
Form-Based Proxy Caching for Database-Backed Web Sites

Qiong Luo Jeffrey F. Naughton

University of Wisconsin-Madison
Computer Sciences Department

1210 West Dayton Street
Madison, WI 53715, USA

{ qiongluo, naughton} @cs.wisc.edu

Abstract

We explore a new proxy-caching framework that
exploits the query semantics of HTML forms.
We identify a common class of form-based
queries, and study two representative caching
schemes for them within this framework: (i)
traditional passive query caching, and (ii) active
query caching, in which the proxy cache can
service a request by evaluating a query over the
contents of the cache. Results from our
experimental implementation show that our
form-based proxy is a general and flexible
approach that efficiently enables active caching
schemes for database-backed web sites.
Furthermore, handling query containment at the
proxy yields significant performance advantages
over passive query caching, but extending the
power of the active cache to do full semantic
caching appears to be less generally effective.

1 Introduction

Many web sites managing significant amounts of data use
a database system for storage. When users access such a
web site, clicking on a URL in the HTML page they are
viewing causes an application at the web site to generate
database queries. After the DBMS executes these queries,
the application at the web site takes the result of the
queries, embeds it in an HTML page, and returns the page
to the user. Figure 1 illustrates such a configuration.
Under heavy loads, the database system can become the
bottleneck in this process. Our goal in this paper is to

explore proxy-caching techniques to alleviate this
bottleneck.

Throughout the Internet, proxy caches are used to

improve performance and share server workload. There
are two kinds of deployment for these proxies. One is a
traditional deployment, in which the proxies serve the
content from the Internet to a group of users. In this case,
the web sites being proxied may not even know of the
existence of the proxies. An example is a campus proxy
for speeding up the Internet access of local users. The
other is reverse proxy caching, in which the proxies serve
a specified set of servers to general Internet users. In this
case the web sites and the proxies can collaborate. For
example, web sites often set up their own reverse proxies
or contract with the Content Delivery Network services to
use theirs.

In either deployment scheme, the function of these
proxies is simple – if a proxy has seen a URL before, and
has cached the page corresponding to that URL, it can
return the cached page without accessing the web site that
is the “home” for that page. When extending a proxy
cache to handle access through a form-based interface,
one needs to consider the relationship between the user,
the form on the HTML page, and the queries that are
generated at the database system at the web site.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, I taly, 2001

Figure 1: DB-Backed Web Site

D at ab ase

W eb /A p p .
Ser v er

A p p l i cat i on

D B Ser v er

B r ow ser
H T T P

If clicking on a given URL always generates the same
database query (that is, the request generated by clicking
on the URL embeds no information from the user), then
the proxy can work as if the URL referred to a static page
stored at the web server. We call this scheme passive
caching, because it caches a page and returns it on a hit
without any extra processing on the page. Unfortunately,
in general things are not this simple, because instead of
clicking on a URL, users are filling in forms. The user
input from these forms is incorporated in the queries that
eventually get executed by the database system. A
common example of this might be in a book selling web
site, where a user keyword search on the book title might
generate a SQL query containing a “LIKE” predicate with
the keywords provided by the user.

One can still use passive caching in such a scenario –
the proxy cache associates cached pages with (URL, user
input) rather than just with the URL. However, this
means that the proxy cache will only be able to service a
request if it has cached a previous request for the same
form with the exact same user input. Our goal is to see i f
we can do better than that – we want to extend the proxy
cache so that it can not only service requests that exactly
match previous requests, but it can also service requests
that can be answered by processing results of previous
requests. We term this kind of caching active caching,
because the proxy is actively functioning in a limited
query processing role.

Caching in this context poses a number of challenges
not found in other database caching applications; many of
these challenges arise because there is a high degree of
independence between the database system and the proxy
cache. In our work, we characterize what can be done in
terms of how closely the web site is willing to collaborate
with the proxy cache. For example, we show that if the
web site will give no information at all, only passive
caching is possible. If the web site is willing to expose
the text of the queries its applications generate from the
forms, then containment-based active caching is possible.
Finally, if the web site provides a facility whereby the
proxy can submit modified queries to the server, the
proxy can do semantic active caching, exploiting query
overlap as well as containment.

Also, if an active proxy scheme is to be widely useful,
it must not require custom modifications to existing proxy
servers, nor can it require programming effort on behalf
of the individual web sites that are being served by the
proxy. In our implementation, the caching module is a
Java servlet for the unmodified Apache Tomcat servlet
engine [2], and there is no programming required of the
represented web sites.

In addition to defining and implementing this
framework, we have performed experiments with our
implementation using the TPC-W benchmark and
modifications of that benchmark. These experiments
show that query containment active caching generally
provides a substantial improvement over purely passive

caching; however, extending this to full semantic caching
was only effective in specially crafted workloads.
Finally, we validated these synthetic workload results
with an experiment in which we proxied a real online
bookseller using real-world user traces.

2 Form-Based Proxy Caching Framework

The goal of this framework is to efficiently facilitate
active caching mechanisms for database-backed web sites
in a general way. Despite the large volume of user queries
that these web sites must handle, those queries are not
arbitrary SQL; instead, they are usually submitted through
simple HTML forms. Our key observation is the
following: form-based queries enable a useful variety of
active caching schemes that would be impractical for
arbitrary SQL queries. Inspired by this observation, we
built a proxy-caching framework based on query
templates, which are parameterized query definitions that
are instantiated with the parameter values in user requests
at run time.

2.1 Forms and Query Templates

We start with a running example in Figure 2. The HTML
form shown is a simplified search request page for an on-
line bookstore as given in the TPC-W benchmark [20].
When a user types “Java Programming” in the text box
and clicks the “Submit” button, an HTTP request
containing the user input is sent to the server side. No
matter what application program implementation the
server side uses, be it a CGI script, a Java servlet, an
Active Server Page, the HTTP request will result in a
SQL query for the backend DBMS to execute. A
corresponding SQL query from the example form is given
in Figure 3. Notice that when the user input changes, only
the string in the LIKE predicate changes in the SQL
query. The form in Figure 2 can be abstracted into a query
template as shown in Figure 4.

Figure 2: Example HTML Form

Search Request Page

Search by:

tpcwSearchForm.html

We emphasize that these templates and queries are not
executed at the proxy; rather, the proxy uses them for
analysis purposes, so that it can exploit the semantics of
the query for more sophisticated caching schemes than
exact-match passive caching.

2.2 Implementation

We implemented a Java servlet on top of the Apache
Tomcat servlet engine [2]; together they serve as a
caching proxy. The cache servlet runs in the same process
space as Tomcat, and a pool of multiple threads in the
servlet engine handles simultaneous requests. We chose
the Tomcat servlet engine for ease of development,
portability, and performance, but the same approach can
be applied to the Apache web server, the Squid proxy, or
other enterprise application servers.

Our proxy cache stores the results of queries and uses
them to answer subsequent queries. One question that
must be addressed is how these query results should be
represented in the cache. Because XML is the emerging
data transfer format on the Web, we chose to cache query
results in XML format. This frees us from data
representation issues and allows us to cache for web sites
without any format translation as long as they provide
their query results in XML. However, this is not a
requirement for our approach; any storage scheme at the
proxy cache will work as long as one provides translators
from the form result format into this cache format, and
then again from the cache format to the browser format.

Each query template is a text file containing a
parameterized query such as the one in Figure 4. In
addition, associated with a query template, there is a
query template information file in XML, which specifies
the correspondence between the form parameters and the
query template parameters.

Figure 5 shows the query template information file for
the form in Figure 2. The information file specifies that
the query template is for the form queries sent to the URI

“ /tpcwSearchRequest.xsql” and the parameter
“search_type” in the requests should have the value
“ i_title” . In addition, it specifies that the parameter
“search_string” in the HTTP requests from the form
corresponds to the parameter “$search_string” in the
query template. By specifying query templates and their
associated mapping information with forms in this
declarative manner, we separate the proxy caching
functionality from the implementation and data
representation issues of the web sites.

For passive query caching, the proxy just needs to
map an incoming HTTP request to a file name according
to the parameter descriptions in the query template
information, and check if this file is cached on disk. If the
file is not cached, the proxy forwards the request to the
server, caches the result by that file name when the result
comes back from the server, and returns the result to the
user. Otherwise, the proxy reads the cached file and
returns the content to the user. For active caching, the
proxy goes through a similar process of checking the
cache using query templates, although the proxy
processing and server interaction is more complex. We
discuss form-based active caching in detail in Section 4.

2.3 Deployment Issues

The only difference between deploying a regular proxy
and deploying our form-based proxy is that for active
caching our proxy needs to know the query semantics of
the forms. This is necessary because the application at the
web server can perform arbitrary computations based
upon the user input. Thus, to enable active caching, we
require that the web site provide the text of the SQL query
corresponding to each form. It can do so through the use
of query templates.

Query templates are provided in the configuration
step. In the configuration step of a regular proxy, the
proxy administrator specifies which URLs the proxy
should cache by adding them into the configuration file.
When configuring our form-based proxy, the
administrator specifies which forms that the proxy should
cache by adding the query template files and associated

SELECT TOP 50 i_title, i_id, a_lname, a_fname
FROM item, author
WHERE a_id = i_a_id AND
 i_title LIKE ‘%$search_string%’
ORDER BY i_title

Figure 4: Example Query Template in SQL

Figure 5: Example Query Template Info File

<queryTemplateInfo>
 <URI>/tpcwSearchRequest.xsql</>
 <paramPair>

<paramName>search_type</>
 <paramValue>i_title</>
 </paramPair>

<paramNameMapping>
<requestParam>search_string</>

 <queryParam>$search_string</>
</paramNameMapping>

</queryTemplateInfo>

SELECT TOP 50 i_title, i_id, a_lname, a_fname
FROM item, author
WHERE a_id = i_a_id AND
 i_title LIKE ‘%Java Programming%’
ORDER BY i_title

Figure 3: Example Form-based Query in SQL

information files to the appropriate directories at the
proxy.

Consistency is always an issue in caching. We regard
consistency as an interesting area for future work that is
largely orthogonal to this paper. The web currently works
surprisingly well with a very relaxed attitude toward
consistency. It is possible that many applications will be
well served by simply providing a facility for the web site
to invalidate data and/or templates stored at a proxy.

Finally, recent research in the web caching community
has focused on adding application logic to the proxy from
remote sites while the proxy is running. For example, the
Active Cache Protocol [4] allows small software modules
to be shipped from the web servers to the proxy on
demand, specifying application-specific caching policies,
while the Dynamic Content Cache Protocol [19] supports
application-specific headers specifying caching policies.
Our caching modules could also be shipped on-demand if
the Active Cache Protocol were supported, while the
application-specific query template information for our
framework could also be easily shipped from web sites i f
either of the protocols were supported. In this way
proxies could dynamically implement our active caching
schemes “on the fly” without manual intervention.

3 The Class of Queries Handled by the
Cache

3.1 Queries in the Web Site Application

While our framework can be applied to forms containing
arbitrary database queries, the efficiency of caching
techniques is related to the characteristics of the queries.
As a first step in applying this framework, we concentrate
on a simple but common class of form-based web queries,
which we call top-n conjunctive keyword queries
(TCKQ). The class of web queries can be expressed in an
SQL-like syntax (Figure 6).

The characteristics of the form-based queries include:

• Select-project-join (SPJ)
• A parameterized search predicate
• An order by clause
• A top-n operation
• The search-by and order-by fields appear in the

selection list.
As simple as it looks, this class of queries represents a

large number of forms on the web, including those used in

on-line catalog search forms and on-line bibliography
search forms.

Although keywords can be connected using “OR” and
“NOT” , users on the web seldom use them. We examined
a 1-million entry Excite Search Engine log and found only
361 entries used “NOT” and 519 entries used “OR” . A
report [18] on a 1-billion entry AltaVista search engine
log also showed that 80% of the queries did not have any
operators (+, -, AND, OR, NOT, and NEAR). Thus, we
focus on conjunctive keyword predicates.

3.2 Queries Executed in the Cache

While our proxy handles query templates that look like
the one in Figure 6 this does not mean our proxy executes
joins. Rather, we treat all queries from a given form as
simple top-n selection queries on a single table view with
a keyword predicate. This is because under each query
template, the only difference among the queries is the
search strings in the search predicate. This is one strength
of our approach – we cache tuples that may have been
generated by complex processing at the server, and avoid
that complex processing in the proxy.

In the remainder of this section we discuss queries
from the same form. Whenever appropriate, we omit the
n value of the top-n clause, the fields in the selection
clause, the target relations in the from-clause, the search
field in the search predicate, the other predicates in the
where-clause, and the order-by fields. We use
terminology from relational databases as well as from
XML interchangeably. For example, fields correspond to
elements, and tuples correspond to sets of elements.
Because of order-by and top-n operations, we need to
include list semantics as well as set semantics. These
definitions and facts are not new; we repeat them here to
make this paper self-contained.

3.2.1 Definitions

A list is an ordered set. A list L1 is a sub-list of another
list L2 if and only if the elements in L1 all appear in L2,
and in the same order ignoring absent elements. L2 is then
a super-list of L1. We also define a list intersection,
union, and equivalence to be a set intersection, union, and
equivalence with order correspondingly. We use the
symbols ⊆, ⊄, =, ∩, ∪, to denote operators between sets
as well as between lists.

We extend the standard definitions of query
containment and equivalence to lists. A query Q1 is
contained in another query Q2, denoted Q1⊆Q2, if and
only if for any database D, the result of the former, Q1(D),
is always a subset (or sub-list, if order is required) of the
latter, Q2(D). Q1 and Q2 are equivalent if and only if
Q1⊆Q2 and Q2⊆Q1. Two queries Q1 and Q2 are disjoint
if and only if for any databases D, Q1(D)∩Q2(D) = ∅.
Q1 and Q2 overlap if and only if Q1⊄Q2, Q2⊄Q1, and
Q1 and Q2 are not disjoint.

SELECT TOP n selection_list
FROM target_relations
WHERE search_predicate(search_field,

$search_string) AND other_predicates
ORDER BY orderby_fields

Figure 6: Class of Form-Based Queries

Next, we explore conjunctive keyword queries.
Definition 1. [Conj unctive keyword predicate] An n-
ary conjunctive keyword predicate is of the form
contains(e,{k1,k2,…,kn}), where e is a field name, and
{ k1,k2,…,kn} is a set of distinct words. The predicate
contains(e,{k1,k2,…,kn}) is true if and only i f all of the
keywords k1,k2,..,kn (not necessarily in that order) appear
in the field e. �

In relational databases a conjunctive keyword
predicate can be simulated using the string “LIKE”
predicates. Also, our keyword predicate corresponds to a
Boolean query in Information Retrieval with e being the
top-level document.
Definition 2. [SORT] A sort operation is of the form
SORTo(T), where o is a list of fields, and T is a set of
tuples whose fields are a superset of the fields in o. The
operation returns a list of all tuples from T ordered by o.
For simplicity, we will use SORT(T) when appropriate. �

Definition 3. [Top-n] A top-n operation is of the form
TOPn(L), where n is a natural number, and L is a list of
tuples. The operation returns a list of the first min(n,
cardinality(L)) tuples from L. For simplicity, we will use
TOP(L) when appropriate. �

Definition 4. [CKQ] A conjunctive keyword query
(CKQ) is of the form Qe({ k1,k2,…,kn}) where Qe is a
query with a keyword predicate
contains(e,{k1,k2,…,kn}). The query returns a set of
tuples. For simplicity, we will use Q({ k1,k2,…,kn}) when
appropriate. �

Definition 5. [OCKQ] An Order-by conjunctive
keyword query (OCKQ), denoted OQ({ k1,k2,…,kn}), is
defined as SORT(Q{ k1,k2,…,kn}) where Q is a CKQ.
The query returns a list of tuples. �

Definition 6. [TCKQ] A top-n conjunctive keyword
query (TCKQ), denoted TQ({ k1,k2,…,kn}), is defined as
TOP(OQ{ k1,k2,…,kn}). The query returns a list of
tuples. �

3.2.2 Proper ties of Quer ies

From definitions in Section 3.2.1, we have the following
simple but useful facts and properties about the queries
that we are caching.
Fact 1. Q({ k1,k2,…,kn} ∪ { j1,j2,…,jm}) = σ
contains(e, { k1,k2,…,kn})(Q({ j1,j2,…,jm})) �

Fact 2. Q({ k1,k2,…,kn} ∪ { j1,j2,…,jm}) =
Q({ k1,k2,…,kn})

�
 Q({ j1,j2,…,jm}) �

These two facts tell us how to answer more restrictive
conjunctive keyword queries from less restrictive CKQs,
by selection or intersection. Similar facts hold for OCKQs
except the set semantics is replaced by the list semantics.
However, these facts do not hold for TCKQs.

Fact 3. TQ({ k1,k2,…,kn} ∪ { j1,j2,…,jm}) ⊇ σ
contains(e, { k1,k2,…,kn})(TQ({ j1,j2,…,jm})) �

Fact 4. TQ({ k1,k2,…,kn} ∪ { j1,j2,…,jm}) ⊇
TQ({ k1,k2,…,kn})

�
 TQ({ j1,j2,…,jm}) �

Next we show that CKQ and OCKQ have similar
properties on containment and equivalence, but TCKQ do
not.
Proposition 1. A CKQ Q1 = Q({ k1,k2,…,kn}) is
contained in a CKQ Q2 = Q({ j1,j2,…,jm}) if and only if
{ k1,k2,..,kn} is a superset of { j1,j2,..,jm} . This also holds
for OCKQ. �

Proposition 2. A TCKQ TQ1 = TQ({ k1,k2,…,kn}) is
contained in a TCKQ TQ2 = TQ({ j1,j2,…,jm}) implies
{ k1,k2,..,kn} is a superset of { j1,j2,..,jm} , but not vice
versa. �

For TCKQs the following stronger proposition holds.
Proposition 3. A TCKQ TQ1 = TQ({ k1,k2,…,kn}) is
contained in a TCKQ TQ2 = TQ({ j1,j2,…,jm}) if and
only if { k1,k2,..,kn} = { j1,j2,..,jm} . �

For query equivalence, similar results hold for the
family of conjunctive keyword queries.
Proposition 4. A CKQ Q1 = Q({ k1,k2,…,kn}) is
equivalent to a CKQ Q2 = Q({ j1,j2,…,jm}) if and only i f
{ k1,k2,..,kn} = { j1,j2,..,jm} . The same holds for OCKQs
and TCKQs. �

The following result says that if a CKQ is contained in
a union of CKQs, it is contained in at least one of the
CKQs in the union. Similar results hold for OCKQs.
Proposition 5. A CKQ Q1 = Q({ k1,k2,…,kn}) is
contained in a union of other CKQ’s Q2∪Q3∪… ∪Qx, if
and only if for some Qy, 2<=y<=x, Q1 is contained in Qy.

�

Finally, two CKQs are never disjoint because we can
always find a database in which there is an answer to
satisfy both of them:
Proposition 6. For any two CKQs Q1 =
Q({ k1,k2,…,kn}), Q2 = Q({ j1,j2,…,jm}), Q1 and Q2 are
not disjoint. The same holds for OCKQs and TCKQs. �

4 Form-Based Active Caching

4.1 Design Decisions

In this paper we consider active proxy caching in which
the cache can execute top-n conjunctive keyword queries.
Certainly other classes of queries are possible (range
queries are one obvious alternative), but top-n conjunctive
keyword queries are a useful class and general enough to
illustrate the strengths and limitations of our approach.

From the properties we studied in the previous section,
we know that limiting the result size with top-n implies
that one query contains another only when the two are

equivalent (Proposition 3), which prohibits anything other
than passive query caching. Therefore, we cache only
order-by conjunctive queries at the proxy. A cache of
order-by conjunctive keyword queries is immediately
useful if the form being cached issues such queries; it is
also useful if the web site being proxied provides facilities
by which the proxy can “strip off” top-N operators. In the
latter case we cache order-by conjunctive queries without
a top-N, applying the top-N predicate at the proxy before
returning results to the user.

Given a cache of the union of results from order-by
conjunctive keyword queries, when a new query comes
in, there are three possibilities: the result of the new query
could be contained in the cache, it could intersect with the
cache, or it could be disjoint from the cache.

By Proposition 5, if an OCKQ is contained in a union
of OCKQs, it is contained in at least one of them. Thus
we do not need to consider combinations of cached
queries, but only need to consider 1-1 relationships
between the new query and the individual cached queries.
Moreover, we can determine query containment for
OCKQs by examining the keywords in the queries
(Proposition 1). So for containment, we only need to
compare the keywords in the new query and in the cached
queries without examining the contents of the cache.

The situation changes for query overlap. If a new
query is not contained in a cached query, by Proposition
6, it could overlap with any previously cached query;
furthermore, we cannot tell if the query indeed overlaps
with previously cached queries without going through the
contents of the cache. If upon examining the contents of
the cache we find that the query does overlap, we issue a
query to the web server for the form to get the answers
“missing” from the cache. Using the terminology from
semantic caching [7], the query evaluated over the cache
is the probing query, whereas the difference query sent to
the DBMS is the remainder query. In our context, the
remainder query is easy to specify.

Consider a new query Q, with keywords k1, k2, …,
km. Furthermore, let Q1(c1), …, Qn(cn) be the queries
that currently appear in the cache, where ci is the conjunct
of keywords that appear in query Qi. Then the remainder
query QR is just QR(k1,…, km, not c1, not c2, … not cn).
We refer to the not ci as remainder predicates.

Clearly, with a large cache QR will be enormous, and
would cause severe problems if sent to the DBMS at the
web site. Thus we need to pick out a few remainder
predicates that can reduce the remainder result size
effectively. Choosing a minimum number of remainder
predicates from the cached queries to cover all the cached
tuples is a computationally hard problem (it can be shown
NP-complete by reduction from the vertex cover
problem). Instead, we used simple heuristics to try to pick
a fixed number of predicates that cover a large portion of
the cache.

Finally, another decision is whether redundancy in
overlapping query results is allowed in the cache. We

chose to eliminate duplicates when merging results of
queries into the cache. As we will see in the experiments,
this choice causes some computational overhead but
avoids filling the cache with duplicates.

4.2 Implementation

If a new query presented to the cache is contained in a
previous query, we simply execute the conjunctive
keyword query over the contents of the cache. If the
query is not contained in a previous query, then things are
more complex. Here the probing step is a selection query
with the current search predicate on the cached query
results. If we are using full semantic caching, we need to
send a remainder predicate to the server. When the web
server responds with the result of the remainder query,
our cache merges this result with the result of the probe
query, and sends the combined result on to the user.
Furthermore, our cache merges the result of the remainder
query in with the existing cache contents, and adds the
original query to the list of cached queries.

An important special case occurs if we decide to
handle only containment relationships and to ignore query
overlap. In this case, we never send a remainder query;
rather, we always pass on the original query to the web
server, and merge the result of that query in with the
current cache contents. This case is important because it
does not require any special collaboration between the
proxy cache and the web server (since no “new” queries
need to be sent to the web server, it only sees requests that
it would see in the absence of our proxy cache.)

When there is a top-N operator in the class of cached
queries, we once again require closer collaboration with
the web server, because we handle such queries by
“stripping off” the top-N operator before sending the
queries on to the web server. To support this class of
query we also have a top-N operator in the cache, so that
the proxy can apply it to the full result before it is passed
to the user.

As we see from Figure 7, each cache consists of a row
of cached queries from the same query template, a set of
cached result tuples, and a lexicon of the words in the
search field in the cached result tuples. The queries that
exactly match or are contained in a previously cached
query are not added to the cache, in order to keep the
number of cached queries small. The cached tuples are the
union of all the result tuples from previously cached
queries. We used LRU for cache replacement.

The list of cached queries is used to answer a new
query if it is an exact match to a cached query, or is
contained in a cached query. Both exact match and
contained queries can be answered completely at the
proxy. If a new query is neither an exact match nor a
contained query, the cached tuples are examined through
the lexicon indexes to pick out satisfying tuples (those in
the overlap between the query and the cache) for the new
query.

5 Experiments

In this section, we first exercise the proxy-caching
framework using the TPC-W book title search query
traces. We then use modified workloads to investigate
properties of active caching not revealed by the simple
TPC-W traces.

5.1 Exper imental Setup

There are four computers involved in the experiments.
The four machines all have a Pentium III 800Mhz CPU
and 256MB memory. The machine for the database server
has 20GB disk space, while the other three machines each
have a 9GB disk. All the machines are on a
100Mbit/second Ethernet.

All four machines use the RedHat Linux 6.2 operating
system. The RBE program (Remote Browser Emulator)
and proxy servlet are homegrown. The servlet engine is
the Apache Tomcat Servlet Engine version 3.1, which
supports the Java Servlet API v2.2. The database server in
our experiments is Oracle 8.1.6 Enterprise Edition with
the InterMedia Text 8.1.6 index server. We use Oracle
XSQL servlet version 1.0.1.0 at the server side to process
form-based queries and generate query results in XML.
Table 1 summarizes the configuration.

Computer RBE Proxy Server Database
Software RBE Tomcat +

servlet
Tomcat +
XSQL

Oracle8i

5.2 On TPC-W Query Traces

To measure the effects of proxy caching on response
times, we set up the TPC-W databases [20] at three scales:
10K, 100K, and 1M (in terms of the cardinality of the
item table) in Oracle. The cardinality of the author table is
¼ of that of the item table. The ASCII data files of the two
tables are of a total size of about 5MB, 50MB, and
500MB respectively. We used the default buffer pool size

of 16MB in Oracle. We used the TPC-W search-by-title
workload (form in Figure 2 and queries as in Figure 4).

The i_title field of the item table was generated using
the TPC-W WGEN utility. In this dataset each title gets
one “signature word” , and each signature word is inserted
into an average of five titles. The search string in a TPC-
W query is a signature word. This causes each query to
return an average of five books, and two queries in the
trace are either identical (if they have the same search
string) or have disjoint results (otherwise). This is the
worst case for active caching because there is no query
containment or overlap.

We ran a ten thousand query trace to the three scales
of the TPC-W databases. This query trace contains two
thousand distinct queries, and the caches reach a hit ratio
of 80%. At the end of the experiment, both caches
contained nearly 10K items. No cache replacement was
triggered.

We compare timings in four cases: RBE directly to the
server (Direct), RBE through the proxy without any cache
(NC), RBE through the proxy with a passive query cache
(PQ), and RBE through the proxy with an active query
cache sending no remainder predicates (AQ0). The
response times were measured in the RBE. Because the
timings in the non-cache proxy case were almost identical
to those of a miss in the PQ setting, we only show the
three cases in Table 2.

Database scale 10K 100K 1M
Direct Overall 74 384 4144

On hit 11 11 12
On miss 110 442 4215

PQ

Overall 31 98 853
On hit 11 13 12
On miss 262 539 4499

AQ0

Overall 61 118 905

From Table 2, we see that the database web server
processing time dominates (comparing PQ cache misses
with the direct-to-server case) and this gets worse when
the scale of the database increases. Passive query caching
achieves an overall average response time ¼ of that of the
direct-to-server case. On a miss, passive query caching
adds less than 70 milliseconds of overhead when
compared to the direct-to-server case. The active cache
adds another 100-280 milliseconds overhead on miss
because of its more sophisticated query cache
management. As the scale of the database increases, this
overhead is dominated by the server time.

5.3 Adding Overlap in Quer ies

Since the TPC-W query trace generates queries with only
disjoint small results, we generated another set of traces,
which we term NounPhrase traces, from the TPC-W

Table 1: Software Deployment in the Experiments

Table 2: TPC-W Average Response Times (in ms)

Figure 7: Example Cache Organization

Cached Queries

Java Programming

Unix Unix Guru

Advanced Java Programming

Unix Network Programming

Cached Tuples

Programming

Advanced

Guru

Network

Cached Lexicon

Java

Unix

vocabulary. NounPhrase traces explore how well the
active cache performs when a new query is contained in a
cached query or intersects with some data in the cache.

Trace Noun100 Noun80 Noun60 Noun40
1-noun 20% 20% 20% 20%
2-noun 20% 20% 20% 20%
3-noun 20% 20% 20% 0
4-noun 20% 20% 0 0
5-noun 20% 0 0 0
Dummy 0 20% 40% 60%

The four NounPhrase traces we experimented with
were Noun40, Noun60, Noun80, and Noun100. Each
trace contains two thousand queries; which can be queries
with one noun, two nouns, ... five nouns, or a dummy
word as the search string (their percentages in the traces
are shown in Table 3). Each noun was chosen
independently from one another with a Zipfian
distribution from the 100 most popular nouns in the TPC-
W vocabulary. The dummy words in each trace were
distinct and returned no answers. The different
percentages of noun queries in the traces were designed to
yield similar exact match ratios but different containment
ratios across the traces. As a result, the exact match ratios
of the four traces were all around 20%, and the ratios of
contained queries were 12%, 33%, 52%, and 71%.

Figure 8 shows the average response times of the four
NounPhrase traces on the 100K-scale TPC-W database
running directly to the server (Direct), through a passive
query caching proxy (PQ), or through an active caching
proxy with no remainder predicates (AQ0). Recall that
this (AQ0) is the case that does not require close
collaboration between the web server and the proxy
cache. We see that: (1) When the number of noun queries
on the fixed vocabulary increases, the ratio of exact
matches does not change much and passive query caching

has a limited performance. (2) When the number of noun
queries on the fixed vocabulary increases, the ratio of
contained queries increases and benefits active caching to
a larger extent.

Next we examine in detail the time spent by individual
queries at the proxy.

We compare four cases at the active cache: an exact
match (MATCH), a containment (CONT), an overlap
(INTER), and a miss (MISS). For the passive query
cache, this is simply MISS or HIT. Because the response
time of a query depends on many factors, such as the
current contents of the cache, the result size, and the
database web server status, we ran the Noun40 trace three
times, chose four representative queries in the trace, and
show their times averaged from the three runs.

From Table 4 we see that both caches have similar
response times on an exact match query (Query 515). A
contained query (Query 511) also has similar response
time to an exact match (Query 515) in the active cache,
which is much better than a miss in the passive query
cache. Query 514 is a dummy query returning no answers,
and an active cache miss on it is 27% more expensive
than a passive cache miss. Query 510 is a 2-noun query
returning 50 tuples (top 50), and an active cache
intersection is three times slower than a passive cache
miss. This is because in the passive query cache case,
only the top 50 tuples are obtained from the server,
returned to the user, and saved into the cache while in the
active cache case the active cache gets 62 result tuples
from the cache, gets 510 result tuples (the whole answer
set) from the server, merges these two parts of answers to
eliminate duplicates, returns the top 50 to the user, and
caches the un-cached answers.

We conducted further experiments on the Noun40
trace and found that increasing the number of remainder
predicates had a very limited effect on reducing the
number of remainder tuples (as an example, we show this
for Query 510 in Table 5). This was because in the TPC-
W database there is very little overlap among titles.

5.4 Adding Overlap in Datasets

Because the TPC-W dataset had so little overlap, we
generated a dataset with the same TPC-W item schema

Table 3 : Composition of NounPhrase Traces

Table 5: Response Times of Four Cases (in ms)

Query ID 510 511 514 515
Status INTER CONT MISS MATCH AQ0
Time 2683 18 472 17
Status MISS MISS MISS HIT PQ
Time 664 361 376 18

Table 4: Numbers of Remainder Tuples of Query 510

#Remainder predicates 0 10 20 30 40
#Remainder tuples 510 502 491 484 480

Figure 8: NounPhrase Average. Response Times

Average Response Time

0

50

100

150

200

250

300

350

400

Noun100 Noun80 Noun60 Noun40

T
im

e
in

 m
ill

is
ec

o
n

d
s

Direct PQ AQ0

but used a 10-word vocabulary { w0,w1,w2,…,w9} for the
title field. This data set was tailor-made to benefit
remainder processing.

In this dataset, each title field had three words: the id,
wi, and wj, where 0=<i, j <9. There were 100 distinct
combinations of the (wi,wj) pairs, but the id field was
unique so that each title was unique. We generated 1000
tuples with each combination of (wi,wj) appearing in 10
titles and appended these 1000 tuples to the 100K TPC-W
database. We then ran then ten queries w0, w1, …, w9,
and compared the performance of the 10th query with
varying numbers of remainder predicates. Note that here
the selection heuristic used for remainder predicates is not
important, because in this scenario all remainder
predicates are equivalent. Table 6 shows the number of
remainder tuples of Query 10 and Figure 9 shows the
timing breakdown, averaged over three runs.

#Remainder predicates 0 5 10
#Remainder tuples 190 90 10

The legends from left to right in Figure 9 correspond
to the portions bottom up in the bars. The time spent on
probing the cache and sending the remainder query to the
server (reqToServer) was small. The time taken waiting
for the server response (getResponse) and merging the
probe results and the remainder results (mergeResult)
were comparable. Both the server response time and the
proxy result-merging time decreased when the number of
remainder predicates increased. We also experimented
with a dataset one magnitude larger than this one (10,000
special tuples inserted into the 1M TPC-W database) and
observed the same pattern.

5.5 Exper iments Omitted

Due to space limitations, in this paper we omit
experiments investigating the effect of “combinatorial

blowup” on caching schemes that do not eliminate
duplicates. Similarly, we omit experiments that tested our
cache as an accelerator for real-world online book selling
web sites. The interested reader can find details in [13].

6 Related Work

To our knowledge, this paper is the first that explores an
active proxy-caching framework for database-backed web
sites explicitly based on query templates. Caching and
materialization for databases on the Web has received a
lot of attention recently ([3], [5], [9]). These studies all
consider passive caching of the HTML or XML pages
generated from DBMS-resident data. In contrast, our main
focus is active caching.

Research in web caching that is most closely related to
ours includes [4], [14], [15], and [19]. Studies [4], [15],
and [19] did not consider database queries. Our previous
work [14] focused on how a custom proxy caching
protocol could be used to distribute caching code for
select-project-join queries to proxies on the fly. However,
it did not study the main issues we focus on here,
including how forms can be used in the definition and
deployment of caching schemes, and how well these
schemes perform for keyword-based queries over the
web.

There has been a large body of work ([1], [6], [8],
[10], [11], [12], [17]) in data caching, query caching, and
answering queries using views. Some of them ([6], [8],
[10], [12], [17]) dealt with relational queries while others
([1], [6], [11]) focused on caching for heterogeneous
sources. Our work builds on semantic caching as
presented in [6], and is closely related to [6] and [11]. [11]
focused on algorithms for choosing the best matching
query in the context of semantic caching for range
queries. While [6] studied semantic caching for keyword
queries over search engines, we focus on using query
templates to enable active caching for database-backed
web sites. Also, [6] did not present a performance study.

Finally, there is an increasing commercial interest in
caching for database web servers. The Oracle 9i
Application Server [16] includes the Oracle Database
Cache and the Oracle Web Cache. The Oracle Web
Cache does passive caching. The Oracle Database Cache
currently caches full tables; caching selected rows and
columns, and caching query results may be available in
the future release. To be used in a proxy cache scenario,
the table level caching approach requires the DBMS data
to be replicated to the proxy and an SQL query processor
at the cache. This shifts the entire query computation from
the DBMS to the proxy. Our approach, on the other hand,
caches query results, thereby avoiding re-computation and
requiring much simpler computation at the cache.
Furthermore, unlike our approach, full table caching
cannot take advantage of caching only “hot regions” of
the result space. However, also unlike our approach, full
table caching with a SQL processor can answer arbitrary

Table 6: Numbers of Remainder Tuples of Query 10

Figure 9: Time Breakdown of Query 10

Tim e Breakdow n

574
453

344

194

173

156

0
100
200
300
400
500
600
700
800
900

AQ0 AQ5 AQ10

T
im

e
in

 m
ill

is
ec

o
n

d
s

reqToServer getResponse mergeResult

queries on those tables. A detailed comparison of the two
approaches is an interesting area for future work.

7 Conclusions and Future Work

We have described a form-based proxy-caching
framework for database-backed web servers. We studied
two representative caching schemes for web queries using
a full system implementation and evaluation. We show
that while passive query caching is sufficient for the TPC-
W workloads, active caching is more promising for other
generated traces and real workloads. More specifically,
answering contained queries results in a significant
performance gain, but answering cache-intersecting
queries is probably not worthwhile for the top-n
conjunctive keyword queries. Finally, different caching
schemes rely on different degrees of collaboration from
servers. Passive query caching does not need query
semantics information from the server, handling top-n
queries needs some facility for getting the full answers
from the server, and full semantic caching needs the
server to handle remainder queries.

Acknowledgements

Thanks to our database group for valuable feedback, and
Hongfei Guo for the TPC-W data generator. Funding for
this work was provided by NSF through CCR-9734437,
CDA-9623632 and ITR 0086002, and DARPA through
NAVY/SPAWAR Contract No. N66001-99-1-8908.

References

[1] Sibel Adali, K. Selçuk Candan, Yannis
Papakonstantinou, and V. S. Subrahmanian. Query
Caching and Optimization in Distributed Mediator
Systems. SIGMOD Conference 1996: 137-148.

[2] The Apache Tomcat Servlet Engine.
http://jakarta.apache.org/tomcat/index.html

[3] K. Selçuk Candan, Wen-Syan Li, Qiong Luo,
Wang-Pin Hsiung, and Divyakant Agrawal.
Enabling Dynamic Content Caching for Database-
Driven Web Sites. SIGMOD Conference 2001.

[4] Pei Cao, Jin Zhang, and Kevin Beach. Active
Cache: Caching Dynamic Contents on the Web.
Middleware '98.

[5] Jim Challenger, Arun Iyengar, and Paul Dantzig.
A Scalable System for Consistently Caching
Dynamic Web Data. IEEE INFOCOM 99.

[6] Boris Chidlovskii, Claudia Roncancio, and Marie-
Luise Schneider. Cache Mechanism for
Heterogeneous Web Querying. Proc. 8th World
Wide Web Conference (WWW8), 1999.

[7] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson,
and Divesh Srivastava, Michael Tan. Semantic
Data Caching and Replacement. VLDB 1996.

[8] Arthur M. Keller, Julie Basu. A Predicate-based
Caching Scheme for Client-Server Database
Architectures. VLDB Journal 5(1): 35-47 (1996).

[9] Alexandros Labrinidis and Nick Roussopoulos.
WebView Materialization. SIGMOD Conference
2000: 367-378.

[10] Per-Åke Larson and H. Z. Yang. Computing
Queries from Derived Relations. VLDB85: 259-
269.

[11] Dongwon Lee and Wesley W. Chu. Caching via
Query Matching for Web Sources. CIKM99: 77-
85.

[12] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua
Sagiv, and Divesh Srivastava. Answering Queries
Using Views. PODS, 1995: 95-104.

[13] Qiong Luo and Jeffrey F. Naughton. Form-based
Proxy Caching for Database-backed Web Sites
(Full version). Available at
http://www.cs.wisc.edu/niagara/papers/formProxy
Full.pdf.

[14] Qiong Luo, Jeffrey F. Naughton, Rajasekar
Krishnamurthy, Pei Cao, and Yunrui Li. Active
Query Caching for Database Web Servers. WebDB
2000: 29-34.

[15] Evangelos P. Markatos. On Caching Search
Engine Query Results. In the Proceedings of the
5th International Web Caching and Content
Delivery Workshop, May 2000.

[16] Oracle Corporation. Oracle Internet Application
Server Documentation Library.
http://technet.oracle.com/docs/products/ias/doc_in
dex.htm

[17] Timos K. Sellis. Intelligent caching and indexing
techniques for relational database systems.
Information Systems 13(2): 175-185 (1988).

[18] Craig Silverstein, Monika Henzinger, Hannes
Marais, and Michael Moicz. Analysis of a Very
Large AltaVista Query Log. SRC Technical Note
1998-014. Compaq, October 1998.

[19] Ben Smith, Anurag Acharya, Tao Yang, and
Huican Zhu. Caching Equivalent and Partial
Results for Dynamic Web Content. Proc. of 1999
USENIX Symp. on Internet Technologies and
Systems.

[20] Transaction Processing Performance Council
(TPC). TPC Benchmark™ W (Web Commerce)
Specification Version 1.1. June 27, 2000.

