
Querying XML Views of Relational Data
Jayavel Shanmugasundaram Jerry Kiernan Eugene Shekita Catalina Fan John Funderburk

IBM Almaden Research Center
San Jose, California 95120, USA

{shanmuga, kiernan, shekita}@almaden.ibm.com, {fancy, jfund}@us.ibm.com

Abstract
XML has emerged as the standard data exchange format for
Internet-based business applications. This has created the need
to publish existing business data, stored in relational databases,
as XML. A general way to publish relational data as XML is to
provide XML views over relational data, and allow business
partners to query these views using an XML query language. In
this paper, we address the problem of evaluating XML queries
over XML views of relational data. This paper makes two main
contributions. The first is a general framework for processing
arbitrarily complex queries specified using the XQuery query
language. The second is a technique for efficiently evaluating
XML queries by pushing most of the query computation down
to the relational engine.

1. Introduction
XML has emerged as the standard data exchange format
for Internet-based business applications. This has created
the need to publish existing business data as XML. Since
most business data is currently stored in relational
database systems, the problem of publishing relational
data as XML assumes special significance. A general and
flexible way to publish relational data as XML is to create
(possibly many) XML views of the underlying relational
data. Each of these XML views can provide an
alternative, application-specific view of the underlying
relational data. Through these XML views, business
partners (and other XML application developers) can
access existing relational data as though it was in some
industry-standard XML format.

Once XML views are created over relational data, the
next question that arises is how business partners and
XML application developers are to use these views. One
simple solution is to materialize the entire XML view on
request and return the resulting XML document. The main
problem with this approach is that, in many cases,
applications do not require the whole view to be
materialized. For example, in an XML view of available
items, a business partner may only be interested in a
particular item. Materializing the availability of all the
items would be wasteful in this case because it would

result in unnecessary computation. A better solution is to
support queries over XML views so that business partners
can retrieve only the data items of interest. Supporting
queries over XML views also allows application
developers to synthesize data from different XML views.

In this paper, we address the problem of evaluating
XML queries over XML views of relational data. We
consider the case where views and queries are specified
using XQuery [16], the XML query language currently
being standardized by the World Wide Web Consortium.
We focus on two issues. The first is the design of a
general framework for processing arbitrarily complex
XQuery queries, including queries with features such as
nested expressions and nested order.

The other area of focus is performance, whereby we
present techniques for efficiently evaluating XQuery
queries over XML views of relational data. One such
technique is XML view composition, which eliminates
the construction of all intermediate XML fragments that
do not appear in the final query result. Another
performance-enhancing technique is what we call
“computation push-down”. This pushes all data and
memory intensive computation in a XQuery query down
to the relational engine. As a result, the query processing
power of a relational engine is used to efficiently evaluate
XML queries. Only a small memory-efficient tagger is
required outside the relational engine to tag the SQL
results and produce the resulting XML.

We have implemented the techniques described above
in the context of the XPERANTO middleware system
[3][12], which works on top of any relational database
system. During the course of our implementation, we
have identified some of the limitations that arise from
using a relational query processor for executing XML
queries. These limitations are due to the semantic
mismatch between XQuery and SQL. In the conclusion of
this paper, we identify the causes for this mismatch and
propose possible solutions to help overcome this problem.

To summarize, the contributions of this paper are: (a)
a general framework for processing XQuery queries with
features such as nested expressions and order, (b) a view
composition mechanism that eliminates the construction
of all intermediate XML fragments, (c) a computation
push down mechanism that pushes all data and memory
intensive computation in a XQuery query down to SQL,
(d) a description of extensions that can enable a relational
engine to handle a larger class of XQuery queries.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

The rest of this paper is organized as follows. Section
2 discusses related work and Section 3 describes our high-
level query processing architecture. The next three
sections describe the query processing components such
as the parser, the view composition module and the
computation pushdown module. Section 7 discusses
performance aspects, and Section 8 concludes the paper.

2. Related Work
Most major commercial database systems provide a way
to create materialized XML views of relational data
[1][4][10]. However, in contrast to the approach presented
in this paper, most of these systems do not support queries
over XML views [1][4]. Microsoft’s SQL Server is the
only one that supports queries over XML views, but this
query support is very limited. This is because queries are
specified using XPath [15], which is a subset of XQuery.
For instance, unlike XQuery, XPath cannot specify joins.

XML-based data integration systems [2][5] also wrap
relational data sources as XML views. In this context,
there has been work done on pushing part of XML query
execution down to the relational sources, with the
remainder of the query being executed by an XML run-
time engine in the integration layer [5]. In contrast to this
approach, we support a general XML query capability
over relational databases without the need for a full-blown
XML run-time engine. Our approach also differs in that
we generate query plans that are optimized for relational
databases. This is important because the choice of query
plans can make a significant difference in performance,
especially when constructing complex XML results
[6][11]. These differences apart, our system can indeed be
used as an efficient XML wrapper for relational sources.

SilkRoute [6][7] is a related system that supports
queries over XML views of relational data. Our work
differs from SilkRoute in the following respects. Firstly,
we support a more powerful query facility based on
XQuery. XQuery has features like arbitrarily nested

expressions and nested order, which are not supported in
SilkRoute. Secondly, we use a view composition
technique that is complete and yet produces minimal SQL
queries. This is in contrast to SilkRoute’s view
composition mechanism, which produces SQL queries
with redundant predicates and joins (these queries can be
minimized, but this problem is NP-complete [7]). Thirdly,
our computation pushdown mechanism is more general
because it takes into account the greater flexibility of
XQuery. Finally, unlike SilkRoute, our internal XML
query model naturally extends the relational model. Our
work can thus serve as the basis for extending relational
databases with XML features (see conclusion for details).

3. Query Processing Architecture
In this section, we present our high-level query-
processing architecture. We begin by illustrating how
XML views are created and queried in XPERANTO.

As a starting point, XPERANTO automatically creates
a default XML view, which is a low-level XML view of
the underlying relational database. Users can then define
their own views on top of the default view using XQuery.
Moreover, views can be defined on top of views to
achieve higher levels of abstraction. The main advantage
of this approach is that a standard XML query language is
used to create and query views. This is in contrast to
approaches such as [4][7][10], where a proprietary
language is used to define the initial XML view of the
underlying relational database.

Figure 1 shows the default XML view for a simple
purchase-order database. As shown, the database consists
of three tables, one table to keep track of customer orders,
a second table to keep track of the items associated with
an order, and a third table to keep track of the payments
due for each order. Items and payments are related to
orders by an order id (oid). In the default XML view, top-
level elements correspond to tables with table names
appearing as tags (there is no specific ordering among the

Figure 1: The Default XML View

7725Western Builders9

7734Smith Construction10

custnumcustnameid

order

24000
8000

cost

backhoe10
generator10

descoid

120006/10/0110
200001/10/0110

amtdueoid

item payment

Figure 1: A Purchase Order Database and its Default XML View

<db>
 <order>
 <row> <id>10 </id> <custname> Smith Construction </custname> <custnum> 7734 </custnum> </row>
 <row> <id> 9 </id> <custname>Western Builders </custname> <custnum> 7725 </custnum> </row>
 </order>
 <item>
 <row> <oid> 10 </oid> <desc> generator </desc> <cost> 8000 </cost> </row>
 <row> <oid> 10 </oid> <desc> backhoe </desc> <cost> 24000 </cost> </row>
 </item>
 <payment>
 … similar to <order> and <item>
 </payment>
</db>

table elements). Row elements are nested under the table
elements. Within a row element, column names appear as
tags and column values appear as text.

Continuing the example, suppose a user wants to
publish the purchase-order database as a list of orders in
the XML format shown in Figure 2. There, each order
appears as a top-level element, with its associated items
and payments (ordered by due date) nested under it. To
transform the default view into the desired XML format, a
user-defined view called “orders” is created, as shown in
Figure 3. An XQuery FLWR expression (short for For-
Let-Where-Return expression) in lines 2-23 is used to
construct each order element. The “for” clause on line 2
causes the variable $order to be bound to each “row”
element of the order table. The XPath [15] expression
appearing in line 2 describes how to extract each “row”
element from the order table. It basically says to start at
the root of the default view, navigate to each “order”
element nested under it, and then navigate to each “row”
element nested under those “order” elements. The
constructor for each new “order” element is given in lines
4-23. For a given order, nested FLWR expressions are
used to construct its list of associated items (lines 7-12)
and payments (lines 15-21). The predicate on line 8
($order/id = $item/oid) is used to join an order with its
items. Similarly, the predicate on line 16 ($order/id =
$payment/oid) is used to join an order with its payments.
The payments are ordered by their due dates (line 21).

Once the “orders” view has been created, queries can
be issued against it. This is illustrated in Figure 4, which

shows a query that extracts all orders for the customer
whose name begins with “Smith”.

We now describe our query-processing architecture,
which is shown in Figure 5. When a XQuery query is
issued over XML views, it is first parsed and converted to
an internal query representation called XML Query Graph
Model (XQGM). The query is then composed with the
views it references and rewrite optimizations are
performed to eliminate the construction of intermediate
XML fragments and push down predicates. The modified
XQGM is then processed by the Computation Pushdown
module, which separates the XQGM into two parts. The
first part captures all the memory and data intensive
processing and is pushed down to the relational database
engine as a single SQL query. The second part is a tagger
graph structure, which the Tagger Runtime module uses
to construct the XML query result. This is done in a single
pass over the row streams resulting from the SQL query.
In the remainder of this paper, we describe the major
query processing components in detail.

Figure 2: XML Purchase Order
Figure 3: User-defined XML View

Figure 4: Query over user-defined XML View

Figure 5: Query Processing Architecture

<order id=“10”>
 <customer> Smith Construction </customer>
 <items>
 <item description=“generator” >
 <cost> 8000 </cost>
 </item>
 <item description=“backhoe”>
 <cost> 24000 </cost> </item>
 </item>
 </items>
 <payments>
 <payment due=“1/10/01”>
 <amount> 20000 </amount>
 </payment>
 <payment due=“6/10/01”>
 <amount> 12000 </amount>
 </payment>
 </payments>
</order>
<order id=“9” >
 …
</order>

01. create view orders as (
02. for $order in view(“default”)/order/row
03. return
04. <order id=$order/id>
05. <customer> $order/custname </customer>
06. <items>
07. for $item in view(“default”)/item/row
08. where $order/id = $item/oid
09. return
10. <item description=$item/desc >
11. <cost> $item/cost </cost>
12. </item>
13. </items>
14. <payments>
15. for $payment in view(“default”)/item/row
16. where $order/id = $payment/oid
17. return
18. <payment due=$payment/date>
19. <amount> $payment/amount </amount>
20. </payment>
21. sortby(@due)
22. </payments>
23. </order>)

RDBMS

XPERANTO Query Engine
XQuery

Computation
Pushdown

Query Rewrite &
View Composition

XQuery
Parser

SQL Query

Query Result

XQGM

XQGM

Tuples

Tagger
Runtime

Tagger Graph

1. for $order in view(“orders”)
2. where $order/customer/text() like “Smith%”
3. return $order

4. Query Parsing
In this section, we present the first phase of query
processing corresponding to the XQuery Parser. We first
describe XQGM and then present a general approach for
converting XQuery queries into XQGM.

4.1. XML Query Graph Model (XQGM)
An intermediate query representation for processing
queries over XML views of relational data needs to (a) be
powerful enough to capture the full generality of a
sophisticated query language such as XQuery, and (b) be
amenable to a translation to SQL. We have designed the
XQGM query representation with these in mind. XQGM
is a natural extension of a SQL internal query
representation called Query Graph Model (QGM) [8],
which is used in a commercial relational database system.
By building upon QGM in this manner, XQGM allows for
a natural translation of XQuery queries to SQL. It also
enables us to take the vast body of knowledge on
relational query optimization and apply it to the XML
query problem. In designing XQGM, we have also
borrowed from the work on XML query algebras [5][14].

XQGM consists of a set of operators and functions
that are designed to capture the semantics of an XML
query. Table 1 shows the operators used in XQGM. As
can be seen, the operators are a super-set of traditional
relational operators. The select, project, join, group by,
order by and union operators have the same semantics as
their relational counterparts. The project operator is used
to invoke functions (described later) in addition to
projecting relational results. The table and view operators
are used to refer to relational tables and XML view
definitions respectively. The unnest operator is used to
unnest XML lists. The function operator is used to invoke
XQuery valued functions represented in XQGM.

The creation and manipulation of XML objects is done
using XML functions. Table 2 presents a list of XML
functions and also indicates the operators in which these
functions can appear. We now show how XQuery queries
can be captured using the XQGM representation. We first
provide illustrative examples, and then outline the general
principles involved in the translation.

The XQGM graph for the view query given in Figure
3 is shown in Figure 6. Recall that the query produces a
list of order XML elements, each of which has items and
payments nested under it. We first explain the graph at a
high level and then provide additional details.

Box 1 represents the order table with the two columns
that are referenced in the query. Box 10 uses the notion of
correlated joins (a join operator whose inputs are
correlated sub-queries) to compute the list of items and
payments associated with each order. Box 11 produces the
order XML elements by tagging its inputs. While this
tagging is shown as a template in box 11 for illustrative
purposes, it is actually implemented as a call to the
cr8Elem function as shown in Figure 7.

As shown in Figure 7, an order element has one
attribute, id, created using the cr8Att function. In addition,
an order element has three sub-elements, which are
customer, items and payments. The customer element has
no attributes but has a data value fragment represented by
the input variable $custname. The items element again has
no attributes but has a list of item sub-elements. This list
of item sub-elements is represented by the input variable
$items. The payments element is created similarly.

Returning to Figure 6, the correlated sub-query
represented by boxes 6 through 9 computes the list of
payments associated with each order. The payment rows
from the payment table (box 6) that belong to an order are
selected using a correlated predicate on the order id (box
7). Box 8 creates payment elements using the cr8Elem
function and box 9 aggregates all the payment elements

Table 1: XQGM Operators

OPERATOR DESCRIPTION
Table Represents a table in a relational database
Project Computes results based on its input
Select Restricts its input
Join Joins two or more inputs
Groupby Applies aggregate functions and grouping
Orderby Sorts input based on column values
Union Unions two or more inputs
Unnest Applies super-scalar functions to input
View Represents a view
Function Represents an XQuery function

 XML FUNCTION DESCRIPTION OPERATORS
1 cr8Elem(Tag, Atts, Clist) Creates an element with tag name Tag, attribute list Atts, and contents Clist Project
2 cr8AttList(A1, …, An) Creates a list of attributes from the attributes passed as parameters Project
3 cr8Att(Name, Val) Creates an attribute with name Name and value Val Project
4 cr8XMLFragList(C1, …, Cn) Creates an XML fragment list from the content (element/text) parameters Project
5 aggXMLFrags(C) Aggregate function that creates an XML fragment list from content inputs Groupby
6 getTagName(Elem) Returns the element name of Elem Project, Select
7 getAttributes(Elem) Returns the list of attributes of Elem Project, Select
8 getContents(Elem) Returns the XML fragment list of contents (elements/text) of Elem Project, Select
9 getAttName(Att) Returns the name of attribute Att Project, Select

10 getAttValue(Att) Returns the value of attribute Att Project, Select
11 isElement(E) Returns true if E is an element, returns false otherwise Select
12 isText(T) Returns true if T is text, returns false otherwise Select
13 unnest(List) Superscalar function that unnests a list Unnest

Table 2: XML Functions and the operators in which they can appear

$pmt

$id $custname

$order

dueoid $amt

$custname $pmts$items

amtdue

table: order
$cost$desc$oid

table: item

$cost$desc

select: $oid = $id

$items

groupby:
$items = aggXMLFrags($item)

$item

project: $item = <item> …

select: $oid = $id

correlation
on order.id

join (correlated):

$pmts

groupby:
orderby (on $due):
$pmts = aggXMLFrags($pmt)

$due

project: $pmt = <payment> …

2

3

4

5

1 6

7

8

9

10

11

View Result

$id

project: $order =
<order id=$id>

<customer> $custname </customer>
<items> $items </items>
<payments> $pmts </payments>

</order>

table: payment

associated with an order into a list. For such grouping
operations, the operator can be adorned with an ordering
condition that specifies the ordering of elements within
the list. In our example, payments of an order are sorted
by their due date. The computation of the list of items
associated with each order (boxes 2-5) is similar to the
computation of payments described above.

As another example of XQGM translation, Figure 8
shows the XQGM representation of the query shown in
Figure 4. Box 1 captures the orders view referenced in the
query. The where clause of the FLWR expression is
computed as a correlated sub-query (boxes 2-7). This is
done for the following reasons. Firstly, the where clause
in XQuery can in general be an arbitrarily complex
expression. Therefore, representing the where clause as a
correlated query helps set up a separate context for its

computation without inadvertently changing the
cardinality or other properties of the main query.
Secondly, the where clause in XQuery has implicit
existential semantics. In our example, the predicate
($order/customer/text() like ‘Smith%’) returns true if any
customer element under order satisfies the predicate (if
there exists more than one customer element). By
representing the predicate as a correlated sub-query, the
results can be existentially quantified (above box 7).

The XQGM representation of the predicate is fairly
straightforward. Box 2 gets the contents of a correlated
order and box 3 unnests these contents. Box 4 selects only
those contents that are sub-elements with tag name
‘customer’. Box 5 gets the contents of these elements, box
6 unnests these contents, and box 7 selects the text content
whose value satisfies the desired predicate.

XQuery also supports other complex expressions
besides FLWR and sortby expressions. These include
“let-eval”, “if-then-else”' and “quantified” expressions.
These expressions have clauses which themselves can be
complex expressions. This generality leads to a powerful
querying capability but increases the complexity of
generating a semantically correct internal query
representation. In our system, complex XQuery
expressions are represented as correlated sub-queries with
their separate context, much like how the where clause of
the FLWR expression is represented in Figure 8. Sections
5 and 6 describe how this representation can be simplified
using decorrelation and other query rewrite
transformations.

Figure 6: XQGM for the Order XML View

Figure 7: Expansion of Box 11 in Figure 6

Figure 8: XQGM for Query over Order XML View

$order

view: orders1

$order

join (correlated):8

$elems

project: $elems = getContents($order)2

correlation
on $order

$elem

unnest: $elem = unnest($elems)3

$elem

select: isElement($elem) and
getTagName($elem) = ‘customer’4

existential quantification

$val

unnest: $val = unnest($vals)6

$val

select: isText($val) and
$val like ‘Smith%’7

$vals

project: $vals = getContents($elem)5

cr8Elem(order,
 cr8AttList(cr8Att(id, $id)),
 cr8XMLFragList(cr8Elem(customer,
 cr8AttList(),
 cr8XMLFragList($custname)),
 cr8Elem(items,
 cr8AttList(),
 cr8XMLFragList($items)),
 cr8Elem(payments,
 cr8AttList(),
 cr8XMLFragList($pmts))
)
)

5. View Composition
XML views with nested sub-elements are computed
from flat relational tables. Navigational operations
expressed as path expressions in XQuery queries
traverse these nested structures to extract sub-elements
and their attributes. Therefore, the query operators that
traverse nested structures effectively invert the query
operators that create them in a view. Navigational
operations can thus be eliminated by undoing the
construction of the corresponding elements. Our view
composition module performs this query
simplification.

Removing all XML navigation operations offers
several performance benefits. The obvious benefit is that
the construction of intermediate XML fragments – those
that do not appear in the final query result – is undone.
Thus, only the desired XML fragments are materialized.
As we shall shortly see, the other benefit of removing
XML navigation functions is that it enables predicates and
joins to be pushed down to the relational engine. As a
result, there is no need for a full-fledged XML query-
processor in the middleware layer. Only a space-efficient
tagger, which will be described in more detail in Section
6, is required.

We have developed a complete set of composition
rules involving XQGM functions that can be used to
remove all XML navigation operations. We first present
these rules and then discuss other query rewrite
transformations that complement view composition.

5.1. Composition Rules
Functions 6 through 13 in Table 2 represent the functions
that capture all the navigation operations in an XQuery
query. Table 3 defines twelve composition rules that can
be used to eliminate all occurrences of these navigational
functions. These rules are complete in the sense that they
specify how all occurrences of navigational functions can
be eliminated. This is done by specifying a composition
rule for every possible input to a navigational function,
which specifies how the navigational function is to be
removed for the given input. We now describe the
composition rules in detail.

Rule 1 in Table 3 says that the getTagName function
when applied to the cr8Elem can be reduced to the first
argument of the cr8Elem function (which is the tag name
of the created element). Rules 2-5 are defined in a similar
manner. Rules 6 and 7 replace the isElement function by
true or false, depending on whether the input is an
element or not. Rules 8 and 9 are defined similarly. Rule
10 composes the unnest function with the aggXMLFrags
function by simply returning the input to aggXMLFrags
without performing any aggregation. Rule 11 composes
the unnest function with the cr8XMLFragList function by
reducing the unnest function to a union of all the
arguments of the cr8XMLFragList function. Rule 12 is
defined similarly.

5.2. Applying Composition Rules
We eliminate all navigational operations by repeated
application of the composition rules in Table 3. This step
is complemented by a number of other query rewrite
transformations that push down predicates, and remove
unreferenced columns and operators. We illustrate this
step in view composition using an example.

Figure 9 shows the result of composing the query
graph in Figure 8 with the view graph in Figure 6. As can
be seen, all XML navigation functions in Figure 8 have
been composed with their counterparts in box 11 of
Figure 6 (box 11 is also expanded in Figure 7). As a
result, the selection predicate is specified directly over
$custname (box 12 in Figure 9). Once navigational
functions have been removed, standard query rewrite
transformations such as predicate pushdown can be
applied. In our example, the predicate has been pushed
down to a select box immediately above the order table.

Although not illustrated by the above example, all
intermediate XML fragments are also removed at this
stage of query processing. For example, if the query in
Figure 4 had just selected the items in the desired orders,
only the XML construction functions that produce items
would be present in the output. Since the order elements
as a whole would no longer be referenced, they would
have been removed from the query graph and hence,
would not have been materialized.

6. Computation Pushdown
The goal in this phase of query processing is to push all
data and memory intensive operations down to the
relational engine as an efficient SQL query. We describe
two query processing techniques that make this possible.

6.1. Query Decorrelation
In Section 4, we showed how complex expressions in
XQuery are represented using correlations. However, it
has been shown in earlier work that executing XML
queries as correlated queries over a relational database
leads to poor performance [11]. We thus present query
decorrelation [13] as a necessary step for efficient XML
query execution.

 FUNCTION COMPOSES WITH REDUCTION
1 getTagName cr8Elem(Tag, Atts, Clist) Tag
2 getAttributes cr8Elem(Tag, Atts, Clist) Atts
3 getContents cr8Elem(Tag, Atts, Clist) Clist
4 getAttName cr8Att(Name, Val) Name
5 getAttValue cr8Att(Name, Val) Val
6 isElement cr8Elem(Tag, Atts, Clist) True
7 isElement Other than cr8Elem False
8 isText PCDATA True
9 isText Other than PCDATA False

10 unnest aggXMLFrags(C) C
11 unnest cr8XMLFragList(C1, …, Cn) C1

�
 …

�
 Cn

12 unnest cr8AttList(A1, …, An) A1
�

 …
�

 An

Table 3: Composition Rules

The result of decorrelating the XQGM of Figure 9 is
shown in Figure 10. As shown, the construction of the
list of items (boxes 2-5) associated with orders has been
decorrelated. This is done by directly joining the selected
orders (box 10) with the item table, instead of
performing a correlated selection condition. The items
are then tagged (box 4) and grouped on the id of the
order (box 5) to create a list of items for each selected
order. The list of payments associated with each
purchase order is computed similarly (boxes 6-9).

Once the list of items associated with orders is
computed, these are outer joined with the selected orders
(box 11). An outer join is necessary to preserve all
selected orders because the join in box 3 would have
eliminated orders without any items. This outer joined
result is similarly outer joined with payments (box 12).

6.2. Tagger Pull-up
After query decorrelation, the next step is to generate a
SQL query that can efficiently produce the relational
content for constructing the result XML document. It has
been shown in earlier work [11] that the “sorted outer
union” SQL query is one of the most efficient and stable
techniques for this purpose. However, the generation of
the sorted outer union SQL query from the XQGM
graph is complicated by the fact that the “tagger
operations”, which construct XML fragments, can be
mixed with the “SQL operations”, which join or
otherwise manipulate relational content (see Figure 10).

dueoid $amt

$pmt

$order

project: $order = <order> …

$pmts

groupby (on $id) :
orderby (on $due):
$pmts = aggXMLFrags($pmt)

project: $pmt = <payment> …8

9

$id

$cost$desc$oid

table: item2

$cost$id $desc

join: $oid = $id3

$id $custname

table: order1

$id $item

project: $item = <item> …
4

$items

groupby (on $id) :
$items = aggXMLFrags($item)5

$items

right outer join: $id = $id

$id

$id

$items

left outer join: $id = $id

$id

6

amtid $due

join: $oid = $id
7

$due

$id

$custname

$custname $pmts

$id

select:
$custname like ‘Smith%’10

$custname

11

12

13

Figure 10: XQGM after Decorrelation

table: payment

$pmt

$id $custname

$order

dueoid $amt

$custname $pmts$items

amtdue

table: order
$cost$desc$oid

table: item

$cost$desc

select: $oid = $id

table: payment

$items

groupby:
$items = aggXMLFrags($item)

$item

project: $item = <item> …

select: $oid = $id

correlation
on order.id join (correlated):

$pmts

groupby:
orderby (on $due):
$pmts = aggXMLFrags($pmt)

$due

project: $pmt = <payment> …

2

3

4

5

1 6

7

8

9

10

11

$id

$id

select: $custname like ‘Smith%’7

$custname

$order

join (correlated):

correlation
on $custname

$custname

select: $custname like ‘Smith%’

$custname

Predicate pushdown

View Query

12

13

Figure 9: XQGM after View Composition

project: $order = <order> …

As a result, the tagger and SQL operations need to be
separated before the sorted outer union SQL query can be
generated. This process of separation is what we call
“tagger pull-up”.

During tagger pull-up, relational operations are pushed
to the bottom of the graph, and XML construction
functions are pulled up to the top of the query graph. The
bottom portion of the query graph is then converted to a
sorted outer union SQL statement and sent to the
relational engine for execution. The top portion is
transformed into a “tagger run-time” graph, which
produces the result XML documents.

The tagger run-time graph consists of a set of tagger
operators. In contrast to the relational operators, which are
designed for execution by a sophisticated relational
engine, the tagger operators are designed for efficient in-
memory processing in the middleware. The tagger
operators process ordered streams of rows and produce
the XML result in constant space, and in a single pass
over the SQL query results. The list of tagger operators,
along with the functionality of each operator, is shown in
Table 4. The XML construction functions that can be
implemented in each tagger operator are also shown.

Our system implements a general tagger pull-up
algorithm that works for complex query graphs, even
recursive ones. There are, however, some queries for
which all data and memory intensive computation cannot
be pushed down to the relational engine. More details
regarding this are presented in Section 8, along with a
discussion of how this limitation could be removed.

6.2.1. An Illustrative Example
An example of tagger pull-up is shown in Figure 11. This
graph is the result of applying tagger pull-up
transformations to the query graph in Figure 10. As can be
seen in Figure 11, the bottom part consists of SQL
statements, while the top part consists of tagger operators.
For the rest of this section, we describe how the tagger
operators produce the XML result in a single pass over
the SQL results. Details on separating the SQL part from
the tagger part are deferred until the next section.

The bottom part of Figure 11 produces three SQL
streams. The middle stream produces the selected orders,
ordered by their id. The first and third streams produce the
desired items and payments, respectively, ordered by the
id of the order they are associated with. The third stream
is also ordered by the due date to capture the ordering of
payments. Since all the results are ordered using the order

id, the result XML elements can be constructed in a single
pass over the SQL results. This is done by the tagger
operators, which work as follows.

When an order flows up through the tagger input
operator (box 1), only the items and payments
corresponding to that order are let through by their
corresponding tagger input operators (boxes 2 and 5).
These items and payments are then tagged (boxes 3 and 6)
and grouped (boxes 4 and 7). The top tagger operation
(box 8) then merges these together to produce the result.
This process is repeated for the next order.

Although Figure 11 shows three SQL statements,
these are actually executed as a single SQL statement by
performing an outer union (an “outer union” can be used
to union inputs with different column types). This is done
using the efficient sorted outer union technique proposed
and evaluated in [11]. Alternative ways of grouping SQL
statements are also possible, as described in [6].

6.2.2. Tagger Pull-up Transformations
We now describe the XQGM transformations used during
tagger pull-up. These transformations work in a bottom-
up fashion on the initial query graph (such as Figure 10).
Each transformation matches a fragment of the query
graph and converts it to a semantically equivalent
fragment in which the SQL part is separated from the
tagger part. Repeated applications of these
transformations produce the final separated query graph
(such as Figure 11).

Our system implements tagger pull-up transformations
for the various patterns that can occur in a query graph.
Due to space constraints, we only describe one such
transformation, which pulls up tagging for nested XML
structures. Figure 12 depicts this transformation. The left
side of the figure shows the XQGM fragment before the
transformation. As can be seen, tagged elements are
created (box 1), grouped into a list (box 2), and joined
with their parent (box 3). This pattern would match boxes
4, 5 and 11 in Figure 10 (note that a left outer join is the
same as a right outer join with the inputs flipped).

The right side of the transformation in Figure 12
shows the result of tagger pull-up. The merge (box 5) and
aggregate (box 6) operators are used to create and group
the nested elements, respectively. A merge operator (box
7) is used to relate the list of elements to their parent. A
merge is sufficient for this purpose (instead of the join
used earlier) because an ordering condition on parent id is
pushed down to the SQL queries. A tagger input operator
(box 4) is used to gate the children that belong to a certain
parent, as described earlier.

The result of applying this transformation to boxes 4,
5 and 11 in Figure 10 produces boxes 3, 4 and 8 in Figure
11. A repeated application of this transformation would
transform boxes 8, 9 and 12 in Figure 10 to boxes 6, 7 and
8 in Figure 11 (the duplicate box 8’s created are merged
using other query graph simplification rules).

OPERATOR USAGE FUNCTIONS
Merge Merges one or more

ordered streams
cr8Elem, cr8Att,
cr8XMLFragList,
cr8AttList

Aggregate Computes aggregates aggXMLFrags
Union Unions ordered streams
Input Manages relational rows

Table 4: Summary of Tagger Operators

7. Implementation and Performance
We have implemented all of the techniques described
above as part of the XPERANTO middleware system
[3][12]. Our implementation is in Java and uses JDK 1.2.
We use JDBC as the API to connect to a relational
database system. As a result, our implementation works
on top of most commercial database systems including
DB2, Oracle and Microsoft SQL Server.

Based on our implementation, we have evaluated the
performance of our proposed techniques. There are two
factors that characterize the performance of queries in our
context. The first is query compilation time, which
consists of the time spent parsing the query, performing
view composition, generating the SQL query and setting
up the tagger run-time graph. The second is query
execution time, which consists of the time spent executing
the SQL query and tagging the SQL results to produce the

output XML document. An earlier
study [11] has evaluated query
execution performance and has
shown the superiority of the sorted
outer union SQL plans that we
generate. Hence, we only focus on
query compilation time here.

Our experiments were
performed using a 366 MHz
Pentium II processor with 256MB
of main memory running
Windows NT 4.0. We used DB2
version 7.2 as our database system.
We ran XPERANTO and the
database system on the same
machine to avoid unpredictable
network delays. We considered
queries that accessed up to 4 XML
views. Each XML view nests 3
relational tables in a manner
similar to Figure 3.

The compilation time for our
experimental queries was always
less than half a second. For
instance, the compilation time for a
query that accessed 12 relational
tables through 4 XML views was
about 450 milliseconds. It takes
even less time to compile queries
that access fewer views. As a
result, there is a very small
compile-time overhead associated
with performing the optimizations
proposed in this paper.

It is important to note that this
small compile-time overhead is
more than offset by the associated
performance gains. This is due to
two reasons. The first reason is that

the view composition module eliminates the need to
materialize intermediate XML fragments that do not
appear in the final query result. As a result, only the
relevant data is fetched from the relational engine. Thus,
for typical queries that select only a small subset of data
in an XML view, this results in many orders of magnitude
improvement in performance. As a simple example,
consider an XML view that publishes one million
available items. If the user want details on only one of
these items, it is clear that retrieving only the desired item
will be orders of magnitude better than materializing all
one million items and then selecting the desired one. This
advantage is especially relevant when the underlying
relational data changes often and cannot be easily cached
in the middleware layer.

The other significant performance benefit is due to the
computation pushdown module. By effectively harnessing
the relational engine to process large parts of XML

left outer join: $id = $id

groupby (on $id):
$y = aggXMLFrags($x)

project: $x = cr8Elem(…)

SQL 2

merge:

aggregate:
$y = aggXMLFrags($x)

merge: $x = cr8Elem(…)

SQL 1
(ordered on $id)

Tagger Graph

SQL 2
(ordered on $id)

input: $id = $id

SQL 1

Tagger Graph

1

2

3

4

5

6

7

Figure 12: Tagger Pull-up Transformation

… …

…yid

…xid

$y …

…$x

…

$pmt

$order

$pmts

aggregate:
$pmts = aggXMLFrags($pmt)

merge: $pmt = <payment> …6

7

8

select p.oid, i.desc, i.cost
from item i, order o
where o.custname like ‘Smith%’

and i.oid = o.id
order by o.id

select o.id, o.custname
from order o
where o.custname like ‘Smith%’
order by o.id

select p.oid, p.due, p.amt
from payment p, order o
where o.custname like ‘Smith%’

and p.oid = o.id
order by o.id, p.due

$item

merge: $item = <item> …
3

$desc

input: $oid = $id2

$cost

$items

aggregate :
$items = aggXMLFrags($item)4

amtdue

input: $oid = $id
$custname$id

1
5

correlation
on id

Figure 11: XQGM after Tagger Pull-up

input:

merge: $order = <order> …

queries, it eliminates the need for a full-fledged XML
processor in the middleware layer – only a small, space-
efficient tagger run-time mechanism is required. This is
important because no existing native XML query
processor has performance characteristics that are
comparable to that of a parallel, scalable relational engine.

In the future, we plan to explore other performance
enhancements such as pushing tagging inside the
relational engine, as advocated in [11]. The next section
presents more details regarding this.

8. Conclusion and Future Work
In this paper, we have focused on the problem of
evaluating XML queries over XML views of relational
data. In this context, we have described a general query-
processing framework for processing arbitrarily complex
nested XML queries. We have also described two
techniques for efficiently evaluating XML queries. The
first is a view composition mechanism that eliminates the
construction of all intermediate XML fragments that do
not appear in the final query result. The second is a
computation pushdown mechanism that allows all data
and memory intensive computation to be pushed down to
the underlying relational engine as a SQL query.

However, as alluded to earlier in the paper, there are
certain XML queries that cannot be directly pushed down
to the relational engine. The first class of such queries are
meta-data queries. These queries span relational meta-data
(column and table names) and data (column values).
While XQuery can naturally express such queries, SQL
cannot. This is because SQL does not have certain higher-
order operators [9]. Fortunately, it turns out that the
desired higher-order operators can be provided in the
middleware while still pushing most computation down to
the relational engine (see [12] for more details).

The second class of queries that cannot be directly
pushed down as SQL are those that perform user-defined
operations on intermediate XML fragments. For example,
consider a query that joins department and employee
XML fragments using a user-defined XML predicate such
as deptcontains(deptFrag, empFrag). It is important to
note that the join predicate here involves XML fragments,
and is not a predicate on basic data types such as integers
(joins on basic data types can be handled using our
computation push down mechanism). The reason that the
join on XML fragments cannot be pushed down is
because the relational engine does not know about XML
fragment construction. A similar problem occurs when
trying to order or group on XML fragments.

One solution is to perform these operations outside the
relational engine, but this requires the duplication of
sophisticated relational functionality, such as joins and
sorts. Another solution, and the one we advocate, is to add
primitives to construct XML document fragments inside
the relational engine. In this way, all data and memory
intensive processing can be done inside the relational
engine. As shown in earlier work [11], the most efficient

way to construct XML fragments inside the engine is to
use the sorted outer union query plan. Integrating the
computation pushdown technique with the relational
engine so that these plans can be automatically generated
is an area for future investigation.

Acknowledgements: We would like to thank Jeff
Naughton for his valuable feedback throughout the course
of this work. We would also like to acknowledge the
contributions of past members of the XPERANTO
project, including Rimon Barr, Mike Carey, Dana
Florescu, Zack Ives, Ying Lu, and Subbu Subramanian.
Finally, we would like to thank Gail Mitchell and the
anonymous VLDB referees for their insightful comments.

9. References
[1] S. Banerjee, et. al., “Oracle8i – The XML Enabled

Data Management System”, ICDE Conf., San Diego,
March 2000, pp. 561-568.

[2] C. Baru, et. al., “XML-Based Information Mediation
with MIX”, SIGMOD Conf. Demo, Philadelphia,
June 1999.

[3] M. Carey, et. al., “XPERANTO: Middleware for
Publishing Object-Relational Data as XML
Documents”, WebDB Workshop, Dallas, May 2000.

[4] J. Cheng, J. Xu, “XML and DB2”, ICDE Conf., San
Diego, March 2000, pp. 569-573.

[5] V. Christophides, S. Cluet, J. Simeon, “On Wrapping
Query Languages and Efficient XML Integration”,
SIGMOD Conf., Dallas, May 2000, pp. 141-152.

[6] M. Fernandez, A. Morishima, D. Suciu, “Efficient
Evaluation of XML Middleware Queries”, SIGMOD
Conf., Santa Barbara, May 2001, pp. 103-114.

[7] M. Fernandez. W. Tan, D. Suciu, “SilkRoute:
Trading Between Relations and XML”, World Wide
Web Conf., Toronto, Canada, May 1999.

[8] L. Haas, J. Freytag, G. Lohman, H. Pirahesh,
“Extensible Query Processing in Starburst”,
SIGMOD Conf., Portland, May 1989, pp. 377-388.

[9] L. Lakshmanan, F. Sadri, I. Subramanian,
“SchemaSQL – A Language for Interoperatability in
Relational Multi-Database Systems”, VLDB Conf.,
Mumbai, India, Sep. 1996, pp. 239-250.

[10] Microsoft Corp. http://www.microsoft.com/XML.
[11] J. Shanmugasundaram, et. al., “Efficiently Publishing

Relational Data as XML Documents”, VLDB Conf.,
Cairo, Egypt, Sep. 2000, pp. 65-76.

[12] J. Shanmugasundaram, et. al., “XPERANTO:
Bridging Relational Technology and XML”, IBM
Research Report, June 2001.

[13] P. Seshadri, H. Pirahesh, C. Leung, “Complex Query
Decorrelation”, ICDE Conf., New Orleans,
Louisiana, March 1996, pp. 450-458.

[14] World Wide Web Consortium, “The XML Query
Algebra”, W3C Working Draft, 2001.

[15] World Wide Web Consortium, “XML Path Language
(XPath) Version 1.0”, W3C Recommendation, 1999.

[16] World Wide Web Consortium, “XQuery: A Query
Language for XML”, W3C Working Draft, 2001.

