
Views in a Large Scale XML Repository

Sophie Cluet Pierangelo Veltri Dan Vodislav
Xyleme S.A., St Cloud, France Verso INRIA, Rocquencourt, France Cedric CNAM, Paris, France

Sophie.Cluet.@xyleme.com Pierangelo.Veltri@inria.fr vodislav@cnam.fr

Abstract

We are interested in de�ning and querying
views in a huge and highly heterogeneous
XML repository (Web scale). In this context,
view de�nitions are very large and there is no
apparent limitation to their size. This raises
interesting problems that we address in the
paper: (i) how to distribute views over sev-
eral machines without having a negative im-
pact on the query translation process; (ii) how
to quickly select the relevant part of a view
given a query; (iii) how to minimize the cost
of communicating potentially large queries to
the machines where they will be evaluated.

1 Introduction

We believe that XML will soon take an important and
increasing share of the data published on the Web.
This represents a major opportunity to, at last, pro-
vide an intelligent access to this amazing source of in-
formation. With that goal in mind, the Xyleme [15]
project [16] is building a warehouse which will store
and provide sophisticate database-like services over all
the XML documents of the Web. Notably, users of
Xyleme will be able to ask precise questions (such as
\what are the names and addresses of Spanish muse-
ums that own a painting by Picasso?") and get accu-
rate answers (i.e., XML documents with just the right
information, not a list of often useless URLs).

Queries are precise because, as opposed to keywords
searches, they are formulated using the structure of
the documents. In some areas, people de�ne stan-
dard documents types or DTDs (e.g., [11]), but most
companies publishing in XML have their own. Thus,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

a modest question may involve hundreds of di�erent
types. Since, we cannot expect users to know them all,
Xyleme provides a view mechanism, enabling users to
query a single structure, that summarizes a domain of
interest, instead of many heterogeneous schemata.

As in classical databases, views in Xyleme are used
to manipulate data coming from di�erent collections
through a unique and more convenient structure. But
the di�erences between the classical approach and
Xyleme are as important as the similarities.

Relations vs. Clusters: Xyleme data is not stored
into relations by proprietary applications but gathered
by crawlers from the Web. To put some order in that
massive amount of data, Xyleme relies on an automatic
classi�cation tool that partitions the documents into
thematic clusters. E.g., the cluster named art contains
all documents relative to art.

A view in a relational system builds one virtual
(abstract) relation by combining information coming
from various actual (concrete) relations (see Figure 1).
Similarly, a view in Xyleme combines several concrete
clusters into one abstract one. However, whereas the
tuples in a relation share a common type, a cluster is
a collection of highly heterogeneous documents. Thus,
a view cannot be de�ned by one relatively simple join
query between two or three collections but rather by
the union of many queries over di�erent sub-clusters.
In other words, the size of a view de�nition in Xyleme
is orders of magnitude larger than that of a relational
view. Obviously, techniques that are used to main-
tain and query relational views have to be seriously
re-considered to �t Xyleme's needs.

Human vs. Machine Views are large because docu-
ments are heterogeneous. We are talking here of het-
erogeneity at a Web scale, one that human cannot
cope with. This is why Xyleme supports a (semi-)
automatic view generation tool [12]. A user creates
a view by �rst (i) designing a view schema/DTD and
(ii) selecting a view domain (i.e., some clusters). Then,
the view generation tool extracts the various DTDs on
this particular domain and, using a thesaurus, �nds
possible mappings between the view schema and the
documents structures. From these mappings, a view
de�nition is generated. During the process, the user

...

DTD

documents

...

DTD

documents

...

DTD

documents

...

DTD

documents
...

DTD

documents
...

DTD

documents

...

DTD

documents

...

DTD

documents
...

DTD

documents
...

DTD

documents

...
... ...
...

...

...
...
...

...

...

.........

...
...

Join,...σ, π,

ViewView domain

...

...

View domain View

?
cluster

cluster

... ...
...

abstract DTD

documents

Relational database Xyleme

Figure 1: Relational Vs. Xyleme Views

can interact to re�ne the de�nition. Whereas a human
cannot cope with large scales, softwares do not have
the intelligence of humans. This seriously constrains
the expressive power of the view de�nition language.

This paper presents our solution to this new prob-
lem. We are not concerned by view materialization but
focus on three main issues: (i) view de�nition model,
(ii) view implementation and distribution, (iii) transla-
tion of queries against views. We chose a simple de�ni-
tion language to allow automatic generation of views.
Still, this language is adapted to most practical cases
and allows a distributed implementation of the view
system that is scalable both in terms of data and load.
The query translation algorithm has a good (linear)
complexity. Future work will aim at a more powerful
view language while preserving the good performance
and scalability properties of the current solution.

To our knowledge, there is no work on views in a
web-scale heterogeneous information system. Previous
works provided view mechanisms with more power-
ful de�nition languages for relational [13], object [10],
semistructured [1] databases or mediators [9, 7], but
are not adapted to heterogeneity on a large scale.

The paper is organized as follows. In Sections 2 to 4,
we address the problems of, respectively, (i) de�nition,
(ii) implementation and (iii) translation of views. In
Section 5, we extend our work by introducing joins in
query translation and considering query relaxation.

2 View De�nition

We �rst brie
y introduce the Xyleme query language
before discussing the view de�nition model.

2.1 Queries

The Xyleme query language is an extension of OQL [6]
with path expressions and the full text contains pred-
icate. It is consistent with the requirements published
by the W3C XML Query Working Group [14] and sim-
ilar to many languages proposed by the database com-
munity for text or semistructured databases (e.g., [2,

5, 8]). The most basic query �lters a collection of XML
documents according to some predicates. For instance,
consider the following query that retrieves the titles of
van Gogh's paintings exposed at the Orsay museum.

Example 2.1
select p/title
from doc in culture,

p in doc/painting,
where p/author contains \van Gogh"

and p/museum contains \Orsay"

Note that, as opposed to standard database queries,
structure is used here as an added means for �ltering
the documents. The collection named culture contains
documents of various types. The query considers only
those with the speci�c structural pattern shown in Fig-
ure 2 (tags are in bold font, title is framed because it
is part of the query answer). Xyleme query language
supports both child (/) and descendant (//) relations.
In this paper, we forget about this distinction.

 museumauthor

"Orsay"

title

painting

culture

"van Gogh"

Figure 2: Query Pattern Tree

This simple kind of queries that �lters a collection
according to some tree pattern is called a tree query. It
constitutes the basic brick of Xyleme query language.
A complex algebraic operator called PatternScan has
been designed especially to capture tree queries. It
is implemented using an adaptation of the full text
indexing technology [3]. Naturally, tree queries are
also the basis of the view mechanism.

2.2 Views

As in a relational system (Figure 1), a Xyleme view
has a domain, a schema and a de�nition. In the se-
quel, everything related to the view domain is called

Abstract DTD

painter

year description

 painting

year technique locationname

biography title artist

name period

 gallery

WorkOfArtculture

painting

authortitle period museum

cinema ...

Abstract cluster "culture"

View Domain 2 concrete DTDs of the "art" cluster

cluster "art"

cluster "literature"

cluster "cinema"

cluster "tourism"

Figure 3: An Example of View over the culture Domain

concrete and everything related to the view itself is
called abstract.

The domain of a view is a set of clusters, i.e., a sub-
set of Xyleme repository. A cluster contains a set of
semantically related XML documents. E.g., the cluster
art contains all documents relative to art. The struc-
ture of the documents within a cluster is described by
DTDs (also called concrete DTDs). The right part of
Figure 3 shows two concrete DTDs of to the art clus-
ter. Notice that they are represented as trees. They
may actually be graphs. However, it is always possi-
ble to replace a graph DTD structure by a forest of
tree-like DTDs, that we call DTD summary. We do
this in Xyleme by considering all the roots of the doc-
uments conforming to a DTD and by extracting from
the graph the trees rooted into these elements. In the
sequel, we assume without loss of generality that all
concrete DTDs are trees with a unique root. More-
over, we do not distinguish attributes from elements
and we ignore cardinality and alternatives.

The view schema is an abstract DTD. It is a tree
of concepts (rather than attributes or elements). Ab-
stract DTDs describe abstract documents, i.e., those
that are within the view. For instance, consider the
abstract DTD shown on the left part of Figure 3. All
edges must be interpreted as 0-n (i.e., *"). Links are
interpreted as providing context: e.g., author under
painting may be interpreted as painter, while author
under movie as director.

The view de�nition is traditionally a query. In
Xyleme, we chose a simpler view de�nition language.
A view is de�ned by a set of pairs < p; p0 >, called
mappings, where p is a path in the abstract DTD
and p0 a path in some concrete DTD. We call these
paths respectively abstract and concrete. The intu-
ition that is underlying our views is that of \path-to-
path" mapping, i.e. a view speci�es mappings between
path in the abstract and concrete DTDs. Before pre-
senting path-to-path mapping, we discuss two alter-
native ways of mapping abstract to concrete DTDs:
tag-to-tag and DTD-to-DTD. We justify our choice by
comparing these solutions according to four features:
(i) size of the view de�nition, (ii) automatic genera-
tion, (iii) precision in query translation, and (iv) query
translation processing time.

Tag-to-tag mappings

The view is de�ned here by a set of mappings from
abstract concepts to concrete terms. An abstract con-

cept is the label of a node in the abstract DTD tree
(e.g., \painting" in the abstract DTD of Figure 3) and
a concrete term is the label of a node in some concrete
DTD (e.g., \WorkOfArt" or \painting" in the concrete
DTDs of Figure 3). An abstract concept, respectively
a concrete term, may be involved in several mappings.

To translate a query against a view, abstract con-
cepts are simply replaced by their corresponding con-
crete terms. All possible combinations are considered,
each resulting in a tree query. The various tree queries
are unioned to form the �nal result. From a storage
point of view, this solution is the less costly, because
concepts or terms occurring several times are factor-
ized. It is also the easiest to generate automatically (it
is simple to �nd semantic analogies between words).

However, it is the less precise because it completely
ignores the structure of the documents, not allowing
to capture relevant mappings. For instance, consider a
query involving the abstract path: painting/title, and
assume that a concrete DTD contains the path: paint-
ing/description/title. With tag to tag mappings, one
cannot translate one path to the other because they do
not have the same length. The only possibility is to
systematically use descendant rather then child rela-
tionship. In this way painting/title would be trans-
lated to painting//title, but, the title below paint-

ing/description/exhibition in some concrete docu-
ment will be interpreted as the title of a painting.

The lack of precision is also bad from a processing
point of view. Indeed, translating queries with tag-to-
tag mappings leads to consider all tags combinations,
(i.e. kn if k is the average number of mappings per
abstract concept and n is the size of the query) many
of which are useless because they do not appear in any
concrete DTDs. Thus, this may become ine�cient.

DTD-to-DTD (tree-to-tree) mappings

Another possibility to de�ne views is to map abstract
DTD to concrete DTD. This is illustrated by Figure 4
where dotted lines represent the correspondence be-
tween abstract nodes (on the left) and concrete ones.

culture

author

painting

museumtitle period

...cinema

WorkOfArt

artist gallery

 name period

title

Figure 4: A Mapping from DTD to DTD

This method corresponds to the classical de�nition
of view, where the connection between two structures
is de�ned by a query.For instance, the mapping of Fig-
ure 4 corresponds to the following Xyleme query:

Example 2.2
select culture [painting [title : t,

author : a,
museum : m]])

from p in WorkOfArt,
a in p/artist/name,
t in p/title,
m in p/gallery

The select clause builds the abstract DTD subtree
that is bounded in Figure 4 and indicates the connec-
tion between abstract and concrete nodes (e.g., title
and t, which stands for WorkOfArt/title).

In order to translate a query, we �rst select the
mappings whose abstract subtree includes that of the
query. Then, from each of them, we generate a con-
crete query in a straightforward way. The result is the
union of all these concrete queries.

The drawbacks of DTD-to-DTD mappings concern
storage and view generation. DTDs often share sim-
ilarities, because familiar concepts (e.g. address) of-
ten take the same form, or because new DTDs are
often created by modifying existing ones (customiza-
tion). DTD-to-DTD mappings cannot factorize such
similarities, while the other mappings do. Concerning
view de�nition, it is doubtful that a software will ever
achieve the level of precision that is required here.

Still tree-to-tree mappings o�er several advantages.
Notably it is the most precise method, because it pre-
serves the interpretation context of each document
structure. Unlike the others, DTD-to-DTD mappings
describe the abstract representation of a whole con-
crete DTD. Consequently, query translation produces
no useless and no irrelevant query. Also, the query
translation algorithm is very e�cient, provided that
the selection of the right mappings is fast. This can
be achieved with appropriate data structures.

Path-to-path mappings

This is the method we chose, because, as explained
below, and illustrated by Figure 6, it combines the
advantages of the two previous approaches. The
idea here is to preserve the context of interpre-
tation of abstract and concrete nodes, i.e., their
path from the root. This is illustrated by Fig-
ure 5 that shows a set of path-to-path mappings.
Note that each mapping must be interpreted indepen-
dently. I.e., the fact that a/b/c is mapped to a'/b'/c'
does not mean that a/b is mapped to a'/b'. In-
deed, the example contains counter-examples of that.
For instance consider culture/painting/author� >

WorkOfArt/artist/name. This mapping simply
states that the abstract concept \author of a paint-
ing" is equivalent to the information found at the end
of the concrete path WorkOfArt/artist/name.

Query Translation is performed in two steps. First,
we select the abstract concepts that are used in
the query. For instance, culture/painting, cul-

ture/painting/title, culture/painting/author and
culture/painting/museum in the query of Figure 2.
Then, among all the possible ways of combining their
associated concrete paths, we select only those that (i)
form a subtree of some concrete DTD and (ii) preserve
the parent/child relationship of the abstract query.
The result is the union of the concrete queries built
from the valid tree combinations. For instance, given
the mappings of Figure 5, the query will have a trans-
lation in the DTD rooted at WorkOfArt but not in the
other one that reverses the painting/painter relation-
ship. We will see in the sequel that there exists some
good reasons for that constraint (e�ciency and seman-
tics) that may look too strong in the current case. Also
we will see how it can be relaxed. Path-to-path map-

culture/painting −−> WorkOfArt
culture/painting −−> painter/painting

culture/painting/title −−> WorkOfArt/title
culture/painting/title −−> painter/painting/name

culture/painting/author −−> WorkOfArt/artist/name
culture/painting/author −−> painter
culture/painting/museum −−> WorkOfArt/gallery
culture/painting/museum −−> painter/painting/location

...

Figure 5: Path-to-path Mappings

pings save space by factorizing DTD similarities and
allow semi-automatic mapping generation.

How mappings are generated is not the topic of
this paper ([12]). In a nutshell, to each node in the
abstract DTD we associate zero, one or more ances-
tor nodes that constitute its context of interpreta-
tion. For instance the left most title node in the ab-
stract DTD of Figure 3, is associated to the paint-

ing node. then mappings are generated in two steps.
First, words are mapped to words. Second, paths are
mapped to paths by considering (i) their leaf words
and (ii) their context. For instance, culture/painting
is mapped to WorkOfArt because there is a special-
ization relationship between the two leaf words. cul-

ture/painting/title is mapped to WorkOfArt/title

because their leaf nodes are equal and there is a map-
ping between the context of title (culture/painting)
and a sub-path of WorkOfArt/title.

The main problem of the path-to-path mappings is
precision. The descendant relationship constraint in
query translation may lead to miss relevant concrete
queries. Still remember that, in any case, automatic
generation of mappings cannot be completely precise.
As a matter of fact, the precision we miss here is typi-
cally that which cannot be infered by a software since
links in XML do not have a semantics.

Query translation is as fast as for DTD-to-DTD
mappings (see Section 4), because mappings are
grouped by concrete DTD and the translation algo-

rithm can process them together. Finally, notice that
views as presented here map structure to structure in
un-conditional way. In fact, the implementation of
the view mechanism features simple conditional state-
ments of the form \path contains constant". This
extension is trivial and will not be discussed here.

very bad

best

good

Precision processing
Query

slow

fast

fast

Automatic view
generation

easy, imprecise

acceptable

as imprecise as
path-to-pathDTD-to-DTD

tag-to-tag

path-to-path

Method

Feature
Storage

efficient

very
efficient

less
efficient

Figure 6: Comparison between Mapping Methods

3 View Implementation

In order to explain our implementation, we need to
describe the distribution of data and processes in
Xyleme. Thus, we next brie
y describe the Xyleme
machine architecture and query evaluation process.
Then, we present the view implementation from two
di�erent angles: data structures and processing.

Index Index

Repository

Index Index

Repository

Interface Interface
Ethernet

Internet

Figure 7: Xyleme Machine Architecture

3.1 Distribution in Xyleme

The Xyleme system runs on a cluster of Linux PCs. As
illustrated in Figure 7, we distinguish (functionally)
three kinds of machines (from bottom to top):

Repository machines (RM) are in charge of storing
the documents. Data is clustered according to a se-
mantic classi�cation[12], each RM storing potentially
several clusters of semantically related data (e.g., art,
and literature). In this way, we reduce the number of
machines that have to be accessed to evaluate a par-
ticular query. In order to also reduce IO operations,
we index each cluster (see next item).

Index machines (XM) have large memories that are
mainly devoted to indexes. We partition clusters on
index machines so as to guarantee that (i) all indexes
reside in main memory and (ii) each XM is associ-
ated to only one RM. We adapted the full text index

technology to answer structured as well as keywords
queries with one index.

Interface machines (IM) are connected to the In-
ternet. They are in charge of running applications and
of dispatching tasks/processes to the other machines.
They all use the same meta information about e.g.,
data distribution. Whereas the number of RMs and
XMs depends on the warehouse size, the number of
interface machines grows with the number of users.

Interface
Machine (IM)

Access to the index

Machine (RM)
Repository

Index
Machine (XM)

Access to the store

 +

plan

 Optimization

plan generation

installation

query control

query

Legend:

dataflow

control

subplan

Figure 8: Query Evaluation in Xyleme

Figure 8 illustrates the query evaluation process
when views are not used [3, 4]. The input query is
partly optimized and compiled on one interface ma-
chine. The result of the compilation is a distributed ex-
ecution plan consisting of several local subplans. Each
subplan is shipped to its respective machine where it is
eventually further optimized and evaluated. In the ex-
ample, there are three subplans. The one in charge of
controlling the overall execution and sending the result
back to the user stays on the interface machine. The
two others are sent to, respectively, a repository and
an index machine. Obviously, there are cases where
more index and repository machines are involved.

Evaluation always starts on the machines indexing
the queried clusters. There, the identi�ers of docu-
ments and elements that match the (sub-)query tree
pattern are retrieved. E.g., assuming Query 2.1 is con-
crete and culture is a cluster, then an index on culture
will be used to return the identi�ers of documents and
title that match the query pattern tree of Figure 2.
The identi�ers returned by the index are then shipped:
(i) either, to the control subplan along with some sum-
mary information, if the user asked for URLs; or (ii),
to another index machine if some join operation has to
be evaluated (we support only index joins); or (iii), to
a repository machine to extract the values associated
to the selected elements.

3.2 Distributing Views

Traditionally, a query against a view is evaluated by
�rst replacing the view name by its de�nition. Then,
the expanded query is optimized and executed. If we

culture

painting

authortitle period museum

 title artist

name period

 gallery

WorkOfArt

Abstract DTD

culture/painting −−> WorkOfArt
culture/painting −−> painter/painting
culture/painting/title −−> WorkOfArt/title
culture/painting/title −−> painter/painting/name

culture/painting/author −−> WorkOfArt/artist/name
culture/painting/author −−> painter
culture/painting/museum −−> WorkOfArt/gallery
culture/painting/museum −−> painter/painting/location

2 concrete DTDs of the "art" cluster

Some mappings for the "art" cluster

painter

 painting

yearname year

biography

technique location description

Figure 9: A View Over the culture Domain

keep this model in Xyleme, the view must reside and be
replicated in the memory of all the interface machines.

Still, remember that views in Xyleme are large and
grow with the Web. More precisely, their size depends
on the number of DTDs of the Web, which is poten-
tially unlimited. So, we must distribute views.

A view can be seen as a collection of subviews, one
per DTD. A �rst answer to the distribution problem
is to split the collection among the di�erent interface
machines. This solution is not appropriate for mainly
two reasons. First, to evaluate a query, one will have to
broadcast and pre-process it on all interface machines.
Second, the number of interface machines grows with
the number of users, not with the size of the warehouse
and, consequently, of the view. Another bad answer
to the problem is to try and bypass distribution by,
e.g., encoding views so as to reduce their size as much
as possible. However, no matter how smart you are at
encoding paths, this does not scale.

Thus the standard translation pattern must be re-
considered. We process queries in two steps. First, the
query is pre-compiled on an interface machine. Using
local information, we �nd which clusters of data are
concerned and generate a plan whose speci�city is that
it contains abstract instead of concrete tree patterns.
E.g., considering Query 2.1, the pattern tree of Fig-
ure 2 is preserved while the abstract cluster (domain)
culture is replaced by the clusters containing mappings
for all the abstract paths in the query (e.g. art and
tourism). In a second step, the plan is distributed and
evaluated. Remember that evaluation always starts
on index machines. There, the abstract patterns are
translated into concrete ones before they are used to
query the index. Section 4 explains this in details.

This two-step translation has some very nice prop-
erties. First, we avoid useless broadcast. Also, the
plans that are shipped are small, they do not include
the many combinations of concrete patterns matching
an abstract one. But more importantly, we have solved
the distribution problem. Indeed, the only \global" in-
formation that needs to be maintained on the interface
machines is a correspondence between abstract DTDs
and clusters. The remaining view information is nat-
urally distributed over the concerned index machines.

To illustrate this, let us reconsider the view exam-

ple introduced in the previous section and presented
in Figure 9. We consider here the representation of a
view in main memory. The persistent representation
is a straightforward translation into XML documents.
As explained above, we distribute the view among in-
terface and index machines.

On each interface machine, we �nd a tree repre-
senting an annotated abstract DTD. More precisely,
each node is marked with the clusters in which there
exists matching concrete paths (see Figure 10). This
structure is used at pre-processing time to understand
how the query should be distributed. It is replicated
because each interface machine must be able to trans-
late all queries. Note that it could have been made
smaller by keeping only the root of the abstract DTD.
However, it allows to (i) check the abstract \typing"
of queries and (ii) reduce the number of subplans (e.g.,
if the user is interested in titles of paintings, there is
no need to generate a plan over the cinema cluster).
Also we will see in Section 5 that this tree is used to
support joins in view de�nitions.

Note that interface machines manage only abstract
DTDs and their associated clusters, two items whose
size is usually rather small and very much controlled.

culture

painting

authortitle

sculpture

period museum

. . .

{art}

{art, literature, cinema, tourism}

{art, tourism} {art, cinema, tourism}

{art, tourism} {art, tourism} {art, tourism}

Figure 10: View on an Interface Machine

On each index machine, we �nd the view informa-
tion relative to its indexed clusters. Figure 11 corre-
sponds to the representation of the mappings given in
Figure 5. It consists of two parts, a table and a tree.
(i) The table represents in a simple way the forest of
all concrete paths that have been mapped to some ab-
stract paths. Each node is represented by its tag and
the identi�er of its father (-1 when it is a root). Nodes
are identi�ed by their entry in the table. E.g., 2 identi-
�es WorkOfArt/artist/name. (i) The tree maps ab-
stract paths to concrete paths. Concrete paths are

represented in the tree by two integers identifying, re-
spectively, the concrete path itself (cpath) and the
DTD root element from which it stems (root). The
second information is here to reduce the complexity of
the translation process (consider that there are thou-
sands of concrete paths but rarely more than a dozen
stemming from one root element; see Section 4).

Note that the size allocated to a view on an in-
dex machine is very small compared to the size of the
index itself (usually less than a thousandth). Also,
the size of a view depends on the size and hetero-
geneity of clusters. When a cluster becomes too big,
we re�ne the classi�cation so as to split it. This re-
sults in a re-organization of store and indexes that is
performed lazily while (re-)loading. Views are recon-
structed when the index re-organization is over. In the
meantime, views are simply larger than they should.

0 WorkOfArt -1

1 artist 0

2 name 1

3 gallery 0

4 title 0

5 painter -1

6 painting 5

7 name 6

8 year 6

9 location 6

painting

title author

culture

0 5 root
4 7 cpath

museum
0 5 root
3 9 cpath

0 5 root
2 5 cpath

0 5 root
0 6 cpath

Figure 11: View on an Index Machine

Updates are performed o� line using the persistent
representation of the view. Once this process is com-
pleted, a new main memory image is constructed that
will be used by future queries. The old image remains
until all queries that pointed to it have been evaluated.

4 Query Translation

As explained in the previous section, the evaluation of
a query against a view is performed in two steps:

On some interface machine, the tree-query is parsed,
and an algebraic expression is generated. This expres-
sion features a PatternScan operator that retrieves,
from a collection of documents, the elements that
match the given pattern (see Section 2). At this stage
the PatternScan is de�ned on an abstract pattern and
on an abstract cluster. The Abstract Query Translator
(AQT) translates the PatternScan in a union of Pat-
ternScan operators de�ned on concrete clusters, but
still featuring abstract patterns. Then, the query is
partly optimized, an execution plan is generated and
distributed. The query execution plan is sent only to
local machines indexing the corresponding clusters.

Plan evaluation starts on index machines. An operator
called Abstract to Concrete (A2C) translates abstract
patterns into unions of concrete patterns. Each gener-

ated pattern is given to a physical algebraic operator
called FTIscan, that will match it e�ciently against
the indexed documents and return the selected ele-
ments and documents. Eventually, those will be fur-
ther processed by other operators on other machines.

We are not concerned by the full query evaluation
process[4, 3], just by the part concerning the view
translation. We describe AQT and A2C operators.

4.1 The Abstract Query Translator (AQT)

The AQT introduces concrete clusters in an abstract
PatternScan operator. It returns a union of Pattern-
Scan operators, each de�ned on a concrete cluster.
This process is illustrated by Figure 12 where the ab-
stract cluster called culture has been replaced by the
two concrete ones art and tourism. Note that the pat-
tern tree has not been modi�ed.

PatternScan

culture art

PatternScan PatternScan

museumauthor

painting

title

culture

"van Gogh"

painting

"Orsay"

museumauthortitle

culture
tourism

"van Gogh"
"Orsay"

Union

author

painting

title

culture

"van Gogh""Orsay"

museum

Figure 12: AQT Transformation of an Abstract Pat-
tern Scan

To achieve this, the AQT asks the view manager
for a navigator within the annotated tree of the view
of Figure 10. Then, it visits both the annotated view
tree and the query tree, checking that the latter is con-
sistent, and computing the intersection of the concrete
clusters found on the way, generating a union opera-
tion with as many branches as clusters (Figure 12).

The AQT result is given to the query processor that
incorporates it into the global algebraic expression and
generates an execution plan. The important role of the
AQT is to avoid useless broadcast: query execution
plans are sent only to local index machines concerning
the queried clusters. In Section 5.1, we will see that
the AQT gains in complexity when we add joins to the
view de�nition language.

4.2 Abstract to Concrete Translation (A2C)

The A2C transforms abstract pattern trees into con-
crete ones. Its input is an abstract pattern and a view
identi�er. Its output is a
ow of concrete patterns.
Figure 13 illustrates this process with an abstract pat-
tern matched against the view of Figure 9.

The main problem of the A2C algorithm is due to
the large amount of mappings associated to each path
of the abstract DTD. For n nodes in the abstract query
pattern, with k mappings for each node, A2C should
examine kn possible con�gurations! Actually, few of
these con�gurations are valid because, as brie
y ex-
plained in Section 2, the corresponding concrete paths

museumauthor

painting

"Orsay"

title

culture

"Orsay"

gallery title

WorkOfArt

artist

name

"van Gogh" "van Gogh"

Figure 13: A concrete pattern generated by A2C

must (i) belong to the same concrete DTD and (ii)
preserve the descendant relationships of the query. We
explain the second requirement in more details.

Rule PreserveAscDesc Let a1, a2 be nodes of an
abstract pattern tree Ta, with a2 descendant of a1, and
c1, c2 their corresponding nodes in a concrete pattern
tree Tc. Then Tc is a valid translation of Ta only if c2
is a descendant of c1. This rule states that one cannot
swap two nodes when going from abstract to concrete.
Somehow, it implies that descendant is a semantically
meaningful relationship that cannot be broken. This is
sometimes true (e.g., painting/name) and sometimes
not (e.g., painter/painting). Still, we chose to impose
this rule because it reduces the complexity of the A2C
algorithm. In Section 5, we discuss its relaxation.

In order to further reduce the complexity, we also
impose the following rule.

Rule NoTwoSubpaths Let V be a view de�ned by
the set of path-to-path mappings M . Let (a ! c) be
in M and ap be a pre�x of a. Then, V is valid only if
there does not exist c1; c2 pre�xes of c such that:

(ap ! c1) 2M ^ (ap ! c2) 2M

This means that a should not have an ancestor that
is mapped to two di�erent ancestors of c. In other
words, there should be at most one solution to the
mapping of nodes along an abstract path to nodes
along some concrete path. Even if exceptions may ex-
ist, this rule is naturally respected in practice.

The A2C algorithm

Consider the leftmost branch on the abstract pat-
tern tree of Figure 13. Rule PreserveAscDesc im-
plies that the translation of this branch is another
branch that can be computed going up and RuleNoT-
woSubpaths guarantees that, once the leaf mapping
has been chosen, there is at most one solution. This
solution is constructed as follows: we choose a con-
crete node for culture/painting/title (e.g., WorkO-

fArt/title) then we go up and search the mappings
of culture/painting among the pre�xes of WorkO-

fArt/title (e.g.WorkOfArt).
To compute the translation of a whole tree, we de-

compose it in upward paths starting from each leaf and
stopping when we reach a node that has already been
visited by a previous upward path. This is illustrated
on the right part of Figure 14 (note that we ignore con-
stants in the query tree). The left part of the �gure
is a reminder of the local view structure presented in
Section 3 that we will use to illustrate the translation

process. In the example, the two right upward paths
stop at node painting instead of culture. We call this
node their upperbound. It constrains the upward path
interpretation with that already attributed to paint-

ing by the previous paths. Once the decomposition has
been performed, A2C translates each upward path to
a concrete branch, then it computes concrete pattern
trees by combining branch solutions as follows.

As shown in the left part of Figure 14, the view
stores the mappings of each node of the abstract DTD
as a list of couples (root, cpath), where root identi�es
the concrete DTD and cpath the concrete path of the
mapping. This list is sorted by root and then by cpath.

First suppose that each leaf has at most one map-
ping for each root. Then the A2C algorithm computes
the solution by �nding compatible branch solutions
going from left to right, as follows:

(i) The leftmost leaf L is the master leaf. It con-
siders its mappings one by one, the other nodes in the
abstract pattern remain \synchronized", i.e. the map-
ping that they consider at any time has the same root
as L. The reason is that a concrete pattern solution
must have the same root for all its nodes. E.g., suppose
that we move from one mapping to the next in L and
that, in so doing, we go from rooti�1 to rooti. Then
all other nodes advance to their next rooti mapping.

(ii) Concrete branches are computed upward start-
ing from their leaf (it exists at most one branch, as
explained above). For each abstract node on the up-
ward path, A2C looks for a mapping among those with
rooti and that is a pre�x of the cpath already found for
the node below it. Checking that a cpath is a pre�x
of another one is done in constant time using the con-
crete path table of Figure 14 (i.e. typically 1 or 2 ta-
ble accesses, which is the di�erence of length between
the paths). The branches other than the leftmost one
must contain the cpath that has been computed by
some previous branch for their upperbound (if any).
E.g., if the leftmost upward path in Figure 14 found
the mapping (0, 0) for painting, the upward paths of
author and museum are constrained to �nd the same
mapping when computing their concrete branches.

(iii) A solution is found when all upward paths have
a concrete branch solution. Then L goes to its next
mapping to search for a new solution, and so on, until
all the mappings of L have been explored.

Now, suppose that there are more than one map-
ping for a given node and a root. Note that this rarely
happens. Then for each distinct rooti of L, we check
all possible combinations of the pattern leaves "rooti"
mappings. This implies some backward steps in leaf
mappings (except for the master leaf L).

Complexity

The scalability factor for this algorithm is k, the aver-
age number of mappings for an abstract node (the size
of the mapping lists in Figure 14). To be more precise,

0 WorkOfArt -1

1 artist 0

2 name 1

3 gallery 0

4 title 0

5 painter -1

6 painting 5

7 name 6

8 year 6

9 location 6

painting

title author

culture

0 5 root
4 7 cpath

museum
0 5 root
3 9 cpath

0 5 root
2 5 cpath

0 5 root
0 6 cpath

museumauthor

"Orsay"

leaves title

"van Gogh"

painting

culture

Figure 14: Upward Paths from the Pattern Leaves

k can be decomposed as: k = r�m where r represents
the average number of distinct roots associated to one
node andm the average number of mappings of a node
for a given root. The scalability factor becomes r since
it grows proportionally to the number of stored DTDs.
All other values, i.e., m (usually 1, because an abstract
concept is rarely mapped to more than one concrete
path of a DTD), the number of nodes/leaves in the
abstract query tree (4 or 5 in average) or the length
of the upward paths (2 or 3 in average) are considered
as constants relatively to r. The cost of a branch con-
struction is at worst h�m, where h is the height of the
abstract pattern, because for each node of the upward
path there are m mappings for the current root.

For each mapping of the leftmost leaf (k mappings),
A2C must build at worst the branches for all the com-
binations of mappings with the same root for the other
l � 1 leaves (l is the number of leaves of the abstract
pattern). There are ml�1 combinations, so for each
mapping of the leftmost leaf A2C computes 1 +ml�1

branches. The overall complexity in the worst case is
then : k � h�m� (1 +ml�1).

The algorithm is linear in k and this proves its scal-
ability. The constant may be evaluated by remarking
thatm has an average value very close to 1, h is smaller
than 3 and l smaller than 5; the result is a reasonable
worst case complexity (6 k if m = 1, 10 k if m = 1:2).
In the average case, A2C does not compute all the
ml�1 combinations, because when we fail to build a
branch from a leaf mapping, the leaves on the right of
it will not build branches for that combination. This
leads to a lower constant in the average case.

5 Improvements

So far, we have considered views that map a tree to
a collection of trees (or a virtual document to a col-
lection of concrete documents). In other words, only
documents that contain all the items of information
sought by a user will participate to the query result.
E.g., the answer to the example query is empty unless
there exists a document containing information about
painter, painting and museums as well.

Most probably, given the size of the abstract DTDs
and that of the Web documents, there will be many

queries without answers. Two solutions to this prob-
lem are described below.

5.1 Joins in Views

For complexity reasons, we do not plan to extend the
de�nition language with arbitrary joins. Our purpose
is to introduce only those that will allow to follow the
links that can be found in XML documents. For in-
stance, suppose that a document concerning a paint-
ing by \van Gogh" contains a link to another con-
taining information about the \Orsay" museum where
this painting is exhibited. So the information about
the museum is not in the same document, but can be
found by following a link. We want to be able to add
this piece of information to the query result.

The simplest way we found of achieving this goal
is to simply record the fact that a concrete path con-
tains a link. Consider the above example, and assume
that the concrete path corresponding to the museum
link is painting/museum, then we add the following
mapping to the view:
culture/painting/museum!painting/museum,link

Now, we have to add the appropriate joins in the
translation process. Joins may introduce the need to
communicate results from machine to machine (e.g., if
museum and painting are part of two distinct clus-
ters). Thus, to avoid re-distributing local execution
plans, joins have to be introduced before the global
plan is generated and installed. For this we re-de�ne
the way views are represented (and queries translated)
on interface machines. This is illustrated by Figure 15.

The upright part of the �gure shows the global view
information of Figure 10 revisited with links. Note
that there is only one change: the node correspond-
ing to culture/painting/museum is annotated with
art[link], tourism. This means that we can �nd ele-
ments corresponding to the concept of museum in the
art and tourism clusters and that, in the former, there
exists a concrete representation of that concept that is
followed by a reference. The lower part of Figure 15
partially shows the AQT translation of the query Pat-
ternScan operation. It is an n-ary union whose ar-
guments are those described in section 4 plus some
more. The �gure shows one of the two joins that have

culture

painting

authortitle museum

.

PatternScan

culture

"Orsay"

museumauthortitle

+
{art, literature, cinema, tourism}

{art,tourism} {art, tourism} {art [link],tourism}

culture

painting

"van Gogh"

{ art, cinema, tourism}

. . .

painting

author

artart

Union

Join

title

culture

"Orsay"

painting
culture

PatternScan [P1]

museum
"van Gogh"

museum

. . .

PatternScan [P2]
P1.museum contains url(P2.document)

. . .

Figure 15: Introducing Joins in the View De�nition

been introduced because of the museum link annota-
tion (the remaining joining paintings of the art cluster
to museums of tourism).

Joins lead to a potential exponential growth of the
query algebraic plan and, accordingly, to queries that
are much too complex to be answered in a reasonable
amount of time. In practice, plans remain relatively
small because (i) abstract DTDs concern few clusters,
(ii) queries are naturally small, and (iii) not all nodes
have links. Still, worst cases can always occur.

One solution consists in considering joins only as a
backup when no or too few answers are found. Joins
are part of a large union operation. Thus, it is easy
to deactivate them in a �rst round, and incorporate
them progressively (starting from the solutions with
fewer joins) according to the user feedbacks.

5.2 Query relaxation

Database-like queries, such as those answered by
Xyleme, may miss some interesting documents because
they have a slightly di�erent structure. In the query
relaxation phase we relax some of the rules that guide
the translation process. Below are the relaxation poli-
cies used in Xyleme, going from stronger to weaker.
Level 1 discards Rule PreserveAscDesc from the
A2C algorithm. Thus the path painter/painting is
now an appropriate match for the abstract path cul-

ture/painting/author. Note that by removing this
rule, we augment the complexity of A2C. More pre-
cisely, when constructing an upward path, we must
now consider all combinations of mappings having the
same concrete root. In other words, we add a com-
plexity factor of mh where m is the average number
of mappings for an abstract node within one concrete
DTD tree and h the height of the query tree. Still,
remember that these numbers are very small.
Level 2 removes all query nodes that are not directly
needed by selections or projections. Figure 16 shows
the result of applying this policy on the example query.
Level 3, equivalent of the keyword search provided by
search engines. The abstract query tree is reduced to
root, constant leaves and projection nodes (Figure 16).

"Orsay"

culture

"van Gogh"

"Orsay"

museumauthor

painting

"van Gogh"

Initial abstract query
 (levels 0 and 1)

culture

"Orsay"

museumauthor
"van Gogh"

culture

 The abstract query at
 level 3 (keyword search)

The abstract query
 at level 2

title title title

Figure 16: Query Relaxation

Acknowledgments. We want to thank the whole Xyleme

team and particularly Claude Delobel, Marie-Christine

Rousset, Catriel Beeri, Serge Abiteboul and Tova Milo.

References

[1] S. Abiteboul, J. Mc Hugh, M. Rys, V. Vassalos, and
J. Wiener. Incremental Maintenance for Materialized
Views over Semistructured Data. In VLDB, 1998.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. L. Wiener. The Lorel Query Language for
Semistructured Data. Int. Jour. on Digital Libraries,
1(1):68{88, apr 1997.

[3] V. Aguilera, F. Boiscuvier, and S. Cluet. Querying
the XML Documents of the Web, INRIA, 2001.

[4] V. Aguilera, S. Cluet, and F. Wattez. Xyleme Query
Architecture. Proc. of the Int. WWW Conf., 2001.
Hong-Kong.

[5] P. Buneman, S. B. Davidson, G. G. Hillebrand, and
D. Suciu. A Query Language and Optimization Tech-
niques for Unstructured Data. In SIGMOD, 1996.

[6] R. G. Cattell. The Object Database Standard: ODMG
2.0. Morgan Kaufmann, 1997.

[7] V. Christophides, S. Cluet, and J. Sim�eon. On Wrap-
ping Query Languages and E�cient XML Integration.
In SIGMOD, Dallas, Texas, May 2000.

[8] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. XML-QL: A Query Language for XML.
In Proc. of the Int. WWW Conf., Toronto, 1999.

[9] M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Su-
ciu. Declarative Speci�cation of Web Sites with
Strudel. VLDB journal, 9(1):38{55, 2000.

[10] Z. Lacroix, C. Delobel, and P. Br�eche. Object views
and database restructuring. In DBPL, LNCS, 1997.

[11] Organization for the Advancement of Structured In-
formation Standards. http://www.oasis-open.org.

[12] C. Renaud, J.P. Sirot, and D. Vodislav. Semantic
Integration of XML Heterogenneous Data Sources. In
IDEAS, Grenoble, 2001.

[13] J.D. Ullman. Principles of Database and Knowledge-
Base Systems, Vol. I. Computer Science Press, 1988.

[14] W3C XML Query Working Group. W3C XML Query
Requirements, 2000 http://www.w3.org/tr/2000/wd-

xmlquery-req-20000131.

[15] Xyleme S.A. http://www.xyleme.com.

[16] Lucie Xyleme. A Dynamic Warehouse for XML Data
of the Web. IEEE Data Engineering Bulletin, 2001.
http://osage.inria.fr/verso/xyleme/short paper.htm.

