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Abstract

In this paper, we present an eÆcient method,
called iDistance, for K-nearest neighbor
(KNN) search in a high-dimensional space.
iDistance partitions the data and selects a ref-
erence point for each partition. The data in
each cluster are transformed into a single di-
mensional space based on their similarity with
respect to a reference point. This allows the
points to be indexed using a B+-tree struc-
ture and KNN search be performed using one-
dimensional range search. The choice of par-
tition and reference point provides the iDis-
tance technique with degrees of freedom most
other techniques do not have. We describe
how appropriate choices here can e�ectively
adapt the index structure to the data distri-
bution. We conducted extensive experiments
to evaluate the iDistance technique, and re-
port results demonstrating its e�ectiveness.

1 Introduction

Many emerging database applications such as image,
time series and scienti�c databases, manipulate high-
dimensional data. In these applications, one of the
most frequently used and yet expensive operations is
to �nd objects in the high-dimensional database that
are similar to a given query object. Nearest neighbor
search is a central requirement in such cases.

There is a long stream of research on solving the
nearest neighbor search problem, and a large number
of multidimensional indexes have been developed for
this purpose. However, most of these structures are

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

not adaptive with respect to data distribution. In con-
sequence, they tend to perform well for some data sets
and poorly for others.

In this paper, we propose a new technique for KNN
search that can be adapted based on the data distribu-
tion. For uniform distributions, it behaves similar to
techniques such as pyramid tree[1] and iMinMax[13],
that are known to be good for such situations. For
highly clustered distributions, it behaves as if a hier-
archical clustering tree had been created especially for
this problem.

Our technique, called iDistance, relies on partition-
ing the data and de�ning a reference point for each
partition. We then index the distance of each data
point to the reference point of its partition. Since this
distance is a simple scalar, with a small mapping e�ort
to keep partitions distinct, it is possible to use a stan-
dard B+tree to index this distance. As such, it is easy
to graft our technique on top of an existing commercial
relational database.

Finally, our technique can permit the immediate
generation of a few results while additional results are
searched for. In other words, we are able to support
online query answering: an important facility for in-
teractive querying and data analysis.

The e�ectiveness of iDistance depends on how the
data are partitioned, and how reference points are se-
lected. We also present several partitioning strategies,
as well as reference point selection strategies.

We implemented the iDistance method together
with the partitioning and reference point selection
strategies, and conducted an extensive performance
study to evaluate their e�ectiveness. Our results show
that the proposed schemes can provide fast initial re-
sponse time without sacri�cing on the quality of the
answers. Moreover, through appropriate choice of par-
titioning scheme, the iDistance method can compute
the complete answer set much faster than linear scan,
iMinMax and A-tree [15].

In Section 2, we review some related works. Sec-
tion 3 provides the background for metric-based KNN
search. In Section 4, we present the proposed iDis-
tance algorithm and in Section 5, we discuss the clus-



tering mechanisms and policies for selecting reference
points. Section 6 presents our performance study, and
the results. Finally, we conclude in 7 with directions
for future work.

2 Related Work

Many indexing techniques have been proposed for
nearest neighbor and approximate search in high-
dimensional databases. Existing multi-dimensional in-
dexes [4] such as R-trees [11] have been shown to be
ineÆcient even for supporting range/window queries
in high-dimensional databases; they, however, form
the basis for indexes designed for high-dimensional
databases [12, 17]. To reduce the e�ect of high di-
mensionalities, use of bigger nodes [3], dimensionality
reduction [7] and �lter-and-re�ne methods [2, 16] have
been proposed. Indexes were also speci�cally designed
to facilitate metric based query processing [6, 8]. How-
ever, linear scan remains one of the best strategies
for KNN search [5]. This is because there is a high
tendency for data points to be equidistant to query
points in a high-dimensional space. More recently, the
p-sphere tree [9] was proposed to support approximate

nearest neighbor (NN) search where the answers can
be obtained quickly but they may not necessarily be
the nearest neighbors.

To reduce the e�ect of high-dimensionality as expe-
rienced by the R-tree, the A-tree stores virtual bound-
ing boxes that approximate actual minimum bound-
ing boxes instead of actual bounding boxes. Bound-
ing boxes are approximated by their relative positions
with respect to the parents' bounding region. The ra-
tionale is similar to that of the X-tree[3] { tree nodes
with more entries may lead to less overlap and hence
a more eÆcient search. However, maintenance of ef-
fective virtual bounding boxes is expensive should the
database be very dynamic. A change in the parent
bounding box will a�ect all virtual bounding boxes ref-
erencing it. Further, additional CPU time in deriving
actual bounding boxes is incurred. Notwithstanding,
the performance study in [15] shows that it is more
eÆcient than the SR-tree [12] and the VA-�le [16].

3 Background

To search for the K nearest neighbors of a query point
q, the distance of the Kth nearest neighbor to q de-
�nes the minimum radius required for retrieving the
complete answer set. Unfortunately, such a distance
cannot be predetermined with 100% accuracy. Hence,
an iterative approach that examines increasingly larger
sphere in each iteration can be employed. The algo-
rithm works as follows. Given a query point q, �nd-
ing K nearest neighbors (NN) begins with a query
sphere de�ned by a relatively small radius about q,
querydist(q). All data spaces that intersect the query
sphere have to be searched. Gradually, the search re-

gion is expanded till all the K nearest points are found
and all the data subspaces that intersect with the cur-
rent query space are checked. The K data points
are the nearest neighbors when further enlargement
of query sphere does not introduce new answer points.
We note that starting the search query with a small
initial radius keeps the search space as tight as pos-
sible, and hence minimizes unnecessary search (had a
larger radius that contains all the K nearest points
been used).

4 Our Proposal

In this section, we propose a new KNN process-
ing scheme, called iDistance, to facilitate eÆcient
distance-based KNN search. The design of iDistance
is motivated by the following observations. First, the
(dis)similarity between data points can be derived with
reference to a chosen reference point. Second, data
points can be ordered based on their distances to a
reference point. Third, distance is essentially a single
dimensional value. This allows us to represent high-
dimensional data in single dimensional space, thereby
enabling reuse of existing single dimensional indexes
such as the B+-tree.

iDistance is designed to support similarity search {
both similarity range search and KNN search. How-
ever, we note that similarity range search is a window
search with a �xed radius and is simpler in computa-
tion than KNN search. Thus, we shall concentrate on
the KNN operations from here onwards.

For the rest of this section, we assume a set of data
points Points in a unit d-dimensional space. Let dist
be a metric distance function for pairs of points. In
our research, we use the Euclidean distance as the dis-
tance function, although other distance functions may
be used for certain applications.

4.1 The Data Structure

In iDistance, high-dimensional points are transformed
into a single dimensional space. This is done us-
ing a three step algorithm. In the �rst step, the
high-dimensional data space is split into a set of
partitions. In the second step, a reference point is
identi�ed for each partition. Without loss of gen-
erality, let us suppose that we have m partitions,
P0; P1; : : : ; Pm�1 and their corresponding reference
points, O0; O1; : : : ; Om�1. We shall defer the discus-
sion on how the partitions and reference points are
obtained to the next section.

Finally, in the third step, all data points are repre-
sented in a single dimension space as follows. A data
point p(x1; x2; : : : ; xd), 0 � xj � 1, 1 � j � d,
has an index key, y, based on the distance from the
nearest reference point Oi as follows:

y = i � c+ dist(p;Oi)



where dist(Oi; p) is a distance function that returns
the distance between Oi and p, and c is some constant
to stretch the data ranges. Essentially, c serves to
partition the single dimension space into regions so
that all points in partition Pi will be mapped to the
range [i � c, (i+ 1) � c).

In iDistance, we also employ two data structures:

� A B+-tree is use to index the transformed points
to facilitate speedy retrieval. We use the B+-tree
since it is available in all commercial DBMS. In
our implementation of the B+-tree, leaf nodes are
linked to both the left and right siblings [14]. This
is to facilitate searching the neighboring nodes
when the search region is gradually enlarged.

� An array is also required to store the m reference
points and their respective nearest and farthest
radii that de�ne the data space.

Clearly, iDistance is lossy in the sense that multi-
ple data points in the high-dimensional space may be
mapped to the same value in the single dimensional
space. For example, di�erent points within a partition
that are equidistant from the reference point have the
same transformed value.

4.2 KNN Search in iDistance

Before we examine the KNN algorithm for iDistance,
let us look at the search regions. Let Oi be the
reference point of partition i, and dist maxi and
dist mini be the maximum and minimum distance
between Oi and the points in partition Pi respec-
tively. We note that the region bounded by the
spheres obtained from these two radii de�nes the ef-
fective data space that need to be searched. Let q
be a query point and querydist(q) be the radius of
the sphere obtained about q. For iDistance, in con-
ducting NN search, if dist(Oi; q) � querydist(q) �

dist maxi, then Pi has to be searched for NN points.
The range to be searched within an a�ected partition
in the single dimensional space is [max(0; dist mini),
min(dist maxi, dist(Oi; q)+ querydist(q))]. Figure 1
shows an example. Here, for query point q1, only par-
tition P1 needs to be searched; for query point q2, both
P2 and P3 have to be searched. From the �gure, it is
clear that all points along a �xed radius have the same
value after transformation due to the lossy transforma-
tion of data points into distance with respect to the
reference points. As such, the shaded regions are the
areas that need to be checked.

Figures 2 to 4 summarize the algorithm for KNN
with iDistance method. The algorithm is similar to
its high-dimensional counterpart. It begins by search-
ing a small `sphere', and incrementally enlarges the
search space till all K nearest neighbors are found.
The search stops when the distance of the farthest ob-
ject in S (answer set) from query point q is less than
or equal to the current search radius r.

O1

3O

2O

2

1q

q

Figure 1: Search regions for NN queries q1 and q2.

The algorithm iDistanceKNN is highly abstracted.
Before examining it, let us brie
y discuss some of
the important routines and notations. Routine far-
thest(S,q) returns the object in S farthest in distance
from q. sphere(q,r) denote the sphere with radius r
and centroid q. Since both routines Inward and Out-
ward are similar, we shall only explain routine Inward.
Given a leaf node, routine Inward examines the en-
tries of the node to determine if they are among the
K nearest neighbors, and updates the answers accord-
ingly. We note that because iDistance is lossy, it is
possible that points with the same values are actually
not close to one another - some may be closer to q,
while others are far from it. If the �rst element (or
last element for Outward) of the node is contained in
the query sphere, then it is likely that its predeces-
sor with respect to distance from the reference point
(or successor for Outward) may also be close to q. As
such, the left (or right for Outward) sibling is exam-
ined. In other words, Inward (Outward) searches the
space towards (away from) the reference point of the
partition. The routine LocateLeaf is a typical B+-tree
traversal algorithm which locates a leaf node given a
search value, and hence the detailed description of the
algorithm is omitted.

We are now ready to explain the search algorithm.
Searching in iDistance begins by scanning the auxil-
iary structure to identify the reference points whose
data space (sphere area of partition) overlaps with the
query region. The search starts with a small radius
(querydist), and step by step, the radius is increased
to form a bigger query sphere. For each enlargement,
there are three main cases to consider.

1. The data space contains the query point, q. In
this case, we want to traverse the data space suf-
�ciently to determine the K nearest neighbors.
This can be done by �rst locating the leaf node
where q may be stored. Since this node does not
necessarily contain points whose distance are clos-
est to q compared to its sibling nodes, we need to
search inward or outward from the reference point
accordingly.



Algorithm iDistanceKNN (q, �r, max r)

r = 0;
Stop
ag = FALSE;
initialize lp[], rp[], oflag[];
while r < max r and Stop
ag == FALSE

r = r +�r;
SearchO(q, r);

Figure 2: iDistance KNN main search algorithm

Algorithm SearchO(q, r)

pfarthest = farthest(S,q)
if dist(pfarthest, q) < r and jSj == K
Stop
ag = TRUE; break;

for i = 0 to m� 1
dis = dist(Oi, q);
=� if Oi has not been searched before �=
if not oflag[i]
if sphere(Oi, dist maxi) contains q

oflag[i] = TRUE;
lnode = LocateLeaf(btree, i � c+ dis);
lp[i] = Inward(lnode, i � c+ dis� r);
rp[i] = Outward(lnode, i � c+ dis+ r);

else if sphere(Oi, dist maxi) intersects
sphere(q, r)
oflag[i] = TRUE;
lnode = LocateLeaf(btree, dist maxi);
lp[i] = Inward(lnode, i � c+ dis� r);

else
if lp[i] not nil

l[i] = lp[i]! leftnode;
lp[i] = Inward(l[i], i � c+ dis� r);

if rp[i] not nil
r[i] = rp[i]! rightnode;
rp[i] = Outward(r[i], i � c+ dis+ r);

Figure 3: iDistance KNN search algorithm: SearchO

Algorithm Inward(node, ivalue)

for each entry e in node
(e = ej ,j = 1; 2; : : : ; Number of entries)
if jSj == K

pfarthest = farthest(S,q)
if dist(e, q) < dist(pfarthest, q)

S = S � pfarthest;
S = S [ e;

else
S = S [ e;

if e1.key > ivalue
lnode = node! leftnode;
node = Inward(lnode, i � c+ dis� r);

if end of partition is reached
node = nil;

return(node);

Figure 4: iDistance KNN search algorithm: Inward

2. The data space intersects the query sphere. In
this case, we only need to search inward since the
query point is outside the data space.

3. The data space does not intersect the query
sphere. Here, we do not need to examine the data
space.

The search stops when the K nearest neighbors
have been identi�ed from the data subspaces that in-
tersect with the current query sphere and when fur-
ther enlargement of query sphere does not change the
K nearest list. In other words, all points outside the
subspaces intersecting with the query sphere will def-
initely be at a distance D from the query point such
that D is greater than querydist. This occurs when
the distance of the farther object in the answer set, S,
from query point q is less than or equal to the current
search radius r. Therefore, the answers returned by
iDistance are of 100% accuracy.

An interesting by-product of iDistance is that it can
provide approximate KNN answers quickly. In fact,
at each iteration of algorithm iDistanceKNN, we have
a set of K candidate NN points. These results can
be returned to the users immediately and re�ned as
more accurate answers are obtained in subsequent it-
erations. It is important to note that these K can-
didate NN points can be partitioned into two cate-
gories: those that we are certain to be in the answer
set, and those that we have no such guarantee. The
�rst category can be easily determined, since all those
points with distance smaller than the current spher-
ical radius of the query must be in the answer set.
Users who can tolerate some amount of inaccuracy
can obtain quick approximate answers and terminate
the processing prematurely (as long as they are sat-
is�ed with the guarantee). Alternatively, max r can
be speci�ed with an appropriate value to terminate
iDistanceKNN prematurely.

5 Selection of Reference Points and
Data Space Partitioning

To support distance-based similarity search, we need
to split the data space into partitions and for each
partition, we need a reference point. In this section
we look at some choices.

5.1 Equal Partitioning of Data Space

A straightforward approach to data space partition-
ing is to sub-divide it into equal partitions. In a
d-dimensional space, we have 2d hyperplanes. The
method we adopt is to partition the space into 2d
pyramids with the centroid of the unit cube space as
their top, and each hyperplane forming the base of
each pyramid.1 Now, we expect equi-partitioning to

1We note that the space is similar to that of the Pyramid
method [1]. However, the rationale behind the design and the
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Figure 5: Space partitioning methods.

be e�ective if the data are uniformly distributed. We
study the following possible reference points, where
the actual data space of hyperspheres do not overlap.

Centroid of hyperplane, Closest Distance. The
centroid of each hyperplane can be used as a refer-
ence point, and the partition associated with the point
contains all points that are nearest to it. Figure 5(a)
shows an example in a 2-dimensional space of a query
region and the a�ected space.

For a query point along the central axis, the set of
points retrieved along the axis is exactly the same as
in a pyramid tree. When dealing with query and data
points o� the axis, the sets of points are not exactly
identical, due to the curvature of the hypersphere as
compared to the partitioning along axial hyperplanes
in the case of the pyramid tree: nonetheless, these
sets are likely to have considerable overlap.

Centroid of hyperplane, Farthest Distance.

The centroid of each hyperplane can be used as a
reference point, and the partition associated with the
point contains all points that are farthest from it.
Figure 5(b) shows an example in 2-dimensional space.
As shown, the a�ected area can be greatly reduced
(as compared to the closest distance counterpart).

External point. Any point along the line formed by
the centroid of a hyperplane and the centroid of the
corresponding data space can also be used as a refer-
ence point.2 By external point, we refer to a reference
point that falls out of the data space. This heuris-
tics is expected to perform well when the a�ected area
is quite large, especially when the data are uniformly
distributed. We note that both closest and farthest

mapping function are di�erent; in the Pyramid method, a d-
dimensional data point is associated with a pyramid based on
an attribute value, and is represented as a value away from the
centroid of the space.

2We note that the other two reference points are actually
special cases of this.

distance can also be supported. Figures 5(c) shows an
example of closest distance for 2-dimensional space.
Again, we observe that the a�ected space under exter-
nal point is reduced (compared to using the centroid
of the hyperplane). The generalization here conceptu-
ally corresponds to the manner in which the iMinMax
tree generalizes the pyramid tree. The iDistance met-
ric can perform approximately like the iMinMax tree,
as we shall see in our experimental study.

5.2 Cluster Based Partitioning

As mentioned, equi-partitioning is expected to be ef-
fective only if the data are uniformly distributed. How-
ever, data points are often correlated. In these cases, a
more appropriate partitioning strategy would be used
to identify clusters from the data space. However, in
high-dimensional data space, the distribution of data
points is mostly sparse, and hence clustering is not
as straightforward as in low-dimensional databases.
There are several existing clustering schemes in the lit-
erature such as BIRCH [20] and CURE [10]. While our
metric based indexing is not dependent on the underly-
ing clustering method, we expect the clustering strat-
egy to have an in
uence on retrieval performance. In
our experiment, we adopt a sampling-based approach.
The method comprises four steps. First, we obtain a
sample of the database. Second, from the sample, we
can obtain the statistics on the distribution of data in
each dimension. Third, we select ki values from di-
mension i. These ki values are those values whose fre-
quencies exceed a certain threshold value. (Histograms
can be used to observe these values directly.) We can
then form

Q
ki centroids from these values. For ex-

ample, in a 2-dimensional data set, we can pick 2 high
frequency values, say 0.2 and 0.8, on one dimension,
and 2 high frequency values, say 0.3 and 0.6, on an-
other dimension. Based on this, we can predict the
clusters could be around (0.2,0,3), (0.2,0.6), (0.8,0.3)
or (0.8,0.6), which can be treated as the clusters' cen-
troids. Fourth, we count the data that are nearest to
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each of the centroids; if there are suÆcient number
of data around a centroid, then we can estimate that
there is a cluster there.

We note that the third step of the algorithm is cru-
cial since the number of clusters can have an impact on
the search area and the number of traversals from the
root to the leaf nodes. When the number of clusters is
small, more points are likely to have similar distance
to a given reference point. On the other hand, when
the number of clusters is large, more data spaces, de-
�ned by spheres with respect to centroid of clusters,
are likely to overlap, and incur additional traversal and
searching. Our solution is simple: if the number of
clusters is too many, we can merge those whose cen-
troids are closest; similarly, if the number of clusters
is too few, we can split a large cluster into two smaller
ones. We expect the number of clusters to be a tuning
parameter, and may vary for di�erent applications and
domains.

Once the clusters are obtained, we need to select
the reference points. Again, we have several possible
options when selecting reference points.

Centroid of cluster. The centroid of a cluster is a
natural candidate as a reference point. Figure 6(a)
shows an example with two clusters in 2-dimensional
space.

Edge of cluster. As shown in Figure 6(a), when the
centroid is used, the sphere area of both clusters have
to be enlarged to include outlier points, leading to sig-
ni�cant overlap in the data space. To minimize the
overlap, we can select points on the edge of the hyper-
planes as reference points. Figure 6(b) is an example
of 2-dimensional data space. There are two clusters
and the edge points are O1 : (0; 1) and O2 : (1; 0).
As shown, the overlap of the two partitions is smaller
than that using cluster centroids as reference points.

6 Performance Study

In this section, we report the results of an extensive
performance study that we have conducted to eval-
uate the performance of iDistance. Variant indexing
strategies of iDistance are tested on di�erent data sets,
varying data set dimension, data set size and data dis-
tribution.

We also extended the iMinMax(�) scheme [13] to
support KNN queries, and to return approximate an-
swers progressively [19]. iMinMax(�) maps a high-
dimensional point to either the maximum or minimum
value of the values among the various dimensions of the
point, and a range query requires d subqueries.

The comparative study was done between iDis-
tance, iMinMax, and the A-tree [15]. We also compare
iDistance against linear scan which has been shown to
be e�ective for KNN queries in high-dimensional data
space.

6.1 Experiment Setup

We implemented iMinMax(�) and the iDistance tech-
nique and their search algorithms in C, and used the
B+-tree as the single dimensional index structure. We
obtained the source codes of the A-tree from the au-
thors [15]. For all indexes, we index page size to 4 KB.
All the experiments are performed on a 300-MHz SUN
Ultra 10 with 64 megabytes main memory, running
SUN Solaris.

We conducted many experiments using various data
sets, with some deriving from LUV color histograms
of 20,000 images. Here, we report some of the more
interesting results on KNN queries; more results can be
found in [18]. For each query, a d-dimensional point
is used. We issue �ve hundred points, and take the
average I/O cost as the performance metric.

In the experiment, we generated 8, 16, 30-
dimensional uniform data sets. The data size ranges
from 100,000 to 500,000. For the clustered data sets,
we used a clustering algorithm similar to BIRCH to
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Figure 7: E�ect of search radius on query accuracy.

generate the data sets.

6.2 E�ect of Search Radius on Accuracy

In high-dimensional KNN search, the search around
the neighborhood is required to �nd K nearest neigh-
bors. Typically, a small search sphere is used and
enlarged when the search condition cannot be met.
Hence, it is important to study the e�ect of search
radius on the proposed index methods.

In this experiment, we used 8-dimensional, 16-
dimensional and 30-dimensional, 100K tuple uniformly
distributed data sets. We use only the (external
points,farthest distance) combination in this experi-
ment. Figures 7(a)-(c) show the average percentage of
KNN answers returned over multiple query points with
respect to the search radius (querydist), of the 8,16
and 30 dimensional datasets respectively. The results
show that as radius increases, the accuracy improves
and hits 100% at certain query distance. A query with
smaller K requires less searching to retrieve the re-
quired answers. As the number of dimension increases,
the radius required to obtain 100% also increases due
to increase in possible distance between two points
and sparsity of data space in higher-dimensional space.
However, we should note that the seemingly large in-
crease is not out of proportion with respect to the total
possible dissimilarity. We also observe that iDistance
can return a signi�cant number of nearest neighbors
with a small query radius.

In Figure 8, we see the retrieval eÆciency of iDis-
tance for 10-NN queries. First, we note that we have
stopped at radius around 0.5. This is because the algo-
rithm is able to detect all the nearest neighbors once
the radius reaches that length. As shown, iDistance
can provide fast initial answers quickly (compared to
linear scan). Moreover, iDistance can produce the
complete answers much faster than linear scan for rea-
sonable number of dimensions (i.e., 8 and 16). When
the number of dimensions reaches 30, iDistance takes
a longer time to produce the complete answers. This
is expected since the data are uniformly distributed.
However, because of its ability to produce approximate
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Figure 8: Retrieval EÆciency.

answers, iDistance is a promising strategy to adopt.

6.3 E�ect of Reference Points on Equi-

Partitioning Schemes

In this experiment, we evaluate the eÆciency of equi-
partitioning-based iDistance schemes using one of the
previous data sets.
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Figure 9 shows the results for (centroid,closest)
combination and 3 (external points, closest) schemes.
Each of the external points is farther away from the
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Figure 10: On cluster-based schemes.

hyperplane centroid than the others. First, we note
that the I/O cost increases with radius when doing
KNN search. This is expected since a larger radius
would mean increasing number of false hits and more
data are examined. We also notice that iDistance-
based schemes are very eÆcient in producing fast �rst
answers, as well as the complete answers. Moreover,
we note that the farther away the reference point from
the hyperplane centroid, the better is the performance.
This is because the data space that is required to be
traversed is smaller in these cases as the point gets
farther away.

6.4 Performance of Cluster-based Schemes

In this experiment, we tested a data set with 100K
data points of 20 and 50 clusters, some of which over-
lapped each other. To test the e�ect of the number
of partitions on KNN, we merge some number of close
clusters and treat them as one cluster.

We use the edge near to the cluster as its reference
point for the partition. We notice in Figure 10(a), as
with the other experiments, that the complete answer
set can be obtained with a reasonably small radius.
We also notice that a smaller number of partitions
performs better in returning the K points. This is
probably due to the larger partitions for small number
of partitions.

The I/O results in Figure 10(b) show a slightly dif-
ferent trend. Here, we note that a smaller number of

partitions incurs higher I/O cost. This is reasonable
since a smaller number of partitions would mean that
each partition is larger, and the number of false drops
being accessed is also higher. As before, we observe
that the cluster-based scheme can obtain the complete
set of answers in a short time.

We also repeated the experiments for a larger data
set of 500K points of 50 clusters using the edge of clus-
ter strategy in selecting the reference points. Figure
10(c) shows the searching radius required for locat-
ing K (K=1, 10, 20, 100) nearest neighbors when 50
partitions were used. The results show that searching
radius does not increase (compared to small data set)
in order to get good percentage of KNN. However, the
data size does have great impact on the query cost.
Figure 10(d) shows the I/O cost for 10-NN queries.
We can see that iDistance has a speedup factor of 4
over linear scan when all 10 NNs were retrieved.

Figure 10(e) and Figure 10(f) show how the I/O
cost is a�ected as the nearest neighbors are being re-
turned. Here, a point (x, y) in the graph means that
x percent of the K nearest points are obtained after y
number of I/Os. Here, we note that all the proposed
schemes can produce 100% answers at a much lower
cost than linear scan. In fact, the improvement can be
as much as �ve times. The results also show that pick-
ing an edge point to be the reference point is generally
better because it can reduce the amount of overlap.
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Figure 11: A comparative study.

6.5 Comparative Study

In this study, we compare iDistance cluster-based
schemes with iMinMax and A-tree.

Our �rst experiment uses a 100K 30-dimensional
uniform data set. The query is a 10-NN query. For
iDistance, we use the (external point, farthest) scheme.
Figure 11(a) shows the result of the experiment. First,
we note that both iMinMax and iDistance can produce
quality approximate answers very quickly compared to
linear scan. As shown, the I/O cost is lower than linear
scan with up to 95% accuracy. However, because the
data is uniformly distributed, to retrieve all the 10 NN
takes a longer time than linear scan since all points are
almost equidistant to one another. Second, we note
that iMinMax and iDistance perform equally well.

In another set of experiments, we use a 100K 30-
dimensional clustered data set. The query is still a
10-NN query. Here, we study two versions of cluster-
based iDistance { one that uses the edge of the clus-
ter as a reference point, and another that uses the
centroid of the cluster. Figure 11(b) summarizes the
result. First, we observe that among the two cluster-
based schemes, the one that employs the edge reference
points performs best. This is because of the smaller
overlaps in space of this scheme. Second, as in ear-
lier experiments, we see that the cluster-based scheme
can return initial approximate answer quickly, and can
eventually produce the �nal answer set much faster
than the linear scan. Third, we note that iMinMax
can also produce approximate answers quickly. How-
ever, its performance starts to degenerate as the radius
increases, as it attempts to search for exact K NNs.
Unlike iDistance which terminates once the K near-
est points are determined, iMinMax cannot terminate
until the entire data set is examined. As such, to ob-
tain the �nal answer set, iMinMax performs poorly.
Finally, we see that the relative performance between
iMinMax and iDistance for clustered data set is dif-
ferent from that of uniform data set. Here, iDistance
outperforms iMinMax by a wide margin because of the
larger number of false drops produced by iMinMax.

We also compare iDistance cluster-based schemes

with the recently proposed A-tree structure [15], which
has been shown to be far more eÆcient than the SR-
tree [12] and signi�cantly more eÆcient than the VA-
�le [16]. Upon investigation, we note that the gain

is not only due to the use of virtual bounding boxes,

but also the smaller sized logical pointers. Instead of

storing actual pointers in the internal nodes, it has to

store a memory resident mapping table. In particu-

lar, the size of the table is very substantial. To have a
fair comparison with the A-tree, we also implemented
a version of the iDistance method in a similar fash-
ion { the resultant e�ect is that the fan-out is greatly
increased.

In this set of experiments, we use a 100K 30-
dimensional clustered data set, and 1NN, 10NN and
20NN queries. The page size we used is 4K bytes.
Figure 11(c) summarizes the result. The results show
that iDistance is clearly more eÆcient than the A-tree
for the three types of queries we used. Moreover, it
is able to produce answers progressively which A-tree
is unable to achieve. The result also shows that the
di�erence in performance for di�erent K values is not
signi�cant when K gets larger.

6.6 CPU Cost

While linear scan incurs less seek time, linear scan of
a feature �le entails examination of each data point
and calculation of distance between each data point
and the query point. This will result in high CPU
cost for linear scan. Figure 12 shows the CPU time of
linear scan and iDistance for the same experiment as
in Figure 10(b). It is interesting to note that the per-
formance in terms of CPU time approximately re
ects
the trend in page accesses. The results show that the
best iDistance method achieves about a seven fold in-
crease in speed. We omit iMinMax in our comparison
as iMinMax has to search the whole index in order to
ensure 100% accuracy, and its CPU time at that point
is much higher than linear scan.
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7 Conclusion

In this paper, we have presented a simple and eÆcient
approach to nearest neighbor processing, called iDis-
tance. Extensive experiments were conducted and the
results show that iDistance is both e�ective and eÆ-
cient. In fact, iDistance achieves a speedup factor of
seven over linear scan without blowing up in storage
requirement and compromising on the accuracy of the
results (unless it is done with the intention for even
faster response time). Moreover, it is well suited for
integration into existing DBMSs. iDistance also out-
performs the A-tree and iMinMax schemes, and is ro-
bust and adaptive to di�erent data distributions. As
for the extension of current work, we are implementing
a similarity join algorithm using the iDistance.
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