
Supporting Incremental Join Queries on Ranked Inputs

Apostol Natsev Yuan-Chi Chang John R. Smith Chung-Sheng Li Jeffrey Scott Vitter

Duke University IBM T. J. Watson IBM T. J. Watson IBM T. J. Watson Duke University
natsev@cs.duke.edu yuanchi@us.ibm.com jsmith@us.ibm.com csli@us.ibm.com jsv@cs.duke.edu

Abstract

This paper investigates the problem of incremen-
tal joins of multiple ranked data sets when the join
condition is a list of arbitrary user-defined predi-
cates on the input tuples. This problem arises in
many important applications dealing with ordered
inputs and multiple ranked data sets, and requiring
the topk solutions. We use multimedia applica-
tions as the motivating examples but the problem
is equally applicable to traditional database ap-
plications involving optimal resource allocation,
scheduling, decision making, ranking, etc.

We propose an algorithmJ� that enables querying
of ordered data sets by imposing arbitraryuser-
defined join predicates. The basic version of the
algorithm does not use any random access but
a J�

PA variation can exploit available indexes for
efficient random access based on the join predi-
cates. A special case includes the join scenario
considered by Fagin [1] for joins based on iden-
tical keys, and in that case, our algorithms per-
form as efficiently as Fagin’s. Our main contri-
bution, however, is the generalization to join sce-
narios that were previously unsupported, includ-
ing cases where random access in the algorithm is
not possible due to lack of unique keys. In addi-
tion,J� can supportmultiple join levels, or nested
join hierarchies, which are the norm for modeling
multimedia data. We also give�-approximation
versions of both of the above algorithms. Finally,
we give strong optimality results for some of the
proposed algorithms, and we study their perfor-
mance empirically.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

1 Introduction

Advances in computing power over the last few years have
made a considerable amount of multimedia data available
on the web and in domain-specific applications. The result
has been an increasing emphasis on the requirements for
searching large repositories of multimedia data. An impor-
tant characteristic of multimedia queries is the fact that they
return ordered data as their results, as opposed to return-
ing an unordered set of answers, as in traditional databases.
The results in multimedia queries are usually ranked by a
similarity scorereflecting how much each tuple satisfies the
query. In addition, users are typically interested only in the
topk answers, wherek is very small compared to the total
number of tuples. Work in this area has therefore focused
primarily on supporting top-k queries ranked on similarity
of domain-specific features, such as color, shape, etc.

One aspect that has received little attention, however, is
the requirement to efficiently combine ranked results from
multiple atomic queries into a single ranked stream. Most
systems support some form of search based on a limited
combination of atomic features but the combinations are
usually fixed, limited to the types of features supported in-
ternally by the system, and typically allowing only Boolean
combinations. In contrast, there has been little work on
supporting top-k queries over arbitrary combinations, or
joins, of multiple ordered data sets. One notable exception
is Fagin’s work [1, 2], who considered the case of equi-
joins of ordered data when the join is over a unique record
ID present in all of the join streams.

This paper formalizes the problem and generalizes it to
user-defined join predicates. It also introduces a fast incre-
mentalJ� algorithm for that problem. The ability to sup-
port user-defined join predicates makes the algorithm suit-
able for join scenarios that were previously unsupported
due to the lack of key attributes needed for random ac-
cess. In the case when we do have such key attributes, or if
we can exploit indexes to directly access tuples that satisfy
user-defined predicates, we give a predicate access version
of our algorithm that can take advantage of such indexes.
We also consider approximation algorithms that trade out-
put accuracy for reduced database access costs and space
requirements. Finally, we study the algorithms empirically.

The rest of the paper is organized as follows. In the re-
mainder of this section, we motivate and formally define
the problem of top-k join queries on ordered data. We also
review relevant work and list our specific contributions. We
then give a detailed description of theJ� algorithm and
its iterative deepening variation in Section 2. We explain
theJ�

PA algorithm in Section 4, and discuss approximation
algorithms in Section 5. In Section 6, we give some opti-
mality results for the proposed algorithms. The behavior
of theJ� algorithm is evaluated empirically in Section 7,
where we validate our theoretical results in practice. We
conclude with a summary of contributions.

1.1 Motivation

A good example to demonstrate the problem of joining
multiple concepts with user-specified join constraints is the
match of strata structures across bore holes in oil explo-
ration services. Petroleum companies selectively drill bore
holes in oil rich areas in order to estimate the size of oil
reservoir underground. Readings from instruments mea-
suring physical parameters, such as conductivity, as well
as images of rock samples from the bore hole are indexed
by depth, as in the example shown in Figure 1. Tradition-
ally, experienced human interpreters (mostly geologists)
will then label the rock samples and try to co-register the la-
bels of one bore hole with those of many other bores holes
in the neighboring area. The matched labels are then fed
into 3D modeling software to reconstruct the strata struc-
ture underground, which tells the reservoir size.

The process of rock layer labeling and cross-bore co-
registration can be significantly sped up by content-based
image retrieval techniques. An interpreter can issue a query
to locate similar looking rock layers in all bore hole im-
ages. An example is illustrated in Figure 1, where the query
template consists of two rock types, and specifies that one
should be near and on top of the other.

The above scenario is an example of combining the re-
sults of two ranked searches (find occurrences of rock A
and rock B) based on user-defined constraints (rock A is
aboverock B and rock A isnear rock B). We name such
queriesordered join queries with user-defined join pred-
icates,and we define them formally in the next section.
Current database systems do not support such queries effi-
ciently, and while multimedia search systems support some
form of ranked join queries, to the best of our knowledge,
none support join queries with user-defined join predicates.

Another feature that receives very limited support in
both traditional and multimedia databases is the defini-
tion of nested (or recursive) views of ordered data sets.
For example, building on the above oil exploration sce-
nario, we can define the concept ofDELTA LOBE as a
sequence ofSANDSTONE on top ofSHALE on top of
SILTSTONE . The concepts ofSANDSTONE , SHALE ,
and SILTSTONE , can be recursively defined by spec-
ifying samples of rock textures that fall in the corre-
sponding class. Using the previously defined views for
SANDSTONE , SHALE , and SILTSTONE , the user

Rock sample 1

Rock sample 2

"on top of"

Find rock structures most
similar to the template.

Query template

Figure 1: Example of an ordered join operation

might want to define theDELTA LOBE view using the
following SQL statement:

CREATE VIEWDELTA LOBE AS
SELECT�
FROM SANDSTONE SD, SHALE SH, SILTSTONE SL
WHERE above(SD :DEPTH , SH :DEPTH) = 1 AND

above(SH :DEPTH , SL:DEPTH) = 1 AND
near (SD :DEPTH , SH :DEPTH) = 1 AND
near (SH :DEPTH , SL:DEPTH) = 1

Even though there is nothing conceptually new in this
definition, in practice it is very hard to support such nested
ordered views efficiently. The reason is that due to the im-
posed order, getting even a single candidate from the top
view may involve materializing all candidates of the child
views, which is very time consuming. Without an effi-
cient join algorithm for ordered data, the database would
be forced to perform a regular unordered join, followed by
sorting, in order to get the single best answer in the parent
view.

1.2 Definitions and Problem Formulation

In this section we consider the exact formulation of the join
problem. The problem is illustrated in Figure 2. Informally,
we are givenm streams of objects ordered on a specific
score attribute for each object. We are also given a set ofp
arbitrary predicates defined on object attributes from one
or more streams. A valid join combination includes exactly
one object from each stream subject to the set of join pred-
icates (an example is denoted with a solid red line in Fig-
ure 2). Each combination is evaluated through a monotone
score aggregation function defined on the score attributes of
the individual objects, and we are interested in outputting
thek join combinations that have the highest overall scores.

Our middleware cost model considers only the cost of
accessing objects from the individual streams. We differ-
entiate between two types of database accesses:sorted ac-
cess, or scanning the objects in the order that they appear in
each stream, andpredicate access, or accessing all objects
from a given stream that satisfy a certain predicate (e.g., re-
turn all objects that are within a certain distance of a fixed
object). Note thatrandom access, or accessing a specific
object in a given stream, is a special case of predicate ac-
cess where the predicate is the equivalence relation on an

S1 S2 Sm

Q1 Q2 Qm

Middleware

1

2

N1

Figure 2: Cost model for the ordered join problem.

object’s key attribute (e.g., its ID). Thus, our cost model is
slightly more general than the one defined in [1, 2]. IfCS

andCPi are the costs of scanning a single object using
sorted access or predicate access (with predicatePi), resp.,
and if NS andNPi are the number of objects scanned in
such manner, then the middleware cost is defined as:

Cost = NSCS +
P

iNPiCPi ;

wherei ranges over predicates used for accessing objects.
To formalize the problem using standard database ter-

minology, we extend the definition of arelational join, or a
�-join, to theordered joincase as follows:�

Definition 1.1: We define anordered �-join with respect
to scoring function S as the combination of two tables
ordered on a specific score attribute each and joined ac-
cording to a specified relationship� between one of more
attributes in each table. The resulting table is ordered on
an aggregate score attribute computed by the scoring func-
tion S :

A ./S� B = f t = ab j a 2 A, b 2 B , �(a:X; b:Y) = 1,
t:score = S (a:score; b:score) g,

whereA, B , andA ./S� B are ordered on their respective
score attributes.

We are now ready to formally define the problem:

Definition 1.2: [Ordered join top- k queries]Given:

� TablesA = faig andB = fbjg, ordered on a score
attribute, and of size at mostn records each;

� A score aggregation function
S : [0; 1]� [0; 1] �! [0; 1] defined over the score
attributes of the join tables that is monotone and
incremental over each of its arguments;

� A set of Boolean predicates� defined on one or more
attributes fromA andB .

Output: Topk tuples fromA ./S� B

�This definition can be easily generalized tom-ary joins, or joins be-
tweenm tables.

The nested ordered join top-k query problemis an in-
stance of the above problem where at least one ofAorB is
the result of another ordered join query. Otherwise, we will
refer to the join as asingle-level join problem.Note that
the standard relational join corresponds to the special case
where each of the tuples has a score of 1. Hybrid cases for
joins of ordered and unordered data sets are therefore pos-
sible, with the unordered data being given an implicit score
of 1.

When the set of join predicates� contains only the
equivalence relation on one or more attributes, the�-join is
called anequi-join. If in addition, the equi-join is defined
on key attributes only, we call the resulting joinunique.
Unique ordered joins have been considered previously by
Fagin et al. [1, 2], Ortega et al. [6], and G¨untzer et al. [3].
However, the general class of joins based on arbitrary join
predicates was previously unsupported efficiently, and is
the main focus of this work.

1.3 Proposed Approach and Contributions

In this paper, we address the ordered join problem defined
in Section 1.2. In addition to formulating the general prob-
lem precisely for the first time, we propose several algo-
rithms for it, both exact and approximate. In contrast to a
push model that requires blind scanning of the individual
streams until a certain condition is satisfied, our algorithms
use a pull model requesting inputs one at a time, and only
if needed to determine the next best answer in the joined
result set. This incremental computation is crucial for ap-
plying the algorithm to multi-level joins. To the best of
our knowledge, the proposed algorithms are the first to ef-
ficiently support ordered joins based on arbitrary join pred-
icates, as well as multi-level hierarchies of such joins. We
present very strong optimality results for some of the al-
gorithms, and we also perform an empirical study of their
performance to validate their efficiency. Our specific con-
tributions include algorithms for both database access sce-
narios defined in Section 1.2—using sorted access only or
using both sorted and predicate access. In addition, we give
approximation versions of the above-mentioned algorithms
that provide guaranteed bounds on the approximation qual-
ity and can refine the solution progressively.

1.4 Related Work

The problem of supporting Boolean combinations on mul-
tiple ranked independent streams was first investigated by
Fagin for the case of top-k queries [1]. The scenario he
considered includes a database ofN objects andm order-
ings (or ranked streams) of those objects according tom
different ranking criteria (or atomic queries). The prob-
lem then consisted of evaluating the objects with respect to
their ranks in each of them streams, and outputting thek
objects with the best overall scores. As such, the problem
is equivalent to the unique equi-join special case of the gen-
eral ordered join problem. In that case, the problem is that
of combining scores that correspond to the same database

object, as opposed to aggregating scores that belong to dif-
ferent objects.

Fagin proposed an algorithm for that problem that used
both sorted access and random access based on unique key
attributes [1]. G¨untzer et. al. [3] optimized the original al-
gorithm by formulating an earlier termination condition,
and also considered optimizations for skewed input data
sets. However, both algorithms relied heavily on random
access, and in the more general join scenario, random ac-
cess may be impossible due to lack of key attributes in the
join constraints.

Very recently, we have become aware of new work by
Fagin et al. [2], where the authors proposed three new al-
gorithms for the unique equi-join scenario, including an
algorithm that does not use random access. We note that
ourJ� algorithm is similar to that algorithm, although the
two were derived independently, through different means,
and have different interpretations. Also, they are still de-
fined for different problem settings. In particular, we con-
sider joining multiple sets ofdifferent objectsunderarbi-
trary join constraintsthat specify valid combinations of
such objects. In contrast, the above algorithms all apply
to the scenario of joining multiple sets of thesame objects
that areordered differentlyin each stream.

Another treatment of the same problem of equi-joins
over key attributes was presented by Ortega et. al in [6].
The authors defined a query tree whose nodes represented
intermediate matches derived from the matches at the chil-
dren nodes, and evaluated it bottom up to get the final sim-
ilarity score at the root. They also proposed algorithm vari-
ations for specific score aggregation functions so that the
algorithms would not use random access. Their methods,
however, do not generalize to any monotone score aggre-
gation function and to arbitrary join predicates.

The SPROC algorithm [4] is the only algorithm to the
best of our knowledge that addresses the problem of join-
ing ranked result sets under arbitrary join conditions. In
the SPROC scenario, the overall score for the join com-
binations is a function of not only theatomic scoresfor
each tuple but alsoconstraint scoresfor pairs of tuples.
The problem is therefore more general than the one consid-
ered here since it scores the extent to which the join pred-
icates are met. It is solved by looking for a maximal cost
path, computed with a Viterbi-like dynamic programming
algorithm. In general, however, the algorithm will scan all
streams completely due to the lack of monotonicity in the
overall scoring mechanism. Therefore, it does not provide
access cost savings but minimizes the number of evaluated
join combinations instead.

One additional distinction of our work from all of the
above works is the fact that the latter considered only
the single-level join problem. In particular, random ac-
cess makes the above algorithms inefficient for hierarchical
joins since random accesses at intermediate levels of the
join hierarchy are prohibitively expensive. Ortega et al.’s
approach did use a multi-level query tree but the different
levels were derived always by breaking up a singlen-ary

join into a hierarchy of binary joins. Neither of the pre-
vious approaches therefore considered nested views or or-
dered joins based on arbitrary join predicates.

2 Algorithm J
�

In this section we propose theJ� algorithm for the ordered
join top-k query problem. The proposed join algorithm
is based on theA� class of search algorithms, hence the
nameJ�. The idea is to maintain a priority queue of partial
and complete join combinations, ordered on upper bound
estimates of the final combination scores, and to process
the join combinations in order of their priorities. At each
step, the algorithm tries to complete the combination at the
top of the queue by selecting the next stream to join to the
partial result and pulling the next tuple from that stream.
The process terminates when the join combination at the
head of the queue is complete. If that is the case, all in-
complete join combinations will have scores smaller than
the complete one at the head of the queue, and therefore,
that combination corresponds to the next best answer. The
algorithm thus performs the join incrementally, and due to
its pull-based nature, it applies to the multi-level join hier-
archies induced by nested view queries on ordered data.

More formally, for each input stream we define a vari-
able whose set of possible values consists of the tuples from
the corresponding stream. The problem of finding a valid
join combination with maximum score reduces to the prob-
lem of finding an assignment for all the variables, subject
to the join constraints, that maximizes the score. There-
fore, define astateto be a set of variable assignments, and
call the state acompleteor final solutionif it instantiates
all variables. Otherwise, the state is calledpartial or in-
complete. Since the possible values for each variable cor-
respond to tuples with scores, we can define the score of
a state assigning all variables to be simply the aggregation
of the individual scores. For states that are complete, the
score is exact. For incomplete states, the score can be up-
per bounded by exploiting the monotonicity of the score
aggregation function. We then define thestate potential
to be the maximum score a solution can take if it agrees
with all assignments in the given state.The state potential
can be computed by upper bounding the scores of all non-
instantiated variables for a given state. We can now solve
the problem by running theA� search algorithm, which
mandates that states be processed in decreasing order of
their potential.

The pseudo code for the crux of the algorithm is listed
in Figure 3. In order to output the topk matches, the algo-
rithm invokes the GetNextMatch() routinek times. During
the main processing loop, the algorithm always processes
the head of the queue by expanding it into two new states,
generated by considering the next possible value for some
unassigned variable. Both new states are inserted back into
the priority queue according to their potential if they satisfy
the join constraints. The GetNextUnassigned() routine en-
capsulates a heuristic that controls the order in which free
variables are assigned. In general, we want to select the

GETNEXTMATCH():
1 if (queue:EMPTY()) then
2 return NULL
3 endif
4 head queue:POP()
5 if (head :COMPLETE()) then
6 return head
7 endif
8 head2 head :COPY()
9 head2 :ASSIGNNEXTMATCH()

10 if (head2 :VALID ()) then
11 queue:PUSH(head2)
12 endif
13 head :SHIFTNEXTMATCH()
14 queue:PUSH(head)
15 Goto Step 1

SHIFTNEXTMATCH():
1 child GETNEXTUNASSIGNED()
2 child :match ptr ++
3 if (child :match ptr == NULL) then
4 child :match ptr
5 child :GETNEXTMATCH()
6 endif

ASSIGNNEXTMATCH():
1 child GETNEXTUNASSIGNED()
2 child :match ptr ++
3 if (child :match ptr == NULL) then
4 child :match ptr
5 child :GETNEXTMATCH()
6 endif

Figure 3: Pseudo-code for theJ� join algorithm. The three functions above form the crux of the algorithm.

variable that will provide the largest refinement on the state
potential, because the tighter the score upper bounds are,
the faster the algorithm will converge to a solution. Ex-
amples of possible heuristics include selecting the variable
that is most constrained or least constraining given the join
predicates; the variable thatcould lead to the largest drop
in the state potential; or the variable thatis expectedto lead
to the largest drop.y In general, a heuristic that quickly re-
duces ambiguity in the partial solution should lead to faster
convergence to the best solution, and the rate at which am-
biguity is reduced by different heuristics can be measured
empirically.

One important property to note from the pseudo-code
is the recursive invocation of method GetNextMatch()
from methods ShiftNextMatch(), and AssignNextMatch().
This illustrates why the algorithm works well on join
hierarchies—when computing the next best match for a
join at levell, the algorithm recursively invokes the same
subroutine for some of the children at levell+1, where in-
creasing levels correspond to deeper levels in the tree. This
recursive mechanism enables nested joins/views to be pro-
cessed efficiently. The efficiency comes from the fact that
the recursive call is executed only if needed, using a pull-
based model (i.e., a demand-driven approach).

The above algorithm is illustrated in Figure 4 for the oil
exploration example introduced in Section 1.1. Suppose
that we have two streams to join and the score aggregation
function is simply the weighted average of the two scores,
with weights 0.7 and 0.3. StreamA contains three possible
matches, and streamB has only two matches. Suppose also
that the “on-top-of” constraint is satisfied only for match-

yThe last heuristic can be implemented by comparing the variable
weights and their score distribution gradients. This observation was made
in [3], where the authors achieved significant speedup for skewed score
distributions using the same technique. They computed the weight by tak-
ing a derivative of the score aggregation function with respect to the given
stream score, and approximated the gradient with a score difference. In
some cases, however, the derivative may not be defined for the specific
aggregation function and the weight may not be easily computable.

ing combinations(A1; B1); (A2; B1); (A3; B2). The final
solutions are listed in the top left corner of the figure, while
the top right corner shows the first four iterations of priority
queue processing (until the top answer is identified). Each
state node in the priority queue contains a score estimate
and the ID of the next possible match from streamA orB,
resp. The unshaded squares denote unassigned variables,
along with the corresponding score upper bounds, while
the shaded squares contain variable assignments and exact
scores.

Figure 4 illustrates the algorithm for a single join level
only. If we had multiple join levels, the matches returned
for theAB node, for example, would become part of the
priority queue at an upper level. In that case, the steps in
Figure 4 will be executed each time the parent node needs
to get the next match for theAB node.

……IDIDScoreScore

matchesmatches

……110.900.90

……0.600.60 22

……110.900.90

……IDIDScoreScore

matchesmatches

……0.800.80 22

……330.700.70

On top of
AA BB

ABAB

111.01.0 11

BBAAScoreScore

110.930.93 11

BBAAScoreScore

220.930.93 11

220.860.86 11

BBAAScoreScore

110.900.90 11

110.900.90 22

330.860.86 11

220.930.93 11

BBAAScoreScore

110.900.90 11

110.900.90 22

0.830.83 22 11 ……

220.670.67 33 ……

110.900.90 11 ……

BBAAScoreScore

matchesmatches

……

0.7 0.3

Step 0 Step 1 Step 2 Step 3Output stream AB

Input stream A Input stream B

Assignments priority queue

Figure 4: Illustration of the algorithm for query:Find oc-
currences of rock textureA on top of rock textureB. The
individual matches for each query are shown in a table next
to the corresponding view node. The matches for the root
query are derived from the matches of the two children.
The first few steps of the process are illustrated to the right
by showing the priority queue at each of the steps.

3 Algorithm J
� With Iterative Deepening

As defined in the previous section, the state potential can be
expressed as a combination of the exact gain for reaching
the given state and a heuristic estimate of the potential gain
in reaching a terminal solution from the given state. By
processing states in decreasing order of their potential,J�

automatically inherits all properties of anA� algorithm.z

As long as the heuristic gain approximation never under-
estimates the true gain (i.e., the potential is always upper-
bounded),A� algorithms are guaranteed to find the optimal
solution (i.e., the one with maximum gain) in the fewest
number of steps (modulo the heuristic function). There-
fore, they provide a natural starting point for any search
problem [7].

A� algorithms, however, are designed to minimize the
number of processed states, not the database access cost
from our cost model. Minimizing the access cost trans-
lates into minimizing the number of values considered for
each variable assignment, and is not necessarily optimized
by A� algorithms. In addition,A� algorithms suffer from
large space requirements (exponential in the worst case),
which also makes them less suitable in practice. In this sec-
tion, we address both of the above issues by incorporating
iterative deepeninginto J�.

Iterative deepening is a mechanism for limiting compu-
tational resources by dividing computation into successive
rounds. Each round has an associated cut-off threshold,
calleddepthhere, which identifies the round’s boundaries.
The depth threshold is defined on a certain parameter, and
computation in each round continues as long as the value of
that parameter is below the specified threshold. At the end
of a round, if a solution has not been found, the algorithm
commences computation in the next round. Iterative deep-
ening can therefore be applied to a variety of algorithms by
specifying the depth parameter and the threshold bounds
for each round. Solution correctness and optimality are
guaranteed as long as the modified algorithm can guaran-
tee that solutions in earlier rounds are better in some sense
than the ones in later rounds.

For our purposes, we can define the depth of an algo-
rithm to be the maximum number of objects scanned via
sorted access in any of the streams. We can define the depth
of a state in a similar fashion, by counting the maximum
number of objects considered for each variable in the given
state. This definition for depth is very natural given that
the cost of theJ� algorithm is directly proportional to the
number of objects scanned via sorted access. We can fur-
ther define theith round to include all computation from
depthi �s to depthi �s+s�1, inclusive, for some constant
step factors � 1. The step factor is needed to limit both
access cost and space requirements in some worst cases,
and can be used to control a tradeoff between the two. The
pseudo-code for the modifiedJ� algorithm with iterative
deepening is illustrated in Figure 5.

zA� algorithms form a class of search methods that prune the search
space by taking into account the exact cost of reaching a certain state and
a heuristic cost approximation of reaching a solution from the given state.

ITERATIVEDEEPENING-J�():
1 Letqueue(r) be the priority queue at roundr
2 r 1
3 queue(1) root state
4 while (queue(r):head 6= NULL and
5 !queue(r):head :COMPLETE())
6 do
7 if (9 free variable at depth< (r + 1)s) then
8 process that variable
9 else

10 movequeue(r):head into queue(r + 1)
11 endif
12 endwhile
13 if (queue(r):head 6= NULL) then
14 movequeue(r):head into queue(r + 1))
15 endif
16 r r + 1
17 if (queue(r):head == NULL or
18 queue(r):head :COMPLETE()) then
19 return queue(r):head
20 else
21 Goto Step 4
22 endif

Figure 5: Pseudo-Code for theJ� algorithm with Iterative
Deepening.

4 Algorithm J
�

PA

The algorithm from the previous section uses only sorted
access when scanning the input streams. However, depend-
ing on the selectivity of the join predicates, it may be much
more efficient to perform a predicate access if the system
can exploit an index to return the objects that satisfy a given
predicate. An extreme case is the random access scenario
considered by Fagin [1], where each object participates in
exactly one valid join combination (i.e., the probability of
an arbitrary combination satisfying the join predicates is

1

Nm�1). In that case, using random access to complete par-
tial join combinations is much more efficient than scanning
in sorted order until the join constraints are met.

We therefore propose a variation of the algorithm that
can exploit indexes to directly access tuples based on the
join predicates. The pseudo-code appears in Figure 6. The
algorithm works like theJ� algorithm with one modifica-
tion. When processing an incomplete state from the head
of the priority queue, the algorithm first checks whether
the state is instantiated sufficiently to allow completion by
predicate access. If that is the case, the algorithm can pro-
cess the state via predicate access rather than sorted access,
provided the estimated cost of the predicate access is not
too large. Note that each state processed via predicate ac-
cess will be expanded into a number of new states (corre-
sponding to all join combinations involving the returned
objects from the uninstantiated streams). Therefore, we
perform the predicate access only if the estimated number
of returned objects is sufficiently small (i.e., smaller than
a certain threshold). The threshold is determined dynami-

Algorithm J�
PA:

1. LetP be the set of join predicates

2. Call a state� eligible if
8 non-instantiated streamT , 9 a key predicatep 2 P :

(a) There is an indexI defined onT

(b) target(p) is a key column inI

(c) bound(p) is invariable given state�

3. sorted cost(�) � sorted cost when� reached

4. predicate cost(�) � predicate cost when� reached

5. credit(�) � sorted cost(�)� predicate cost(�)

6. cost(�) �
P

p2P Cp � �lter factor (p) �N

7. Run modified J*:
If head is eligible andcost(head) � credit(t), then

(a) Expandhead by predicate access

(b) Insert resulting states into the priority queue

Figure 6: Pseudo-code for theJ�
PA join algorithm.

cally by the difference in sorted access cost vs. predicate
access cost at that point in time.x The cost of a predicate
access query (i.e., the number of returned objects) can be
estimated with traditional selectivity estimation techniques
(e.g., random sampling or histogram statistics). The deci-
sion on when to use predicate access can be based on tradi-
tional query optimization techniques.

5 Approximation Algorithms
Both algorithmsJ� andJ�

PA solve the top-k query prob-
lem exactly. In some scenarios, however, the user may be
willing to sacrifice algorithm correctness for improved per-
formance. In the following, we describe an approximation
version for both of the above algorithms. Intuitively, we
call an algorithm an�-approximationif it returns solutions
that can be worse than optimal by at most�. More formally,
we adopt the definition from [2], and we say that an algo-
rithm provides an�-approximation to the top-k answers if
it returns a setR of k solutions such that:

8x 2 R; y =2 R : (1 + �) � x:score � y:score:

Figure 7 illustrates the modifiedJ� andJ�
PA algorithms

that return an�-approximation for a user-specified�. Alter-
natively, the algorithms can be modified to output the cur-
rent approximation factor (� = (U(k; t)�L(k; t))=L(k; t))
at any given timet, and the user can decide when to stop
the algorithm interactively. Note that for� = 0, both of
the approximation versions behave exactly as the original
algorithms and output the bestk solutions.

xThis heuristic essentially balances the two (negatively correlated)
types of access cost in an effort to minimize the overall access cost. In [2],
the authors present a hybrid algorithm, called CA, that balances sorted ac-
cess cost with random access cost. Under certain assumptions, they prove
optimality results independent of the unit costs for sorted access and ran-
dom access. We believe that our algorithm has similar behavior.

Algorithm �-J� (resp.,�-J�
PA):

1. Let� � 0 be a user-specified parameter.

2. LetU(k; t) be thekth largest potential in the priority
queue ofJ� (resp.,J�

PA) at timet (i.e.,U(k; t) is an
upper bound on the score of thekth best join combi-
nation). LetU(k; t) = 1:0 if the priority queue does
not havek states at timet.

3. Let L(k; t) be thekth largest potential of a com-
plete state (i.e. solution) in the priority queue ofJ�

(resp.,J�
PA) at time t (i.e.,L(k; t) is a lower bound

on the score of thekth best join combination). Let
L(k; t) = 0:0 if the priority queue does not havek
complete states at timet.

4. Run iterative deepeningJ� (resp.,J�
PA) algorithm un-

til time t� such that:U(k; t�) � (1 + �)L(k; t�).

5. Output the k complete solutions with scores�
L(k; t�).

Figure 7: Pseudo-code for the�-approximation algorithms.

6 Optimality
In this section, we consider the performance of the pro-
posed algorithms in terms of their database access cost, or
cardinality of input tuples. We use the notion ofinstance
optimality, defined by Fagin et al. in [2]:

Definition 6.1: Let A be a set of algorithms that solve a
certain problem, and letD be a set of valid inputs for
that problem. Letcost(A;D) denote the cost of running
algorithmA 2 A on inputD 2 D. We say that algo-
rithmB 2 A is instance-optimaloverA andD if 8A 2 A
andD 2 D, 9 constantsc andc0 such that:

cost(B;D) � c � cost(A;D) + c0:

The constantc is called theoptimality ratio ofB.

As discussed in [2], the above notion of optimality is
very strong ifA andD are broad. Intuitively, if an algo-
rithm is instance-optimal over the class of all algorithms
and all inputs, that means that it is optimal in every in-
stance, not just in the worst case or the average case. Given
the above definition, we can state the following theorem:

Theorem 6.2: LetA be the set of all algorithms that solve
(resp., approximate) the top-k ordered join problem using
only sorted access. LetD be the set of all valid inputs (i.e.,
database instances) for that problem. Then, algorithmJ�

with iterative deepening (resp.,�-J�) is instance-optimal
overA andD with respect to database access cost. Fur-
thermore, it has an optimality ratio ofm, wherem is the
number of streams being joined, and no other algorithm
has a lower optimality ratio.

Due to space consideration, we shall omit the proof of
the above theorem. We only note that the lower bound on
the optimality ration follows directly from [2], where Fa-
gin et al. proved it for a special case of this problem.

7 Empirical Results

In this section we describe simulation experiments for eval-
uating the proposed algorithms. We implemented the algo-
rithms as part of a constrained query framework that we
proposed in [5]. The entire framework is about 5000 lines
of C++ code and provides an API for plugging arbitrary
attributes, constraints, and join algorithms. All of the ex-
periments were run on an IBM ThinkPad T20, featuring a
Pentium III 700 MHz processor, 128 MB RAM, and run-
ning Linux OS. All of the experiments we report use syn-
thetic data sets, generated to model real data.

The queries were generated pseudo-randomly by hav-
ing a fixed query tree structure but with random parame-
ters, such as attribute values for the join predicates, node
scores, and node weights. Each query was built as a tree
joiningm leaf nodes, where each leaf node hadn matches.
Each node performed an equi-join of its children views
over a fixed attribute. The attribute values were gener-
ated randomly from an integer range that controls the prob-
ability that the join constraint is satisfied. Unless other-
wise noted, we used probability of 0.5, in order to model
general relational binary predicates (e.g.,left-of/right-of,
above/below, smaller/bigger, before/after, etc). Also, un-
less specified otherwise, children nodes had weights dis-
tributed uniformly in the [0,1] range and scaled to add up
to 1. For the scores of matches at the leaf nodes (i.e.,
atomic queries), we considered the following distributions:
uniform (i.e., linear decay), exponential decay, sub-linear
decay, and thei%-uniform distributions from [3], fori =
1; 0:1, and0:05. Thei%-distributions were designed in [3]
to model real image data and consist ofi% of all scores be-
ing uniformly distributed in the [0.5, 1] range (i.e., medium
and high scores), while the rest are all below 0.1 (i.e., in-
significant scores).

The parametersm, p, n, and the desired number of an-
swersk for each query, are specified for each experiment.
Default values arem = 3, p = 0:5, n = 10000, k = 30,
and 1%-uniform score distributions. We performed exper-
iments to study the performance with respect to constraint
probability, query tree size, number of outputs, database
size, stream weight and score distributions. To evaluate the
performance of a query, we measured the number of tuples
scanned by the algorithm, as well as the maximum size of
the priority queue. The first measure is the database access
cost of the algorithm, while the second corresponds to the
space requirements of the algorithm. All of the results we
report are averaged values over 10 random queries of the
given type. The results are listed in Figures 8(a)–11.

The first set of experiments studies the dependence of
the algorithm on the probability that the join constraints
are met. The join constraints’ probabilities were modeled
by assigning a random attribute withd possible values to
each node, and using pairwise join constraints that require
the attributes to have the same value. We variedd from 1 to
30, thus obtaining probabilitiesp = 1=d from 0.03 to 1.0.
The results are plotted in Figures 8(a) and 8(b) for three
different weight distribution cases—uniform, decaying, or

equal weights. Figure 8(a) shows almost identical database
access cost for all three cases, which means that the run-
ning time of the algorithm is fairly robust with respect to
the weight distribution. Figure 8(b), however, shows that in
the case of equal weights, the algorithm has a higher space
requirement. This is to be expected since in that case the
algorithm cannot exploit the weights to scan “more impor-
tant” streams first, and will therefore take longer to con-
verge to the optimal solution. Overall, both figures show
that for reasonable values ofp, when there are enough valid
combinations to generate the desired number of outputs,
both the database access cost and the space requirements
are almost constant.

The second set of experiments evaluated the perfor-
mance of the algorithm with respect to the size of the query
tree. Given the number of streams to join, we considered
two types of queries. The first wasflat queries joining
all input streams in a single level (denoted asmax-width
queries). The second were nestedmax-heightqueries that
join the same number of streams but only two at a time,
by building a balanced binary tree on the input streams.
Figures 9(a)–9(b) show the performance of both types of
queries with identical other parameters, and with varying
number of streams to join. Note also that we used larger
streams (100000 tuples) in these queries in order to test
scalability with respect to database size. We can make
several conclusions from the figures. First, despite the in-
creased database size, both types of queries scan only a
small number of tuples that appears to be dependent on
the desired number of outputs only and not on the database
size. And second, all else being equal, nested queries are
more costly than flat queries in terms of access cost but
cheaper in terms of space requirements. The higher ac-
cess cost can be explained by the fact that the number of
possible matches increases exponentially at each level in
the nested queries. Yet, the difference in the access cost
is fairly small, which shows that the algorithm is efficient
even for such highly-nested joins.

The third set of experiments was designed to evaluate
the dependence of the algorithm on different score distri-
butions. We considered the six distributions described ear-
lier and computed access cost and space requirements for
varying number of desired outputs,k. The results in Fig-
ures 10(a) and 10(b) generally show a sub-linear depen-
dence onk.{ An exception is the exponentially decaying
score distribution, where the difference between successive
score values becomes negligible very quickly and the algo-
rithm takes longer to converge due to fact that successive
assignments lead to very small refinements in the overall
solution score. However, this trend is reversed for space
requirements in Figure 10(b), where quickly decaying dis-
tributions require less space. This could also be explained
by the theory that quickly decaying scores lead to small re-
finements in the score estimates very quickly, and therefore

{Note that the number of scanned database tuples can be smaller than
the number of desired outputs. This is due to the fact that each tuple can
participate in multiple valid join combinations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pe
rc

en
t o

f
da

ta
ba

se
 tu

pl
es

 s
ca

nn
ed

Probability p of join constraint satisfaction

Query tree with equal weights
Query tree with decreasing weights

Query tree with random weights

(a) Database access cost

0

50

100

150

200

250

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
ax

im
um

 le
ng

th
 o

f
pr

io
ri

ty
 q

ue
ue

Probability p of join constraint satisfaction

Query tree with equal weights
Query tree with decreasing weights

Query tree with random weights

(b) Space requirements

Figure 8:J�’s dependence on join constraint probabilityp. (1%-uniform distribution,m = 3; n = 10000; k = 30)

20

40

60

80

100

120

140

160

180

200

2 4 6 8 10 12 14 16

N
um

be
r

of
 d

at
ab

as
e

tu
pl

es
 s

ca
nn

ed

Number of streams to be joined, m

Max-width query tree
Max-height query tree

(a) Database access cost

0

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

M
ax

im
um

 le
ng

th
 o

f
pr

io
ri

ty
 q

ue
ue

Number of streams to be joined, m

Max-width query tree
Max-height query tree

(b) Space requirements

Figure 9:J�’s dependence on number of streams to join,m. (1%-uniform distribution,n = 100000; k = 30; p = 0:5)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 d

at
ab

as
e

tu
pl

es
 s

ca
nn

ed

Number of desired outputs, k

Exponential decay score distribution
Uniform score distribution

1%-uniform score distribution
0.1%-uniform score distribution

0.05%-uniform score distribution
Slow decay score distribution

(a) Database access cost

5

15

25

35

45

55

65

75

0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 le
ng

th
 o

f
pr

io
ri

ty
 q

ue
ue

Number of desired outputs, k

Exponential decay score distribution
Uniform score distribution

1%-uniform score distribution
0.1%-uniform score distribution

0.05%-uniform score distribution
Slow decay score distribution

(b) Space requirements

Figure 10:J�’s dependence on number of desired outputs,k. (m = 3; n = 100000; p= 0:5)

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
s

w
ith

 r
es

pe
ct

 to
 J

*

Number of desired outputs, k

Recall values
Percent tuples scanned

Percent space needed

Figure 11: J�-relative performance (in percentages) of
first-k greedyJ� algorithm vs. number of desired outputs.
(1%-uniform distribution,m = 3; n = 100000; p = 0:5)

the algorithm is more likely to be localized to the same set
of assignments, as opposed to spreading its computation
over a large set of assignments.

The final experiment measured the performance of a
very simplefirst-k greedy approximation algorithm with
respect to the originalJ� algorithm. The idea is to runJ�

until there arek complete and valid join combinations, and
then to output them as the best solutions, even if they are
not at the top of the priority queue. This corresponds to
running the�-J� algorithm and stopping at the earliest pos-
sible time (i.e, for any� approximation factor that is not1)
in order to produce the coarsest approximation with that al-
gorithm. We measured the database access cost and total
space requirements of the greedyJ� version as a fraction
of the corresponding values forJ�. We also calculated the
recall and precision values. We considered the output of
theJ� algorithm for a top-k query to be the ground truth for
that query, and therefore, each top-k query had exactlyk
correct answers. Thus, the precision, defined as the frac-
tion of output answers that were correct, is the same as the
recall, or the fraction of correct answers retrieved by the
approximation algorithm.

The recall, relative access cost and relative space cost
are shown as percentages in Figure 11. From the recall
curve in the graph, we can conclude that the greedy heuris-
tic is an excellent approximation to the optimal answers for
values ofk that are not very small. We hypothesize that the
greedy algorithm outputs the tuples in a slightly different
order, which reduces the recall at the beginning. However,
the identities of the top-k tuples eventually match the true
answers, even though they might be shuffled somewhat.
Thus, theunorderedset of top-k answers is approximated
very well. In addition, we see that the database access cost
is reduced by 5–10%, while the space requirements are re-
duced by 40%. Therefore, we can conclude that the greedy
first-k heuristic provides significant cost savings with al-
most no reduction of accuracy.

8 Conclusions
In this paper, we introduced several algorithms for incre-
mental joins of ranked inputs based on user-defined join
predicates. The algorithms enable more powerful querying
by providing the ability to integrate result sets from multi-
ple atomic independent queries, using complex criteria for
integration. The need for such efficient query integration
arises naturally in domains dealing with ordered inputs and
multiple ranked data sets, and requiring the topk solutions.

Our proposedJ� algorithm differs from previous work
in two main aspects: 1) it can support joins of ranked in-
puts based onuser-defined join predicates; and 2) it can
handle multiple levels of joins that arise innested views.
This is the first algorithm to the best of our knowledge that
supports the above operations. We also presented aJ�

PA

version of the algorithm that uses predicate access to re-
duce the cost of the algorithm, and we discussed variations
for both scenarios that reduce complexity by approximating
the solution. We gave strong optimality results for the al-
gorithms requiring only sorted access. We also performed
an extensive empirical study for validation in practice.

References
[1] R. Fagin. Combining fuzzy information from multiple

systems. Journal of Computer and System Sciences,
58:83–99, 1999. An extended abstract of this paper
appears infProc. Fifteenth ACM Symp. on Principles
of Database Systems (PODS ’96)g, Montreal, 1996,
pp. 216–226.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InProc. of ACM Sympo-
sium on Principles of Database Systems (PODS ’01),
Santa Barbara, CA, May 2001.

[3] U. Güntzer, W.-T. Balke, and W. Kiessling. Optimiz-
ing multi-feature queries for image databases. InProc.
of the 26th Intl. Conference on Very Large Databases
(VLDB ’00) , Cairo, Egypt, 2000.

[4] C. S. Li, J. R. Smith, V. Castelli, and L. Bergman. Se-
quential processing for content-based retrieval of com-
posite objects. InStorage and Retrieval of Image and
Video Databases, VI. SPIE, 1998.

[5] A. Natsev, J. R. Smith, Y.-C. Chang, C.-S. Li, and J. S.
Vitter. Constrained querying of multimedia databases:
Issues and approaches. InProc. SPIE Electronic Imag-
ing 2001: Storage and Retrieval for Media Databases,
San Jose, CA, Jan. 2001.

[6] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew,
S. Mehrotra, and T. S. Huang. Supporting ranked
Boolean similarity queries in MARS.IEEE Trans.
on Knowledge and Data Engineering, 10, Nov.–Dec.
1998.

[7] S. Russell and P. Norvig.Artificial Intelligence: A
Modern Approach. Prentice Hall, Inc., 1995.

