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Abstract 
XML has emerged as the standard data exchange format for 
Internet-based business applications. This has created the need 
to publish existing business data, stored in relational databases, 
as XML. A general way to publish relational data as XML is to 
provide XML views over relational data, and allow business 
partners to query these views using an XML query language. In 
this paper, we address the problem of evaluating XML queries 
over XML views of relational data. This paper makes two main 
contributions. The first is a general framework for processing 
arbitrarily complex queries specified using the XQuery query 
language. The second is a technique for efficiently evaluating 
XML queries by pushing most of the query computation down 
to the relational engine. 

1. Introduction 
XML has emerged as the standard data exchange format 
for Internet-based business applications. This has created 
the need to publish existing business data as XML. Since 
most business data is currently stored in relational 
database systems, the problem of publishing relational 
data as XML assumes special significance. A general and 
flexible way to publish relational data as XML is to create 
(possibly many) XML views of the underlying relational 
data. Each of these XML views can provide an 
alternative, application-specific view of the underlying 
relational data. Through these XML views, business 
partners (and other XML application developers) can 
access existing relational data as though it was in some 
industry-standard XML format. 

Once XML views are created over relational data, the 
next question that arises is how business partners and 
XML application developers are to use these views. One 
simple solution is to materialize the entire XML view on 
request and return the resulting XML document. The main 
problem with this approach is that, in many cases, 
applications do not require the whole view to be 
materialized. For example, in an XML view of available 
items, a business partner may only be interested in a 
particular item. Materializing the availability of all the 
items would be wasteful in this case because it would 

result in unnecessary computation. A better solution is to 
support queries over XML views so that business partners 
can retrieve only the data items of interest. Supporting 
queries over XML views also allows application 
developers to synthesize data from different XML views. 

In this paper, we address the problem of evaluating 
XML queries over XML views of relational data. We 
consider the case where views and queries are specified 
using XQuery [16], the XML query language currently 
being standardized by the World Wide Web Consortium. 
We focus on two issues. The first is the design of a 
general framework for processing arbitrarily complex 
XQuery queries, including queries with features such as 
nested expressions and nested order. 

The other area of focus is performance, whereby we 
present techniques for efficiently evaluating XQuery 
queries over XML views of relational data. One such 
technique is XML view composition, which eliminates 
the construction of all intermediate XML fragments that 
do not appear in the final query result. Another 
performance-enhancing technique is what we call 
“computation push-down”. This pushes all data and 
memory intensive computation in a XQuery query down 
to the relational engine. As a result, the query processing 
power of a relational engine is used to efficiently evaluate 
XML queries. Only a small memory-efficient tagger is 
required outside the relational engine to tag the SQL 
results and produce the resulting XML. 

We have implemented the techniques described above 
in the context of the XPERANTO middleware system 
[3][12], which works on top of any relational database 
system. During the course of our implementation, we 
have identified some of the limitations that arise from 
using a relational query processor for executing XML 
queries. These limitations are due to the semantic 
mismatch between XQuery and SQL. In the conclusion of 
this paper, we identify the causes for this mismatch and 
propose possible solutions to help overcome this problem. 

To summarize, the contributions of this paper are: (a) 
a general framework for processing XQuery queries with 
features such as nested expressions and order, (b) a view 
composition mechanism that eliminates the construction 
of all intermediate XML fragments, (c) a computation 
push down mechanism that pushes all data and memory 
intensive computation in a XQuery query down to SQL, 
(d) a description of extensions that can enable a relational 
engine to handle a larger class of XQuery queries. 
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The rest of this paper is organized as follows. Section 
2 discusses related work and Section 3 describes our high-
level query processing architecture. The next three 
sections describe the query processing components such 
as the parser, the view composition module and the 
computation pushdown module. Section 7 discusses 
performance aspects, and Section 8 concludes the paper. 

2. Related Work 
Most major commercial database systems provide a way 
to create materialized XML views of relational data 
[1][4][10]. However, in contrast to the approach presented 
in this paper, most of these systems do not support queries 
over XML views [1][4]. Microsoft’s SQL Server is the 
only one that supports queries over XML views, but this 
query support is very limited. This is because queries are 
specified using XPath [15], which is a subset of XQuery. 
For instance, unlike XQuery, XPath cannot specify joins. 

XML-based data integration systems [2][5] also wrap 
relational data sources as XML views. In this context, 
there has been work done on pushing part of XML query 
execution down to the relational sources, with the 
remainder of the query being executed by an XML run-
time engine in the integration layer [5]. In contrast to this 
approach, we support a general XML query capability 
over relational databases without the need for a full-blown 
XML run-time engine. Our approach also differs in that 
we generate query plans that are optimized for relational 
databases. This is important because the choice of query 
plans can make a significant difference in performance, 
especially when constructing complex XML results 
[6][11]. These differences apart, our system can indeed be 
used as an efficient XML wrapper for relational sources. 

SilkRoute [6][7] is a related system that supports 
queries over XML views of relational data. Our work 
differs from SilkRoute in the following respects. Firstly, 
we support a more powerful query facility based on 
XQuery. XQuery has features like arbitrarily nested 

expressions and nested order, which are not supported in 
SilkRoute. Secondly, we use a view composition 
technique that is complete and yet produces minimal SQL 
queries. This is in contrast to SilkRoute’s view 
composition mechanism, which produces SQL queries 
with redundant predicates and joins (these queries can be 
minimized, but this problem is NP-complete [7]). Thirdly, 
our computation pushdown mechanism is more general 
because it takes into account the greater flexibility of 
XQuery. Finally, unlike SilkRoute, our internal XML 
query model naturally extends the relational model. Our 
work can thus serve as the basis for extending relational 
databases with XML features (see conclusion for details). 

3. Query Processing Architecture 
In this section, we present our high-level query-
processing architecture. We begin by illustrating how 
XML views are created and queried in XPERANTO. 

As a starting point, XPERANTO automatically creates 
a default XML view, which is a low-level XML view of 
the underlying relational database. Users can then define 
their own views on top of the default view using XQuery. 
Moreover, views can be defined on top of views to 
achieve higher levels of abstraction. The main advantage 
of this approach is that a standard XML query language is 
used to create and query views. This is in contrast to 
approaches such as [4][7][10], where a proprietary 
language is used to define the initial XML view of the 
underlying relational database. 

Figure 1 shows the default XML view for a simple 
purchase-order database. As shown, the database consists 
of three tables, one table to keep track of customer orders, 
a second table to keep track of the items associated with 
an order, and a third table to keep track of the payments 
due for each order. Items and payments are related to 
orders by an order id (oid). In the default XML view, top-
level elements correspond to tables with table names 
appearing as tags (there is no specific ordering among the 

Figure 1: The Default XML View 
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Figure 1: A Purchase Order Database and its Default XML View

<db> 
   <order> 
      <row> <id>10 </id> <custname> Smith Construction </custname> <custnum> 7734 </custnum> </row> 
      <row> <id> 9 </id> <custname>Western Builders </custname> <custnum> 7725 </custnum> </row> 
   </order> 
   <item> 
       <row> <oid> 10 </oid> <desc> generator </desc> <cost> 8000 </cost> </row> 
       <row> <oid> 10 </oid> <desc> backhoe </desc> <cost> 24000 </cost> </row> 
   </item> 
   <payment> 
      … similar to <order> and <item> 
   </payment> 
</db> 



table elements). Row elements are nested under the table 
elements. Within a row element, column names appear as 
tags and column values appear as text. 

Continuing the example, suppose a user wants to 
publish the purchase-order database as a list of orders in 
the XML format shown in Figure 2. There, each order 
appears as a top-level element, with its associated items 
and payments (ordered by due date) nested under it. To 
transform the default view into the desired XML format, a 
user-defined view called “orders” is created, as shown in 
Figure 3. An XQuery FLWR expression (short for For-
Let-Where-Return expression) in lines 2-23 is used to 
construct each order element. The “for” clause on line 2 
causes the variable $order to be bound to each “row” 
element of the order table. The XPath [15] expression 
appearing in line 2 describes how to extract each “row” 
element from the order table. It basically says to start at 
the root of the default view, navigate to each “order” 
element nested under it, and then navigate to each “row” 
element nested under those “order” elements. The 
constructor for each new “order” element is given in lines 
4-23. For a given order, nested FLWR expressions are 
used to construct its list of associated items (lines 7-12) 
and payments (lines 15-21). The predicate on line 8 
($order/id = $item/oid) is used to join an order with its 
items. Similarly, the predicate on line 16 ($order/id = 
$payment/oid) is used to join an order with its payments. 
The payments are ordered by their due dates (line 21). 

Once the “orders” view has been created, queries can 
be issued against it. This is illustrated in Figure 4, which 

shows a query that extracts all orders for the customer 
whose name begins with “Smith”. 

We now describe our query-processing architecture, 
which is shown in Figure 5. When a XQuery query is 
issued over XML views, it is first parsed and converted to 
an internal query representation called XML Query Graph 
Model (XQGM). The query is then composed with the 
views it references and rewrite optimizations are 
performed to eliminate the construction of intermediate 
XML fragments and push down predicates. The modified 
XQGM is then processed by the Computation Pushdown 
module, which separates the XQGM into two parts. The 
first part captures all the memory and data intensive 
processing and is pushed down to the relational database 
engine as a single SQL query. The second part is a tagger 
graph structure, which the Tagger Runtime module uses 
to construct the XML query result. This is done in a single 
pass over the row streams resulting from the SQL query. 
In the remainder of this paper, we describe the major 
query processing components in detail. 

Figure 2: XML Purchase Order 
Figure 3: User-defined XML View 

Figure 4: Query over user-defined XML View 

Figure 5: Query Processing Architecture 

<order id=“10”> 
    <customer> Smith Construction </customer> 
    <items> 
       <item description=“generator” > 
            <cost> 8000 </cost> 
       </item> 
       <item description=“backhoe”> 
            <cost> 24000 </cost> </item> 
        </item> 
    </items> 
    <payments> 
       <payment due=“1/10/01”> 
            <amount> 20000 </amount> 
       </payment> 
       <payment due=“6/10/01”> 
            <amount> 12000 </amount> 
       </payment> 
    </payments> 
</order> 
<order id=“9” > 
   … 
</order> 

01. create view orders as ( 
02.   for $order in view(“default”)/order/row 
03.   return  
04.      <order id=$order/id> 
05.         <customer> $order/custname </customer> 
06.         <items> 
07.             for $item in view(“default”)/item/row 
08.             where $order/id = $item/oid 
09.             return  
10.                <item description=$item/desc > 
11.                    <cost> $item/cost </cost> 
12.                </item> 
13.         </items> 
14.         <payments> 
15.              for $payment in view(“default”)/item/row 
16.              where $order/id = $payment/oid 
17.              return  
18.                 <payment due=$payment/date> 
19.                      <amount> $payment/amount </amount> 
20.                 </payment> 
21.              sortby(@due) 
22.         </payments> 
23.      </order>) 
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1. for $order in view(“orders”) 
2. where $order/customer/text() like “Smith%” 
3. return $order 



4. Query Parsing 
In this section, we present the first phase of query 
processing corresponding to the XQuery Parser. We first 
describe XQGM and then present a general approach for 
converting XQuery queries into XQGM. 

4.1. XML Query Graph Model (XQGM) 
An intermediate query representation for processing 
queries over XML views of relational data needs to (a) be 
powerful enough to capture the full generality of a 
sophisticated query language such as XQuery, and (b) be 
amenable to a translation to SQL. We have designed the 
XQGM query representation with these in mind. XQGM 
is a natural extension of a SQL internal query 
representation called Query Graph Model (QGM) [8], 
which is used in a commercial relational database system. 
By building upon QGM in this manner, XQGM allows for 
a natural translation of XQuery queries to SQL. It also 
enables us to take the vast body of knowledge on 
relational query optimization and apply it to the XML 
query problem. In designing XQGM, we have also 
borrowed from the work on XML query algebras [5][14]. 

XQGM consists of a set of operators and functions 
that are designed to capture the semantics of an XML 
query. Table 1 shows the operators used in XQGM. As 
can be seen, the operators are a super-set of traditional 
relational operators. The select, project, join, group by, 
order by and union operators have the same semantics as 
their relational counterparts. The project operator is used 
to invoke functions (described later) in addition to 
projecting relational results. The table and view operators 
are used to refer to relational tables and XML view 
definitions respectively. The unnest operator is used to 
unnest XML lists. The function operator is used to invoke 
XQuery valued functions represented in XQGM. 

The creation and manipulation of XML objects is done 
using XML functions. Table 2 presents a list of XML 
functions and also indicates the operators in which these 
functions can appear. We now show how XQuery queries 
can be captured using the XQGM representation. We first 
provide illustrative examples, and then outline the general 
principles involved in the translation. 

The XQGM graph for the view query given in Figure 
3 is shown in Figure 6. Recall that the query produces a 
list of order XML elements, each of which has items and 
payments nested under it. We first explain the graph at a 
high level and then provide additional details. 

Box 1 represents the order table with the two columns 
that are referenced in the query. Box 10 uses the notion of 
correlated joins (a join operator whose inputs are 
correlated sub-queries) to compute the list of items and 
payments associated with each order. Box 11 produces the 
order XML elements by tagging its inputs. While this 
tagging is shown as a template in box 11 for illustrative 
purposes, it is actually implemented as a call to the 
cr8Elem function as shown in Figure 7. 

As shown in Figure 7, an order element has one 
attribute, id, created using the cr8Att function. In addition, 
an order element has three sub-elements, which are 
customer, items and payments. The customer element has 
no attributes but has a data value fragment represented by 
the input variable $custname. The items element again has 
no attributes but has a list of item sub-elements. This list 
of item sub-elements is represented by the input variable 
$items. The payments element is created similarly. 

Returning to Figure 6, the correlated sub-query 
represented by boxes 6 through 9 computes the list of 
payments associated with each order. The payment rows 
from the payment table (box 6) that belong to an order are 
selected using a correlated predicate on the order id (box 
7). Box 8 creates payment elements using the cr8Elem 
function and box 9 aggregates all the payment elements 

Table 1: XQGM Operators 

OPERATOR DESCRIPTION 
Table Represents a table in a relational database 
Project Computes results based on its input 
Select Restricts its input 
Join Joins two or more inputs 
Groupby Applies aggregate functions and grouping 
Orderby Sorts input based on column values 
Union Unions two or more inputs 
Unnest Applies super-scalar functions to input 
View Represents a view 
Function Represents an XQuery function 

 XML FUNCTION DESCRIPTION OPERATORS 
1 cr8Elem(Tag, Atts, Clist) Creates an element with tag name Tag, attribute list Atts, and contents Clist Project 
2 cr8AttList(A1, …, An) Creates a list of attributes from the attributes passed as parameters Project 
3 cr8Att(Name, Val) Creates an attribute with name Name and value Val Project 
4 cr8XMLFragList(C1, …, Cn) Creates an XML fragment list from the content (element/text) parameters Project 
5 aggXMLFrags(C) Aggregate function that creates an XML fragment list from content inputs Groupby 
6 getTagName(Elem) Returns the element name of Elem Project, Select 
7 getAttributes(Elem) Returns the list of attributes of Elem Project, Select 
8 getContents(Elem) Returns the XML fragment list of contents (elements/text) of Elem Project, Select 
9 getAttName(Att) Returns the name of attribute Att Project, Select 

10 getAttValue(Att) Returns the value of attribute Att Project, Select 
11 isElement(E) Returns true if E is an element, returns false otherwise Select 
12 isText(T) Returns true if T is text, returns false otherwise Select 
13 unnest(List) Superscalar function that unnests a list Unnest 

Table 2: XML Functions and the operators in which they can appear 
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project: $pmt = <payment> …
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View Result

$id

project: $order = 
<order id=$id>

<customer> $custname </customer>
<items> $items </items> 
<payments> $pmts </payments>

</order>

table: payment

associated with an order into a list. For such grouping 
operations, the operator can be adorned with an ordering 
condition that specifies the ordering of elements within 
the list. In our example, payments of an order are sorted 
by their due date. The computation of the list of items 
associated with each order (boxes 2-5) is similar to the 
computation of payments described above. 

As another example of XQGM translation, Figure 8 
shows the XQGM representation of the query shown in 
Figure 4. Box 1 captures the orders view referenced in the 
query. The where clause of the FLWR expression is 
computed as a correlated sub-query (boxes 2-7). This is 
done for the following reasons. Firstly, the where clause 
in XQuery can in general be an arbitrarily complex 
expression. Therefore, representing the where clause as a 
correlated query helps set up a separate context for its 

computation without inadvertently changing the 
cardinality or other properties of the main query. 
Secondly, the where clause in XQuery has implicit 
existential semantics. In our example, the predicate 
($order/customer/text() like ‘Smith%’) returns true if any 
customer element under order satisfies the predicate (if 
there exists more than one customer element). By 
representing the predicate as a correlated sub-query, the 
results can be existentially quantified (above box 7). 

The XQGM representation of the predicate is fairly 
straightforward. Box 2 gets the contents of a correlated 
order and box 3 unnests these contents. Box 4 selects only 
those contents that are sub-elements with tag name 
‘customer’. Box 5 gets the contents of these elements, box 
6 unnests these contents, and box 7 selects the text content 
whose value satisfies the desired predicate. 

XQuery also supports other complex expressions 
besides FLWR and sortby expressions. These include 
“let-eval”, “if-then-else”' and “quantified” expressions. 
These expressions have clauses which themselves can be 
complex expressions. This generality leads to a powerful 
querying capability but increases the complexity of 
generating a semantically correct internal query 
representation. In our system, complex XQuery 
expressions are represented as correlated sub-queries with 
their separate context, much like how the where clause of 
the FLWR expression is represented in Figure 8. Sections 
5 and 6 describe how this representation can be simplified 
using decorrelation and other query rewrite 
transformations. 

Figure 6: XQGM for the Order XML View 

Figure 7: Expansion of Box 11 in Figure 6 

Figure 8: XQGM for Query over Order XML View 
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$elems

project: $elems = getContents($order)2
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on $order

$elem

unnest: $elem = unnest($elems)3

$elem

select: isElement($elem) and
getTagName($elem) = ‘customer’4

existential quantification

$val

unnest: $val = unnest($vals)6

$val

select: isText($val) and
$val like ‘Smith%’7

$vals

project: $vals = getContents($elem)5

cr8Elem(order, 
              cr8AttList(cr8Att(id, $id)), 
              cr8XMLFragList(cr8Elem(customer, 
                                                        cr8AttList(), 
                                                        cr8XMLFragList($custname)),
                                           cr8Elem(items, 
                                                         cr8AttList(), 
                                                         cr8XMLFragList($items)), 
                                           cr8Elem(payments, 
                                                         cr8AttList(), 
                                                         cr8XMLFragList($pmts)) 
                                          ) 
               ) 



5. View Composition 
XML views with nested sub-elements are computed 
from flat relational tables. Navigational operations 
expressed as path expressions in XQuery queries 
traverse these nested structures to extract sub-elements 
and their attributes. Therefore, the query operators that 
traverse nested structures effectively invert the query 
operators that create them in a view. Navigational 
operations can thus be eliminated by undoing the 
construction of the corresponding elements. Our view 
composition module performs this query 
simplification. 

Removing all XML navigation operations offers 
several performance benefits. The obvious benefit is that 
the construction of intermediate XML fragments – those 
that do not appear in the final query result – is undone. 
Thus, only the desired XML fragments are materialized. 
As we shall shortly see, the other benefit of removing 
XML navigation functions is that it enables predicates and 
joins to be pushed down to the relational engine. As a 
result, there is no need for a full-fledged XML query-
processor in the middleware layer. Only a space-efficient 
tagger, which will be described in more detail in Section 
6, is required. 

We have developed a complete set of composition 
rules involving XQGM functions that can be used to 
remove all XML navigation operations. We first present 
these rules and then discuss other query rewrite 
transformations that complement view composition. 

5.1. Composition Rules 
Functions 6 through 13 in Table 2 represent the functions 
that capture all the navigation operations in an XQuery 
query. Table 3 defines twelve composition rules that can 
be used to eliminate all occurrences of these navigational 
functions. These rules are complete in the sense that they 
specify how all occurrences of navigational functions can 
be eliminated. This is done by specifying a composition 
rule for every possible input to a navigational function, 
which specifies how the navigational function is to be 
removed for the given input. We now describe the 
composition rules in detail. 

Rule 1 in Table 3 says that the getTagName function 
when applied to the cr8Elem can be reduced to the first 
argument of the cr8Elem function (which is the tag name 
of the created element). Rules 2-5 are defined in a similar 
manner. Rules 6 and 7 replace the isElement function by 
true or false, depending on whether the input is an 
element or not. Rules 8 and 9 are defined similarly. Rule 
10 composes the unnest function with the aggXMLFrags 
function by simply returning the input to aggXMLFrags 
without performing any aggregation. Rule 11 composes 
the unnest function with the cr8XMLFragList function by 
reducing the unnest function to a union of all the 
arguments of the cr8XMLFragList function. Rule 12 is 
defined similarly. 

5.2. Applying Composition Rules 
We eliminate all navigational operations by repeated 
application of the composition rules in Table 3. This step 
is complemented by a number of other query rewrite 
transformations that push down predicates, and remove 
unreferenced columns and operators. We illustrate this 
step in view composition using an example. 

Figure 9 shows the result of composing the query 
graph in Figure 8 with the view graph in Figure 6. As can 
be seen, all XML navigation functions in Figure 8 have 
been composed with their counterparts in box 11 of 
Figure 6 (box 11 is also expanded in Figure 7). As a 
result, the selection predicate is specified directly over 
$custname (box 12 in Figure 9). Once navigational 
functions have been removed, standard query rewrite 
transformations such as predicate pushdown can be 
applied. In our example, the predicate has been pushed 
down to a select box immediately above the order table. 

Although not illustrated by the above example, all 
intermediate XML fragments are also removed at this 
stage of query processing. For example, if the query in 
Figure 4 had just selected the items in the desired orders, 
only the XML construction functions that produce items 
would be present in the output. Since the order elements 
as a whole would no longer be referenced, they would 
have been removed from the query graph and hence, 
would not have been materialized. 

6. Computation Pushdown 
The goal in this phase of query processing is to push all 
data and memory intensive operations down to the 
relational engine as an efficient SQL query. We describe 
two query processing techniques that make this possible. 

6.1. Query Decorrelation 
In Section 4, we showed how complex expressions in 
XQuery are represented using correlations. However, it 
has been shown in earlier work that executing XML 
queries as correlated queries over a relational database 
leads to poor performance [11]. We thus present query 
decorrelation [13] as a necessary step for efficient XML 
query execution. 

 FUNCTION COMPOSES WITH REDUCTION 
1 getTagName cr8Elem(Tag, Atts, Clist) Tag 
2 getAttributes cr8Elem(Tag, Atts, Clist) Atts 
3 getContents cr8Elem(Tag, Atts, Clist) Clist 
4 getAttName cr8Att(Name, Val) Name 
5 getAttValue cr8Att(Name, Val) Val 
6 isElement cr8Elem(Tag, Atts, Clist) True 
7 isElement Other than cr8Elem False 
8 isText PCDATA True 
9 isText Other than PCDATA False 

10 unnest aggXMLFrags(C) C 
11 unnest cr8XMLFragList(C1, …, Cn) C1 

�
 … 

�
 Cn 

12 unnest cr8AttList(A1, …, An) A1 
�

 …
�

 An 

Table 3: Composition Rules 



The result of decorrelating the XQGM of Figure 9 is 
shown in Figure 10. As shown, the construction of the 
list of items (boxes 2-5) associated with orders has been 
decorrelated. This is done by directly joining the selected 
orders (box 10) with the item table, instead of 
performing a correlated selection condition. The items 
are then tagged (box 4) and grouped on the id of the 
order (box 5) to create a list of items for each selected 
order. The list of payments associated with each 
purchase order is computed similarly (boxes 6-9). 

Once the list of items associated with orders is 
computed, these are outer joined with the selected orders 
(box 11). An outer join is necessary to preserve all 
selected orders because the join in box 3 would have 
eliminated orders without any items. This outer joined 
result is similarly outer joined with payments (box 12). 

6.2. Tagger Pull-up 
After query decorrelation, the next step is to generate a 
SQL query that can efficiently produce the relational 
content for constructing the result XML document. It has 
been shown in earlier work [11] that the “sorted outer 
union” SQL query is one of the most efficient and stable 
techniques for this purpose. However, the generation of 
the sorted outer union SQL query from the XQGM 
graph is complicated by the fact that the “tagger 
operations”, which construct XML fragments, can be 
mixed with the “SQL operations”, which join or 
otherwise manipulate relational content (see Figure 10). 
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As a result, the tagger and SQL operations need to be 
separated before the sorted outer union SQL query can be 
generated. This process of separation is what we call 
“tagger pull-up”. 

During tagger pull-up, relational operations are pushed 
to the bottom of the graph, and XML construction 
functions are pulled up to the top of the query graph. The 
bottom portion of the query graph is then converted to a 
sorted outer union SQL statement and sent to the 
relational engine for execution. The top portion is 
transformed into a “tagger run-time” graph, which 
produces the result XML documents. 

The tagger run-time graph consists of a set of tagger 
operators. In contrast to the relational operators, which are 
designed for execution by a sophisticated relational 
engine, the tagger operators are designed for efficient in-
memory processing in the middleware. The tagger 
operators process ordered streams of rows and produce 
the XML result in constant space, and in a single pass 
over the SQL query results. The list of tagger operators, 
along with the functionality of each operator, is shown in 
Table 4. The XML construction functions that can be 
implemented in each tagger operator are also shown. 

Our system implements a general tagger pull-up 
algorithm that works for complex query graphs, even 
recursive ones. There are, however, some queries for 
which all data and memory intensive computation cannot 
be pushed down to the relational engine. More details 
regarding this are presented in Section 8, along with a 
discussion of how this limitation could be removed. 

6.2.1. An Illustrative Example 
An example of tagger pull-up is shown in Figure 11. This 
graph is the result of applying tagger pull-up 
transformations to the query graph in Figure 10. As can be 
seen in Figure 11, the bottom part consists of SQL 
statements, while the top part consists of tagger operators. 
For the rest of this section, we describe how the tagger 
operators produce the XML result in a single pass over 
the SQL results. Details on separating the SQL part from 
the tagger part are deferred until the next section. 

The bottom part of Figure 11 produces three SQL 
streams. The middle stream produces the selected orders, 
ordered by their id. The first and third streams produce the 
desired items and payments, respectively, ordered by the 
id of the order they are associated with. The third stream 
is also ordered by the due date to capture the ordering of 
payments. Since all the results are ordered using the order 

id, the result XML elements can be constructed in a single 
pass over the SQL results. This is done by the tagger 
operators, which work as follows. 

When an order flows up through the tagger input 
operator (box 1), only the items and payments 
corresponding to that order are let through by their 
corresponding tagger input operators (boxes 2 and 5). 
These items and payments are then tagged (boxes 3 and 6) 
and grouped (boxes 4 and 7). The top tagger operation 
(box 8) then merges these together to produce the result. 
This process is repeated for the next order. 

Although Figure 11 shows three SQL statements, 
these are actually executed as a single SQL statement by 
performing an outer union (an “outer union” can be used 
to union inputs with different column types). This is done 
using the efficient sorted outer union technique proposed 
and evaluated in [11]. Alternative ways of grouping SQL 
statements are also possible, as described in [6]. 

6.2.2. Tagger Pull-up Transformations 
We now describe the XQGM transformations used during 
tagger pull-up. These transformations work in a bottom-
up fashion on the initial query graph (such as Figure 10). 
Each transformation matches a fragment of the query 
graph and converts it to a semantically equivalent 
fragment in which the SQL part is separated from the 
tagger part. Repeated applications of these 
transformations produce the final separated query graph 
(such as Figure 11). 

Our system implements tagger pull-up transformations 
for the various patterns that can occur in a query graph. 
Due to space constraints, we only describe one such 
transformation, which pulls up tagging for nested XML 
structures. Figure 12 depicts this transformation. The left 
side of the figure shows the XQGM fragment before the 
transformation. As can be seen, tagged elements are 
created (box 1), grouped into a list (box 2), and joined 
with their parent (box 3). This pattern would match boxes 
4, 5 and 11 in Figure 10 (note that a left outer join is the 
same as a right outer join with the inputs flipped). 

The right side of the transformation in Figure 12 
shows the result of tagger pull-up. The merge (box 5) and 
aggregate (box 6) operators are used to create and group 
the nested elements, respectively. A merge operator (box 
7) is used to relate the list of elements to their parent. A 
merge is sufficient for this purpose (instead of the join 
used earlier) because an ordering condition on parent id is 
pushed down to the SQL queries. A tagger input operator  
(box 4) is used to gate the children that belong to a certain 
parent, as described earlier. 

The result of applying this transformation to boxes 4, 
5 and 11 in Figure 10 produces boxes 3, 4 and 8 in Figure 
11. A repeated application of this transformation would 
transform boxes 8, 9 and 12 in Figure 10 to boxes 6, 7 and 
8 in Figure 11 (the duplicate box 8’s created are merged 
using other query graph simplification rules). 

OPERATOR USAGE FUNCTIONS 
Merge Merges one or more 

ordered streams 
cr8Elem, cr8Att, 
cr8XMLFragList, 
cr8AttList 

Aggregate Computes aggregates aggXMLFrags 
Union Unions ordered streams  
Input Manages relational rows  

Table 4: Summary of Tagger Operators 



7. Implementation and Performance 
We have implemented all of the techniques described 
above as part of the XPERANTO middleware system 
[3][12]. Our implementation is in Java and uses JDK 1.2. 
We use JDBC as the API to connect to a relational 
database system. As a result, our implementation works 
on top of most commercial database systems including 
DB2, Oracle and Microsoft SQL Server. 

Based on our implementation, we have evaluated the 
performance of our proposed techniques. There are two 
factors that characterize the performance of queries in our 
context. The first is query compilation time, which 
consists of the time spent parsing the query, performing 
view composition, generating the SQL query and setting 
up the tagger run-time graph. The second is query 
execution time, which consists of the time spent executing 
the SQL query and tagging the SQL results to produce the 

output XML document. An earlier 
study [11] has evaluated query 
execution performance and has 
shown the superiority of the sorted 
outer union SQL plans that we 
generate. Hence, we only focus on 
query compilation time here. 

Our experiments were 
performed using a 366 MHz 
Pentium II processor with 256MB 
of main memory running 
Windows NT 4.0. We used DB2 
version 7.2 as our database system. 
We ran XPERANTO and the 
database system on the same 
machine to avoid unpredictable 
network delays. We considered 
queries that accessed up to 4 XML 
views. Each XML view nests 3 
relational tables in a manner 
similar to Figure 3. 

The compilation time for our 
experimental queries was always 
less than half a second. For 
instance, the compilation time for a 
query that accessed 12 relational 
tables through 4 XML views was 
about 450 milliseconds. It takes 
even less time to compile queries 
that access fewer views. As a 
result, there is a very small 
compile-time overhead associated 
with performing the optimizations 
proposed in this paper. 

It is important to note that this 
small compile-time overhead is 
more than offset by the associated 
performance gains. This is due to 
two reasons. The first reason is that 

the view composition module eliminates the need to 
materialize intermediate XML fragments that do not 
appear in the final query result. As a result, only the 
relevant data is fetched from the relational engine. Thus, 
for typical queries that select only a small subset of data 
in an XML view, this results in many orders of magnitude 
improvement in performance. As a simple example, 
consider an XML view that publishes one million 
available items. If the user want details on only one of 
these items, it is clear that retrieving only the desired item 
will be orders of magnitude better than materializing all 
one million items and then selecting the desired one. This 
advantage is especially relevant when the underlying 
relational data changes often and cannot be easily cached 
in the middleware layer. 

The other significant performance benefit is due to the 
computation pushdown module. By effectively harnessing 
the relational engine to process large parts of XML 
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queries, it eliminates the need for a full-fledged XML 
processor in the middleware layer – only a small, space-
efficient tagger run-time mechanism is required. This is 
important because no existing native XML query 
processor has performance characteristics that are 
comparable to that of a parallel, scalable relational engine. 

In the future, we plan to explore other performance 
enhancements such as pushing tagging inside the 
relational engine, as advocated in [11]. The next section 
presents more details regarding this. 

8. Conclusion and Future Work 
In this paper, we have focused on the problem of 
evaluating XML queries over XML views of relational 
data. In this context, we have described a general query-
processing framework for processing arbitrarily complex 
nested XML queries. We have also described two 
techniques for efficiently evaluating XML queries. The 
first is a view composition mechanism that eliminates the 
construction of all intermediate XML fragments that do 
not appear in the final query result. The second is a 
computation pushdown mechanism that allows all data 
and memory intensive computation to be pushed down to 
the underlying relational engine as a SQL query. 

However, as alluded to earlier in the paper, there are 
certain XML queries that cannot be directly pushed down 
to the relational engine. The first class of such queries are 
meta-data queries. These queries span relational meta-data 
(column and table names) and data (column values). 
While XQuery can naturally express such queries, SQL 
cannot. This is because SQL does not have certain higher-
order operators [9]. Fortunately, it turns out that the 
desired higher-order operators can be provided in the 
middleware while still pushing most computation down to 
the relational engine (see [12] for more details). 

The second class of queries that cannot be directly 
pushed down as SQL are those that perform user-defined 
operations on intermediate XML fragments. For example, 
consider a query that joins department and employee 
XML fragments using a user-defined XML predicate such 
as deptcontains(deptFrag, empFrag). It is important to 
note that the join predicate here involves XML fragments, 
and is not a predicate on basic data types such as integers 
(joins on basic data types can be handled using our 
computation push down mechanism). The reason that the 
join on XML fragments cannot be pushed down is 
because the relational engine does not know about XML 
fragment construction. A similar problem occurs when 
trying to order or group on XML fragments. 

One solution is to perform these operations outside the 
relational engine, but this requires the duplication of 
sophisticated relational functionality, such as joins and 
sorts. Another solution, and the one we advocate, is to add 
primitives to construct XML document fragments inside 
the relational engine. In this way, all data and memory 
intensive processing can be done inside the relational 
engine. As shown in earlier work [11], the most efficient 

way to construct XML fragments inside the engine is to 
use the sorted outer union query plan. Integrating the 
computation pushdown technique with the relational 
engine so that these plans can be automatically generated 
is an area for future investigation. 
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