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Abstract 

Business process automation technologies are 
being increasingly used by many companies to 
improve the efficiency of both internal processes 
as well as of e-services offered to customers. In 
order to satisfy customers and employees, 
business processes need to be executed with a 
high and predictable quality. In particular, it is 
crucial for organizations to meet the Service 
Level Agreements (SLAs) stipulated with the 
customers and to foresee as early as possible the 
risk of missing SLAs, in order to set the right 
expectations and to allow for corrective actions.  
In this paper we focus on a critical issue in 
business process quality: that of analyzing, 
predicting and preventing the occurrence of 
exceptions, i.e., of deviations from the desired or 
acceptable behavior. We characterize the 
problem and propose a solution, based on data 
warehousing and mining techniques. We then 
describe the architecture and implementation of a 
tool suite that enables exception analysis, 
prediction, and prevention. Finally, we show 
experimental results obtained by using the tool 
suite to analyze internal HP processes.  

1. Introduction and motivations 
Process design, automation, and management 
technologies are being increasingly used in both 
traditional and newly-formed, Interned-based enterprises 

in order to improve the quality and efficiency of their 
administrative and production processes, to manage e-
commerce transactions, and to rapidly and reliably deliver 
services to businesses and individual customers.  

In order to attract and retain customers as well as 
business partners, organizations need to provide their 
services (i.e., execute their processes) with a high, 
consistent, and predictable quality. From a process 
automation perspective, this has several implications: for 
example, the business processes should be correctly 
designed, their execution should be supported by a system 
that can meet the workload requirements, and the (human 
or automated) process resources should be able to perform 
their work items in a timely fashion. In this paper we 
focus on a specific, although critical issue in business 
process quality: that of reducing the occurrence of 
exceptions.  

The term exception has been used with several 
different meanings in the workflow and process 
automation communities. We define an exception as a 
deviation from the "optimal" (or acceptable) process 
execution that prevents the delivery of services with the 
desired (or agreed) quality1. This is a high-level, user-
oriented notion of exception, where it is up to the process 
designers and administrators to state what they consider 
as an exception, and hence as a problem they would like 
to address and avoid. Delays in completing an order 
fulfillment process or escalations of complaints to a 
manager in a customer care process are typical examples 
of exceptions. In the first case a company is not able to 
meet the service level agreements, while in the second 
case the service is delivered with acceptable quality from 
the customer's point of view, but with higher operating 
costs, and therefore with unacceptable quality from the 
service provider's perspective.  

                                                                 
1 We are concerned with both external quality (as perceived 
from the consumer in terms of better and faster services) and 
internal quality (as perceived by the service provider in terms of 
lower operating cost). 
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In this paper we present a tool suite that supports 
organizations in analyzing, predicting, and preventing 
exceptions. Exception analysis helps users in determining 
the causes of exceptions. For example, the analysis may 
show that delays in a supply chain process occur 
whenever a specific supplier is involved. Understanding 
the causes of exceptions can help IT and business 
manager to identify the changes required to avoid future 
occurrences of the exceptions. For example, the company 
may decide to remove a given supplier from its list.  

The tool suite can also dynamically predict the 
occurrence of exceptions at process instantiation time, and 
progressively refine the prediction as process execution 
proceeds and more information become available. 
Exception prediction helps in setting the right 
expectations about the process execution quality. In 
addition, it allows users and applications to take actions in 
order to prevent the occurrence of the exceptions. For 
example, when the tool predicts that a process instance 
has a very high probability of missing its deadline, it can 
raise the process instance priority (depending on the 
importance of the process and on the potential damage 
caused by missing the deadline), in order to inform 
resources that work items of this process instance should 
be executed first.  

Our approach is based on applying data mining and 
data warehousing techniques to process execution logs. In 
fact, business process automation systems (also called 
Workflow Management Systems, or simply WfMSs) 
record all important events that occur during process 
executions, including the start and completion time of 
each activity, its input and output data, the resource that 
executed it, and any failure that occurred during activity 
or process execution. By cleaning and aggregating 
workflow logs into a warehouse and by analyzing them 
with data mining technologies, we can extract knowledge 
about the circumstances in which an exception occurred 
in the past, and use this information to explain the causes 
of its occurrence as well as to predict future occurrences 
within running process instances. 

This work is part of a larger research effort aiming at 
developing business intelligence techniques and tools for 
business process reporting, analysis, prediction, and 
optimization. Examples of other challenging problems we 
are addressing by using the same methodology include 
process definition discovery, intelligent assignment of 
activities to resources, and automatic identification of 
system requirements based on workload prediction. In the 
remainder of the paper we will refer to this research area 
as Business Process Intelligence, or BPI for short. 
Although very appealing from a business perspective, the 
development of a BPI solution presents many technical 
challenges: 
− The main issues to be faced are the characterization 

of the problem, the identification of the technologies 
that can support our effort, and the composition of 
these technologies in an overall architecture. 

− A prerequisite for process data analysis is the 
availability of a process data warehouse. The design, 
population, and maintenance of the warehouse are 
themselves quite complex problems, as discussed in 
[Casati01]. 

− Our goal is to design and develop the BPI tool suite 
as a ready-to-go solution. As such, it must be 
applicable in different conditions and must be capable 
of meeting a wide set of BPI requirements. 

We decided to initially focus on issues related to 
exceptions, both because this is a very useful contribution 
in its own right, and because it is a complex problem, so 
that it can test our assumptions as well as the applicability 
of the overall approach. The specific problem of 
analyzing, predicting, and preventing exceptions presents 
additional challenges:  
− The notion of what characterizes a "normal" versus 

an "exceptional" process execution varies depending 
on the business and IT needs. We need to be able to 
analyze and predict a broad range of situations in 
which users may be interested.  

− We need to determine how exactly exceptions can be 
analyzed and predicted. In particular, we need to 
identify which data mining techniques can be applied, 
and which process attributes (features) should be 
provided as input to the data mining algorithms. 

− The problem of exception prediction is particularly 
complex, since ideally we want to make the best 
possible predictions at every process execution stage. 
Therefore, we need to build predictive models 
tailored to the different process execution stages. 

 
In this paper we detail these challenges, we discuss 

how to address them, and we describe techniques and 
tools for exception analysis, prediction, and prevention.  

2. Related Work 

To the best of our knowledge, there are no approaches to 
exception analysis and prediction based on data 
warehousing and data mining techniques, and in general 
there are very few contributions in the BPI area. Prior art 
exists in the field of exception prediction, limited however 
to estimating deadline expirations and based on simple 
statistical techniques. In the following we summarize 
these contributions, and then we underline the main 
differences with the approach proposed in this paper. 

One of the first contributions to process time 
management is provided in [Panagos97], and builds on 
work in the real-time system domain. The authors address 
the problem of predicting as early as possible when a 
process instance is not likely to meet its deadline, in order 
to escalate the problem and take appropriate actions. In 
the proposed process model, every activity in the process 
has a maximum duration, assigned by the process 
designer based on the activity's estimated execution times 
and on the need to meet the overall process deadline. 



When the maximum duration is exceeded, the process is 
escalated. When an activity executes faster than its 
maximum duration, a slack time becomes available that 
can be used to dynamically adjust the maximum durations 
of the subsequent activity. This activity can take all the 
available slack or a part of it, proportional to its estimated 
execution time or to the cost associated to escalating 
deadline expirations. 

In [Eder99] the authors present another technique for 
deadline monitoring and management. In the proposed 
approach, a process definition includes the specification 
of the expected duration for each activity. This duration 
can be defined by the designer or determined based on 
past executions. In addition, the designer may define 
deadlines for activities or for the whole process. 
Deadlines specify the latest allowed completion times for 
activities and processes, defined as interval elapsed since 
the process instance start time. Processes are translated 
into a PERT diagram that shows, for each activity, based 
on the expected activity durations and on the defined 
deadlines, the earliest point in time when the activity can 
finish as well as the latest point in time when it must 
finish to satisfy the deadline constraints. During the 
execution of a process instance, given the current time 
instant, the expected duration of an activity, and the 
calculated latest end time, the progress of the process 
instance can be assessed with respect to its deadline. This 
information can be used to alert process administrators 
about the risk of missing deadlines and to inform users 
about the urgency of their activities. 

Our approach differs considerably from the ones 
presented above. In fact, we aim at predicting any kind of 
exception, rather than focusing on deadline expirations. In 
addition, we propose to build prediction models by 
leveraging data warehousing and data mining techniques, 
that enable more accurate predictions, based on many 
characteristics of the process instances, such as data 
values, resources, the day of the week in which processes 
or activities are started, and many others. 

In addition, the approach presented in this paper also 
allows exception analysis, to help users in understanding 
and removing the causes of the exception. A further 
difference with respect to the above-mentioned proposals  
is that this paper also presents the architecture and 
implementation of a tool suite for exception analysis and 
prediction, and illustrates experimental results. This 
approach and tool suite will be re-used and extended to 
provide more BPI functionalities.  

Finally, we also mention the work by Hwang et al 
[Hwang99], since it also deals with exceptions and with 
the analysis of process execution log. However, the goal 
of the authors is to support users in handling exceptions 
once they have occurred. Exception handling suggestions 
are given by providing users with information about the 
way in which similar situations were handled in previous 
executions. Our goal is quite different, since we aim at 
analyzing exceptions to understand why they occur, and 

in predicting and preventing their occurrence, rather then 
in handling them.  

3. Process Models and Process Execution 
Logs 
There are hundreds of commercial WfMSs available on 
the market, as well as many research prototypes. While 
each system has a different process model and log 
structure, most of them share the same basic concepts. In 
this section we will present the process model and 
execution log structure of HP Process Manager4.0 
(HPPM), since this is the WfMS on top of which we built 
our prototype and conducted the experiments described in 
this paper. However, the same concepts and techniques 
are applicable to virtually any other WfMS.  

In HPPM, a process is described by a directed graph, 
that has four different kinds of nodes: 
− Work nodes represent the invocation of activities 

(also called services), assigned for execution to a 
human or automated resource.  

− Route nodes are decision point that route the 
execution flow among nodes based on an associated 
routing rule.  

− Start nodes denote the entry point to the processes.  
− Complete nodes denote termination points.  

 
Arcs in the graph denote execution dependencies 

among nodes: when a work node execution is completed, 
the output arc is "fired", and the node connected to this 
arc is activated. Arcs in output to route nodes are instead 
fired based on the evaluation of the routing rules. 

As an example, Figure 1 shows the Expense Approval 
process, to which we will refer later in the paper when 
presenting experimental results. This is a simplified 
version of the actual process used within HP to request 
approval for various kinds of expenses. The process is 
started by the requester, who also specifies the expense 
amount, the reasons, and the names of the clerks and 
managers that should evaluate the request. Next, an email 
is sent to the requester to confirm the start of the process. 
The process then loops among the list of selected clerks 
and managers, until either all of them approve the expense 
or one of them rejects it. Finally, the result is notified to 
the requester. 

Every work node is associated to a service description, 
that defines the logic for selecting a resource (or resource 
group) to be invoked for executing the work. The service 
also defines the process data items to be passed to the 
resource upon invocation and received from the resource 
upon completion of the work. Several work nodes can be 
associated to the same service description. For example, 
nodes Notify Requester of Initiation, Notify Requester of 
Approval, and Notify Final Decision of Figure 1 are all 
associated to service description send_email, executed by 
the resource email_server. 



Get Approver Decision
Notify Approver of Work

Check Approval Status
Notify FInal Decision

Done

Get Approval Join
Get next Approver

Notify Requester of Initiation
Initiate

 
Figure 1 – The Expense Approval process 

When a work node is scheduled for execution, the 
WfMS reads the corresponding service description, 
executes the resource selection rule associated to the 
service description, and puts the work item to be 
performed into the resource's worklist. Resources 
periodically connect to WfMS, pick a work item assigned 
to them (or to a group to which they are member of), and 
then execute it.  Details on the HPPM process model are 
provided in [HPPM-PD]. An introduction to WfMSs in 
general is provided in [Leymann00]. 

WfMSs log information on process executions into an 
audit log database, typically stored in a relational DBMS. 
The audit log database include information on process 
instances (e.g., activation and completion timestamps, 
current execution state, name of the user that started the 
process instance), service instances (e.g., activation and 
completion timestamps, current execution state, name of 
the resource that executed the service, name of the node in 
the context of which the service was executed), and data 
modifications (e.g., the new value for each data item 
every time it is modified.)  

A complete and detailed description of the HPPM 
audit log database schema is provided in [HPPM- TR]. 

4.  BPI Architecture 
This section presents the overall architecture of the BPI 
tool suite, to introduce the environment in which the work 
described in this paper has been developed. The BPI suite 
is composed of the warehouse of process definition and 
execution data, the BPI engine, and the Monitoring and 
Optimization Manager, or MOM (Figure 2).  

Data are periodically extracted from the WfMS logs 
and loaded into the warehouse by Extract, Transfer, and 
Load (ETL) scripts. The warehouse is designed to support 
high-performance multidimensional analysis of process 
execution data possibly coming from heterogeneous 
sources. Hence, the warehouse of process execution data 
is a very useful component in itself, providing a wide 
range of reporting functionalities still mis sing in 
commercial WfMSs. A more detailed discussion of the 
BPI warehouse is provided in [Casati01]. 

 The BPI engine executes data mining algorithms on 
the warehouse data in order to: 
− Understand the causes of specific behaviors, such as 

the execution of certain paths in a process instance, 

the use of a resource, or the (in)ability to meet service 
level agreements. 

− Generate prediction models, i.e., information that can 
be used to predict the behavior and performances of a 
process instance, of the resources, and of the WfMS.  
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Figure 2 - Overall architecture of the BPI solution  

The BPI engine stores the extracted information in the 
warehouse itself, so that it can be easily and efficiently 
accessed through the BPI console or through external 
OLAP and reporting tools.  

The MOM accesses information in the warehouse as 
well as live information about running process instances 
stored in the WfMS logs to make predictions and 
dynamically optimize process instance executions. For 
example, MOM can be configured to raise the priority of 
a process instance when there is a high probability that the 
instance will not finish on time. MOM can also alert 
process administrators about foreseen critical situations. 

5. Exception Analysis 
This section describes our approach to supporting IT and 
business users in understanding the causes of exceptions. 
We begin the section by presenting our notion of 
"exception". Then, we provide an overview of our 
approach to exception analysis, before diving into the 
details and into the description of the implementation. 
Finally, we illustrate experimental results obtained by 



applying the BPI tool suite to analyze exceptions in HP 
internal processes.  

5.1 On the notion of Exception  

Our approach is agnostic about what is or is not an 
exception. The user is free to state that a given event or 
situation is “exceptional”, and analyze it. Exceptions are  
defined by conditions over process execution data. If an 
"exceptional" condition holds for a process instance, then 
the instance is labeled as affected by the exception. BPI 
provides a wide range of exception types (e.g., instances 
lasting more than D days, or being in the slowest X%, or 
in which node N was executed more than T times). Users 
can then configure the BPI to analyze a specific exception 
on a specific process. For instance, they can analyze 
instances of the Expense Approval process lasting more 
than 8 days (We will refer to this exception when 
presenting experimental results). BPI will then access 
process instance data, check the condition, and label the 
selected instances as being affected by the exception.  

If users need to monitor exceptional behaviors not 
included in the built-in set, they can add new exception 
types by defining the "exceptional" condition. Details on 
the definition and implementation of exceptional 
behaviors and are provided in [Casati01].  

5.2 Exception Analysis Overview 

Exception analysis is performed by applying data mining 
techniques to process definition and execution data, 
collected in the warehouse. Specifically, we treat this 
problem as a classification problem.  

Classification applications take as input a labeled 
training data set (typically in the form of a relational 
table) in which each row (tuple) describes an object (e.g., 
a customer in a customer management application) and 
the class to which this object belongs2 (e.g., “profitable”, 
“neutral”, or “unprofitable” customer). The classifier then 
produces a set of classification rules, i.e., mappings from 
a condition on the objects' attributes to a class, with the 
meaning that objects whose attributes satisfy the condition 
belong to the specified class. Therefore, classification 
rules identify the characteristics of the objects in each 
class, in terms of values of the objects' attributes. For 
example, the classifier may discover the following 
classification rule: customers from Virginia and with a 
yearly salary over 50.000$ are "profitable". For each 
classification rule, the classifier also provides information 
about the rule's accuracy, i.e., about the probability that 
classifications performed with the rule are correct. 

The exception analysis problem can be mapped to a 
classification problem, where process instances are the 
objects, that belong to either the "normal" or to the 
"exceptional" class. We are interested in finding 

                                                                 
2 The object/class relationship described here should not be 
confused with that of object-oriented progaramming.  

classification rules that identify which are the 
characteristics of "exceptional" process instances. Once 
these characteristics have been identified, the user can 
have a much better understanding of the causes of the 
exception, and can then try to address such causes.  

The approach to analyze why instances of a certain 
process are affected by a specific exception is composed 
of four phases.  

The process data preparation phase selects the 
process instance attributes to be included as part of the 
input data set analyzed by the classifier. Relevant 
attributes can for example include the values of process 
data items at the different stages during process instance 
execution, the name of the resources that executed 
activities in the process instance, the duration of each 
activity, or the number of times a node was executed.  
Once the attributes of interest have been identified, then a 
data structure (typically a relational table) is created and 
populated with process instance execution data.  

The exception analysis preparation phase joins in a 
single view the information generated by the previous 
phase with the exception labeling information (stating 
whether the instance is exceptional or not), computed by 
BPI at exception definition time. 

The mining phase applies classification algorithms to 
the data generated by the data preparation phase.  

Finally, in the interpretation phase, the analyst 
interprets the classification rules to understand the causes 
of the exception, and in particular to identify problems 
and inefficiencies that can be addressed and removed.  

A few iterations of the mining and interpretation 
phases may be needed in order to identify the most 
interesting and effective classification rules. In particular, 
the mining phase may generate classification rules that 
classify process instances based on attributes that are not 
interesting in the specific case being considered. For 
example, the classification rules will certainly identify a 
correlation between the process instance duration and a 
deadline expiration exception. However, this is an 
obvious and not interesting correlation. Hence, the analyst 
may want to repeat the mining phase and remove the 
process instance duration attribute from the ones 
considered in generating the classification rules, so that 
the classifier can focus on "interesting" attributes.  

In future versions of our applications we plan to make 
the process data preparation phase more "intelligent", so 
that it selects different attributes based on the kind of 
exception being analyzed (in the current version, the 
process data preparation phase is process–specific but 
exception-independent). However, we anticipate that this 
will be a difficult problem and that a few human-driven, 
attribute-purging iterations will always be needed.  

5.3 Details and Implementation 

This section details the proposed approach to exception 
analysis and presents our implementation, built on top of 



Oracle 8i (most of the BPI tool suite is written in SQL or 
PL/SQL). All the exception analysis modules are part of 
the BPI engine component of Figure 2. 

The first phase (process data preparation) is 
particularly challenging. In fact, classification 
applications typically require input data to reside in a 
relational table, where each tuple describes a specific 
object. Therefore, to analyze why an exception affects 
instances of a process, we need to prepare a process-
specific table (called process analysis in the following), 
that includes one row per process instance, and where the 
columns correspond to process instance attributes. One 
additional column is needed to store labeling information.  

However, unlike traditional classification problems, 
the information about a single object (process instance) in 
the BPI warehouse is scattered across multiple tables, and 
each table may contain multiple rows related to the same 
instance. Hence, we are faced with the problem of 
defining a suitable process analysis table and of 
populating it by collecting process instance data.  

In addition, even within the same process, different 
instances may have different attributes. The problem here 
is that a node can be activated a different number of times 
in different instances. The number of such activations is 
a-priori unknown. Hence, not only do we have to identify 
which are the interesting node execution attributes to be 
included in the process analysis table, but also how many 
node executions (and which ones) should be represented. 

This issue can be addressed in several ways: for 
example, we could decide that if a node can be activated 
multiple times, then we consider for our analysis only a 
specific node execution (e.g., the first one or the last one). 
An alternative approach consists in considering all node 
executions. In this case, the process analysis table must 
have, for each node, a number of columns proportional to 
the maximum number of executions of that node, 
determined by looking at the process instance data in the 
warehouse. However, despite the fact that this technique 
provides more information to the mining phase, it does 
not necessarily give better results. In fact, tables generated 
in this way typically includes many undefined (NULL) 
values, especially if the number of node activations 
greatly differs from instance to instance. Commercial data 
mining tools do not suitably manage sparse tables. In 
addition, when classifications are based on a large number 
of similar attributes that often have null values, it is very 
difficult to interpret and understand the results. Finally, 
this approach can computationally heavy. 

The approach we followed consists in inserting two 
attribute (column) sets for each node that can be executed 
multiple times: one to represent the first execution and the 
second to represent the last execution of that node. This is 
due to the observation, from several experiments we have 
conducted on different processes, that the first and last 
executions of a node in the process have a higher 
correlation with many kind of process exceptions, such as 

those related to process execution time and to the 
execution of a given subgraph in the process.  

Finally, we observe that the number of process 
instance attributes of interest for our purposes is in 
general unlimited. For example, an exception could be 
related to the ratio between the durations of two nodes in 
the process, or to the sum of two numeric data items. In 
our implementation we have configured the tool to select 
the attributes that have shown higher correlations with 
exceptions in the tests we have performed. In particular, 
the process analysis table includes the following attributes 
for each process instance: 
− Activation and completion timestamps: these actually 

corresponds to multiple columns, that decompose the 
timestamps in hour of the day, day of the week, etc., 
and with the addition of the holiday flag to denote 
whether the process was instantiated on a holiday. 

− Data items: Initial values of the process data items, 
plus the length (in bytes) of each item. 

− Initiator: Resource that started the process instance. 
− Process instance duration. 

 
In addition, the process analysis table includes 

attributes for each node in the process (two sets of 
attributes are included for nodes that can be executed 
multiple times, as discussed above):  
− Activation and completion timestamps (decomposed 

as described for the process instance timestamps). 
− Data items: Values of the node output data, plus the 

length (in bytes) of each item. 
− Resource that executed the node. 
− Final state of the node (e.g., completed or failed) 
− Node duration.  
− Number of activations of the node in the process 

instance (this attribute is only included once per node, 
even if two attribute sets are used for this node, since 
the value would be the same for both). 

 
The process analysis table is automatically built by a 

process analysis preparation PL/SQL script.  This script 
takes the name of the process to be analyzed as input 
parameter, and retrieves process definition information 
from the BPI warehouse. In particular, the script identifies 
the nodes and data items that are part of the process, and 
creates the process analysis table. Then, the script 
populates the table with process instance data. Users can 
also restrict the process analysis table to contain only data 
about instances started within a time interval. 

The exception analysis preparation phase is 
implemented by process- and exception-independent 
PL/SQL code that receives as parameter the name of the 
process and of the exception to be analyzed, and generates 
a process- and exception-specific view. The view joins the 
Process Analysis and ProcessBehaviors tables (the latter 
is a process- and exception-independent table that lists 
which instances have been affected by which exceptional 



behaviors), to provide a data set that includes process 
instance attributes as well as labeling information. The 
obtained view includes all the information required by the 
classification tool to generate the classification rules. 

The mining phase can be performed by using different 
algorithms and techniques. A variety of data mining and 
classification applications are available on the market. 
Therefore we did not develop our own mining algorithms, 
but expect that a commercial tool be employed, at least in 
the preliminary versions of the BPI tool suite.  

In particular, we typically use decision trees [Berry00] 
for exception analysis . Decision trees are widely used 
because they work well with very large data sets, with 
large number of variables, and with mixed-type data (e.g., 
continuous and discrete). In addition, they are relatively 
easy to understand (even by non-expert users), and 
therefore simplify the interpretation phase. With decision 
trees, objects are classified by traversing the tree, starting 
from the root and evaluating branch conditions (decisions) 
based on the value of the objects' attributes, until a leaf 
node is reached. All decisions represent partitions of the 
attribute/value space, so that one and only one leaf node is 
reached. Each leaf in a decision tree identifies a class. 
Therefore, a path from the root to a leaf identifies a set of 
conditions and a corresponding class, i.e., it identifies a 
classification rule. Leaf nodes also contain an indication 
of the rule's accuracy, i.e., of the probability that objects 
with the identified characteristics actually belong to that 
class. Decision tree building algorithms in particular aim 
at identifying leaf nodes in such a way that the associated 
classification rules are as accurate as possible. 

Once a decision tree has been generated by the mining 
tool, analysts can focus on the leaf nodes that classify 
instances as exceptional. Then, they can traverse the tree 
from the root to the leaf, to identify which attributes and 
attribute values lead to the leaf node, and therefore 
identify the characteristics of "exceptional" instances.  

5.4 Experimental Results 

We have applied the BPI approach and toolkit to analyze 
several administrative processes within HP, such as 
electronic employee reimbursements and requests for 
disbursement vouchers. These processes are implemented 
on top of HP Process Manager, and are accessed by 
hundreds of employees per day. As a representative 
example, we discuss the results obtained in analyzing the 
Expense Approval process described in Figure 1, and 
specifically in identifying the characteristics of instances 
that take more than 8 days to complete (the average 
execution time was about 5 days). We had access to five 
months of process execution data, corresponding to 
approximately 50.000 process instances. About 15% of 
the instances were affected by this "exc eption". 

After importing the process instance data into the BPI 
warehouse and having defined the exception, we ran the 
scripts described in the previous section to label the 

instances and generate the exception analysis table. We 
next used SAS Enterprise Miner (a leading commercial 
data mining tool) for the generation of decision trees. In 
the preparation of the decision tree we used ?2 as splitting 
criteria, and we used the proportion of correctly classified 
records as assessment value. 60% of records were used as 
training data while 40% of records were used for 
validation. These are the parameters that gave us the best 
overall results. 

After several failures, that led us to restructure 
database schemas and preparation scripts as described 
earlier in this section, the tool finally produced interesting 
results. For both simplicity and confidentiality reasons, 
we do not show the exact decision tree and some details 
of the results. However, we summarize the main findings 
in Figure 3. The results show the following: 
− Cases that required many expense approvers were 

more likely to last longer. In particular, exceptional 
instances typically had more than 6 approvers.  

− When, in addition to having more than 6 approvers, 
clerical activities3 were executed by employees in a 
specific group, then 70% of the instances were 
"exceptional". The majority of process instances were 
instead on time when such clerical activities were 
executed by other employees. 

− Process instances started on Fridays were more likely 
to last longer, since the work was in fact postponed 
until the next Monday.  

As it often happened in our analysis, some of the 
identified correlations are not immediately helpful in 
order to understand and resolve the problem. For 
example, the fact that processes with more approvers (and 
therefore more node executions) last longer is to be 
expected. If all the identified correlations are of this kind, 
then it is very likely that what we classified as 
"exception" instead it is not an exception, but simply 
something that is part of the nature of the process. 

However, some of the identified correlations are often 
useful to isolate bottlenecks and, in general, aspects of the 
process or of the organization that can be improved. For 
example, following the discovered correlation between 
exceptions and the resource group, a further look at the 
BPI warehouse revealed that employees in that group had 
more workload than others. Hence, the analysis allowed 
spotting a problem and suggesting a possible solution, by 
reassigning the work appropriately. 

Business process intelligence, just like any other 
business intelligence application, requires care in 
interpreting the results and in identifying biases due to the 
kind of data that is available. For example, a problem 
characteristic of BPI is the border effect: typically, the 
analysis is performed on processes started (or completed, 
or both) within a certain time window. For example, we 
may have a data set containing all instances completed in 
                                                                 
3 The first approver is  typically a clerck that verifies that the 
request is formally correct and that payments can be made. 



October. If a mining tool analyzes these data, it will 
determine that instances started in spring lasted longer 
than those started in the summer or fall. Indeed, the tool 
will state that the accuracy of this rule is very high. 
However, the result is only due to how data are collected, 
rather than to a property of the process: in fact, the data 
set is polarized with respect to the start date, in that it 
contains instances started in spring only if they lasted very 
long, i.e., until October. A formal analysis of this and 
other typical biases is also part of our future research 
agenda. 
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Figure 3 - Simplified decision tree obtained by analyzing the 
Expense Approval process. 

6. Predicting and Preventing Exceptions 
One of the goals of our work is that of predicting the 
occurrence of exceptions. In particular, we aim at 
predicting exceptions as early as possible in process 
executions, so that they can be prevented, or so that at 
least adequate expectations about the process execution 
speed and quality can be set. As in the previous section, 
we first provide an overview of the approach. Then, we 
detail the approach and describe our implementation. 
Finally, we illustrate experimental results.  

6.1  Overview 

The problem of exception prediction has many similarities 
with that of exception analysis. In fact, exceptions could 
be predicted by identifying the characteristics of 
exceptional instances, and by then checking whether a 
running process instance has those characteristics. Indeed, 
our approach to exception prediction includes the four 
phases described in the previous section. However, there 
are a few differences that must be taken into account. In 
particular, the process data preparation phase must face 
additional challenges in the context of exception 
prediction.  

The problem is that classification rules generated by 
exception analysis work very poorly (and may not even be 
applicable) for predictions about running instances. In 
fact, we want to classify process instances as "normal" or 
"exceptional" while they are in progress, and possibly in 
their very early stages. Therefore, the value of some 
attributes (such as the executing resource or the duration 
for a node yet to be executed) may still be undefined. If 
the classification rules generated by the exception analysis 
phase include such attributes, then the rules cannot be 
applied, and the process instance cannot be classified. For 
example, assume that decision tree-building algorithms 
have been used in the mining phase. If undefined 
attributes appear in the branch conditions of the decision 
tree, then the branch condition cannot be evaluated. The 
prediction becomes less accurate as the undefined 
attributes appear in branch conditions closer to the root of 
the tree, since we can only follow the tree (and improve 
the classification accuracy) while branch conditions can 
be evaluated. At an extreme, if undefined attributes are in 
the branch condition at the root of the tree, then the 
decision tree does not give any useful information. 

We address this issue by modifying the process data 
preparation phase so that it generates several different 
process analysis tables (that will eventually result in 
several different classification rule sets), each tailored to 
make predictions at a specific stage of the process 
instance execution. A stage is characterized by the set of 
nodes executed at least once in the instance. For example, 
the process analysis table targeted at deriving 
classification rules applicable at process instantiation time 
is prepared by assuming knowledge of only the process 
instance input data, the starting date, and the name of the 
resource that started the instance. In this way, only these 
attributes will appear in the classification rules. 

The other phases are executed as discussed in the 
previous section, with the difference that they are 
performed once for every table generated by the process 
data preparation phase. In addition to the phases common 
with exception analysis, exception prediction also 
includes a prediction and a reaction phase.  

The prediction phase is where predictions on running 
process instances are actually made. In this phase, 
classification rules are applied to live instance execution 



data, to classify the instances and obtain, for each running 
instance and each exception of interest, the probability 
that the instance will be affected by the exception. 

In the reaction phase, users or systems are alerted 
about the risk of the exception, and take the appropriate 
actions to reduce the "damage" caused by the exception, 
or possibly to prevent its occurrence.  

6.2 Details and implementation 

This section details the process data preparation, 
prediction, and reaction phases. The other phases are not 
discussed since they are performed and implemented as 
described in the previous section.  

The process data preparation phase first determines 
the possible process instance stages, i.e., the different 
possible combinations of node execution states (executed 
or not executed). Then, for each stage, the process 
analysis table is constructed as described in the section 5. 
The first stage is always the one where no node has been 
executed, and is used to make predictions at process 
instantiation time. For this stage, the process analysis 
table will only contain information about the instantiation 
timestamp, the initial value of process data items, and the 
resource that started the instance. The process analysis 
tables generated for the other stages will include, for each 
executed node, the same node attributes listed in the 
exception analysis section. In the current implementation, 
for simplicity, we only consider the first execution of the 
node, so that at most one attribute set for each node is 
included. This phase is implemented through a PL/SQL 
script that takes the process name as input parameter and 
generates all the process analysis tables for that process. 

The prediction phase is executed by the Exception 
Monitor (EM). The EM is part of the MOM component of 
Figure 2, and accesses both the BPI warehouse and the 
WfMS logs in order to make predictions. Access to 
WfMS logs is required since the BPI warehouse does not 
contain live data, but is instead updated periodically 
(typically once a day or once a month), depending on the 
business needs. Hence, while classification rules can be 
obtained "off-line", by analyzing warehouse data, the 
actual predictions need to be made on the live data that 
the WfMS writes in its logs. Access to the BPI warehouse 
is instead needed to retrieve the classification rules, 
generated beforehand. Indeed, our approach assumes that 
the mining phase stores its output in the database, so that 
rules can not only be interpreted by humans, but also used 
by applications such as the EM.   

The EM operates by periodically accessing the WfMS 
audit logs and copying the tables containing information 
about process instance executions. This operation is quite 
simple and is executed on top of a relatively small 
database (since data are periodically purged from the 
audit log and archived in the warehouse). Hence, it has a 
negligible effect on the performance of the operational 

system. Once the data has been copied, the EM examines 
instances of processes to be monitored.  

In particular, for each instance, the EM first 
determines the execution stage, by checking which nodes 
have been executed. Next, it accesses the BPI warehouse 
to retrieve the classification rules (that in our case have 
the form of a decision tree) to be applied, based on the 
execution stage. Once the appropriate decision tree has 
been identified, the EM scans the tree and evaluates each 
branch condition based on the value of the process 
instance attributes, until it reaches a leaf node. The leaf 
node will contain an indication of the probability that the 
examined instance is exceptional. If this probability is 
above a threshold, then a new tuple is inserted into a 
warning table, detailing the process instance identifier, the 
exception identifier, the execution stage, and the 
probability of the exception occurrence.  

The reaction phase is executed by the Exception 
Prevention Manager (EPM), also part of the MOM. The 
EPM monitors the warning table. When a new exception 
is predicted for a process instance, the EPM alerts the user 
registered as the contact person for the process. Users can 
then perform actions on the WfMS or in the organization 
to try to prevent the exception or to reduce its impact. In 
addition, the EPM can be configured to proactively 
interact with the WfMS in an attempt to prevent the 
exception. Currently, the only allowed form of automated 
intervention consists in raising the process instance 
priority for those instances that are likely to be late. The 
process administrator can specify the level to which the 
priority can be raised depending on the probability of the 
process instance being late. In the future we plan to 
extend the EPM automatic reaction capabilities to: 
− Modify process instance and work node priorities 

based on the risk and cost of missing SLAs. 
− Modify the resource assignment policies so that 

activities are given to faster resources.  
− Influence decision points in the process, so that the 

flow is routed on certain subgraphs, if this can help 
avoid the exception while still satisfying the 
customers and process goals (although perhaps 
causing in increased process execution costs). 

6.3 Experimental Results  

We now show initial results obtained by applying this 
approach to HP administrative processes. We will again 
refer to the Expense Approval process of Figure 1, and 
specifically to the same process duration exception 
described above. In the Expense Approval process, it was 
possible to have a good prediction for the instance 
duration at the very start of the instances. In fact, the 
resulting decision tree revealed that the length of the 
process is correlated to the name of the requester (i.e., the 
creator of the instance) and to the length of data item 
Approver, that contained the names of the approvers (and 
therefore its length indicated the number of loops to be 



executed). For some combinations of these values, over 
70% of the instances were affected by the exception4.  

As expected, predictions get more and more accurate 
as process instance execution proceeds, since more 
information about the instance becomes available. In 
particular, very accurate predictions could be made right 
after the execution of node Get Approver Decision. In 
fact, this activity is the most time-consuming one, and 
therefore after its execution it is possible to have more 
information about the likelihood of the process exc eeding 
the acceptable execution time. The decision tree for 
predicting the duration exception at this stage of the 
process (depicted in Figure 4) shows in fact that if the first 
execution of node Get Approver Decision takes slightly 
more than 5 and half days, then the instance can be 
predicted as exceptional with 93% probability.  
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Figure 4 - Decision tree for exception prediction after the 
execution of node Get Approver Decision 

We observe here that the duration of this node also 
appeared in the rules generated while analyzing this 
exception. However, in that context, we had removed this 
attribute from the input data set, since it was not 
particularly helpful in identifying "interesting" 
correlations and in understanding why the exception 
occurs. In this case instead, our focus is on predictions, 
and any correlation becomes useful.  

In general, we experienced that there are only a few 
stages in a process instance where the accuracy of the 
prediction improves, typically after the execution of some 
"critical" nodes. An interesting optimization of our 
algorithms could therefore be based on the identification 
of such stages, so that the various exception prediction 
phases can be executed for these stages only.  

                                                                 
4 Given that only 15% of the instances is exceptional, predicting 
that exceptions with a 70% accuracy is a quite interesting result.  

7. Concluding Remarks 
This paper has presented an approach and a tool suite for 
exception analysis, prediction, and prevention. We have 
discussed the main challenges we had to face in 
undertaking this effort, and we have described how we 
have addressed them in our approach and implementation. 

The experimental results have been (eventually) quite 
encouraging. Therefore, we plan to put a considerable 
effort in this research area and address the issues that still 
lie ahead. In particular, our research agenda includes the 
refinement of the exception prediction algorithms, to 
better handle the problem of multiple executions of a node 
within the same process instance. Eventually, as we gain 
more knowledge about the problem, we aim at developing 
new classification algorithms that are able to scan related 
data scattered among multiple tuples in multiple tables 
and extract classification rules, without the need of 
aggregating data in a single table. Other research 
objectives include a refined process data preparation 
phase that selects attributes also based on the exception 
being analyzed, the development of a complete 
methodology for exception analysis, and improved 
mechanisms for automated exception prevention. 

The work presented in this paper is part of a larger, 
long-term research effort aiming at developing a Business 
Process Intelligence solution for WfMSs. Other research 
objectives in the BPI context include process definition 
discovery, execution path analysis and prediction, and 
dynamic system, process, and resource optimization. 
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