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Abstract

Queries navigate semistructured data via path
expressions, and can be accelerated using an
index. Our solution encodes paths as strings, and
inserts those strings into a special index that is
highly optimized for long and complex keys. We
describe the Index Fabric, an indexing structure
that provides the efficiency and flexibility we
need. We discuss how "raw paths" are used to
optimize ad hoc queries over semistructured
data, and how "refined paths" optimize specific
access paths. Although we can use knowledge
about the queries and structure of the data to
create refined paths, no such knowledge is
needed for raw paths. A performance study
shows that our techniques, when implemented on
top of a commercial relational database system,
outperform the more traditional approach of
using the commercial system’s indexing
mechanisms to query the XML.

1. Introduction
Database management systems are increasingly being
called upon to manage semistructured data: data with an
irregular or changing organization. An example
application for such data is a business-to-business product
catalog, where data from multiple suppliers (each with
their own schema) must be integrated so that buyers can
query it. Semistructured data is often represented as a
graph, with a set of data elements connected by labeled
relationships, and this self-describing relationship

structure takes the place of a schema in traditional,
structured database systems. Evaluating queries over
semistructured data involves navigating paths through this
relationship structure, examining both the data elements
and the self-describing element names along the paths.
Typically, indexes are constructed for efficient access.

One option for managing semistructured data is to
store and query it with a relational database. The data
must be converted into a set of tuples and stored in tables;
for example, using tools provided with Oracle 8i/9i [25].
This process requires a schema for the data. Moreover,
the translation is not trivial, and it is difficult to efficiently
evaluate queries without extensions to the relational
model [26]. If no schema exists, the data can be stored as
a set of data elements and parent-child nesting
relationships [17]. Querying this representation is
expensive, even with indexes. The STORED system [12]
uses data mining to extract a partial schema. Data that
does not fit the schema well must be stored and queried in
its native form.

An alternative option is to build a specialized data
manager that contains a semistructured data repository at
its core. Projects such as Lore [24] and industrial products
such as Tamino [28] and XYZFind [29] take this
approach. It is difficult to achieve high query performance
using semistructured data repositories, since queries are
again answered by traversing many individual element to
element links, requiring multiple index lookups [23].
Moreover, semistructured data management systems do
not have the benefit of the extensive experience gained
with relational systems over the past few decades.

To solve this problem, we have developed a different
approach that leverages existing relational database
technology but provides much better performance than
previous approaches. Our method encodes paths in the
data as strings, and inserts these strings into an index that
is highly optimized for string searching. The index blocks
and semistructured data are both stored in a conventional
relational database system. Evaluating queries involves
encoding the desired path traversal as a search key string,
and performing a lookup in our index to find the path.
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There are several advantages to this approach. First, there
is no need for a priori knowledge of the schema of the
data, since the paths we encode are extracted from the
data itself. Second, our approach has high performance
even when the structure of the data is changing, variable
or irregular. Third, the same index can accelerate queries
along many different, complex access paths. This is
because our indexing mechanism scales gracefully with
the number of keys inserted, and is not affected by long or
complex keys (representing long or complex paths).

Our indexing mechanism, called the Index Fabric,
utilizes the aggressive key compression inherent in a
Patricia trie [21] to index a large number of strings in a
compact and efficient structure. Moreover, the Index
Fabric is inherently balanced, so that all accesses to the
index require the same small number of I/Os. As a result,
we can index a large, complex, irregularly-structured,
disk-resident semistructured data set while providing
efficient navigation over paths in the data.

We manage two types of paths for semistructured
data. First, we can index paths that exist in the raw data
(called raw paths) to accelerate any ad hoc query. We can
also reorganize portions of the data, to create refined
paths, in order to better optimize particular queries. Both
kinds of paths are encoded as strings and inserted into the
Index Fabric. Because the index grows so slowly as we
add new keys, we can create many refined paths and thus
optimize many access patterns, even complex patterns
that traditional techniques cannot easily handle. As a
result, we can answer general queries efficiently using
raw paths, even as we further optimize certain queries
using refined paths. Maintaining all of the paths in the
same index structure reduces the resource contention that
occurs with multiple indexes, and provides a uniform
mechanism that can be tuned for different needs.

Although our implementation of the Index Fabric
uses a commercial relational DBMS, our techniques do
not dictate a particular storage architecture. In fact, the
fabric can be used as an index over a wide variety of
storage engines, including a set of text files or a native
semistructured database. The index provides a flexible,
uniform and efficient mechanism to access data, while
utilizing a stable storage manager to provide properties
such as concurrency, fault tolerance, or security.

A popular syntax for semistructured data is XML
[30], and in this paper we focus on using the Index Fabric
to index XML-encoded data. XML encodes information
as data elements surrounded by tags, and tags can be
nested within other tags. This nesting structure can be
viewed as a tree, and raw paths represent root-to-leaf
traversals of this tree. Refined paths represent traversing
the tree in some other way (e.g. from sibling to sibling).

We have implemented the Index Fabric as an index
on top of a popular commercial relational DBMS. To
evaluate performance, we indexed an XML data set using
both the Index Fabric and the DBMS’s native B-trees. In
the Index Fabric, we have constructed both refined and

raw paths, while the relational index utilized an edge
mapping as well as a schema extracted by the STORED
[12] system. Both refined and raw paths are significantly
faster than the DBMS’s native indexing mechanism,
sometimes by an order of magnitude or more. The
difference is particularly striking for data with irregular
structure, or queries that must navigate multiple paths.

1.1. Paper overview
In this paper, we describe the structure of the Index Fabric
and how it can be used to optimize searches over
semistructured databases. Specifically, we make the
following contributions:
• We discuss how to utilize the Index Fabric’s support

for long and complex keys to index semistructured
data paths encoded as strings.

• We examine a simple encoding of the raw paths in a
semistructured document, and discuss how to answer
complex path queries over data with irregular
structure using raw paths.

• We present refined paths, a method for aggressively
optimizing frequently occurring and important access
patterns. Refined paths support answering
complicated queries using a single index lookup.

• We report the results of a performance study which
shows that a semistructured index based on the Index
Fabric can be an order of magnitude faster than
traditional indexing schemes.
This paper is organized as follows. In Section 2 we

introduce the Index Fabric and discuss searches and
updates. Next, in Section 3, we present refined paths and
raw paths and examine how they are used to optimize
queries. In Section 4 we present the results of our
performance experiments. In Section 5 we examine
related work, and in Section 6 we discuss our conclusions.

2. The Index Fabric
The Index Fabric is a structure that scales gracefully to
large numbers of keys, and is insensitive to the length or
content of inserted strings. These features are necessary to
treat semistructured data paths as strings.

The Index Fabric is based on Patricia tries [21]. An
example Patricia trie is shown in Figure 1. The nodes are
labeled with their depth: the character position in the key
represented by the node. The size of the Patricia trie does
not depend on the length of inserted keys. Rather, each

Figure 1. A Patricia trie.



new key adds at most a single link and node to the index,
even if the key is long. Patricia tries grow slowly even as
large numbers of strings are inserted because of the
aggressive (lossy) compression inherent in the structure.

Patricia tries are unbalanced, main memory structures
that are rarely used for disk-based data. The Index Fabric
is a structure that has the graceful scaling properties of
Patricia tries, but that is balanced and optimized for disk-
based access like B-trees. The fabric uses a novel, layered
approach: extra layers of Patricia tries allow a search to
proceed directly to a block-sized portion of the index that
can answer a query. Every query accesses the same
number of layers, providing balanced access to the index.

More specifically, the basic Patricia trie string index
is divided into block-sized subtries, and these blocks are
indexed by a second trie, stored in its own block. We can
represent this second trie as a new horizontal layer,
complementing the vertical structure of the original trie. If
the new horizontal layer is too large to fit in a single disk
block, it is split into two blocks, and indexed by a third
horizontal layer. An example is shown in Figure 2. The
trie in layer 1 is an index over the common prefixes of the
blocks in layer 0, where a common prefix is the prefix
represented by the root node of the subtrie within a block.
In Figure 2, the common prefix for each block is shown in
“quotes”. Similarly, layer 2 indexes the common prefixes
of layer 1. The index can have as many layers as
necessary; the leftmost layer always contains one block.

There are two kinds of links from layer i to layer i-1:
labeled far links ( ) and unlabeled direct links ( ).
Far links are like normal edges in a trie, except that a far
link connects a node in one layer to a subtrie in the next
layer. A direct link connects a node in one layer to a block
with a node representing the same prefix in the next layer.

Thus, in Figure 2, the node labeled “3” in layer 1
corresponds to the prefix “cas” and is connected to a
subtrie (rooted at a node representing “cas” and also
labeled “3”) in layer 0 using an unlabeled direct link.

2.1. Searching
The search process begins in the root node of the block in
the leftmost horizontal layer. Within a particular block,
the search proceeds normally, comparing characters in the
search key to edge labels, and following those edges. If
the labeled edge is a far link, the search proceeds
horizontally to a different block in the next layer to the
right. If no labeled edge matches the appropriate character
of the search key, the search follows a direct (unlabeled)
edge horizontally to a new block in the next layer. The
search proceeds from layer to layer until the lowest layer
(layer 0) is reached and the desired data is found. During
the search in layer 0, if no labeled edge matches the
appropriate character of the search key, this indicates that
the key does not exist, and the search terminates.
Otherwise, the path is followed to the data. It is necessary
to verify that the found data matches the search key, due
to the lossy compression of the Patricia trie.

The search process examines one block per layer1,
and always examines the same number of layers. If the
blocks correspond to disk blocks, this means that the
search could require one I/O per layer, unless the needed
block is in the cache. One benefit of using the Patricia

1 It is possible for the search procedure to enter the wrong block,
and then have to backtrack, due to the lossy compression of
prefixes in the non-leaf layers. This phenomenon is unique to
the multi-layer Patricia trie structure. In practice, such mistakes
are rare in a well-populated tree. See [10,19].

Figure 2. A layered index.
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structure is that keys are stored very compactly, and many
keys can be indexed per block. Thus, blocks have a very
high out-degree (number of far and direct links referring
to the next layer to the right.) Consequently, the vast
majority of space required by the index is at the rightmost
layer, and the layers to the left (layer 1,2,…n) are
significantly smaller. In practice, this means that an index
storing a large number of keys (e.g. a billion) requires
three layers; layer 0 must be stored on disk but layers 1
and 2 can reside in main memory. Key lookups require at
most one I/O, for the leaf index layer (in addition to data
I/Os). In the present context, this means that following
any indexed path through the semistructured data, no
matter how long, requires at most one index I/O.

2.2. Updates
Updates, insertions, and deletions, like searches, can be
performed very efficiently. An update is a key deletion
followed by a key insertion. Inserting a key into a Patricia
trie involves either adding a single new node or adding an
edge to an existing node. The insertion requires a change
to a single block in layer 0. The horizontal index is
searched to locate the block to be updated. If this block
overflows, it must be split, requiring a new node at layer
1. This change is also confined to one block. Splits
propagate left in the horizontal layers if at each layer
blocks overflow, and one block per layer is affected.
Splits are rare, and the insertion process is efficient. If the
block in the leftmost horizontal layer (the root block)
must be split, a new horizontal layer is created.

To delete a key, the fabric is searched using the key
to find the block to be updated, and the edge pointing to
the leaf for the deleted key is removed from the trie. It is
possible to perform block recombination if block storage
is underutilized, although this is not necessary for the
correctness of the index. Due to space restrictions, we do
not present insertion, deletion and split algorithms here.
The interested reader is referred to [10,19].

3. Indexing XML with the Index Fabric
Because the Index Fabric can efficiently manage large
numbers of complex keys, we can use it to search many
complex paths through the XML. In this section, we
discuss encoding XML paths as keys for insertion into the

fabric, and how to use path lookups to evaluate queries.
As a running example, we will use the XML in Figure 3.

3.1. Designators
We encode data paths using designators: special
characters or character strings. A unique designator is
assigned to each tag that appears in the XML. For
example, for the XML in Figure 3, we can choose I for
<invoice>, B for <buyer>, N for <name>, and so
on. (For illustration, here we will represent designators as
boldface characters.) Then, the string “IBNABC Corp”
has the same meaning as the XML fragment

<invoice>
<buyer><name>ABC Corp</name></buyer>

</invoice>
The designator-encoded XML string is inserted into the
layered Patricia trie of the Index Fabric, which treats
designators the same way as normal characters, though
conceptually they are from different alphabets.

In order to interpret these designators (and
consequently to form and interpret queries) we maintain a
mapping between designators and element tags called the
designator dictionary. When an XML document is parsed
for indexing, each tag is matched to a designator using the
dictionary. New designators are generated automatically
for new tags. The tag names from queries are also
translated into designators using the dictionary, to form a
search key over the Index Fabric. (See Section 3.5.)

3.2. Raw paths
Raw paths index the hierarchical structure of the XML by
encoding root-to-leaf paths as strings. Simple path
expressions that start at the root require a single index
lookup. Other path expressions may require several
lookups, or post-processing the result set. In this section,
we focus on the encoding of raw paths. Raw paths build
on previous work in path indexing. (See Section 5).

Tagged data elements are represented as designator-
encoded strings. We can regard all data elements as
leaves in the XML tree. For example, the XML fragment

<A>alpha<B>beta<C>gamma</C></B></A>.
can be represented as a tree with three root-to-leaf paths:
<A>alpha, <A><B>beta and <A><B><C>gamma. If
we assign A, B and C as the designators for <A>, <B>

Figure 3. Sample XML.

<invoice>
<buyer>
<name>ABC Corp</name>
<address>1 Industrial Way</address>

</buyer>
<seller>
<name>Acme Inc</name>
<address>2 Acme Rd.</address>

</seller>
<item count=3>saw</item>
<item count=2>drill</item>

</invoice>

<invoice>
<buyer>
<name>Oracle Inc</name>
<phone>555-1212</phone>

</buyer>
<seller>
<name>IBM Corp</name>

</seller>
<item>
<count>4</count>
<name>nail</name>

</item>
</invoice>

Doc 1: Doc 2:



and <C> respectively, then we can encode the paths in
this XML fragment as “A alpha”, “A B beta” and “A B
C gamma.” This is a prefix encoding of the paths: the
designators, representing the nested tag structure, appear
at the beginning of the key, followed by the data element
at the leaf of the path. This encoding does not require a
pre-existing, regular or static schema for the data.

The alternative is infix encoding, in which data
elements are nodes along the path. An infix encoding of
the above fragment would be “A alpha B beta C
gamma.” Here, for clarity, we will follow the convention
of previous work, which is to treat data elements as
leaves, and we will focus on the prefix encoding.

Tags can contain attributes (name/value pairs.) We
treat attributes like tagged children; e.g. <A
B=“alpha”>… is treated as if it were <A><B>alpha
</B>…. The result is that attributes of <A> appear as
siblings of the other tags nested within <A>. The label
“B” is assigned different designators when it appears as a
tag and an attribute (e.g. B=tag, B’=attribute).

At any time, a new document can be added to the raw
path index, even if its structure differs from previously
indexed documents. The root-to-leaf paths in the
document are encoded as raw path keys, and inserted into
the fabric. New tags that did not exist in the index
previously can be assigned new designators “on-the-fly”
as the document is being indexed. Currently, this process
does not preserve the sequential ordering of tags in the

XML document. We have developed a system of alternate
designators to encode order, but do not have space to
discuss those techniques here.

3.2.1. Raw path example

The XML of Figure 3 can be encoded as a set of raw
paths. First, we assign designators to tags, as shown in
Figure 4(a). Next, we encode the root-to-leaf paths to
produce the keys shown in Figure 4(b). Finally, we insert
these keys in the Index Fabric to generate the trie shown
in Figure 4(c). For clarity, this figure omits the horizontal
layers and some parts of the trie.

3.3. Refined paths
Refined paths are specialized paths through the XML that
optimize frequently occurring access patterns. Refined
paths can support queries that have wildcards, alternates
and different constants.

For example, we can create a refined path that is
tuned for a frequently occurring query over the XML in
Figure 3, such as “find the invoices where company X
sold to company Y.” Answering this query involves
finding <buyer> tags that are siblings of a <seller>
tag within the same <invoice> tag. First, we assign a
designator, such as “Z,” to the path. (Recall that
designators are just special characters or strings shown
here in boldface for clarity.) Next, we encode the

Figure 4. Raw paths.
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information indexed by this refined path in an Index
Fabric key. If “Acme Inc” sold items to “ABC Corp,” we
would create a key of the form “Z ABC Corp Acme
Inc.” Finally, we insert the keys we have created into the
fabric. The keys refer to the XML fragments or
documents that answer the query. (See Section 3.4.)

This encoding scheme is similar to that used for raw
paths, with designators and data elements in the same key.
In a sense, we are overloading the metaphor of encoding
paths as strings to support optimizing specific queries by
encoding specialized paths. Raw and refined paths are
kept in the same index and accessed using string lookups.

Adding new documents to the refined path index is
accomplished in two steps. First, the new documents are
parsed to extract information matching the access pattern
of the refined path. Then, this information is encoded as
an Index Fabric key and inserted into the index. Changes
to refined paths are reflected in simple key updates.

The database administrator decides which refined
paths are appropriate. As with any indexing scheme,
creating a new access path requires scanning the database
and extracting the keys for insertion into the index. Our
structure grows slowly as new keys are inserted. Thus,
unlike previous indexing schemes, we can pre-optimize a
great many queries without worrying about resource
contention between different indexes.

3.4. Combining the index with a storage manager
Because the Index Fabric is an index, it does not dictate a
particular architecture for the storage manager of the
database system. The storage manager can take a number
of forms. The indexed keys can be associated with
pointers that refer to flat text files, tuples in a relational
system, or objects in a native XML database. In any case,
searching the fabric proceeds as described, and the
returned pointers are interpreted appropriately by the
database system. In our implementation, both the index
blocks and the actual XML data are stored in a relational
database system. Thus, we leverage the maturity of the
RDBMS, including concurrency and recovery features.

3.5. Accelerating queries using the Index Fabric
Path expressions are a central component of
semistructured query languages (e.g. Lorel [2] or Quilt
[6]). We focus on selection using path expressions, that is,
choosing which XML documents or fragments answer the
query, since that is the purpose of an index. We assume
that an XML database system could use a standard
approach, such as XSLT [31], to perform projection.

A simple path expression specifies a sequence of tags
starting from the root of the XML. For example, the query
“Find invoices where the buyer is ABC Corp” asks for
XML documents that contain the root-to-leaf path
“invoice.buyer.name.`ABC Corp’.” We use a
key lookup operator to search for the raw path key
corresponding to the simple path expression.

Raw paths can also be used to accelerate general
path expressions, which are vital for dealing with data
that has irregular or changing structure because they
allow for alternates, optional tags and wildcards. We
expand the query into multiple simple path expressions,
and evaluate each using separate key lookup operators.
Thus, the path expression A.(B1|B2).C results in
searches for A.B1.C and A.B2.C. This means multiple
traversals but each traversal is a simple, efficient lookup.

If the query contains wildcards, then it expands to an
infinite set. For example, A.(%)*.C means find every
<C> that has an ancestor <A>. To answer this query, we
start by using a prefix key lookup operator to search for
the “A” prefix, and then follow every child of the “A”
prefix node to see if there is a “C” somewhere down
below. Because we “prefix-encode” all of the raw paths,
we can prune branches deeper than the designators (e.g.
after we see the first non-designator character.)

We can further prune the traversal using another
structure that summarizes the XML hierarchy. For
example, Fernandez and Suciu [15] describe techniques
for utilizing partial knowledge of a graph structure to
prune or rewrite general path expressions.

Queries that correspond to refined paths can be
further optimized. The query processor identifies the
query as corresponding to a refined path, and translates
the query into a search key. For example, a query “Find
all invoices where ABC Corp bought from Acme Inc”
becomes “Z ABC Corp Acme Inc.” The index is
searched using the key find the relevant XML. The search
uses the horizontal layers and is very efficient; even if
there are many millions of indexed elements, the answer
can be found using at most a single index I/O.

4. Experimental results
We have conducted performance experiments of our
indexing mechanism. We stored an XML-encoded data
set in a popular commercial relational database system2,
and compared the performance of queries using the
DBMS’ native B-tree index versus using the Index Fabric
implemented on top of the same database system. Our
performance results thus represent an “apples to apples”
comparison using the same storage manager.

4.1. Experimental setup
The data set we used was the DBLP, the popular
computer science bibliography [11]. The DBLP is a set of
XML-like documents; each document corresponds to a
single publication. There are over 180,000 documents,
totaling 72 Mb of data, grouped into eight classes (journal
article, book, etc.) A document contains information
about the type of publication, the title of the publication,

2 The license agreement prohibits publishing the name of the
DBMS with performance data. We refer to it as “the RDBMS.”
Our system can interoperate with any SQL DBMS.



the authors, and so on. A sample document is shown in
Figure 5. Although the data is somewhat regular (e.g.
every publication has a title) the structure varies from
document to document: the number of authors varies,
some fields are omitted, and so on.

We used two different methods of indexing the XML
via the RDBMS’ native indexing mechanism. The first
method, the basic edge-mapping, treats the XML as a set
of nodes and edges, where a tag or atomic data element
corresponds to a node and a nested relationship
corresponds to an edge. The database has two tables,
roots(id,label) and edges(parentid,childid,label). The
roots table contains a tuple for every document, with an id
for the document, and a label, which is the root tag of the
document. The edges table contains a tuple for every
nesting relationship. For nested tags, parentid is the ID of
the parent node, childid is the ID of the child node, and
label is the tag. For leaves (data elements nested within
tags), childid is NULL, and label is the text of the data
element. For example, the XML fragment

<book><author>Jane Doe</author></book>
is represented by the tuple (0,book) in roots and the tuples
(0,1,author) and (1,NULL,Jane Doe) in edges. (Keeping
the leaves as part of the edges table offered better
performance than breaking them into a separate table.)
We created the following key-compressed B-tree indexes:
• An index on roots(id), and an index on roots(label).
• An index on edges(parentid), an index on

edges(childid), and an index on edges(label).
The second method of indexing XML using the

DBMS’ native mechanism is to use the relational
mapping generated by the STORED [12] system to create
a set of tables, and to build a set of B-trees over the tables.
We refer to this scheme as the STORED mapping.
STORED uses data mining to extract schemas from the
data based on frequently occurring structures. The
extracted schemas are used to create “storage-mapped
tables” (SM tables). Most of the data can be mapped into
tuples and stored in the SM tables, while more irregularly
structured data must be stored in overflow buckets, similar
to the edge mapping. The schema for the SM tables was
obtained from the STORED investigators [13]. The SM
tables identified for the DBLP data are inproceedings, for
conference papers, and articles, for journal papers.

Conference and journal paper information that does not fit
into the SM tables is stored in overflow buckets along
with other types of publications (such as books.)

To evaluate a query over the STORED mapping, the
query processor may have to examine the SM tables, the
overflow buckets, or both. We created the following key-
compressed B-tree indexes:
• An index on each of the author attributes in the

inproceedings and articles SM tables.
• An index on the booktitle attribute (e.g., conference

name) in the inproceedings table.
• An index on the id attribute of each SM table; the id

joins with roots(id) in the overflow buckets.
For both the edge and STORED mapping it was necessary
to hand tune the query plans generated by the RDBMS,
since the plans that were automatically tended to us
inefficient join algorithms. We were able to significantly
improve the performance (e.g. reducing the time to
execute thousands of queries from days to hours).

The Index Fabric contained both raw paths and
refined paths for the DBLP documents. The fabric blocks
were stored in an RDBMS table. All of the index schemes
we studied index the document IDs. Thus, a query
processor will use an index to find relevant documents,
retrieve the complete documents, and then use a post-
processing step (e.g. with XSLT) to transform the found
documents into presentable query results. Here, we focus
on the index lookup performance.

All experiments used the same installation of the
RDBMS, running on an 866 MHz Pentium III machine,
with 512 Mb of RAM. For our experiments, we set the
cache size to ten percent of the data set size. For the edge-
mapping and STORED mapping schemes, the whole
cache was devoted to the RDBMS, while in the Index
Fabric scheme, half of the cache was given to the fabric
and half was given to the RDBMS. In all cases,
experiments were run on a cold cache. The default
RDBMS logging was used both for queries over the
relational mappings and queries over the Index Fabric.

We evaluated a series of five queries (Table 1) over
the DBLP data. We ran each query multiple times with
different constants; for example, with query B, we tried
7,000 different authors. In each case, 20 percent of the
query set represented queries that returned no result
because the key was not in the data set.

The experimental results are summarized in Table 2.
(The ∆ column is speed-up versus edge mapping.) In each
case, our index is more efficient than the RDBMS alone,
with more than an order of magnitude speedup in some

Table 1. Queries.

Query Description
A Find books by publisher
B Find conference papers by author
C Find all publications by author
D Find all publications by co-authors
E Find all publications by author and year

<article key="Codd70">
<author>E. F. Codd</author>,
<title>A Relational Model of Data for Large

Shared Data Banks.</title>,
<pages>377-387</pages>,
<year>1970</year>,
<volume>13</volume>,
<journal>CACM</journal>,
<number>6</number>,
<url>db/journals/cacm/cacm13.html#Codd70</url>
<ee>db/journals/cacm/Codd70.html</ee>
<cdrom>CACMs1/CACM13/P377.pdf</cdrom>

</article>

Figure 5. Sample DBLP document.



instances. We discuss the queries and results next.

4.2. Query A: Find books by publisher
Query A accesses a small portion of the DBLP database,
since out of over 180,000 documents, only 436
correspond to books. This query is also quite simple,
since it looks for document IDs based on a single root-to-
leaf path, “book.publisher.X” for a particular X.
Since it can be answered using a single lookup in the raw
path index, we have not created a refined path. The query
can be answered using the basic edge-mapping by
selecting “book” tuples from the roots table, joining the
results with “publisher” tuples from the edges table, and
joining again with the edges table to find data elements
“X”. The query cannot be answered from the storage
mapped tables (SM tables) in the STORED mapping.
Because books represent less than one percent of the
DBLP data, they are considered “overflow” by STORED
and stored in the overflow buckets.

The results for query A are shown in Table 2, and
represent looking for 48 different publishers. The raw
path index is much faster than the edge mapping, with a
97 percent reduction in block reads and an 86 percent
reduction in total time. The raw path index is also faster
than accessing the STORED overflow buckets, with 96
percent fewer I/Os and 79 percent less time. Note that the
overflow buckets require less time and I/Os than the edge
mapping because the overflow buckets do not contain the
information stored in the SM tables, while the edge
mapping contains all of the DBLP information and
requires larger indexes.

These results indicate that it can be quite expensive
to query semistructured data stored as edges and
attributes. This is because multiple joins are required
between the roots and edges table. Even though indexes
support these joins, multiple index lookups are required,
and these increase the time to answer the query.
Moreover, the DBLP data is relatively shallow, in that the
path length from root to leaf is only two edges. Deeper
XML data, with longer path lengths, would require even
more joins and thus more index lookups. In contrast, a
single index lookup is required for the raw paths.

4.3. Query B: Find conference papers by author
This query accesses a large portion of the DBLP, as

conference papers represent 57 percent of the DBLP
publications. We chose this query because it uses a single
SM table in the STORED mapping. The SM table
generated by STORED for conference papers has three
author attributes, and overflow buckets contain any
additional authors. In fact, the query processor must take
the union of two queries: first, find document IDs by
author in the inproceedings SM table, and second, query
any inproceedings.author.X paths in the roots
and edges overflow tables. Both queries are supported by
B-trees. The edge mapping uses a similar query to the
overflow buckets. The query is answered with one raw
path lookup (for inproceedings.author.X) and
we did not create a refined path.

The results in Table 2 are for queries with 7,000
different author names. Raw paths are much more
efficient, with an order of magnitude less time and I/O’s
than the edge mapping, and 74 percent fewer I/Os and 72
percent less time than the STORED mapping. We have
plotted the I/Os in Figure 7 with the block reads for index
blocks and for data blocks (to retrieve document IDs)
broken out; the data reads for the Index Fabric include the
result verification step for the Patricia trie. For the
STORED mapping, Figures 6 and 7 separate I/Os to the
edge-mapped overflow buckets and I/Os to the SM tables.

Although SM tables can be accessed efficiently (via a
B-trees on the author attributes), the need to go to the
overflow buckets to complete the query adds significant
overhead. The performance of the edge mapping, which is
an order of magnitude slower than the raw paths,
confirms that this process is expensive. This result
illustrates that when some of the data is irregularly
structured (even if a large amount fits in the SM tables),
then the performance of the relational mappings (edge
and STORED) suffers.

4.4. Other queries
Query C (find all document IDs of publications by

author X) contains a wildcard, since it searches for the
path “(%)*.author.X.” The results in Table 2
represent queries for 10,000 different author names.

Query D seeks IDs of publications co-authored by
author “X” and author “Y.” This is a “sibling” query that
looks for two tags nested within the same parent tag. The
results in Table 2 are for queries on 10,000 different pairs

I/O - Blocks Time - Seconds
Edge Map STORED Raw path Refined path Edge Map STORED Raw path Refined path
value ∆ value ∆ value ∆ value ∆ value ∆ value ∆ value ∆ value ∆ 

A 416 1.0 370 1.1 13 32.0 - - 6 1.0 4 1.5 0.83 7.2 - -
B 68788 1.0 26490 2.6 6950 9.9 - - 1017 1.0 293 3.5 81 12.6 - -
C 69925 1.0 61272 1.1 34305 2.0 20545 3.4 1056 1.0 649 1.6 397 2.7 236 4.5
D 353612 1.0 171712 2.1 89248 4.0 17337 20.4 5293 1.0 2067 2.6 975 5.4 208 25.4
E 327279 1.0 138386 2.4 113439 2.9 16529 19.8 4835 1.0 1382 3.5 1209 4.0 202 23.9

Table 2. Experimental results.



of authors, and the I/Os are shown in Figure 7.
Query E (find IDs of publications by author X in year

Y) also seeks a sibling relationship, this time between
<author> and <year>. The difference is that while
<author> is very selective (with over 100,000 unique
authors), there are only 58 different years (including items
such as “1989/1990”). Consequently, there are a large
number of documents for each year. The results in Table
2 are for 10,000 author/year pairs.

The results shown in Table 2 illustrate that irregularly
structured data is a significant obstacle to managing
semistructured data in a relational system. For the
STORED mapping, the SM tables can be accessed
efficiently, but the queries cannot be fully answered
without costly access to the overflow buckets. The edge
mapping (which treats all data as irregularly structured) is
even less efficient, since every query must be evaluated
using expensive self-joins. Thus, even though there are
multiple raw path lookups for queries C, D and E, the raw
paths outperform the relational mappings in each case.
Moreover, the refined paths offer a significant
optimization, especially for complex queries.

5. Related work
The problem of storing, indexing and searching
semistructured data has gained increasing attention
[1,5,6,23]. Shanmugasundaram et al [26] have
investigated using DTD’s to map the XML data into
relational tables. The STORED system extracts the
schema from the data itself using data mining [12]. Both
[26] and [12] note that it is difficult to deal with data that
has irregular or variable structure. Florescu and
Kossmann have examined storing XML in an RDBMS as
a set of attributes and edges, using little or no knowledge
of the document structure [17], for example, the edge
mapping we examine here. Other systems store the data
“natively” using a semistructured data model [24,28,29].
Evaluating path expressions in these systems usually
requires multiple index lookups [23]. Raw paths are
conceptually similar to DataGuides [18].

A join index, such as that proposed by Valduriez

[27], precomputes joins so that at query time, specific
queries are very efficient. This idea is similar in spirit to
our raw and refined paths. However, a separate join index
must be built for each access path. Moreover, a join index
is sensitive to key length, and is usually only used for a
single join, not a whole path.

Path navigation has been studied in object oriented
(OO) databases. OO databases use sequences [4,22] or
hierarchies of path indexes [32] to support long paths,
requiring multiple index lookups per path. Our
mechanism supports following paths with a single index
lookup. Also, OO indexes support linear paths, requiring
multiple indexes to evaluate “branchy” queries. Our
structure provides a single index for all queries, and one
lookup to evaluate the query using a refined path. Third,
semistructured data requires generalized path expressions
in order to navigate irregular structure. Although
Christophides et al. [8] have studied this problem, their
work focuses on query rewriting and not indexes, and our
mechanism could utilize their techniques (or those of
[15]) to better optimize generalized path expressions over
raw paths. Finally, OO indexes must deal with class
inheritance [7], while XML indexes do not.

Text indexing has been studied extensively in both
structured and unstructured databases. Suffix arrays and
compressed suffix arrays [16], based on Patricia tries,
provide partial-match searching rather than path
navigation. Several data and query models for structured
data besides XML have been studied [3]; our techniques
can be adapted for these other models. Others have
extended text indexes and multidimensional indexes to
deal with structured data [20]; our structural encoding is
new, and we deal with all of the structure in one index.

The Index Fabric is a balanced structure like a B-tree
[9], but unlike the B-tree, scales well to large numbers of
keys and is insensitive to the length or complexity of
keys. Diwan et al have examined taking general graph
structures and providing balanced, disk based access [14].
Our structure is optimized specifically for Patricia tries.
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6. Conclusions
We have investigated encoding paths through
semistructured data as simple strings, and performing
string lookups to answer queries. We have investigated
two options: raw paths, which assume no a priori
knowledge of queries or structure, and refined paths,
which take advantage of such knowledge to achieve
further optimization. Our techniques rely on the Index
Fabric for high performance string lookups over a large
set of non-uniform, long, and complex strings. While the
indexing mechanisms of an RDBMS or semistructured
data repository can provide some optimization, they have
difficulty achieving the high performance possible with
our techniques. Our experimental results confirm that
implementing our techniques on top of an RDBMS offers
a significant improvement over using the RDBMS’s
native indexes for semistructured data. This is especially
true if the query is complex or branchy, or accesses
“irregular” portions of the data (that must be stored in
overflow buckets). Clearly, the Index Fabric represents an
effective way to manage semistructured data.
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