
NetCube: A Scalable Tool
for Fast Data Mining and Compression

Dimitris Margaritis
Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA15213, U.S.A.

D.Margaritis@cs.cmu.edu

Christos Faloutsos�

Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA15213, U.S.A.

C.Faloutsos@cs.cmu.edu

Sebastian Thruny

Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA15213, U.S.A.

S.Thrun@cs.cmu.edu

Abstract

We propose an novel method of computing
and storing DataCubes. Our idea is to use
Bayesian Networks, which can generate approx-
imate counts for any query combination of at-
tribute values and “don’t cares.” A Bayesian net-
work represents the underlying joint probability
distribution of the data that were used to gener-
ate it. By means of such a network the proposed
method, NetCube, exploits correlations among at-
tributes. Our proposed preprocessing algorithm
scales linearly on the size of the database, and
is thus scalable; it is also parallelizable with a
straightforward parallel implementation. More-
over, we give an algorithm to estimate counts
of arbitrary queries that is fast (constanton the
database size). Experimental results show that
NetCubes have fast generation and use (a few

�This material is based upon work supported by the National Science
Foundation under Grants No. DMS-9873442, IIS-9817496, IIS-9910606,
IIS-9988876, LIS 9720374, IIS-0083148, IIS-0113089, and by the De-
fense Advanced Research Projects Agency under Contracts No. N66001-
97-C-8517 and N66001-00-1-8936. Additional funding was provided by
donations from Intel. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation, DARPA,
or other funding parties.

yThis research is sponsored by the National Science Foundation
(CAREER grant number IIS-9876136 and regular grant number IIS-
9877033), and by DARPA-ATO via TACOM (contract number DAAE07-
98-C-L032), which is gratefully acknowledged. The views and conclu-
sions contained in this document are those of the author and should not be
interpreted as necessarily representing official policies or endorsements,
either expressed or implied, of the United States Government or any of
the sponsoring institutions.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of thepublication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

minutes preprocessing time per 100,000 records
and less than a second query time), achieve ex-
cellent compression (at least 1800:1 compression
ratios on real data) and have low reconstruction
error (less than 5% on average). Moreover, our
method naturally allows for visualization and data
mining, at no extra cost.

1 The Problem
The problem of computing counts of records with desired
characteristics from a database is a very common one in
the area of decision support systems and data mining. A
typical scenario is as follows: a customer analyst is inter-
ested in discovering groups of customers that exhibit an in-
teresting or unusual behavior that might lead to possibly
profitable insights into the company’s customer behavior.
In other words, a company wants to be able tomodelits
customer base, and the better it is able to do that, the more
insights it can obtain from the model and more profitable it
has the opportunity to be. In this scenario an analyst would,
through an interactive query process, request count infor-
mation from the database, possibly drilling-down in inter-
esting subsets of the database of customer information. It
is obvious that it is very important that the results to these
queries be returned quickly, because that will greatly fa-
cilitate the process of discovery. It is also important that
they are accurate up to a reasonable degree, although it is
not imperative that they are exact. The analyst wants an
approximate figure of the result of the query and getting it
correct down to the last digit is not necessary.

Our solution to the problem is motivated by these ob-
servationsi.e. that we need great speed coupled with only
reasonable accuracy. In the following paragraphs we show
that this is true for our method through performance results.
In fact, our method can fit a database of billions of records
in the main memory of a single workstation. This is due to
the fact that we do not use the data to answer the query but
only a model of the data. In doing this, our paper proposes
a new viewpoint on the computation of DataCubes, one that
advocates the use of models of the data rather than the data

themselves for answering DataCube queries. Having said
that, the real challenge lies in how to construct a model of
the data that is good enough for our purposes. For this,
there are two important considerations that are relevant to
the problem that we are addressing:

One, the model should be anaccurate description of our
data, or at the very least of these quantities derived from
them that are of interest. In this problem the quantities are
the counts in the database of every interesting count query
that can be applied to them (i.e. queries with some mini-
mum support such as 1%; other query results can be due
to noise and errors in the data). Second, the model should
be simple enough so that using it instead of the actual data
to answer a query should not take an exorbitant amount of
time or consume an enormous amount of space, more so
perhaps than using the raw data themselves.

These two issues are conflicting, and the problem of bal-
ancing them is a central issue in the AI field of machine
learning (which concerns itself with the development of
models of data): it is always possible to describe the data
(or the derived quantities we are interested in) better, or
at least as well, with increasingly complex models. How-
ever, the cost of such models increases with complexity, in
terms of both size to store the model parameters and time
that it takes to use it for computing the relevant quantities
(the query counts in our case). In this paper we chose to
use Bayesian networks (BNs). Such models are not the
only choice possible, but we picked them because they are
a mature, broadly acceptable and well respected method of
modeling data in the machine learning community. This
acceptance and respect comes not only from their practi-
cal effectiveness, but also from their sound mathematical
foundations in probability theory, as opposed to a multi-
tude of otherad hocapproaches that exist in the literature.
The method of producing the BNs from data that we use
is one that has proven to be scientifically acceptable in the
machine learning community and good in practice [16, 23].

The remainder of the paper is organized as follows. In
section 2 we briefly review the current literature on Dat-
aCubes and the prevalent current implementation, bitmaps,
and also of Bayesian networks. In section 3 we present a
simple introduction to Bayesian networks and methods of
inducing their structure from data. In section 4 we describe
our approach, and we show some experimental results in
section 5. We conclude with a discussion of relevant issues
and directions of future research in section 6.

2 Related Work

DataCubes were introduced in [8]. They may be used, in
theory, to answer any query quickly (e.g. constant time for
a table-lookup representation). In practice however they
have proven exceedingly difficult to compute and store be-
cause of their inherently exponential nature. To solve this
problem, several approaches have been proposed. [9] sug-
gest materializing only a subset of views and propose a
principled way of selecting which ones to prefer. Their
system computes the query from those views at run time.

Cubes containing only cells of some minimum support are
suggested in [2] and a coarse-to-fine traversal is proposed
that improves speed by condensing cells of less that the
minimum support. Histogram-based approaches also ex-
ist [13], as well as approximations such as histogram com-
pression using the DCT transform [17] or wavelets [24].
Perhaps closest to our approach is [1], which uses linear
regression to model DataCubes. Bitmaps are relatively re-
cent method for efficiently computing counts from highly
compressed bitmapped information about the properties of
records in the database. They are exact techniques. Un-
like the DataCube and Bayesian networks, bitmaps do not
maintain counts, but instead perform a pass over several
bitmaps at runtime in order to answer an aggregate query
[14, 3]. Query optimizers for bitmaps also exist [25].

There has not been much work on applying Bayesian
networks to databases. An exception is [21], where possi-
ble causal relations from data are computed for purposes
of data mining. Also, [6] used Bayesian networks for loss-
less data compression applied to relatively small datasets.
Data mining research itself has been mostly focused on dis-
covering association rules from data [18, 15], which can be
viewed of as a special case of Bayesian network induction.

Bayesian network research on the other hand has flour-
ished in the last decade, spurred mostly by Pearl’s sem-
inal book [19]. [10] contains a comprehensive overview
of approaches to inference and structure induction. Re-
stricted classes of Bayesian networks such as trees have
been solved optimally [5] in the past. However, the gen-
eral problem is NP-complete [4]. There exist two general
approaches: the hill-climbing approach based on the MDL
score [16, 23], the prevalent, more practical one which is
used here, and the constraint-based approach. Constraint-
based algorithms are covered in [22].

3 Bayesian Network Overview

In this section we present some background on Bayesian
networks, emphasizing the points that relate to our current
application of decision support systems and data mining.
We also discuss methods to automatically compute their
structure from data samples (database records) taken from
a domain of interest. It should be noted that this is a diffi-
cult problem in its own right. In this paper we draw from
years of research for the most practical and widely accepted
solution for memory-resident databases, and propose a new
algorithm to attack the problem in the context of very large
databases that cannot fit in main memory.

Before we begin, we introduce some notation: we de-
note variables with capital lettersX, Y etc.) and their val-
ues with lower-case letters (x, y etc.). Sets are shown in
bold letters (U,D etc.). The symbols used throughout the
paper is shown in the table on the next page.

The attributes in the database are also referred to as
“variables” throughout the paper, since they have a one-
to-one correspondence to the variables that appear in the
Bayesian network.

Table of Symbols

D Main database

N Number of records in main
databasei.e. jDj

U Set of attributes:fX1; : : : ;Xng
n Number of attributesi.e. jUj

(x1; x2; : : : ; xn)j Tuplej in database,j = 1; : : : ;N

Di
Database subset used to construct
Bayesian networkBi

m Size of each subsetjDij ; i = 1; : : : ;K
K Number of database subsetsi.e. dN=me

Bi
Bayesian network constructed
fromDi, equal tohEi; Tii

Ei Set of edges of graph ofBi

Ti Set of probability tables ofBi

3.1 A Brief Introduction to Bayesian Networks

A Bayesian network (BN) is a graphical representation of
a probability distribution function over a set of variables
U = fX1; X2; : : : ; Xng. It consists of two parts: (a) the
directed network structure, and (b) the conditional prob-
ability tables, one foreach variable. The network struc-
ture is constrained to be acyclic. Undirected cycles are al-
lowed i.e. cycles along which not all edges are pointed in
the same way. Such structures represent alternative paths
of influence between variables. The variables are typically
discrete, although BNs with continuous variables are also
possible.

As an example, a simple Bayesian network is shown in
figure 1. It depicts three boolean variables,A (“home alarm
goes off”),B (“burglar enters the house”) andC (“earth-
quake occurs”). In this paper we will assume that all vari-
ables are binary, although this is not necessary and does
not affect the generality of our approach. In the binary
case, each conditional probability table records the proba-
bilities of that variable takes the value “true” foreach possi-
ble combination of values (“true” or “false”) of its parents.
The meaning of the BN in figure 1 is thatA depends onB
andA depends onC butB andC are independent.

In general, a probability distribution can be specified
with a set of numbers whose size is exponential injUj ;
namely the entries in the joint probability distribution table.
One can represent such a table by a completely connected
BN in general, without any great benefit. However, when
independencies exist in the domain, using a BN instead of
the full joint probability table results in two major benefits:

1. Storage savings. These may be significant to the
point where infeasibly large domains may be repre-
sentable, provided that they exhibit a sufficient num-
ber of independencies among the variables of the do-
main. The savings are typically exponential because
conditional independencies are common in practice.

2. Clear and intuitive representation of independen-
cies. Given the graphical representation of a BN, it is
easy to determine the variables on which a quantity of
interest depends on statistically and which are irrele-
vant and under what conditions.

Edge omissions indicate the existence of conditional in-

P (A | B C)

P (A | B C)

A B CP (|)

P (A | B C)

0.2

0.6

0.4

0.1

B C

A

P B)(0.8 P (C) 0.25

"burglar" "earthquake"

"alarm"

(a) Bayesian network

B CA

B CA

B CA

B CA

A B C

A B C

A B C

A B C

40

15

20

360

160

240

30

135

200

800B

B

750

250C

C

A 565

435A

1000

A

A B

B

B

A

A

B

C

CA

A

C

C

B

B

B C

B

C

C

C 60

375

190

375

A

A

35

400

400

165

200

600

50

150

(b) Corresponding DataCube counts
Figure 1: (a) Example Bayesian network and (b) Dat-
aCube constructed from a database of 1,000 examples. The
Bayesian network consumes less space in this example be-
causeB andC are independent.

dependencies among variables in the domain. As men-
tioned above, if all variables in the domain statistically de-
pend on all others, then there is no storage advantage to
using a BN, since the storage required for the specification
of the network is exponential injUj : Fortunately, in prac-
tice this is not the norm, and in fact the most interesting
domains for data mining are those that exhibit a consider-
able number of independencies.

In order to illustrate the storage space savings in this
domain, we can look at figure 1(b). There we see the com-
plete DataCube of the domain using a database that con-
tains 1,000 examples. The numbers that have to be stored
in the DataCube are 22 essential counters. The numbers
necessary in the corresponding BN are 6 probability en-
tries. We see that for this particular example this is certainly
not a significant improvement, especially considering the
overhead of specifying the parents of eachnode and using
floating point numbers for the probability entries. How-
ever, for large networks with tens or hundreds of variables,
the savings increases exponentially, if the corresponding
network is sparse. Forn attributes, the DataCube has to
store2n tables of counts, witheach table having size equal
to the product of the cardinalities of the attributes they in-
clude (minus one). No full joint table for hundreds of vari-
ables containing either probabilities or counts could ever
be stored for example using today’s technology. However,
such a domain can be succinctly represented by its joint

probability distribution by taking intoaccount the indepen-
dencies that exist and using its Bayesian network instead.
Such is the approach that we propose in this paper.

The independencies expressed by a Bayesian network
can be easily read from its structure. In figure 1 for exam-
ple,B (“burglar”) andC (“earthquake”) are independent in
the absence of any knowledge aboutA (“alarm”).1 If they
were not, then either edgeB ! C orC ! B would have
to have been included in the network.

3.2 Computation of the Bayesian Network Structure

The discussion of the previous section serves to estab-
lish the usefulness of modeling data domains using BNs.
However, BNs are not as widely used as more traditional
methods such as bitmaps for example, especially within
the database community. We argue that the main reason
for this, apart from the fact that the database and ma-
chine learning communities are mostly separate, lies in
the computational difficulty in inducing models from data.
Bayesian network induction from data is not an exception.
However, we argue in this paper that the benefits are great,
especially in domains such as decision support systems and
data mining where they are a natural fit. In this paper we
present an algorithm for computing and querying BNs con-
structed from very large databases that cannot fit in main
memory, solving one of the main obstacles in adopting such
a promising approach to many important problems in the
database community.

The main difficulty in modeling with BNs lies in de-
termining the structure of the graph. Once the graphical
structure has been determined, the computation of the con-
ditional probability tables is simple: a simple counting pro-
cedure of the records in the database that correspond to
each entry would achieve a maximum likelihood estimate
of the true table entries.

The problem of structure discovery from data is NP-
complete in its generality [4]. In practice, there exist sev-
eral potential solutions. One is to use a domain expert to
specify the structure, but that is a slow and error-prone pro-
cess, especially in large domains with many variables. In
such domains, like market basket analysis, such a speci-
fication by an expert may be impossible or at least ques-
tionable. Therefore there is great benefit in both speed and
reliability in automating this procedure as much as pos-
sible. Currently the most widely accepted method of BN
structure discovery from data is described in [16, 23]. The
method works by using heuristic search in the space of legal
structures (i.e. structures without directed cycles) attempt-
ing to optimize an objective function, frequently referred
to asscore. The score that is frequently used in practice
is the Minimum Description Length (MDL) of the data by
the BN. We note here that this score is theoretically derived
and not arbitrary. The heuristic search procedure frequently

1It is less intuitive that this structure implies thatB andC become
dependent if the value ofA is known. Although this makes a lot of sense,
it is not within the scope of this paper and we will not discuss it further.
For more details, please see [22].

used is greedy hill-climbing,whereeach step consists of an
addition, deletion or reversal of an edge in the current net-
work that is under consideration during search. The search
procedure can be initialized in a variety of ways, such as
an empty, a completely connected or a randomly created
initial network. The direct objective of this method is to
produce a network that describes the data well so that its
predictions (probability estimates) of the data records are
as accurate as possible without at the same time produc-
ing a overly complex network (that is consuming a large
amount of storage space).

The algorithm outlined in the previous paragraph is
the one we used in this paper. It is implemented within
theBuildFromMemoryUsingData(D) routine that is
shown below, adapted from [16, 23].

ProcedureB = BuildFromMemoryUsingData(D)

1. E ;
2. T ProbabilityTables(E;D)
3. B hE;Ti
4. score �1
5. do:

(a) maxscore score
(b) for each attribute pair(X;Y) do
(c) for eachE0 2 fE [fX ! Y g ;

E� fX ! Y g ;
E� fX ! Y g [fY ! Xgg

(d) T
0 ProbabilityTables(E0 ;D)

(e) B0 hE0;T0i
(f) newscore ScoreFromData(B0;D))
(g) if newscore > score then

B B0

score newscore
6. whilescore > maxscore
7. ReturnB

The procedureProbabilityTables() is typically a
straightforward maximum-likelihood estimation of the
probability entries from the database, which consists of
counting the number of database records that fall into each
table entry of each probability table in the BN.

The score that is used and the probability table com-
putation are central points in our approach since they are
the only places in any of our algorithms (preprocessing or
querying) that the databaseD is accessed. The MDL score,
mentioned above, is defined as follows:

ScoreFromData(B;D) = �
NX
i=1

pi log pi�penalty(B;N)

pi = Pr((x1; x2; : : : ; xn)i; j B)

=
nY
j=1

Pr(Xj = (xj)i j Paj ;D)

penalty(B;N) = (jTij =2) logN

wherePaj is the set of parents of variableXj in B, the
conditional probabilityPr(Xj = (xj)i j Paj;D) is com-
puted by simple counting within the databaseD, andjTij

is the number of necessary entries in all tables ofBi (the
number of parameters of the modelBi). We see that the
score has two components: one that describes how well
the networkB describes the data (�

P
pi log pi) and one

that penalizesB for being too large (see discussion in sec-
tion 1 and [16, 23] for details). In section 4.2.1 we will
describe how to compute this score, and in particular the
first term, from a set of Bayesian networks that represent
our database, instead of the records themselves. This is
necessary when merging BNs representing portions ofD

into a single BN, withoutaccessing the data (see below).
In section 4.2.1 we also show how to implement

theProbabilityTables() procedure withoutaccessing the
database.

3.3 Using the BN for Probability Estimation: BN In-
ference

After generating a single BN for our database, we can use
it to answer count queries. In order to do that, we need to
estimate the probability (expected frequency) of the query
using the BN, and multiply it with the number of records in
the database (see section 4.2.2).We do not need to access
the databasefor this.

The computation of this probabilitymay be involved and
in general cannot be simply read off the probabilities in the
tables of the network. For example consider two variables
X andY that are very far apart but connected by a directed
path. The probability ofX = 0 andY = 1 without knowl-
edge of the value of any other variable in the network is not
a simple function of the entries in the conditional proba-
bility tables of the BN. Rather, it requires a process called
probabilistic inference.2

There exist several algorithms for inference. Two kinds
of methods exist: approximate and exact. Approximate
ones [11, 7, 20] are sample-based, and generate an artifi-
cial database of samples during the process of estimation
(the generated samples are discarded immediately and only
the count of those than matched the query is kept). Their
main disadvantage is that they are slow and may need a
great number of samples to estimate the probability of the
query to a sufficient degree. For exact inference, the most
popular method is the join-tree algorithm. The details of
the algorithm are beyond the scope of this paper, please
see [19, 12]. Its running time depends on the number of
variables and the complexity of the BN, but in practice for
typical BNs of a few tens of variables it runs in under a
second. This is the method we use in this paper, contained
in theEstimateProbability() procedure that appears in
section 4.2.2.

4 Proposed Method

4.1 Problem Description

The problem we are addressing is the following:
2Which is a generalization of logical inference—given a BN, it com-

putes the probability of the truth of a compound predicate (query) rather
than a true/false value.

Problem: we are given a database that does not
fit in memory and a procedure
BuildFromMemoryUsingData(D) that is
able to generate a BN from a memory-resident
database.
Desired Solution: a representation that can fit
in memory and a procedureEstimateCount()
that uses it to compute the approximate answer to
count queries that may specify an arbitrary num-
ber of attribute values.

The naive DataCube solution is to preprocess and store the
counts for all possible such queries (see example in fig-
ure 1). However, this is infeasible for almost any realis-
tic domain. Compressed bitmaps are one way of answer-
ing such queries exactly. However they may exceed the
main memory size for very large databases. Also, since
their perfect accuracy is not needed in the kind of appli-
cations we are addressing in this paper, it is reasonable
to trade-off a small amount ofaccuracy in exchange for
a much smaller representation that can fit in main memory,
which in turn translates to a significant benefit in query per-
formance. Sampling is one approximate technique that is
however linear time(O(N)) in the database size, as are
bitmaps.

In this paper we propose to represent the record counts
in the database with a single Bayesian network created
from the entire databaseD. Our method isconstant time
(O(1)) in the size of the database. It consists of merging a
number of BNs,Bi, each constructed from a partition Di

of the entire database into a single one,B. EachBi is cre-
ated directly fromDi if it fits into main memory, or else by
recursively splitting it, creating a network fromeach piece,
and combining them in the same fashion that we combine
theBi ’s intoB. Each networkBi represents the joint prob-
ability distribution of partitionDi. Since theBi’s are typi-
cally far smaller than the corresponding database partition
Di, they can have the benefit of (1) simultaneously fitting
into main memory and (2) tremendously speeding up the
generation of the single networkB since no disk access is
required (we do not access the database during merging or
at query time).

The answer to a query is computed by usingB to com-
pute the probability (support) of the query and multiplying
it with with the number of records inD (denoted asN in
the paper).

4.2 Proposed Algorithms

Before we present the algorithms, some notation (also see
our table of symbols): the entire database as a set of
records isD, and we denote each partition that we use
to construct a Bayesian networkBi from asDi. There-
fore

SN

i=1Di = D andDi

T
Dj = ;, for i 6= j. We

want each partitionDi to be large enough so as to be rep-
resentative, but small enough so that it fits into the main
memory and satisfies the time constraints for building the
corresponding Bayesian network. In the next two sections
we describe the algorithm to merge a number of Bayesian

networks, each constructed from a database partition us-
ing theBuildFromMemoryUsingData(Di) procedure,
and the algorithm to compute the count that corresponds to
a user query.

4.2.1 Algorithm for preprocessing the database:
building and merging the BNs

The proposed procedure to build Bayesian networkB from
data stored on disk is as shown in Figure 2. Inside the
procedure, theBuildFromMemoryUsingData() proce-
dure contains the implementation of the algorithm for find-
ing the structure of a Bayesian network from data that was
described in section 3.2. We note that the generation of
eachBi can be done in parallel.

Having produced the networksBi; i = 1; : : : ;K, we
combine them into a single one,B, using the following pro-
cedure:

ProcedureB = RecursivelyMerge(B1 ; : : : ; BK) :

If B1; B2; : : : ; BK simultaneously fit
in main memory then:

B = BuildFromMemoryUsingBNs(B1 ; : : : ; BK)
else:
~B1 = RecursivelyMerge(B1 ; : : : ; BbK

2
c):

~B2 = RecursivelyMerge(Bb K
2
c+1; : : :BK):

B = RecursivelyMerge(~B1 ; ~B2):

The BuildFromMemoryUsingBNs(B1 ; : : : ; BK)
procedure is the only remaining one that needs
to be defined. It is exactly the same as the
BuildFromMemoryUsingData(D) one (see sec-
tion 3.2), with the exception that the score is now
computed from the BNs (ScoreFromBNs() proce-
dure) that are its arguments instead of the database
(ScoreFromData() procedure):

ScoreFromBNs(~B;

representingDz }| {
B1; : : : ; BK) =P

t2Tables(~B) logPr(t j
~B)

�
h
(1=K)

PK

k=1EstimateProbability(t; Bk)
i

� penalty(~B;N):

In the above formula the outer sum goes over all table en-
triest in ~B. Each such table entry corresponds to a configu-
ration of variable assignments (for the node and the parents
of the node that it is attached to) and “don’t cares” (for the
remaining variables in the domain)—see figure 1 for exam-
ple. The inner equally-weighted sum is simply an average
over all networksBi; i = 1; : : : ;K of the probability of
that configuration.Pr(t j ~B) is the probability of configu-
rationt in ~B, and can be read directly off the corresponding
table entry of~B.

The computation of the probability tables by the
ProbabilityTables() procedure is also done from theBi’s

without accessing the database; it is making use of the
EstimateProbability() procedure:

8t 2 Tables(~B)

Pr(t) = (1=K)
PK

k=1EstimateProbability(t; Bk)

Since the database access isO(N) during the
BuildFromDisk(D) procedure, the number networks at
the base of the recursion isK = N=m = O(N), and since
accessing a BN does not depend on the database size, it is
easy to make the following observation:

Observation: the entireBuildFromDisk() al-
gorithm isO(N) time (linear in the size of the
original database) and thus scalable. Moreover,
it is parallelizable, with a straightforward paral-
lel implementation.

This observation is supported by the experimental results
(section 5, figure 7).

4.2.2 Algorithm for answering a count query from a
Bayesian network

To estimate approximate counts for queryQ from
the Bayesian networkB that is is the output of
the BuildFromDisk() procedure, we use the
EstimateCount() procedure, shown below:

ProcedureN̂ = EstimateCount(Q;B) :

N̂ = N � EstimateProbability(Q;B):

The procedureEstimateProbability() can be any in-
ference method developed in the Bayesian network liter-
ature. In our implementation we use the join-tree algo-
rithm, which is a well-known exact algorithm for comput-
ing the probability of the query.EstimateProbability()
returns the probability of queryQ according to the prob-
ability distribution represented byB. Since B is a
representative of theN records contained inD, N �
EstimateProbability(Q;B) is an estimate of the number
of records withinD for whichQ evaluates to “true.”

Since theEstimateCount(Q;B) algorithm does not
access the database,under our assumptions we can make
the following observation.

Observation: theEstimateCount(Q;B) pro-
cedure isO(1) time in the size of the database.

This observation is also supported by our experimental re-
sults (section 5, figure 5).

5 Experimental Results
We experimentally tested our approach on real and syn-
thetic data. The real data consists of customer information
data, obtained from a large anonymous retailer.3 It con-
sists of over 3 million customer transactions (3,261,809)

3For confidentiality reasons we cannot reveal the name the retailer nor
the products involved.

Procedure(B1; B2; : : : ; BK) = BuildFromDisk(D) :

1. Partition the databaseD intoN equal partitionsDi; i = 1; : : : ;K so that
each fits in main memory. Letm = jDij ; for all i.

2. For eachi = 1; : : : ;K do the following:
(a) ReadDi into memory.
(b) Build Bayesian netBi fromDi: Bi = BuildFromMemoryUsingData(Di).

3. Merge the networksBi into a single one:B = RecursivelyMerge(B1 ; B2; : : : ; BK).

Figure 2: Algorithm for preprocessing the database.

containing information on whether the customer purchased
any of the 20 most popular items in the store. The data rep-
resents one week of activity and its concise representation
occupies around 8 MB. This size coincides with the size
of its uncompressed bitmap. Although this database is not
large in size, we use it in order to obtain performance re-
sults on the compression ratio we can obtain on real-world
data.

In order to assess the scalability of our system, we
needed larger sets that were not available at the time of
our evaluation. For this reason we used synthetic data for
our scalability study. The synthetic data we used were pro-
duced by a program available from IBM’s QUEST site.4

The generation program produces a specified number of
randomly generated association rules involving a number
of attributes (their number is also randomly distributed
around a user-specified mean), and then generates market-
basket data whose statistical behavior conforms to those
rules. We produced a database of approximately 100 thou-
sand and 1, 10, 100 and 196 million records from a store
inventory of 5,000 items (products) using 10,000 customer
patterns having an average length of 4. (Each customer
pattern corresponds to an “association rule.”) The average
transaction length was 10 items. As in our real database,
we used the 20 most frequently used items.

From both real and synthetic databases we then con-
structed a number of Bayesian networks from that data
in order to model their joint probability distribution. We
split the data randomly in a number of subsetsDi, each
containing at mostm = 100; 000 records. We then used
each subsetDi to construct the corresponding Bayesian
networkBi.

Our experiments evaluate our approach with respect to
the following dimensions:

1. Query count error.
2. Space to store models and effective compression of

the database.
3. Time to answer a query.
4. Build time and scalability.
5. Visualization of the dependencies in the database.

Because the number of possible queries grows exponen-
tially with the number of variables that are allowed to be
involved in it, we were not able to perform all possible
queries of any sizeable length. Instead we generated 10,000

4http://www.almaden.ibm.com/cs/quest/

1 KB

25 KB

250 KB

2.5 MB

25 MB

250 MB
500 MB

100,000 1,000,000 10,000,000 100,000,000

C
om

pr
es

se
d

si
ze

Database size (records)

Size of database after compression (logscale, both axes)

bitmaps
bitmaps compressed
sampling 10% compressed
NetCube

Figure 4: Comparison of the size of the compressed
database size using bitmaps, sampling by 10% and
NetCubes. The difference betweengzip and bzip2 is
small (see table 3), so only the best of the two (bzip2) is
used here.

random queries of length up to 5 variables and used them to
assess the query error. Each query may test for the presence
or absenceof any particular item in a transaction, from the
20 most frequently purchased items. For example one such
query may be “what is the number of transactions in the
database in which a customer purchased milk and orange
juice but not bread?”

Compression

In this set of experiments we compare the size of our rep-
resentation to that of compressed bitmaps and sampling by
10%, also compressed. Compressing the bitmaps of each
of our databases produced approximate 7:1 compression
ratio for the synthetic Quest databases and 3.8:1 for the
real-world data. Compressing the sampled database pre-
dictably produces linear compression with respect to com-
pressed bitmaps. In stark contrast, the NetCube approach
typically produced compression ratios of 500:1 or more for
synthetic data and 1800:1 or more for real data. The com-
pression ratios and BN sizes are shown in table 3 and are
also plotted in figure 4. The price for such a high compres-
sion performance is the fact that it is lossy. However, if
the application can tolerate errors of the order of 5%, then
it may be the method of choice for the data analyst, since
sampling by 10% achieves much lower compression ratios

Database Records Bitmap size Compression ratios (before:after)
(bytes) gzip bzip2 Sampling NetCube

Quest 100,000 250,000 7:1 7.8:1 72:1 581:1 (430 bytes)
1,000,000 2,500,000 7.1:1 7.9:1 77:1 5814:1 (430 bytes)

10,000,000 25,000,000 7.1:1 7.9:1 79:1 48170:1 (519 bytes)
100,000,000 250,000,000 7.1:1 8:1 79:1 414594:1(603 bytes)
196,896,433 492,241,100 7.1:1 8:1 80:1 610721:1(806 bytes)

Anonymous retailer 3,261,809 8,154,540 3.8:1 3.8:1 37:1 1889:1 (4317 bytes)

Figure 3: Comparison of compression ratios for various databases used for the experiments. The first rows correspond
to the Quest-generated databases while the last one corresponds to real data obtained from an anonymous retailer. The
sampling figures refer to 10% sampling and afterbzip2 compression. For the NetCube, the trend of compression ratios
that are increasing with database size is due to increasing benefits from using an approximately fixed-sized probabilistic
model of a domain in place of data drawn from it.

with similar error; moreover, the query time for sampling
is linear in the size of the database while NetCube queries
are approximately constant.

Note that the network produced from real data, corre-
sponding to one week of transactions, occupies only 4 KB.
If are allowed to make the conservative assumption that the
network from any given week is 10 times this one (40 KB),
and the assumption that doubling the database size dou-
bles the size of the resulting network (for which our ex-
periments have no support of, and in fact indicate that it
might not grow at that rate but a much smaller one), then
our approach makes it possible to fit20 billion transactions
in the memory of a regular workstation with 256 MB of
main memory, corresponding tomore than 100 years of
transactionsat this rate, effectively spanning the lifetime
of most businesses.

Query time

We used a typical workstation with 256 MB of physical
memory for our query time experiments. Running our set
of queries on the bitmaps we noticed a slowdown for the
larger Quest databases whose bitmap cannot fit into main
memory. This happens because the bitmap system had to
use part of the virtual memory system which resides on the
disk. An important observation we can make here is that al-
though bitmap compression will temporarily alleviate this
problem, a database of more than 7 times our largest one
would again force the bitmap method into the same thrash-
ing behavior (note the compression ratio 7:1 for bitmaps in
table 3). A database of such a problematic size would not
be atypical in today’s real-world problems.

Even without the thrashing problem of bitmaps how-
ever, we see that the query times for sampling increase (lin-
early) with database size, as expected. This also shows in
figure 5. In contrast, using a set of BNs to answer queries is
approximately constant. That proves that our method can
be an invaluable tool that remains practical for extremely
large problems.

Query error

In figure 6 we show our assessment of the query error using
our set of 10,000 random queries containing up to 5 vari-
ables. Because relative error becomes artificially large for

0

500

1000

1500

2000

2500

3000

100,000 1,000,000 10,000,000 100,000,000

S
ec

on
ds

Database size (records)

Query times for 10,000 random queries (logscale on DB size)

bitmaps
NetCube

Sampling 10%

Figure 5: The query time for bitmaps increases linearly
or superlinearly (thrashing) with the database size. Here
10,000 queries were run on a workstation with 256 MB of
main memory. The NetCube query time is constant and
under a second per query due to its approximately constant
representation size.

queries of very little support even when the count differ-
ence is not very large, we used queries that had at support
1% or more. Apart from artificially weighing the error rate,
queries of very small support are arguably “uninteresting”
and can also be also due to spurious factors. Such treat-
ment is consistent with other approaches in the literature
(e.g. [2]).

In figure 6 we can see that the average relative error of
NetCubes is very small, well under 5%. Those queries that
happen to have larger than 5% error are typically those with
small support, in the range of 1%. We also see that only
sampling at 10% has average error levels comparable to
NetCubes. That is the reason why in our evaluation we
display figures for 10% sampling only.

Build time

As mentioned above, we generate a BN for each database
piece of 100,000 records,i.e. m = 100; 000 in our im-
plementation. As we can see in figure 7, this makes our
method linear on the database size, and thus scalable. Each
database piece can be processed in parallel, and the merg-

0

5

10

15

20

25

30

35

40

45

50

Sampling 0.1% Sampling 1% Sampling 10% NetCube

E
rr

or
 (

%
)

Errors for different methods

Figure 6: Average relative error rate for 10,000 random
queries of up to 5 variables, having at least support of 1%
of the size of the original database. The queries are done on
the largest of the QUEST databases, containing 193 million
records.

ing of the BNs can also be done in parallel across the same
recursion depth. Thus our method is parallelizable in a
straightforward manner. Parallelization over a cluster of
workstations scales linearly, making the generation of a
database of 200 million transactions a matter of hours on
a modest cluster of 10 workstations, as shown in figure 7.

We note here that our attempts to cre-
ate a single BN by using the straightforward
BuildFromMemoryUsingData() algorithm on the
entire database were unsuccessful for very large problems
of size 100 million records or more; the algorithmdid not
terminate while producing the network after 4 days and
had to be manually aborted. This clearly underscores
the usefulness and indeed the absolute necessity of using
our recursive combination procedure (BuildFromDisk()
procedure) for any kind of practical application that
involves very large databases.

Visualization

In figure 8 we show a BN produced from real data corre-
sponding to a week of activity of the 20 most frequently
purchased items at a large anonymous retailer. The advan-
tage of the graphical representation of the BN that our ap-
proach generates is that it can be used to clearly depict vari-
ables that are the most influential to the ones that the analyst
might be examining. Moreover, the conditional probability
tables will give our analyst the exact nature and strength of
these influences. Therefore our approach fits very well in
the data mining procedure and can save the analyst large
amounts of time that would be otherwise spent on explo-
ration, drill-down analysis etc. of the customer database.

6 Discussion and Extensions

In this paper we use only binary variables. However, the
concepts and implementation easily extend to multi-valued
discrete data easily. NetCubes can also handle continu-

0

20

40

60

80

100

120

140

160

10,000,000 100,000,000 200,000,000

G
en

er
at

io
n

tim
e

(h
ou

rs
)

Database size (records)

NetCube generation time vs database size

Single Workstation
Cluster of 10 Workstations

Figure 7: Build time for the set of multiple BNs increases
linearly with the number of records in the database. More-
over, parallelization over a number of workstation scales
the build time down linearly. Each partition of the database
contains 100,000 records and can be processed indepen-
dently of others.

ous variables after bucketizatione.g. “salary” could be-
come a discrete variable taking values “low” (� 10; 000),
“medium” (� 10; 000 and � 100; 000) or “high” (�
100; 000).

A subject of future research is the extension of the cur-
rent system to the estimation of additional aggregate func-
tions of the DataCube operator, in addition to counts. For
example, knowing the probability distribution of a multi-
valued attribute enables us to quickly estimate its aver-
age value. Other quantities such the minimum and maxi-
mum values can be read directly from representation of the
Bayesian network.

The approach presented here lends itself easily to non-
stationary distributions. Assume for example that new data
are incorporated in the database periodically,e.g. a super-
market may append transaction data to the database at the
end of each day. A data analyst may be interested in cer-
tain quantities on a per-day basis. In that case the solution
is easy: we can compute one Bayesian network for each
particular day only. That network can answer queries for
that day. More often it is more useful to examine the be-
havior over broader time periods. The same approach will
work for that purpose: a query concerning several days, not
necessarily consecutive, can be made to the corresponding
(single-day) networks covering the time period of interest.
The resulting counts can then be simply summed to obtain
a count estimate for the entire time period.

7 Conclusions—Contributions

In this paper we propose aparadigm shiftin the approx-
imate computation of count DataCubes: we propose to
use a model of the data instead of the data themselves.
Our approach, NetCube, uses the proven technology of
Bayesian networks to obtain the key advantage of large
storage savings in situations where only approximate an-

PROD_1

PROD_4

PROD_2

PROD_3

PROD_36

PROD_7

PROD_25

PROD_11

PROD_13

PROD_12

PROD_15

PROD_9

PROD_33

PROD_24

PROD_29

PROD_47

PROD_6

PROD_14

PROD_10

PROD_16

Figure 8: Bayesian network produced from real data ob-
tained from a large anonymous retailer. The database con-
tains 3,261,809 records corresponding to a week of cus-
tomer transactions on the 20 most frequently purchased
items. The network occupies 4317 bytes on disk. For con-
fidentiality reasons, we have anonymized the names of the
products that are displayed in the graph.

swers are needed. This makes feasible the computation of
DataCubes for databases that were previously problematic
using state-of-the-art methods such as bitmaps.

A size-error comparison of our NetCube method versus
competing methods is shown in figure 9. In summary, the
advantages of the method are:
� Small space: the resulting BN takes up a tiny frac-

tion of the space that the original data that are queried
upon. We producedgreater than 1800:1 compres-
sion ratios on real data.

� Scalability: we can handle arbitrarily large databases;
the method’s preprocessing time scaleslinearly with
the size of the database. Moreover, it is parallelizable
with a straightforward parallel implementation.

� Fast query time: the method can answer arbitrary
queries in a short time (typically under a second). The

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

0 2 4 6 8 10 12 14

S
iz

e

Error (%)

Average error vs size (logscale on size)

Sampling 1%

Sampling 0.1%

NetCube

Bitmaps

Sampling 10%

Figure 9: Comparison of NetCubes with bitmaps and sam-
pling: representation size versus average query error.

query time isconstant with respect to the database
size.

� Good accuracy: we obtained less than 5% average rel-
ative error on a large number of queries of support of
1% or more.

� Suitability to data mining: the representation that is
used by the algorithm, namely Bayesian networks, are
an excellent method for visually eliciting the most rel-
evant causes of a quantity of interest and are a natural
method to support data mining.

References
[1] Daniel Barbará. Quasi-cubes: A space-efficient way to support approximate

multidimensional databases. Technical report, ISE Dept., George Mason
University, 1998.

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and Ice-
berg CUBEs. InProceedings of the 25th VLDB Conference, pages 359–370,
1999.

[3] C.-Y. Chan and Y. Ioannidis. Hierarchical cubes for range-sum queries. In
Proceedings of the 25th VLDB Conference, pages 675–686, 1999.

[4] D. M. Chickering. Learning bayesian networks is NP-complete. InProceed-
ings of AI and Statistics, 1995.

[5] C. K. Chow and C. N. Liu. Approximating discrete probability distributions
with dependence trees.IEEE Transactions on Information Theory, 14:462–
467, 1968.

[6] S. Davies and A. Moore. Bayesian networks for lossless dataset compres-
sion. InConference on Knowledge Discovery in Databases (KDD), 1999.

[7] R. Fung and K.C. Chang. Weighting and integrating evidence for stochastic
simulation in Bayesian networks. In L.N. Kanal, T.S. Levitt, and J.F. Lem-
mer, editors,Uncertainty in Artificial Intelligence. Elsevier Science Publish-
ers B.V. (North-Holland),1989.

[8] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A rela-
tional aggregation operator generalizing group-by, cross-tab, and sub-totals.
In International Conference on Data Engineering, 1996.

[9] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes
efficiently. InSIGMOD, pages 205–216, 1996.

[10] D. Heckerman. A tutorial on learning bayesian networks. Technical Re-
port MSR-TR-95-06, Microsoft Research, Advanced Technology Division,
March 1995.

[11] M. Henrion. Propagation of uncertainty by probabilistic logic sampling in
Bayes’ networks. In J. F. Lemmer and L. N. Kanal, editors,Uncertainty in
Artificial Intelligence 2. Elsevier Science Publishers B.V. (North-Holland),
1988.

[12] C. Huang and A. Darwiche. Inference in belief networks: A procedural
guide.International Journal of Approximate Reasoning, 11:1–158,1994.

[13] Y. Ioannidis and V. Poosala. Histogram-based approximation of set-valued
query answers. InProceedings of the 25th VLDB Conference, pages 174–
185, 1999.

[14] T. Johnson. Performance measurements of compressed bitmap indices. In
Proceedings of the 25th VLDB Conference, pages 278–289, 1999.

[15] R.J. Bayardo Jr. and R. Agrawal. Mining the most interesting rules. In
Proc. of the Fifth ACM SIGKDD International conference on Knowledge
and Discovery, pages 145–154,1999.

[16] W. Lam and F. Bacchus. Learning bayesian belief networks: an approach
based on the MDL principle.Computational Intelligence, 10:269–293,1994.

[17] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional selectivity esti-
mation using compressed histogram information. InSIGMOD, pages 205–
214, 1999.

[18] N. Megiddo and R. Srikant. Discovering predictive association rules. In
Proc. of the 4th Int’l Conference on Knowledge Discovery in Databases and
Data Mining, New York, USA, August 1998.

[19] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, Revised Second Printing, 1997.

[20] R.D. Schachter and M.A. Peot. Simulation approaches to general probabilis-
tic inference on belief networks. In L.N. Kanal, T.S. Levitt, and J.F. Lem-
mer, editors,Uncertainty in Artificial Intelligence. Elsevier Science Publish-
ers B.V. (North-Holland),1989.

[21] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques
for mining causal structures. InProceedings of the 24th VLDB Conference,
pages 594–605, 1998.

[22] P. Spirtes, G. Glymour, and R. Scheines.Causation, Prediction, and Search.
Springer-Verlag,New York, 1993.

[23] J. Suzuki. Learning Bayesian belief networks based on the MDL principle:
an efficient algorithm using the branch and bound technique. InProceedings
of the InternationalConference on Machine Learning, Bally, Italy, 1996.

[24] J. Vitter and M. Wang. Approximate computation of multidimensional ag-
gregates of sparse data using wavelets. InSIGMOD, pages 913–204, 1999.

[25] M.-C. Wu. Query optimization for selections using bitmaps. InProceedings
of the 25th VLDB Conference, pages 227–238,1999.

