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Abstract minutes preprocessing time per 100,000 records
and less than a second query time), achieve ex-
We propose an novel method of computing cellent compression (at least 1800:1 compression
and storing DataCubes. Our idea is to use ratios on real data) and have low reconstruction
Bayesian Networks, which can generate approx- error (less than 5% on average). Moreover, our
imate counts for any query combination of at- method naturally allows for visualization and data
tribute values and “don’t cares.” A Bayesian net- mining, at no extra cost.

work represents the underlying joint probability
distribution of the data that were used to gener- 1 The Problem
ate it. By means of such a network the proposed
method, NetCube, exploits correlations among at-
tributes. Our proposed preprocessing algorithm
scales linearly on the size of the database, and
is thus scalable; it is also parallelizable with a
straightforward parallel implementation. More-
over, we give an algorithm to estimate counts
of arbitrary queries that is fastgnstanton the
database size). Experimental results show that
NetCubes have fast generation and use (a few

The problem of computing counts of records with desired
characteristics from a database is a very common one in
the area of decision support systems and data mining. A
typical scenario is as follows: a customer analyst is inter-
ested in discovering groups of customers that exhibit an in-
teresting or unusual behavior that might lead to possibly
profitable insights into the company’s customer behavior.
In other words, a company wants to be ablentodelits
customer base, and the better it is able to do that, the more
insights it can obtain from the model and more profitable it
* This material is based upon work supported by the National Sciencd1@S the opportunity to be. In this scenario an analyst would,
Foundation under Grants No. DMS-9873442, 11S-9817496, 11S-9910606through an interactive query process, request count infor-
][|s-99i%876, lesR972037;1,Pus_-0082148, ||s-0d113C089, and Ey trrlfe g’oedmation from the database, possibly drilling-down in inter-
e e e Froecis Agercyunder Contacts No NO900bsting subsets of the database of customer information. I
donations from Intel. Any opinions, findings, and conclusions or recom-IS Obvious that it is very important that the results to these
mendations expressed in this material are those of the author(s) and do nqueries be returned quickly, because that will greatly fa-
necessarily reflect the views of the National Science Foundation, DARPAgj|itate the process of discovery. It is also important that
or other funding parties. . . ._they are accurate up to a reasonable degreeowadh it is
tThis research is sponsored by the National Science Foundatloﬁ y - p 9
(CAREER grant number 11S-9876136 and regular grant number 11S-NOt imperative that they are exact. The analyst wants an
9877033), and by DARPA-ATO via TACOM (contract number DAAEQ7- approximate figure of the result of the query and getting it
98-C-L032), which is gratefully acknowledged. The views and conclu- correct down to the last digit is not necessary.
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interpreted as necessarily representing official policies or endorsements, Our, So!utlon to the prObIem is motivated by thgse ob-
either expressed or implied, of the United States Government or any oB€rvations.e. that we need great speed coupled with only
the sponsoring intutions. reasonable accuracy. In the following paragraphs we show
Permission to copy without fee all or part of this material is granted pro- that this is true for our method through performance results.
vided that the copies are not made or distributed for direct commercial|n fact, our method can fit a database of billions of records
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themselves for answering DataCube queries. Having sai@ubes containing only cells of some minimum support are
that, the real challenge lies in how to construct a model osuggested in [2] and a coarse-to-fine traversal is proposed
the data that is good enough for our purposes. For thighat improves speed by condensing cells of less that the
there are two important considerations that are relevant tsminimum support. Histogram-based approaches also ex-
the problem that we are addressing: ist [13], as well as approximations such as histogram com-

One, the model should be acurate description of our pression using the DCT transform [17] or wavelets [24].
data, or at the very least of these quantities derived fronfPerhaps closest to our approach is [1], which uses linear
them that are of interest. In this problem the quantities aréegression to model DataCubes. Bitmaps are relatively re-
the counts in the database of every interesting count quergent method for efficiently computing counts from highly
that can be applied to themd. queries with some mini- compressed bitmapped information about the properties of
mum support such as 1%; other query results can be duecords in the database. They are exact techniques. Un-
to noise and errors in the data). Second, the model shoulike the DataCube and Bayesian networks, bitmaps do not
be simple enough so that using it instead of the actual dataaintain counts, but instead perform a pass over several
to answer a query should not take an exorbitant amount dfitmaps at runtime in order to answer an aggregate query
time or consume an enormous amount odicgy more so [14, 3]. Query optimizers for bitmaps also exist [25].
perhaps than using the raw data themselves. There has not been much work on applying Bayesian

These two issues are conflicting, and the problem of balnetworks to databases. An exception is [21], where possi-
ancing them is a central issue in the Al field of machineble causal relations from data are computed for purposes
learning (which concerns itself with the development of of data mining. Also, [6] used Bayesian networks for loss-
models of data): it is always possible to describe the datéess data compression applied to relatively small datasets.
(or the derived quantities we are interested in) better, oData mining research itself has been mostly focused on dis-
at least as well, with increasingly complex models. How-covering association rules from data [18, 15], which can be
ever, the cost of such models increases with complexity, itviewed of as a special case of Bayesian network induction.
terms of both size to store the model parameters and time Bayesian network research on the other hand has flour-
that it takes to use it for computing the relevant quantitie§shed in the last decade, spurred mostly by Pearl’s sem-
(the query counts in our case). In this paper we chose thal book [19]. [10] contains a comprehensive overview
use Bayesian network8Ws). Such models are not the of approaches to inference and structure induction. Re-
only choice possible, but we picked them because they argricted classes of Bayesian networks such as trees have
a mature, broadly acceptable and well respected method @leen solved optimally [5] in the past. However, the gen-
modeling data in the machine learning community. Thiseral problem is NP-complete [4]. There exist two general
acceptance and respect comes not only from their practiapproaches: the hill-climbing approach based on the MDL
cal effectiveness, but also from their sound mathematica§core [16, 23], the prevalent, more practical one which is
foundations in probability theory, as opposed to a multi-ysed here, and the constraint-based approach. Constraint-
tude of otherad hocapproaches that exist in the literature. pased algorithms are covered in [22].
The method of producing the BNs from data that we use
is one that has proven to be scientifically acceptable in the
machine learning community and good in practice [16,23].3 Bayesian Network Overview

The remainder of the paper is organized as follows. In
section 2 we briefly review the current literature on Dat-
aCubes and the prevalent currentimplementation, bitmap

In this section we present some background on Bayesian
getworks, emphasizing the points that relate to our current

and also of Bayesian networks. In section 3 we present pplication of decision support systems and data mining.

simple introduction to Bayesian networks and methods of '¢ also discuss methods to automatically compute their
inducing their structure from data. In section 4 we describetructure from data samples (database records) taken from
our approach, and we show some experimental results if domain of interest. It should be noted that this is a diffi-

section 5. We conclude with a discussion of relevant issue§Ult Problem in its own right. In this paper we draw from
and directions of future research in section 6. years of research for the most practical and widely accepted

solution for memory-resident databases, and propose a new
algorithm to attack the problem in the context of very large
2 Related Work databases that cannot fit in main memory.

DataCubes were introduced in [8]. They may be used, in Before we begin, we introduce some notation: we de-
theory, to answer any query quicklg.§. constant time for note variables with capital letters, Y etc.) and their val-

a table-lookup representation). In practice however theyes with lower-case letters: (y etc.). Sets are shown in
have proven exceedingly difficult to compute and store bebold letters U, D etc.). The symbols used throughout the
cause of their inherently exponential nature. To solve thigaper is shown in the table on the next page.

problem, several approaches have been proposed. [9] sug- The attributes in the database are also referred to as
gest materializing only a subset of views and propose dvariables” throughout the paper, since they have a one-
principled way of selecting which ones to prefer. Theirto-one correspondence to the variables that appear in the
system computes the query from those views at run timeBayesian network.



Table of Symbols "burglar®  "earthquake”

D Main database e @
N Number of records in main
databasee. |D
U Set of attributes{ X1, ..., X}
n Number of attributege. |U]| e "alarm”
(x1,%2,...,2,); | Tuplejindatabase;=1,..., N
D. Database subset used to construct P(AIBC) |02
¢ Bayesian networlB; P(A|BC) |06

m Size of each subs@,[,: =1,..., K P(AIBC) |04

K Number of database subsets [ N/m] P(AIBC) |01

B Eg%egi”e'a%“é‘ﬁgggg%gmmed (a) Bayesian network

E; Set of edges c_nyc graph &; 25 200

T; Set of probability tables oB; 5 | =
3.1 A Brief Introduction to Bayesian Networks Al % ‘1122 ABC | 20
A Bayesian networkBN) is a graphical representation of A|565] ABC |360
a probability distribution function over a set of variables AC | 60} | ABC | 20
U = {X,X5,...,X,}. It consists of two parts: (a) the B1800| |AC |375] | ABC | 15
directed network structure, and (b) the conditional prob- 5|200] | AC 1190} | ABC | 160
ability tables, one foeach variable. The network struc- o250 AC |31 %i 2:8
ture is constrained to be acyclic. Undirected cycles are al- <750 BC |200| ===
lowedi.e. cycles along which not all edges are pointed in BC |600
the same way. Such structures represent alternative paths BC | 50
of influence between variables. The variables are typically BC | 150
discrete, although BNs with continuous variables are also (b) Corresponding DataCube counts
possible. Figure 1: (a) Example Bayesian network and (b) Dat-

As an example, a simple Bayesian network is shown iraCube constructed from a database of 1,000 examples. The

figure 1. It depicts three boolean variablés;'home alarm  Bayesian network consumes less space in this example be-
goes off”), B (“burglar enters the house”) ard (“earth-  causel andC are independent.

guake occurs”). In this paper we will assume that all vari-
ables are binary, although this is naaessary and does dependencies among variables in the domain. As men-
not affect the generality of our approach. In the binarytioned above, if all variables in the domain statistically de-
case, eachanditional probability table records the proba- pend on all others, then there is no storage advantage to
bilities of that variable takes the value “true” feach possi- using a BN, since the storage required for the specification
ble combination of values (“true” or “false”) of its parents. of the network is exponential ifJ| . Fortunately, in prac-
The meaning of the BN in figure 1 is thdtdepends orB  tice this is not the norm, and in fact the most interesting
and A depends o’ but B andC are independent. domains for data mining are those that exhibit a consider-
In general, a probability distribution can be specifiedable number of independencies.

with a set of numbers whose size is exponentialui,
namely the entries in the joint probability distributiontable.
One can represent such a table by a completely connect
BN in general, without any great benefit. However, when
independencies exist in the domain, using a BN instead o
the full joint probability table results in two major benefits:

In order to illustrate the storage space savings in this
domain, we can look at figure 1(b). There we see the com-
ete DataCube of the domain using a database that con-
ins 1,000 examples. The numbers that have to be stored
the DataCube are 22 essential counters. The numbers
necessary in the corresponding BN are 6 probability en-
1. Storage savings These may be significant to the tries. We see that for this particular example this is certainly

point where infeasibly large domains may be repre-not & significant improvement, especially considering the

sentable, provided that they exhibit a sufficient num-Overhead of specifying the parents of eade and using

ber of independencies among the variables of the doloating point numbers for the probability entries. How-

conditional independencies are common in practice. the savings increases exponentially, if the corresponding
2. Clear and intuitive representation of independen- netwozk Is sparse. For attributes, the DataCube has to

cies Given the graphical representation of a BN, it is store2” tables of counts, v'wtb'a.ch table havmg size equgl

easy to determine the variables on which a quantity of© the prpduct of the carquhﬂes of the attributes they n-

interest depends on statistically and which are irreleclude (minus one). No full joint table for hundreds of vari-

vant and under what conditions. ables containing either probabilities or counts could ever
be stored for example using today’s technology. However,
Edge omissions indicate the existence of conditional insuch a domain can be succinctly represented by its joint



probability distribution by taking intaccount the indepen- used is greedy hill-climbing, wherach step consists of an
dencies that exist and using its Bayesian network insteadddition, deletion or reversal of an edge in the current net-
Such is the approach that we propose in this paper. work that is under consideration during search. The search
The independencies expressed by a Bayesian netwogkocedure can be initialized in a variety of ways, such as
can be easily read from its structure. In figure 1 for exam-an empty, a completely connected or a randomly created
ple, B (“burglar’) andC (“earthquake”) are independent in initial network. The direct objective of this method is to
the absence of any knowledge abaut“alarm”).t Ifthey  produce a network that describes the data well so that its
were not, then either edgeé — C or C — B would have  predictions (probability estimates) of the data records are
to have been included in the network. as accurate as possible gt at the same time produc-
ing a overly complex network (that is consuming a large
3.2 Computation of the Bayesian Network Structure amount of storage sige).
] ] i ] The algorithm outlined in the previous paragraph is
The discussion of the previous section serves to estalihe one we used in this paper. It is implemented within

lish the usefulness of modeling data domains using BNSthe Build FromMemoryl sing Data(D) routine that is
However, BNs are not as widely used as more traditionakhown below, adapted from [16, 23].

methods such as bitmaps for example, especially within
the database community. We argue that the main reasgn , ,
for this, apart from the fact that the database and maf ~ Procedure8 = BuildFromMemoryU singData(D)
chine learning communities are mostly separate, lies in

the computational difficulty in inducing models from data. % ? : ?Drobabilit Tables(E, D)

Bayesian network induction from data is not an exception 5° 5 (E,T) v '

However, we argue in this paper that the benefits are great,;, ... ; SR

especially in domains such as decision support systems ands, o

data mining where they are a natural fit. In this paper we (@) mazscore « score
present an algorithm for computing and querying BNs con (b) for each attribute pairX, Y') do
structed from very large databases that cannot fit in main () foreachE’ ¢ {EU{X — Y7},
memory, solving one of the main obstacles in adopting such E—{X—=>Y},
a promising approach to many important problems in the E-{X=>Y}u{Y = X}}
database community. (d) T' « ProbabilityTables(E’, D)
(e) B « (E/, T

The main difficulty in modeling with BNs lies in de- ,
termining the structure of the graph. Once the graphical Ef)) ﬁi;iiggg;:fcomFt';loe"r:Dam(B D))
structure has been determined, the computation of the con- g BB seore
ditional probability tables is simple: a simple counting pro- SCOre = NEWSCOre
cedure of the records in the database that correspond G, while score > mazscore
each entry would achieve a maximum likedod estimate | 7. ReturnB
of the true table entries.

The problem of structure discovery from data is NP-
complete in its generality [4]. In practice, there exist sev- The procedure ProbabilityTables() is typically a
eral potential solutions. One is to use a domain expert tétraightforward maximum-likelihood estimation of the
specify the structure, but that is a slow and error-prone proProbability entries from the database, which consists of
cess, especially in large domains with many variables. |reounting the number of database records that fall into each
such domains, like market basket analysis, such a speciable entry of each probaty table in the BN.
fication by an expert may be impossible or at least ques- The score that is used and the probability table com-
tionable. Therefore there is great benefit in both speed anButation are central points in our approach since they are
reliability in automating this procedure as much as posthe only places in any of our algorithms (preprocessing or
sible. Currently the most widely accepted method of BNAuerying) that the databakeis accessed. The MDL score,
structure discovery from data is described in [16, 23]. Thementioned above, is defined as follows:
method works by using heuristic search in the space of le
structuresi(e. structures without directed cyclesr,)) attemp?—abLCOremeData(B’ D)= - Zpi log pi—penalty(B, N)
ing to optimize an objective function, frequently referred =t
to asscore The score that is frequently used in practice pi = Pr((es ez, e | B)
is the Minimum Description Length (MDL) of the data by u
the BN. We note here that this score is theoretically derived H Pr(X; = (x;)i | Pa;, D)
and not arbitrary. The heuristic search procedure frequently J=1

penalty(B, N) = (IT] /2)log N
1t is less intuitive that this structure implies thBtandC' become o ; s
dependentif the value of is known. Although this makes a lot of sense, WherePa] Is the set of parents of varlabllé] in B, the

it is not within the scope of this paper and we will not discuss it further. Conditiona! prObab”ityl_Dr(Xj. = (z;)i | Pa;, D) is com-
For more details, please see [22]. puted by simple counting within the databd3eand|T; |




is the number of necessary entries in all table3p{the Problem: we are given a database that does not

number of parameters of the mode]). We see that the fitin memory and a procedure

score has two components: one that describes how well  BuildFromM emoryU sing Data(D) that is
the networkB describes the data-( _ p; log p;) and one able to generate a BN from a memory-resident
that penalizes3 for being too large (see discussion in sec- database.

tion 1 and [16, 23] for details). In section 4.2.1 we will Desired Solution a representation that can fit

describe how to compute this score, and in particular the  in memory and a procedutBstimateCount|()

first term, from a set of Bayesian networks that represent  that uses it to compute the approximate answer to
our database, instead of the records themselves. This is count queries that may specify an arbitrary num-
necessary when merging BNs representing portior® of ber of attribute values.

into a single BN, withouccessing the data (see below). e najve DataCube solution is to preprocess and store the
In section 4.2.1 we also show how to implement o nts for all possible such queries (see example in fig-
the ProbabilityTables() procedure withoudccessing the e 1), However, this is infeasible for almost any realis-

database. tic domain. Compressed bitmaps are one way of answer-
3.3 Using the BN for Probability Estimation: BN In- ing such queries exactly. However they may exceed the
ference main memory size for very large databases. Also, since

their perfect accuracy is not needed in the kind of appli-

After generating a single BN for our database, we can Us@ations we are addressing in this paper, it is reasonable
it to answer count queries. In order to do that, we need tqg trade-off a small amount adccuracy in exchange for
estimate the probability (expected frequency) of the querys much smaller representation that can fit in main memory,
using the BN, and multiply it with the number of records in which in turn translates to a significant benefit in query per-
the database (see section 4.2\ do not need to access formance. Sampling is one approximate technique that is
the databaséor this. however linear timgO(N)) in the database size, as are

The computation of this probability may be involved and bitmaps.
in general cannot be simply read off the probabilitiesin the |n this paper we propose to represent the record counts
tables of the network. For example consider two variablesn the database with a single Bayesian network created
X andY that are very far apart but connected by a directedrom the entire databas®. Our method isonstant time
path. The probability ok’ = 0 andY” = 1 withoutknowl-  (O(1)) in the size of the database. It consists of merging a
edge of the value of any other variable in the network is nohumber of BNs,B;, each constructed from a pigion D;
a simple function of the entries in the conditional proba-of the entire database into a single oie, EachB; is cre-
bility tables of the BN. Rather, it requires a process calledated directly fronD; if it fits into main memory, or else by
probabilistic inferencé. recursively splitting it, creating a network froeach piece,

There exist several algorithms for inference. Two kindsand combining them in the same fashion that we combine
of methods exist: approximate and exact. Approximatehe B;’s into 3. Each networkB; represents the joint prob-
ones [11, 7, 20] are sample-based, and generate an artifibility distribution of partitionD;. Since theB;’s are typi-
cial database of samples during the process of estimatiogally far smaller than the corresponding database partition
(the generated samples are discarded immediately and only;, they can have the benefit of (1) simultaneously fitting
the count of those than matched the query is kept). Theiinto main memory and (2) tremendously speeding up the
main disadvantage is that they are slow and may need generation of the single netwotk since no disk access is
great number of samples to estimate the probability of theequired (we do not access the database during merging or
query to a sufficient degree. For exact inference, the mosit query time).
popular method is the join-tree algorithm. The details of The answer to a query is computed by usttp com-
the algorithm are beyond the scope of this paper, pleasgute the probability (support) of the query and multiplying
see [19, 12]. Its running time depends on the number oft with with the number of records il (denoted asV in
variables and the complexity of the BN, but in practice forthe paper).
typical BNs of a few tens of variables it runs in under a
second. This is the method we use in this paper, contained.2 Proposed Algorithms
in the E'stimate Probability() procedure that appears in

section 4.2.2. Before we present the algorithms, some notation (also see

our table of symbols): the entire database as a set of

records isD, and we denote each piion that we use

4 Proposed Method to construct a Bayesian network from asD;. There-

fore UL, D; = D andD;(\D; = 0, fori £ j. We

want each paition D; to be large enough so as to be rep-

The problem we are addressing is the following: resentative, but small enough so that it fits into the main
PR — i . : memory and satisfies the time constraints for building the
Which is a generalization of logical inference—given a BN, it com-

putes the probability of the truth of a cgmund predicate (query) rather corresporjding BayeSi_an network. In the next two SECtiO_ns
than a true/false value. we describe the algorithm to merge a number of Bayesian

4.1 Problem Description




networks, each constructed from a databaséitiwer us-  without accessing the database; it is making use of the
ing the Build F'romM emoryU sing Data(D;) procedure,  Estimate Probability() procedure:

nd the algorithm to compute the count that corresponds to -
and the alg P P Vt € Tables(B)
a user query. N ] .
Pr(t) = (1/K)> ", _, EstimateProbability(t, By)

4.2.1 Algorithm for preprocessing the database: Since the database access @N) during the

building and merging the BNs BuildFromDisk(D) procedure, the number networks at
the base of the recursioni§ = N/m = O(N), and since
@ccessing a BN does not depend on the database size, it is
easy to make the following observation:

The proposed procedure to build Bayesian netwibfiom
data stored on disk is as shown in Figure 2. Inside th
procedure, thBuild FromM emoryl sing Data() proce-
dure contains the implementation of the algorithm for find- Observation: the entireBuild FromDisk() al-

ing the structure of a Bayesian network from data that was ~ gorithm isO(N) time (linear in the size of the
described in section 3.2. We note that the generation of  original database) and thus scalable. Moreover,

eachB; can be done in parallel. it is parallelizable, with a straightforward paral-
Having produced the networkB; i = 1,..., K, we lel implementation.

combine theminto a single onk, using the following pro-  This observation is supported by the experimental results

cedure: (section 5, figure 7).

4.2.2 Algorithm for answering a count query from a

Procedurd3 = RecursivelyMerge(By, ..., Bg) : Bayesian network

If By, Bs,..., Bg simultaneously fit To estimate approximate counts for query from

in main memory then: the Bayesian network5 that is is the output of
B = BuildFromM emoryUsingBNs(By, ..., Bx) the BuildFromDisk() procedure, we use the
else: EstimateCount() procedure, shown below:

By = RecursivelyMerge(By, . . ., BL%J ).

By = RecurswelyMerge(B[ Ll Br). ProcedureV = EstimateCount(Q, B) :

B = RecursivelyMerge(él ; B2) N =N x Estimate Probability(Q, B).

The BuildFromMemoryUsingBNs(By, ..., Bx) The proceduréstimate Probability() can be any in-
procedure is the only remaining one that needsference method developed in the Bayesian network liter-
to be defined. It is exactly the same as theatyre. In our implementation we use the join-tree algo-
BuildFromMemorylU singData(D) one (see sec- rithm, which is a well-known exact algorithm for comput-
tion 3.2), with the exception that the score is nowing the probability of the queryEstimate Probability()
computed from the BNs Scorel'romBNs() proce-  returns the probability of quer§) according to the prob-
dure) that are its arguments instead of the databasgbimy distribution represented bys. Since B is a

(ScoreFromData() procedure): representative of theéV records contained i, N x
representingd Estimate Probability(Q, B) is an estimate of the number
Score FromBNs(B, By, ... Bg) = of records withinD for which @ evaluates to “true.”
- loz Prit | B Since theE'stimateCount(Q), B) algorithm does not
ZtETables(B) og Pr(t| B) ;
K . . access the databasander our assumptions we can make
X {(1/1‘) > k=1 Estimate Probability(t, By.) the following observation.
— penalty(B, N). Observation: the EstimateCount(Q, B) pro-

In the above formula the outer sum goes over all table en-  cedure iO(1) time in the size of the database.

triest in 3. Each such table entry corresponds to a configuThis observation is also supported by our experimental re-
ration of variable assignments (for the node and the parentyits (section 5, figure 5).

of the node that it is attached to) and “don’t cares” (for the

remaining variables in the domain)—see figure 1 for exam+ Experimental Results

ple. The inner equally-weighted sum is simply an average ]

over all networksB;,i = 1,..., K of the probability of =~ We experimentally tested our approach on real and syn-
that configurationPr(¢ | B) is the probability of configu- ~ thetic data. The real data consists of customer information

rationt in B, and can be read directly off the correspondingd@t@, obtained from a large anonymous retdildt.con-
table entry ofB. sists of over 3 million customer transactions (3,261,809)

The computation of the p_rObabi“ty tables by the 3For confidentiality reasons weaot reveal the name the retailer nor
ProbabilityTables() procedure is also done fromtlig’s  the products involved.




Procedurd By, Bs, ..., Bx) = BuildFromDisk(D) :

1. Partition the databade into N equal partition®;,7i =1, ..., K so that
each fits in main memory. Let = |D;|, for all ;.
2. Foreach =1,..., K do the following:
(a) ReadD; into memory.
(b) Build Bayesian neB; from D;: B; = Build FromM emoryU sing Data(Dy).
3. Merge the network®; into a single one3 = RecursivelyMerge(By, B, ..., Bg).

Figure 2: Algorithm for preprocessing the database.

containing information on whether the customer purchased Size of database after compression (logscale, both axes)
any of the 20 most popular items in the store. The datarep- g0 yg F————

resents one week of activity and its concise representation 250M8 | " JirEEe compressed
occupies around 8 MB. This size coincides with the size . | 27 Redpd 0% compressed
of its uncompressed bitmap. Although this database is not

large in size, we use it in order to obtain performance re- 4
sults on the compression ratio we can obtain on real-worldg
data. £ e
In order to assess the scalability of our system, We§ KB E e
needed larger sets that were not available at the time of o
our evaluation. For this reason we used synthetic data for | ;| |
our scalability study. The synthetic data we used were pro- s ° °
duced by a program available from IBM’s QUEST ¢ite.
The generation program produces a specified number of
randomly generated association rules involving a number ] i
of attributes (their number is also randomly distributedFigure 4: Comparison of the size of the compressed
around a user-specified mean), and then generates marké@tabase size using bitmaps, sampling by 10% and
basket data whose statistical behavior conforms to thostletCubes. The difference betwegnip andbzip2 is
rules. We produced a database of approximately 100 thogmall (see table 3), so only the best of the twwip2 ) is
sand and 1, 10, 100 and 196 million records from a storaiSed here.

inventory of 5,000 items (products) using 10,000 custome
patterns having an average length of 4. (Each custom
pattern corresponds to an “association rule.”) The avera
transaction length was 10 items. As in our real databa
we used the 20 most frequently used items.

2.5MB

250 KB

100,000 1,000,000 10,000,000 100,000,000
Database size (records)

fandom gueries of length up to 5 variables and used them to
&ssess the query error. Each query may test for the presence
96r absenceof any particular item in a transaction, from the
S&0 most frequently purchased items. For example one such
guery may be “what is the number of transactions in the

. "atabase in which a customer purchased milk and orange
structed a number of Bayesian networks from that dat"j'uice but not bread?” P g

in order to model their joint probability distribution. We
split the data randomly in a number of subsBtg each  Compression
containing at mostn = 100,000 records. We then used
each subseD; to construct the corresponding Bayesian
networkB;.
Our experiments evaluate our approach with respect t

the following dimensions:

1. Query count error.

2. Space to store models and effective compression

the database.

In this set of experiments we compare the size of our rep-

resentation to that of compressed bitmaps and sampling by
&0%, also compressed. Compressing the bitmaps of each
of our databases produced approximate 7:1 compression
ratio for the synthetic Quest databases and 3.8:1 for the
0rieal-world data. Compressing the sampled database pre-
dictably produces linear compression with respect to com-

3. Time to answer a query. pressed bitmaps. In stark contrast, the NetCube approach
4. Build time and scalability. typically produced compression ratios of 500:1 or more for
5. Visualization of the dependencies in the database. ~Synthetic data and 1800:1 or more for real data. The com-

pression ratios and BN sizes are shown in table 3 and are
also plotted in figure 4. The price for such a high compres-

involved in it, we were not able to perform all possible sion performance is the fact that it is lossy. However, if

ries of anv sizeable lenath. In Wi ner 1 e application can tolerate errors of the order of 5%, t.hen
queries of any sizeable lengt stead we generated O’O(lsthay be the method of choice for the data analyst, since

4http://www.almaden.ibm.com/cs/quest/ sampling by 10% achieves much lower compression ratios

Because the number of possible queries groywseen-
tially with the number of variables that are allowed to be




Database Records|| Bitmap size Compression ratiodeforeafter)
(bytes) || gzip [ bzip2 | Sampling] NetCube

Quest 100,000 250,000|| 7:1 7.8:1 72:1 581:1 (430 bytes
1,000,000 2,500,000]] 7.1:1| 791 77:1 5814:1 (430 byte3

10,000,000| 25,000,000|| 7.1:1 | 7.9:1 79:1 48170:1 (519 byte3

100,000,000]| 250,000,000]| 7.1:1 8:1 79:1 414594:1(603 byte3

196,896,433]| 492,241,100 7.1:1 | 81 80:1 | 610721:1(806 byte3

| Anonymous retaile]  3,261,809]] 8,154,540]] 3.8:1 | 3.8:1 | 37:1 | 1889:1 (4317 byte$ ]

Figure 3: Comparison of compression ratios for various databases used for the experiments. The first rows correspond
to the Quest-generated databases while the last one corresponds to real data obtained from an anonymous retailer. The
sampling figures refer to 10% sampling and afieip2 compression. For the NetCube, the trend of compression ratios

that are increasing with database size is due to increasing benefits from using an approximately fixed-sized probabilistic
model of a domain in place of data drawn from it.

with similar error; moreover, the query time for sampling
is linear in the size of the database while NetCube queries
are approximately constant.

Note that the network produced from real data, corre-
sponding to one week of transactions, occupies only 4 KB.
If are allowed to make the conservative assumption that the
network from any given week is 10 times this one (40 KB),
and the assumption that doubling the database size dou
bles the size of the resulting network (for which our ex-
periments have no support of, and in fact indicate that it
might not grow at that rate but a much smaller one), then 5o |
our approach makes it possible toi billion transactions
in the memory of a regular workstation with 256 MB of 0 S

. . 100,000 1,000,000 10,000,000
main memory, corresponding taore than 100 years of Database size (records)
transactions at this rate, effectively spanning the lifetime
of most businesses.

Query times for 10,000 random queries (logscale on DB size)
3000

bitmaps ——
NetCube -------

2500 | Sampling 10% —=-- ]

2000 |
1]
=]
c
S 1500 |
o

%]
1000

100,000,000

Figure 5: The query time for bitmaps increases linearly
. or superlinearly (thrashing) with the database size. Here
Query time 10,000 queries were run on a workstation with 256 MB of

We used a typical workstation with 256 MB of physical M@n memory. The NetCube query time is constant and
memory for our query time experiments. Running our segindera secpnd per query due to its approximately constant
of queries on the bitmaps we noticed a slowdown for the'€Presentation size.

larger Quest databases whose bitmap cannot fit into main. _ . . .
memory. This happens because the bitmap system had fyenes of very little support even w_hen the count differ-
use part of the virtual memory system which resides on th%lce is not very large, we 'u_sgd quer.les'that had at support
disk. Animportant observation we can make here is that al- % or more. Apart from artificially weighing :[‘he'error ra_te, ,
though bitmap compression will temporarily alleviate this gﬁgrfsnogl\ég%:rgﬁgngg?g srir?(;%gigzol::méir;?t;?g]at_
problem, a database of more than 7 times our largest one ; . . P AT
would again force the bitmap method into the same thras ment is consistent with other approaches in the literature
ing behavior (note the compression ratio 7:1 for bitmaps in(e'g' [21).

table 3). A database of such a problematic size would noﬁl ![rcltﬂgure. 6 we can Tlee tmat trgje a%’ga_?_ﬁ relative grrotrhoi
be atypical in today’s real-world problems. etLubes IS very small, well under 57. Those queries tha

Even without the thrashing problem of bitmaps how- happen to have larger than 5% error are typically those with

ever, we see that the query times for sampling increase (”ns_mall support, |on the range of 1%. We also see that only
early) with database size, as expected. This also shows mpling at 10% 'has average error 'Ievels comparable to
figure 5. In contrast, using a set of BNs to answer queriesi 'etCube.s. That is tpe reason why in our evaluation we
approximately constant. That proves that our method ca isplay figures for 10% sampling only.

be an invaluable tool that remains practical for extremelyBuild time

large problems.

As mentioned above, we generate a BN for each database
piece of 100,000 recordse. m = 100,000 in our im-

In figure 6 we show our assessment of the query error usinglementation. As we can see in figure 7, this makes our
our set of 10,000 random queries containing up to 5 variethod linear on the database size, and thus scalable. Each
ables. Because relative error becomes artificially large fodatabase piece can be processed in parallel, and the merg-

Query error



Errors for different methods NetCube generation time vs database size
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Figure 6: Average relative error rate for 10,000 randomFigure 7: Build time for the set of multiple BNs increases
gueries of up to 5 variables, having at least support of 1%inearly with the number of records in the database. More-
of the size of the original database. The queries are done cover, parallelization over a number of workstation scales
the largest of the QUEST databases, containing 193 milliothe build time down linearly. Each partition of the database
records. contains 100,000 records and can be processed indepen-

. . dently of others.
ing of the BNs can also be done in parallel across the same

recursion depth. Thus our method is parallelizable in &us variables after bucketizatiang. “salary” could be-
straightforward manner. Parallelization over a cluster ofcome a discrete variable taking values “low’ (L0, 000),
workstations scales linearly, making the generation of amedium” (> 10,000 and < 100,000) or “high” (>
database of 200 million transactions a matter of hours on g, 000).
a modest cluster of 10 workstations, as shown in figure 7. p subject of future research is the extension of the cur-
We note here that our attempts to cre-rent system to the estimation of additional aggregate func-
ate a single BN by using the straightforward tions of the DataCube operator, in addition to counts. For
BuildFromMemoryUsingData() algorithm on the  example, knowing the probability distribution of a multi-
entire database were unsuccessful for very large problemgjued attribute enables us to quickly estimate its aver-
of size 100 million records or more; the algorithid not  age value. Other quantities such the minimum and maxi-
terminate while producing the network after 4 daysand ~ mum values can be read directly from representation of the
had to be manually aborted This clearly underscores Bayesian network.
the usefulness and indeed the absolute necessity of using The approach presented here lends itself easily to non-
our recursive combination procedur(ild F'rom Disk()  stationary distributions. Assume for example that new data
procedure) for any kind of practical application that gre incorporated in the database periodically, a super-
involves very large databases. market may append transaction data to the database at the
end of each day. A data analyst may be interested in cer-
tain quantities on a per-day basis. In that case the solution

In figure 8 we show a BN produced from real data corre-iS €asy: we can compute one Bayesian network for each
sponding to a week of activity of the 20 most frequently Particular day only. That network can answer queries for
purchased items at a large anonymous retailer. The advafhat day. More often it is more useful to examine the be-
tage of the graphical representation of the BN that our aphavior over broader time periods. The same approach will
proach generates is that it can be used to clearly depict varvork for that purpose: a query concerning several days, not
ables that are the mostinfluential to the ones that the analy&€cessarily consecutive, can be made to the corresponding
might be examining. Moreover, the conditional probability (Single-day) networks covering the time period of interest.
tables will give our analyst the exact nature and strength off he resulting counts can then be simply summed to obtain
these influences. Therefore our approach fits very well it count estimate for the entire time period.
the data mining procedure and can save the analyst large
am.ounts.of time that Wguld be otherwise spent on explo7 Conclusions—Contributions
ration, drill-down analysis etc. of the customer database.
In this paper we propose @aradigm shiftin the approx-
6 Discussion and Extensions imate computation of count DataCubes: we propose to
use a model of the data instead of the data themselves.
In this paper we use only binary variables. However, theOur approach, NetCube, uses the proven technology of
concepts and implementation easily extend to multi-valued@ayesian networks to obtain the key advantage of large
discrete data easily. NetCubes can also handle continstorage savings in situations where only approximate an-

Visualization



Figure 8: Bayesian network produced from real data ob- 3l
tained from a large anonymous retailer. The database con-
tains 3,261,809 records corresponding to a week of cus-

tomer transactions on the 20 most frequently purchased [5]
items. The network occupies 4317 bytes on disk. For con-

fidentiality reasons, we have anonymized the names of the [6
products that are displayed in the graph. [7]

swers are needed. This makes feasible the computation of
DataCubes for databases that were previously problematic (€]
using state-of-the-art methods such as bitmaps.

A size-error comparison of our NetCube method versus [©]
competing methods is shown in figure 9. In summary, the [1q]
advantages of the method are:

o Small space the resulting BN takes up a tiny frac-
tion of the space that the original data that are queried
upon. We producedreater than 1800:1 compres-
sion ratios on real data (2]

o Scalability we can handle arbitrarily large databases; [13]
the method’s preprocessing time scdiaesarly with
the size of the database. Moreover, it is parallelizable [14]
with a straightforward parallel implementation. 115

o Fast query time the method can answer arbitrary
gueries in a short time (typically under a second). The

Average error vs size (logscale on size)

[11]

[16]

T T T T i (17
100 MB | _ |
Bitmaps [18]
10 MB | : 9 |
- Sampling 10% [19]
g IMBF o Sampling 1% [20]
n
100 KB > Sampling 0.1%
[21]
10KB | |
[22]
1KB [.NetCube ‘ ‘ ‘ ‘ ] [23]
O 2 4 6 8 10 12 14

Error (%) [24]

Figure 9: Comparison of NetCubes with bitmaps and sam-

; X . [25]
pling: representation size versus average query error.

guery time isconstant with respect to the database
size.

Good accuracywe obtained less than 5% average rel-
ative error on a large number of queries of support of
1% or more.

Suitability to data mining the representation that is
used by the algorithm, namely Bayesian networks, are
an excellent method for visually eliciting the most rel-
evant causes of a quantity of interest and are a natural
method to support data mining.
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