflict order. This leads us to
suggest that the TR values be provided via a hash table that
we call the Read Timestamp Table, orRTTfor short, where
each entry determines a TR value for a set of data itemsD;
i.e., we map a set ofd’s (via, e.g., a hash function) to an
identifierID for the setD, i.e.,hash(d) = ID. ID then is
used to accessRTT and determine the common TR value
for all members ofD, i.e.,RTT(hash(d)). TheRTT’s size
can be varied depending upon the desired trade-off between
storage overhead and abort rate. The larger the table, the
smaller is each setD that is coalesced and managed with
the same TR value.

Each data itemd that a transactionX writes requires that
we check that the read-write conflict order betweenX and
earlier read transactions agrees with their timestamp order.
We can only do this when we know the timestamptX for
X. Hence, writes require that we check theRTT. Each data
item thatX reads requires that we update theRTTso as to
be able to subsequently ensure that the read-write conflict
order betweenX and subsequent write transactions agrees
with the timestamp order.

We cannot check or updateRTT, however, untilX has
been given a timestamp. Fortunately, whileX is executing,
locking ensures serializability of transactions, and transac-
tion atomicity ensures that we, as late as commit time, can
enforce timestamp order, by transaction abort if necessary.
So let us first describe how allRTTchecking and updating
can be done at commit time.

To perform the appropriate read timestamp checking
at commit time, we need only remember the hash values
i = hash(d) for all d that were written by the transaction.
With anRTT that consists of a few hundred entries, we can
remember this set via a bit vectorVW denoting the vari-
ables written, which reflects the hash values for all items in
VD ∪ VI . An RTT with 512 entries would then require a
VW of 64 bytes for each transaction. Each entryRTT[i] in
which VW [i] =‘1’b is accessed at commit time and com-
pared with the transactionX ’s timestamptX . If any of the
RTT[i] ≥ tX , we abort the transaction.

To perform the appropriate read timestamp updating at
commit time, we likewise need only remember the hash
valuesi = hash(d) for all d that were read by the trans-
action. This is a second bit vectorVR of, e.g., 64 bytes,
yielding a total bit vector space overhead of 128 bytes. So
the overhead need not be large. IftX > RTT[i] when
VR[i] =‘1’b, thenRTT[i]← tX .

It is possible to check and update entries inRTTas soon

as a transaction has a timestamp. Indeed, when checking
RTT, it is possible to detect the need to abort a transaction
as soon as there is an upper boundth such thatth < TR.
However, the better question to ask is “when is it desirable
to check or updateRTT?” Our answers follow.

updating RTT: It is never desirable to updateRTT ear-
lier than commit time. Read locks prevent subsequent
writers from writing any read data itemd, so there is
no possibility of a timestamp order violation involv-
ing d until after a transaction commits. Indeed, early
update ofRTT[hash(d)] will increase the number of
false timestamp order violations because the times-
tamp associated withRTT[hash(d)] will associate the
later timestamp (ofd) with all data items inD.

checkingRTT: It is always desirable to checkRTTas soon
as a transactionX has a fully specified timestamptX .
Suppose thatX wrote data itemd. X ’s write lock
prevents any subsequent (later) reader from reading
d. So a precised.TR cannot increase in value for
the duration of the transaction. However, the value
of RTT[hash(d)] can be updated because some other
transaction reads ad′ with hash(d′) = hash(d), and
this might lead to an unnecessary abort ofX. By
checkingRTT[hash(d)] as early as possible, we re-
duce the window in which this kind of update can oc-
cur. So, at timestamp assignment time, it is desirable
to useVW to check the entries ofRTT immediately.
In addition, when there is a subsequent write of a data
item d′, we checkRTT[hash(d′)] immediately, with-
out exploiting our bit vector. This early check also
identifies transactions that need to be aborted as early
as possible, meaning that there is less wasted work
done by the doomed transaction.

4.1.2 Impact of System Crashes

We need to understand the impact that a system crash has
on our method. Since theRTT is used in an essential way
only to help choose the timestamps of transactions, theRTT
does not need to be stable so long as we can ensure that
we can identify the latest possible timestampLAST(recall
LAST from Section 2) used by any committed transaction
prior to the crash. This information must be available in the
recovery log, as we must be able to timestamp versions of
data written by every committed transaction, i.e., to write
for each writtend also itsd.TT` (and perhaps itsd.TTa).

Transactions that were active at the time of the crash
are aborted, so their activities have no effect. We initialize
all entries ofRTTwith LAST. While this is conservative, in
that the pre-crashRTTentries might have had earlier times-
tamps, no additional local transactions will be aborted by
this process, as all post-crash local transactions will have
timestamps greater thanLAST.

We needLAST(rather than using, e.g.,ZERO) because
it is possible that some non-local distributed transactions
have timestamps earlier thanLAST. UsingLASTguaran-
tees that we prevent read-write order violations, whereas



ZEROdoes not guarantee that. These distributed transac-
tions may be aborted because read timestamps are now later
than they might otherwise have been. Thus, a local cohort
of a distributed transaction would surely haveLAST as a
lower bound on its commit time. A distributed transaction
X might, at another of its cohorts, be forced to choose a
th < LAST, e.g. because of a CURRENTTIME request
by the cohort, thus requiring that the transaction be aborted.
But this is a low probability occurrence, in any event.

The bottom line is that there is little point in making
theRTTstable. Correct behavior is always (conservatively)
assured, and the probability of extra aborts is low.

4.2 Write Timestamps

For completeness, we describe here how to handle write
timestamps, summarizing previous published solutions that
we believe are effective. As with read timestamps, we con-
sider the impact of system crashes.

4.2.1 Second Access for Timestamping

Timestampsd.TT` are stored with each data itemd, de-
noting the time at which each is inserted. Transaction-time
databases store in addition an end time for their data items,
as described in Section 1. Thus, with each data itemd is
also storedd.TTa denoting the time at which it is deleted.
A write transaction has to post both new data values and
these timestamps. Since we may not have the transaction’s
timestamp when the write occurs, we need to record these
writes in some other way, completing the writes when we
have sufficient information.

One way to deal with this is to create anintentions list
of inserted or deleted data items that records both the iden-
tities and values of the items each transactionX writes.
The writes remembered in the intentions list are then posted
when sufficient information is later available. Such an in-
tentions list has two disadvantages, however.

1. Data values can be very large, and so storing inten-
tions lists for all uncommitted data can be costly in
main memory consumption.

2. A transaction is expected to see its own updates. With
the intentions list approach, every data access needs
to look at the intentions list to determine whether the
transaction has previously updated a data item.

We avoid intentions lists by posting an update in the
appropriate database page at the time of the write. The
2PL protocol protects these uncommitted and yet-to-be-
timestamped writes. Since a transactionX does not neces-
sarily know its timestamp early in its execution, these data
items are initially tagged withX ’s transaction idwhen the
write occurs. We re-visit these data items later, when we
knowX ’s timestamptX .

We are not guaranteed to knowX ’s timestamp until it
commits. For a distributed transaction, it may be impossi-
ble to choose a timestamp prior to execution of the commit
protocol when all transaction cohorts “vote” on commit and

perhaps on transaction time [8]. Hence, we re-visit the data
items written by committing transactionX after it com-
mits and we are guaranteed to know its timestamp valuetX .
PlacingtX in X ’s commit record ensures that the connec-
tion between transaction id and timestamp is stable. Then
data items inserted (or deleted) are re-visited, and transac-
tion id is replaced bytX . In the normal course of system
operation, pages containing these records “find their way”
to the disk and become stable in that way.

We strongly endorse this “traditional” approach. How-
ever, note that posting timestamps to written data items af-
ter transaction commit leads to a double access to all writ-
ten data items, once to post the write and, after commit, to
post the transaction timestamp that overwrites the transac-
tion id.

Finally note that the description here has been phrased
mostly in terms of a data itemd having a timestamp that
marks the time of its writing transaction. The time of the
writing transaction is used as the TT` value for a new data
item d′ when an insertion occurs (with the end time TTa

having the variablenow as its value). The timestamp for
the writing transaction is used as the (new) TTa value when
an existing data item is being deleted. An update is accom-
plished by two writes, one to delete the existing data itemd
and one to insert the new data itemd′. We have been main-
taining the set of inserted itemsVI and deleted itemsVD to
enable this commit time processing.

4.2.2 Impact of System Crashes

Unlike the situation with read timestamps, write times-
tamps for data need to be permanently assigned to the data
written by every committed transaction. System crashes
can interfere with the process of associating timestamps
with data. We need to ensure that the timestamps that
are needed in order to support the desired transaction-
time database functionality after a crash indeed survive the
crash. And we need to identify those timestamps that are
no longer needed, and justify that they are not. Storing a
transaction’s timestamp in its commit record is a start at
making its timestamp stable, but only a start.

Here we summarize two previous approaches [12, 13]
for how to complete the timestamping of transactions after
commit. Both provide a persistent table that maps com-
mitted transaction id’s to their corresponding timestamps,
which we call the timestamp table orTST. The approaches
differ in how they manage theTSTtable subsequently.

1. In [13], TSTcontains the timestamps for all transac-
tions. When an unstamped data item is read,TST is
consulted and the transaction id is replaced with the
timestamp found in theTST. The difficulty with this
approach is that theTST can get very large, and ac-
cessing it can add to disk I/O.

2. In [12], only the transaction entries needed for un-
stamped data are maintained in theTST. Entries
for which timestamping is complete are garbage col-
lected. There is both an execution cost and a system



complexity cost toTSTgarbage collection, as the sys-
tem needs to maintain information about unstamped
data to know whatTSTentries to keep or purge.

On balance, it seems better to us to do the garbage collec-
tion and prune theTST.

Garbage CollectingTSTEntries

In [12], the identity of each unstamped data itemd is main-
tained in a list associated with the timestamp that is needed
by d. As data items are timestamped, they are removed
from the list. The subtlety, as explained in [12], lies in en-
suring that this bookkeeping information is itself persistent.
And the advantage of retaining this list of data items is that
we can choose, via referencing the data items, to complete
the timestamping and remove the associated timestamp en-
try from theTSTat any time.

However, if we are willing to accept a slightly larger
TST, where we cannot simply complete the timestamping
at our discretion, we can replace the list of items with a
count of the objects that remain to be timestamped. When
a page is written to disk, we create a log record that de-
scribes the write and its impact on timestamp counts. This
log record contains, for each timestamp, the number of pre-
viously unstamped data items in the page that were given
that timestamp. Thus, we can (almost always) persistently
maintain counts of the unstamped data for each timestamp.
If a crash occurs between the write of a page and the write
of the log record describing the write, the only result is
that some timestamp entries in theTSTare not garbage col-
lected, which is probably not very important.

We can make persistent reference counting precise by
writing to the log our intention to write pages in a “system
transaction” start log record, then writing the pages, and fi-
nally committing this “system transaction” after all listed
pages are stable on the disk. We include with the list of
pages being written the changes in reference counts for un-
stamped data in the start log record, and would redo the
“transaction” were the system to crash and there were no
commit record in the stable log.

5 Related Work

The predominant assumption in past work on temporally
enhanced data models and query languages as well as im-
plementation techniques for temporal data management [7,
11] has been that there is no support for user-specified
transactions, making individual modification statements
the units of work. In perhaps the most relevant contribution
based on this assumption, Clifford et al. [2] offer a seman-
tic foundation for associating the variablenow, denoting
the current time, with data items. Our proposal follows this
foundation, but assumes the presence of transactions.

Transaction support in temporal databases has only been
addressed in a handful of works. We review these next,
also describing how this paper’s contribution builds on and
extends these.

The Postgres DBMS [13, 14] supports transaction time
by timestamping after commit. Specifically, Postgres uses
eight extra attributes in each relation in order to associate
with each database modification both the id and commit
time of the transaction that effected the modification. Ini-
tially, only the transaction id is associated with a modifica-
tion. The transaction-time values are left unassigned when
a tuple is initially stored in the database [13]. When a trans-
action commits, its commit time is stored in a specialTime
table. This enables the subsequent revisitation of tuples in
order to apply the permanent timestamps. This revisitation
is done lazily or not at all [13]. When the transaction time
of a tuple is needed, but is not stored in the tuple, theTime
table is consulted. There is no discussion of the use of tem-
porary values of the timestamp attributes in Postgres.

Salzberg [12] demonstrated that to achieve a trans-
action-consistent view of previous database states, it is
necessary to use the same timestamp for all modifications
within a transaction. Further, this timestamp must be after
the time at which all locks have been acquired; otherwise,
the timestamps will not properly reflect the serialization or-
der of transactions. Again, the use of current time prior to
commit is not considered.

The techniques proposed in our paper follow the prin-
ciples put forward by Salzberg and use principles similar
to those used in Postgres, but extends these to solve the
more general problem encountered in practice. In partic-
ular, we deal with the fact that user requests can force an
early choice of timestamps.

Finger and McBrien [4] studied timestamping, includ-
ing the use of the valid-time variablenow. Like Salzberg,
they argue that the value fornow should remain constant
within a transaction. However, they rule out using the com-
mit time for timestamping the valid-time dimension and in-
stead suggest using the start time or the time of the first up-
date as the value fornow. They showed that this choice may
lead tonowappearing to be moving backwards in time and
that the serialization of transactions can be violated. They
suggest ignoring the problem of time moving backwards or
making transactions serializable on their start times.

This differs quite substantially from our solution where
we use the commit time. Further, it has been shown that
ignoring the phenomenon ofnow moving backwards may
lead to violation of the isolation principle of transactions
and that transaction executions cannot be serializable in
the order of their start times, if concurrency is to be al-
lowed [16].

In recent related work, Torp et al. [16] consider the
timestamping of data items assuming a layered architec-
ture, where support for a temporal query language is pro-
vided, essentially, by an application that uses the SQL in-
terface of a conventional DBMS. With no access to the in-
ternals of the DBMS, the possible solutions are more re-
stricted. They use the commit time of a transaction as the
current-time value given to all requests for the current time
from statements in the transaction. As in our paper, and
unlike Salzberg and Stonebraker, they permit statements



in a transaction to reference current time. Since the com-
mit time is unknown until the transaction has exhausted all
its statements and is ready to commit, a single, temporary
current-time value is used, namely the system time when
the current time is first needed by a statement in the trans-
action. Techniques that generalize the revisitation approach
outlined for Postgres are supported.

While performance experiments demonstrate that this
timestamping approach has good performance, the restric-
tions imposed by the assumed architecture renders the ap-
proach only approximately correct. In contrast, our paper,
by augmenting the two-phase locking mechanism with read
timestamps, ensures correctness.

Finally, the valuestcurrent andnow used, but specified
only abstractly in our paper may be represented and manip-
ulated as described in detail in [16].

6 Summary and Research Directions

In practical database applications, it is frequently impor-
tant to retain a perfect record of past database states. For
example, this need mirrors the practice in finance where
accountants correct errors, not by using an eraser, but by
posting compensating transactions to the books. In medi-
cal applications, documenting the basis on which decisions
were made by such a record may guard against wrongful
malpractice lawsuits.

By building on past work in concurrency control, re-
covery, and temporal databases, we provide the first full
solution to the problem of correctly supporting transaction
timestamping of databases in a realistic setting, where user-
specified transactions are allowed and concurrency control
and recovery are accomplished using two-phase locking
and logs, respectively. Particular care has been given to ob-
tain a solution that does not significantly decrease the level
of concurrency and number of aborts of a two-phase lock-
ing system, that only introduces modest bookkeeping, that
ensures that recovery is accounted for, and that is consistent
with the SQL standard.

Specifically, our solution to transaction timestamping
generalizes the approach of choosing the transaction times-
tamp at commit time, enabling a transaction to choose its
timestamp at any time after transaction start, which is re-
quired because SQL transactions may request the “current
time.” It permits us to delay a transaction’s choice of a
timestamp as long as possible, reducing the risk that trans-
actions may need to be aborted in order to make the choices
of timestamps consistent with a serialization order. To fur-
ther reduce the likelihood of aborts, imprecise timestamps
may be used initially. Next, to handle read-write conflicts,
in addition to write-read and write-write conflicts, our solu-
tion uses a simple and flexible auxiliary structure with read
timestamps.

As future research, it is of interest to ensure indepen-
dence of the granularity of the time domain, which we be-
lieve may be achieved by enabling the solution to allow
non-decreasing timestamps to be assigned to consecutive
transactions instead of strictly increasing timestamps.

Acknowledgments
The authors would like to thank Richard Snodgrass for his
participation in the research that led to this paper, including
particularly his role in initiating this work.

Christian S. Jensen was supported in part by the Danish
Technical Research Council through grant 9700780 and by
a grant from the Nykredit corporation.

References
[1] P. Bernstein,, V. Hadzilacos, and N. Goodman.Concur-

rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[2] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and
R. T. Snodgrass.On the Semantics of ‘Now’ in Databases.
ACM TODS, 22(2):171–214, June 1997.

[3] O. Etzion, S. Jajodia, and S. Sripada (eds).Temporal
Databases: Research and Pratice. LNCS 1399, Springer
Verlag, 1998.

[4] M. Finger and P. McBrien.On the Semantics of ’Current-
Time’ in Temporal Databases. In 11th Brazilian Sympo-
sium on Databases, pp. 324–337, 1996.

[5] J. Gray, and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[6] C. S. Jensen and C. E. Dyreson (eds). The Consensus Glos-
sary of Temporal Database Concepts. In [3], pp. 367–405,
1998.

[7] C. S. Jensen and and R. T. Snodgrass. Temporal Data
ManagementIEEE TKDE, 11(1):36–44, January/February
1999.

[8] D. Lomet. Using Timestamps to Optimize Two Phase Com-
mit. Proceedings of the PDIS Conference, January 1993,
pp. 48–55.

[9] J. Melton.Database Language—SQL. ANSI X3.135-1992,
1992.

[10] J. Melton and A. R. Simon.Understanding the New SQL:
A Complete Guide. Morgan Kaufmann, 1993.

[11] G. Özsoyǒglu and R. T. Snodgrass. Temporal and Real-
Time Databases: A Survey.IEEE TKDE, 7(4):513–532,
August 1995.

[12] B. Salzberg. Timestamping After Commit.Proceedings of
the PDIS Conference, September 1994, pp. 160–167.

[13] M. Stonebraker. The Design of the POSTGRES Storage
System.Proceedings of the VLDB Conference, September
1987, pp. 289–300.

[14] M. Stonebraker, L. A. Rowe, and M. Hirohama. The Imple-
mentation of Postgres.IEEE TKDE, 2(1):125–142, March
1990.

[15] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. T. Snodgrass, (eds)Temporal Databases. Ben-
jamin/Cummings, 1993.

[16] K. Torp, C. S. Jensen, and R. T. Snodgrass. Effective Times-
tamping in Databases.VLDB Journal, 8(3–4):267–288,
2000.

[17] C. Vassilakis, N. A. Lorentzos, and P. Georgiadis. Imple-
mentation of Transaction and Concurrency Control Support
in a Temporal DBMS. Information Systems, 23(5):335–
350, 1998.

[18] Y. Wu, S. Jajodia, and X. S. Wang. Temporal Database
Bibliography Update. In [3], pp. 338–366, 1998.


