
Improving Business Process Quality through Exception
Understanding, Prediction, and Prevention

Daniela Grigori

LORIA, INRIA Lorraine
Campus Scientifique, BP 239
Vandoeuvre les Nancy, 54506

 France
Daniela.Grigori@loria.fr

Fabio Casati, Umesh Dayal, Ming-Chien Shan

HP Labs
1501 Page Mill Road
Palo Alto, CA, 94304

USA
[casati,dayal,shan]@hpl.hp.com

Abstract

Business process automation technologies are
being increasingly used by many companies to
improve the efficiency of both internal processes
as well as of e-services offered to customers. In
order to satisfy customers and employees,
business processes need to be executed with a
high and predictable quality. In particular, it is
crucial for organizations to meet the Service
Level Agreements (SLAs) stipulated with the
customers and to foresee as early as possible the
risk of missing SLAs, in order to set the right
expectations and to allow for corrective actions.
In this paper we focus on a critical issue in
business process quality: that of analyzing,
predicting and preventing the occurrence of
exceptions, i.e., of deviations from the desired or
acceptable behavior. We characterize the
problem and propose a solution, based on data
warehousing and mining techniques. We then
describe the architecture and implementation of a
tool suite that enables exception analysis,
prediction, and prevention. Finally, we show
experimental results obtained by using the tool
suite to analyze internal HP processes.

1. Introduction and motivations
Process design, automation, and management
technologies are being increasingly used in both
traditional and newly-formed, Interned-based enterprises

in order to improve the quality and efficiency of their
administrative and production processes, to manage e-
commerce transactions, and to rapidly and reliably deliver
services to businesses and individual customers.

In order to attract and retain customers as well as
business partners, organizations need to provide their
services (i.e., execute their processes) with a high,
consistent, and predictable quality. From a process
automation perspective, this has several implications: for
example, the business processes should be correctly
designed, their execution should be supported by a system
that can meet the workload requirements, and the (human
or automated) process resources should be able to perform
their work items in a timely fashion. In this paper we
focus on a specific, although critical issue in business
process quality: that of reducing the occurrence of
exceptions.

The term exception has been used with several
different meanings in the workflow and process
automation communities. We define an exception as a
deviation from the "optimal" (or acceptable) process
execution that prevents the delivery of services with the
desired (or agreed) quality1. This is a high-level, user-
oriented notion of exception, where it is up to the process
designers and administrators to state what they consider
as an exception, and hence as a problem they would like
to address and avoid. Delays in completing an order
fulfillment process or escalations of complaints to a
manager in a customer care process are typical examples
of exceptions. In the first case a company is not able to
meet the service level agreements, while in the second
case the service is delivered with acceptable quality from
the customer's point of view, but with higher operating
costs, and therefore with unacceptable quality from the
service provider's perspective.

1 We are concerned with both external quality (as perceived
from the consumer in terms of better and faster services) and
internal quality (as perceived by the service provider in terms of
lower operating cost).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

In this paper we present a tool suite that supports
organizations in analyzing, predicting, and preventing
exceptions. Exception analysis helps users in determining
the causes of exceptions. For example, the analysis may
show that delays in a supply chain process occur
whenever a specific supplier is involved. Understanding
the causes of exceptions can help IT and business
manager to identify the changes required to avoid future
occurrences of the exceptions. For example, the company
may decide to remove a given supplier from its list.

The tool suite can also dynamically predict the
occurrence of exceptions at process instantiation time, and
progressively refine the prediction as process execution
proceeds and more information become available.
Exception prediction helps in setting the right
expectations about the process execution quality. In
addition, it allows users and applications to take actions in
order to prevent the occurrence of the exceptions. For
example, when the tool predicts that a process instance
has a very high probability of missing its deadline, it can
raise the process instance priority (depending on the
importance of the process and on the potential damage
caused by missing the deadline), in order to inform
resources that work items of this process instance should
be executed first.

Our approach is based on applying data mining and
data warehousing techniques to process execution logs. In
fact, business process automation systems (also called
Workflow Management Systems, or simply WfMSs)
record all important events that occur during process
executions, including the start and completion time of
each activity, its input and output data, the resource that
executed it, and any failure that occurred during activity
or process execution. By cleaning and aggregating
workflow logs into a warehouse and by analyzing them
with data mining technologies, we can extract knowledge
about the circumstances in which an exception occurred
in the past, and use this information to explain the causes
of its occurrence as well as to predict future occurrences
within running process instances.

This work is part of a larger research effort aiming at
developing business intelligence techniques and tools for
business process reporting, analysis, prediction, and
optimization. Examples of other challenging problems we
are addressing by using the same methodology include
process definition discovery, intelligent assignment of
activities to resources, and automatic identification of
system requirements based on workload prediction. In the
remainder of the paper we will refer to this research area
as Business Process Intelligence, or BPI for short.
Although very appealing from a business perspective, the
development of a BPI solution presents many technical
challenges:
− The main issues to be faced are the characterization

of the problem, the identification of the technologies
that can support our effort, and the composition of
these technologies in an overall architecture.

− A prerequisite for process data analysis is the
availability of a process data warehouse. The design,
population, and maintenance of the warehouse are
themselves quite complex problems, as discussed in
[Casati01].

− Our goal is to design and develop the BPI tool suite
as a ready-to-go solution. As such, it must be
applicable in different conditions and must be capable
of meeting a wide set of BPI requirements.

We decided to initially focus on issues related to
exceptions, both because this is a very useful contribution
in its own right, and because it is a complex problem, so
that it can test our assumptions as well as the applicability
of the overall approach. The specific problem of
analyzing, predicting, and preventing exceptions presents
additional challenges:
− The notion of what characterizes a "normal" versus

an "exceptional" process execution varies depending
on the business and IT needs. We need to be able to
analyze and predict a broad range of situations in
which users may be interested.

− We need to determine how exactly exceptions can be
analyzed and predicted. In particular, we need to
identify which data mining techniques can be applied,
and which process attributes (features) should be
provided as input to the data mining algorithms.

− The problem of exception prediction is particularly
complex, since ideally we want to make the best
possible predictions at every process execution stage.
Therefore, we need to build predictive models
tailored to the different process execution stages.

In this paper we detail these challenges, we discuss

how to address them, and we describe techniques and
tools for exception analysis, prediction, and prevention.

2. Related Work

To the best of our knowledge, there are no approaches to
exception analysis and prediction based on data
warehousing and data mining techniques, and in general
there are very few contributions in the BPI area. Prior art
exists in the field of exception prediction, limited however
to estimating deadline expirations and based on simple
statistical techniques. In the following we summarize
these contributions, and then we underline the main
differences with the approach proposed in this paper.

One of the first contributions to process time
management is provided in [Panagos97], and builds on
work in the real-time system domain. The authors address
the problem of predicting as early as possible when a
process instance is not likely to meet its deadline, in order
to escalate the problem and take appropriate actions. In
the proposed process model, every activity in the process
has a maximum duration, assigned by the process
designer based on the activity's estimated execution times
and on the need to meet the overall process deadline.

When the maximum duration is exceeded, the process is
escalated. When an activity executes faster than its
maximum duration, a slack time becomes available that
can be used to dynamically adjust the maximum durations
of the subsequent activity. This activity can take all the
available slack or a part of it, proportional to its estimated
execution time or to the cost associated to escalating
deadline expirations.

In [Eder99] the authors present another technique for
deadline monitoring and management. In the proposed
approach, a process definition includes the specification
of the expected duration for each activity. This duration
can be defined by the designer or determined based on
past executions. In addition, the designer may define
deadlines for activities or for the whole process.
Deadlines specify the latest allowed completion times for
activities and processes, defined as interval elapsed since
the process instance start time. Processes are translated
into a PERT diagram that shows, for each activity, based
on the expected activity durations and on the defined
deadlines, the earliest point in time when the activity can
finish as well as the latest point in time when it must
finish to satisfy the deadline constraints. During the
execution of a process instance, given the current time
instant, the expected duration of an activity, and the
calculated latest end time, the progress of the process
instance can be assessed with respect to its deadline. This
information can be used to alert process administrators
about the risk of missing deadlines and to inform users
about the urgency of their activities.

Our approach differs considerably from the ones
presented above. In fact, we aim at predicting any kind of
exception, rather than focusing on deadline expirations. In
addition, we propose to build prediction models by
leveraging data warehousing and data mining techniques,
that enable more accurate predictions, based on many
characteristics of the process instances, such as data
values, resources, the day of the week in which processes
or activities are started, and many others.

In addition, the approach presented in this paper also
allows exception analysis, to help users in understanding
and removing the causes of the exception. A further
difference with respect to the above-mentioned proposals
is that this paper also presents the architecture and
implementation of a tool suite for exception analysis and
prediction, and illustrates experimental results. This
approach and tool suite will be re-used and extended to
provide more BPI functionalities.

Finally, we also mention the work by Hwang et al
[Hwang99], since it also deals with exceptions and with
the analysis of process execution log. However, the goal
of the authors is to support users in handling exceptions
once they have occurred. Exception handling suggestions
are given by providing users with information about the
way in which similar situations were handled in previous
executions. Our goal is quite different, since we aim at
analyzing exceptions to understand why they occur, and

in predicting and preventing their occurrence, rather then
in handling them.

3. Process Models and Process Execution
Logs
There are hundreds of commercial WfMSs available on
the market, as well as many research prototypes. While
each system has a different process model and log
structure, most of them share the same basic concepts. In
this section we will present the process model and
execution log structure of HP Process Manager4.0
(HPPM), since this is the WfMS on top of which we built
our prototype and conducted the experiments described in
this paper. However, the same concepts and techniques
are applicable to virtually any other WfMS.

In HPPM, a process is described by a directed graph,
that has four different kinds of nodes:
− Work nodes represent the invocation of activities

(also called services), assigned for execution to a
human or automated resource.

− Route nodes are decision point that route the
execution flow among nodes based on an associated
routing rule.

− Start nodes denote the entry point to the processes.
− Complete nodes denote termination points.

Arcs in the graph denote execution dependencies

among nodes: when a work node execution is completed,
the output arc is "fired", and the node connected to this
arc is activated. Arcs in output to route nodes are instead
fired based on the evaluation of the routing rules.

As an example, Figure 1 shows the Expense Approval
process, to which we will refer later in the paper when
presenting experimental results. This is a simplified
version of the actual process used within HP to request
approval for various kinds of expenses. The process is
started by the requester, who also specifies the expense
amount, the reasons, and the names of the clerks and
managers that should evaluate the request. Next, an email
is sent to the requester to confirm the start of the process.
The process then loops among the list of selected clerks
and managers, until either all of them approve the expense
or one of them rejects it. Finally, the result is notified to
the requester.

Every work node is associated to a service description,
that defines the logic for selecting a resource (or resource
group) to be invoked for executing the work. The service
also defines the process data items to be passed to the
resource upon invocation and received from the resource
upon completion of the work. Several work nodes can be
associated to the same service description. For example,
nodes Notify Requester of Initiation, Notify Requester of
Approval, and Notify Final Decision of Figure 1 are all
associated to service description send_email, executed by
the resource email_server.

Get Approver Decision
Notify Approver of Work

Check Approval Status
Notify FInal Decision

Done

Get Approval Join
Get next Approver

Notify Requester of Initiation
Initiate

Figure 1 – The Expense Approval process

When a work node is scheduled for execution, the
WfMS reads the corresponding service description,
executes the resource selection rule associated to the
service description, and puts the work item to be
performed into the resource's worklist. Resources
periodically connect to WfMS, pick a work item assigned
to them (or to a group to which they are member of), and
then execute it. Details on the HPPM process model are
provided in [HPPM-PD]. An introduction to WfMSs in
general is provided in [Leymann00].

WfMSs log information on process executions into an
audit log database, typically stored in a relational DBMS.
The audit log database include information on process
instances (e.g., activation and completion timestamps,
current execution state, name of the user that started the
process instance), service instances (e.g., activation and
completion timestamps, current execution state, name of
the resource that executed the service, name of the node in
the context of which the service was executed), and data
modifications (e.g., the new value for each data item
every time it is modified.)

A complete and detailed description of the HPPM
audit log database schema is provided in [HPPM- TR].

4. BPI Architecture
This section presents the overall architecture of the BPI
tool suite, to introduce the environment in which the work
described in this paper has been developed. The BPI suite
is composed of the warehouse of process definition and
execution data, the BPI engine, and the Monitoring and
Optimization Manager, or MOM (Figure 2).

Data are periodically extracted from the WfMS logs
and loaded into the warehouse by Extract, Transfer, and
Load (ETL) scripts. The warehouse is designed to support
high-performance multidimensional analysis of process
execution data possibly coming from heterogeneous
sources. Hence, the warehouse of process execution data
is a very useful component in itself, providing a wide
range of reporting functionalities still mis sing in
commercial WfMSs. A more detailed discussion of the
BPI warehouse is provided in [Casati01].

 The BPI engine executes data mining algorithms on
the warehouse data in order to:
− Understand the causes of specific behaviors, such as

the execution of certain paths in a process instance,

the use of a resource, or the (in)ability to meet service
level agreements.

− Generate prediction models, i.e., information that can
be used to predict the behavior and performances of a
process instance, of the resources, and of the WfMS.

Other
sources

Workflow A
Audit Logs

Workflow
Engine A

Workflow B
Audit Logs

Workflow
Engine B

Aggregated data,
prediction models

Process definition
and execution

data

Optimizations

Monitoring and
Optimization Manager

BPI Console
Commercially available
OLAP/reporting tool

Reporting,

Simulation

ETL

BPI Engine

Warehouse

Figure 2 - Overall architecture of the BPI solution

The BPI engine stores the extracted information in the
warehouse itself, so that it can be easily and efficiently
accessed through the BPI console or through external
OLAP and reporting tools.

The MOM accesses information in the warehouse as
well as live information about running process instances
stored in the WfMS logs to make predictions and
dynamically optimize process instance executions. For
example, MOM can be configured to raise the priority of
a process instance when there is a high probability that the
instance will not finish on time. MOM can also alert
process administrators about foreseen critical situations.

5. Exception Analysis
This section describes our approach to supporting IT and
business users in understanding the causes of exceptions.
We begin the section by presenting our notion of
"exception". Then, we provide an overview of our
approach to exception analysis, before diving into the
details and into the description of the implementation.
Finally, we illustrate experimental results obtained by

applying the BPI tool suite to analyze exceptions in HP
internal processes.

5.1 On the notion of Exception

Our approach is agnostic about what is or is not an
exception. The user is free to state that a given event or
situation is “exceptional”, and analyze it. Exceptions are
defined by conditions over process execution data. If an
"exceptional" condition holds for a process instance, then
the instance is labeled as affected by the exception. BPI
provides a wide range of exception types (e.g., instances
lasting more than D days, or being in the slowest X%, or
in which node N was executed more than T times). Users
can then configure the BPI to analyze a specific exception
on a specific process. For instance, they can analyze
instances of the Expense Approval process lasting more
than 8 days (We will refer to this exception when
presenting experimental results). BPI will then access
process instance data, check the condition, and label the
selected instances as being affected by the exception.

If users need to monitor exceptional behaviors not
included in the built-in set, they can add new exception
types by defining the "exceptional" condition. Details on
the definition and implementation of exceptional
behaviors and are provided in [Casati01].

5.2 Exception Analysis Overview

Exception analysis is performed by applying data mining
techniques to process definition and execution data,
collected in the warehouse. Specifically, we treat this
problem as a classification problem.

Classification applications take as input a labeled
training data set (typically in the form of a relational
table) in which each row (tuple) describes an object (e.g.,
a customer in a customer management application) and
the class to which this object belongs2 (e.g., “profitable”,
“neutral”, or “unprofitable” customer). The classifier then
produces a set of classification rules, i.e., mappings from
a condition on the objects' attributes to a class, with the
meaning that objects whose attributes satisfy the condition
belong to the specified class. Therefore, classification
rules identify the characteristics of the objects in each
class, in terms of values of the objects' attributes. For
example, the classifier may discover the following
classification rule: customers from Virginia and with a
yearly salary over 50.000$ are "profitable". For each
classification rule, the classifier also provides information
about the rule's accuracy, i.e., about the probability that
classifications performed with the rule are correct.

The exception analysis problem can be mapped to a
classification problem, where process instances are the
objects, that belong to either the "normal" or to the
"exceptional" class. We are interested in finding

2 The object/class relationship described here should not be
confused with that of object-oriented progaramming.

classification rules that identify which are the
characteristics of "exceptional" process instances. Once
these characteristics have been identified, the user can
have a much better understanding of the causes of the
exception, and can then try to address such causes.

The approach to analyze why instances of a certain
process are affected by a specific exception is composed
of four phases.

The process data preparation phase selects the
process instance attributes to be included as part of the
input data set analyzed by the classifier. Relevant
attributes can for example include the values of process
data items at the different stages during process instance
execution, the name of the resources that executed
activities in the process instance, the duration of each
activity, or the number of times a node was executed.
Once the attributes of interest have been identified, then a
data structure (typically a relational table) is created and
populated with process instance execution data.

The exception analysis preparation phase joins in a
single view the information generated by the previous
phase with the exception labeling information (stating
whether the instance is exceptional or not), computed by
BPI at exception definition time.

The mining phase applies classification algorithms to
the data generated by the data preparation phase.

Finally, in the interpretation phase, the analyst
interprets the classification rules to understand the causes
of the exception, and in particular to identify problems
and inefficiencies that can be addressed and removed.

A few iterations of the mining and interpretation
phases may be needed in order to identify the most
interesting and effective classification rules. In particular,
the mining phase may generate classification rules that
classify process instances based on attributes that are not
interesting in the specific case being considered. For
example, the classification rules will certainly identify a
correlation between the process instance duration and a
deadline expiration exception. However, this is an
obvious and not interesting correlation. Hence, the analyst
may want to repeat the mining phase and remove the
process instance duration attribute from the ones
considered in generating the classification rules, so that
the classifier can focus on "interesting" attributes.

In future versions of our applications we plan to make
the process data preparation phase more "intelligent", so
that it selects different attributes based on the kind of
exception being analyzed (in the current version, the
process data preparation phase is process–specific but
exception-independent). However, we anticipate that this
will be a difficult problem and that a few human-driven,
attribute-purging iterations will always be needed.

5.3 Details and Implementation

This section details the proposed approach to exception
analysis and presents our implementation, built on top of

Oracle 8i (most of the BPI tool suite is written in SQL or
PL/SQL). All the exception analysis modules are part of
the BPI engine component of Figure 2.

The first phase (process data preparation) is
particularly challenging. In fact, classification
applications typically require input data to reside in a
relational table, where each tuple describes a specific
object. Therefore, to analyze why an exception affects
instances of a process, we need to prepare a process-
specific table (called process analysis in the following),
that includes one row per process instance, and where the
columns correspond to process instance attributes. One
additional column is needed to store labeling information.

However, unlike traditional classification problems,
the information about a single object (process instance) in
the BPI warehouse is scattered across multiple tables, and
each table may contain multiple rows related to the same
instance. Hence, we are faced with the problem of
defining a suitable process analysis table and of
populating it by collecting process instance data.

In addition, even within the same process, different
instances may have different attributes. The problem here
is that a node can be activated a different number of times
in different instances. The number of such activations is
a-priori unknown. Hence, not only do we have to identify
which are the interesting node execution attributes to be
included in the process analysis table, but also how many
node executions (and which ones) should be represented.

This issue can be addressed in several ways: for
example, we could decide that if a node can be activated
multiple times, then we consider for our analysis only a
specific node execution (e.g., the first one or the last one).
An alternative approach consists in considering all node
executions. In this case, the process analysis table must
have, for each node, a number of columns proportional to
the maximum number of executions of that node,
determined by looking at the process instance data in the
warehouse. However, despite the fact that this technique
provides more information to the mining phase, it does
not necessarily give better results. In fact, tables generated
in this way typically includes many undefined (NULL)
values, especially if the number of node activations
greatly differs from instance to instance. Commercial data
mining tools do not suitably manage sparse tables. In
addition, when classifications are based on a large number
of similar attributes that often have null values, it is very
difficult to interpret and understand the results. Finally,
this approach can computationally heavy.

The approach we followed consists in inserting two
attribute (column) sets for each node that can be executed
multiple times: one to represent the first execution and the
second to represent the last execution of that node. This is
due to the observation, from several experiments we have
conducted on different processes, that the first and last
executions of a node in the process have a higher
correlation with many kind of process exceptions, such as

those related to process execution time and to the
execution of a given subgraph in the process.

Finally, we observe that the number of process
instance attributes of interest for our purposes is in
general unlimited. For example, an exception could be
related to the ratio between the durations of two nodes in
the process, or to the sum of two numeric data items. In
our implementation we have configured the tool to select
the attributes that have shown higher correlations with
exceptions in the tests we have performed. In particular,
the process analysis table includes the following attributes
for each process instance:
− Activation and completion timestamps: these actually

corresponds to multiple columns, that decompose the
timestamps in hour of the day, day of the week, etc.,
and with the addition of the holiday flag to denote
whether the process was instantiated on a holiday.

− Data items: Initial values of the process data items,
plus the length (in bytes) of each item.

− Initiator: Resource that started the process instance.
− Process instance duration.

In addition, the process analysis table includes

attributes for each node in the process (two sets of
attributes are included for nodes that can be executed
multiple times, as discussed above):
− Activation and completion timestamps (decomposed

as described for the process instance timestamps).
− Data items: Values of the node output data, plus the

length (in bytes) of each item.
− Resource that executed the node.
− Final state of the node (e.g., completed or failed)
− Node duration.
− Number of activations of the node in the process

instance (this attribute is only included once per node,
even if two attribute sets are used for this node, since
the value would be the same for both).

The process analysis table is automatically built by a

process analysis preparation PL/SQL script. This script
takes the name of the process to be analyzed as input
parameter, and retrieves process definition information
from the BPI warehouse. In particular, the script identifies
the nodes and data items that are part of the process, and
creates the process analysis table. Then, the script
populates the table with process instance data. Users can
also restrict the process analysis table to contain only data
about instances started within a time interval.

The exception analysis preparation phase is
implemented by process- and exception-independent
PL/SQL code that receives as parameter the name of the
process and of the exception to be analyzed, and generates
a process- and exception-specific view. The view joins the
Process Analysis and ProcessBehaviors tables (the latter
is a process- and exception-independent table that lists
which instances have been affected by which exceptional

behaviors), to provide a data set that includes process
instance attributes as well as labeling information. The
obtained view includes all the information required by the
classification tool to generate the classification rules.

The mining phase can be performed by using different
algorithms and techniques. A variety of data mining and
classification applications are available on the market.
Therefore we did not develop our own mining algorithms,
but expect that a commercial tool be employed, at least in
the preliminary versions of the BPI tool suite.

In particular, we typically use decision trees [Berry00]
for exception analysis . Decision trees are widely used
because they work well with very large data sets, with
large number of variables, and with mixed-type data (e.g.,
continuous and discrete). In addition, they are relatively
easy to understand (even by non-expert users), and
therefore simplify the interpretation phase. With decision
trees, objects are classified by traversing the tree, starting
from the root and evaluating branch conditions (decisions)
based on the value of the objects' attributes, until a leaf
node is reached. All decisions represent partitions of the
attribute/value space, so that one and only one leaf node is
reached. Each leaf in a decision tree identifies a class.
Therefore, a path from the root to a leaf identifies a set of
conditions and a corresponding class, i.e., it identifies a
classification rule. Leaf nodes also contain an indication
of the rule's accuracy, i.e., of the probability that objects
with the identified characteristics actually belong to that
class. Decision tree building algorithms in particular aim
at identifying leaf nodes in such a way that the associated
classification rules are as accurate as possible.

Once a decision tree has been generated by the mining
tool, analysts can focus on the leaf nodes that classify
instances as exceptional. Then, they can traverse the tree
from the root to the leaf, to identify which attributes and
attribute values lead to the leaf node, and therefore
identify the characteristics of "exceptional" instances.

5.4 Experimental Results

We have applied the BPI approach and toolkit to analyze
several administrative processes within HP, such as
electronic employee reimbursements and requests for
disbursement vouchers. These processes are implemented
on top of HP Process Manager, and are accessed by
hundreds of employees per day. As a representative
example, we discuss the results obtained in analyzing the
Expense Approval process described in Figure 1, and
specifically in identifying the characteristics of instances
that take more than 8 days to complete (the average
execution time was about 5 days). We had access to five
months of process execution data, corresponding to
approximately 50.000 process instances. About 15% of
the instances were affected by this "exc eption".

After importing the process instance data into the BPI
warehouse and having defined the exception, we ran the
scripts described in the previous section to label the

instances and generate the exception analysis table. We
next used SAS Enterprise Miner (a leading commercial
data mining tool) for the generation of decision trees. In
the preparation of the decision tree we used ?2 as splitting
criteria, and we used the proportion of correctly classified
records as assessment value. 60% of records were used as
training data while 40% of records were used for
validation. These are the parameters that gave us the best
overall results.

After several failures, that led us to restructure
database schemas and preparation scripts as described
earlier in this section, the tool finally produced interesting
results. For both simplicity and confidentiality reasons,
we do not show the exact decision tree and some details
of the results. However, we summarize the main findings
in Figure 3. The results show the following:
− Cases that required many expense approvers were

more likely to last longer. In particular, exceptional
instances typically had more than 6 approvers.

− When, in addition to having more than 6 approvers,
clerical activities3 were executed by employees in a
specific group, then 70% of the instances were
"exceptional". The majority of process instances were
instead on time when such clerical activities were
executed by other employees.

− Process instances started on Fridays were more likely
to last longer, since the work was in fact postponed
until the next Monday.

As it often happened in our analysis, some of the
identified correlations are not immediately helpful in
order to understand and resolve the problem. For
example, the fact that processes with more approvers (and
therefore more node executions) last longer is to be
expected. If all the identified correlations are of this kind,
then it is very likely that what we classified as
"exception" instead it is not an exception, but simply
something that is part of the nature of the process.

However, some of the identified correlations are often
useful to isolate bottlenecks and, in general, aspects of the
process or of the organization that can be improved. For
example, following the discovered correlation between
exceptions and the resource group, a further look at the
BPI warehouse revealed that employees in that group had
more workload than others. Hence, the analysis allowed
spotting a problem and suggesting a possible solution, by
reassigning the work appropriately.

Business process intelligence, just like any other
business intelligence application, requires care in
interpreting the results and in identifying biases due to the
kind of data that is available. For example, a problem
characteristic of BPI is the border effect: typically, the
analysis is performed on processes started (or completed,
or both) within a certain time window. For example, we
may have a data set containing all instances completed in

3 The first approver is typically a clerck that verifies that the
request is formally correct and that payments can be made.

October. If a mining tool analyzes these data, it will
determine that instances started in spring lasted longer
than those started in the summer or fall. Indeed, the tool
will state that the accuracy of this rule is very high.
However, the result is only due to how data are collected,
rather than to a property of the process: in fact, the data
set is polarized with respect to the start date, in that it
contains instances started in spring only if they lasted very
long, i.e., until October. A formal analysis of this and
other typical biases is also part of our future research
agenda.

NumExec_ GetApproverDecision

<=2 >2 And <=6

T V
1 11.9% 11.4%
0 88.1% 88.6%
1 2850 2030

{Res1,..} {Resn,...}

>6

Resource_Init_GetApproverDecision

T V
1 0% 1.87%
0 100% 98.13%
1 0 150
0 9115 6076

T V
1 10.1% 8.9%
0 89.9% 91.1%
1 1217 802
0 10945 7233

T V
1 60.6% 60%
0 39.4% 40%
1 1633 1078
0 1089 718

T V
1 4.11% 7.6%
0 95.89% 92.4%
1 17 18
0 396 220

T V
1 70% 68.0%
0 30% 32.0%
1 1616 1060
0 693 498

0 21150 15790

As an example, this leaf includes all
instances in which:

1. There were more than six
approval loops

2. The resource that executed the
first GetApproverDecision node
belongs to a given set

The node describes the percentage
of instances with this characteristics
that are normal or exceptional in the
training and validation sets. Besides
the percentages, it also gives the
actual numbers

Legenda:

T: Training set
V: Validation set
1: Exceptional
0: Normal

{Sat,..Thu} {Friday}

T V
1 5% 8%
0 95% 92%
1 553 618
0 10522 7111

T V
1 61.1% 60.0%
0 33.9% 40.0%
1 652 184
0 435 122

StartDay

NumExec_ GetApproverDecision

<=2 >2 And <=6

T V
1 11.9% 11.4%
0 88.1% 88.6%
1 2850 2030

{Res1,..} {Resn,...}

>6

Resource_Init_GetApproverDecision

T V
1 0% 1.87%
0 100% 98.13%
1 0 150
0 9115 6076

T V
1 10.1% 8.9%
0 89.9% 91.1%
1 1217 802
0 10945 7233

T V
1 60.6% 60%
0 39.4% 40%
1 1633 1078
0 1089 718

T V
1 4.11% 7.6%
0 95.89% 92.4%
1 17 18
0 396 220

T V
1 70% 68.0%
0 30% 32.0%
1 1616 1060
0 693 498

0 21150 15790

As an example, this leaf includes all
instances in which:

1. There were more than six
approval loops

2. The resource that executed the
first GetApproverDecision node
belongs to a given set

The node describes the percentage
of instances with this characteristics
that are normal or exceptional in the
training and validation sets. Besides
the percentages, it also gives the
actual numbers

Legenda:

T: Training set
V: Validation set
1: Exceptional
0: Normal

{Sat,..Thu} {Friday}

T V
1 5% 8%
0 95% 92%
1 553 618
0 10522 7111

T V
1 61.1% 60.0%
0 33.9% 40.0%
1 652 184
0 435 122

StartDay

Figure 3 - Simplified decision tree obtained by analyzing the
Expense Approval process.

6. Predicting and Preventing Exceptions
One of the goals of our work is that of predicting the
occurrence of exceptions. In particular, we aim at
predicting exceptions as early as possible in process
executions, so that they can be prevented, or so that at
least adequate expectations about the process execution
speed and quality can be set. As in the previous section,
we first provide an overview of the approach. Then, we
detail the approach and describe our implementation.
Finally, we illustrate experimental results.

6.1 Overview

The problem of exception prediction has many similarities
with that of exception analysis. In fact, exceptions could
be predicted by identifying the characteristics of
exceptional instances, and by then checking whether a
running process instance has those characteristics. Indeed,
our approach to exception prediction includes the four
phases described in the previous section. However, there
are a few differences that must be taken into account. In
particular, the process data preparation phase must face
additional challenges in the context of exception
prediction.

The problem is that classification rules generated by
exception analysis work very poorly (and may not even be
applicable) for predictions about running instances. In
fact, we want to classify process instances as "normal" or
"exceptional" while they are in progress, and possibly in
their very early stages. Therefore, the value of some
attributes (such as the executing resource or the duration
for a node yet to be executed) may still be undefined. If
the classification rules generated by the exception analysis
phase include such attributes, then the rules cannot be
applied, and the process instance cannot be classified. For
example, assume that decision tree-building algorithms
have been used in the mining phase. If undefined
attributes appear in the branch conditions of the decision
tree, then the branch condition cannot be evaluated. The
prediction becomes less accurate as the undefined
attributes appear in branch conditions closer to the root of
the tree, since we can only follow the tree (and improve
the classification accuracy) while branch conditions can
be evaluated. At an extreme, if undefined attributes are in
the branch condition at the root of the tree, then the
decision tree does not give any useful information.

We address this issue by modifying the process data
preparation phase so that it generates several different
process analysis tables (that will eventually result in
several different classification rule sets), each tailored to
make predictions at a specific stage of the process
instance execution. A stage is characterized by the set of
nodes executed at least once in the instance. For example,
the process analysis table targeted at deriving
classification rules applicable at process instantiation time
is prepared by assuming knowledge of only the process
instance input data, the starting date, and the name of the
resource that started the instance. In this way, only these
attributes will appear in the classification rules.

The other phases are executed as discussed in the
previous section, with the difference that they are
performed once for every table generated by the process
data preparation phase. In addition to the phases common
with exception analysis, exception prediction also
includes a prediction and a reaction phase.

The prediction phase is where predictions on running
process instances are actually made. In this phase,
classification rules are applied to live instance execution

data, to classify the instances and obtain, for each running
instance and each exception of interest, the probability
that the instance will be affected by the exception.

In the reaction phase, users or systems are alerted
about the risk of the exception, and take the appropriate
actions to reduce the "damage" caused by the exception,
or possibly to prevent its occurrence.

6.2 Details and implementation

This section details the process data preparation,
prediction, and reaction phases. The other phases are not
discussed since they are performed and implemented as
described in the previous section.

The process data preparation phase first determines
the possible process instance stages, i.e., the different
possible combinations of node execution states (executed
or not executed). Then, for each stage, the process
analysis table is constructed as described in the section 5.
The first stage is always the one where no node has been
executed, and is used to make predictions at process
instantiation time. For this stage, the process analysis
table will only contain information about the instantiation
timestamp, the initial value of process data items, and the
resource that started the instance. The process analysis
tables generated for the other stages will include, for each
executed node, the same node attributes listed in the
exception analysis section. In the current implementation,
for simplicity, we only consider the first execution of the
node, so that at most one attribute set for each node is
included. This phase is implemented through a PL/SQL
script that takes the process name as input parameter and
generates all the process analysis tables for that process.

The prediction phase is executed by the Exception
Monitor (EM). The EM is part of the MOM component of
Figure 2, and accesses both the BPI warehouse and the
WfMS logs in order to make predictions. Access to
WfMS logs is required since the BPI warehouse does not
contain live data, but is instead updated periodically
(typically once a day or once a month), depending on the
business needs. Hence, while classification rules can be
obtained "off-line", by analyzing warehouse data, the
actual predictions need to be made on the live data that
the WfMS writes in its logs. Access to the BPI warehouse
is instead needed to retrieve the classification rules,
generated beforehand. Indeed, our approach assumes that
the mining phase stores its output in the database, so that
rules can not only be interpreted by humans, but also used
by applications such as the EM.

The EM operates by periodically accessing the WfMS
audit logs and copying the tables containing information
about process instance executions. This operation is quite
simple and is executed on top of a relatively small
database (since data are periodically purged from the
audit log and archived in the warehouse). Hence, it has a
negligible effect on the performance of the operational

system. Once the data has been copied, the EM examines
instances of processes to be monitored.

In particular, for each instance, the EM first
determines the execution stage, by checking which nodes
have been executed. Next, it accesses the BPI warehouse
to retrieve the classification rules (that in our case have
the form of a decision tree) to be applied, based on the
execution stage. Once the appropriate decision tree has
been identified, the EM scans the tree and evaluates each
branch condition based on the value of the process
instance attributes, until it reaches a leaf node. The leaf
node will contain an indication of the probability that the
examined instance is exceptional. If this probability is
above a threshold, then a new tuple is inserted into a
warning table, detailing the process instance identifier, the
exception identifier, the execution stage, and the
probability of the exception occurrence.

The reaction phase is executed by the Exception
Prevention Manager (EPM), also part of the MOM. The
EPM monitors the warning table. When a new exception
is predicted for a process instance, the EPM alerts the user
registered as the contact person for the process. Users can
then perform actions on the WfMS or in the organization
to try to prevent the exception or to reduce its impact. In
addition, the EPM can be configured to proactively
interact with the WfMS in an attempt to prevent the
exception. Currently, the only allowed form of automated
intervention consists in raising the process instance
priority for those instances that are likely to be late. The
process administrator can specify the level to which the
priority can be raised depending on the probability of the
process instance being late. In the future we plan to
extend the EPM automatic reaction capabilities to:
− Modify process instance and work node priorities

based on the risk and cost of missing SLAs.
− Modify the resource assignment policies so that

activities are given to faster resources.
− Influence decision points in the process, so that the

flow is routed on certain subgraphs, if this can help
avoid the exception while still satisfying the
customers and process goals (although perhaps
causing in increased process execution costs).

6.3 Experimental Results

We now show initial results obtained by applying this
approach to HP administrative processes. We will again
refer to the Expense Approval process of Figure 1, and
specifically to the same process duration exception
described above. In the Expense Approval process, it was
possible to have a good prediction for the instance
duration at the very start of the instances. In fact, the
resulting decision tree revealed that the length of the
process is correlated to the name of the requester (i.e., the
creator of the instance) and to the length of data item
Approver, that contained the names of the approvers (and
therefore its length indicated the number of loops to be

executed). For some combinations of these values, over
70% of the instances were affected by the exception4.

As expected, predictions get more and more accurate
as process instance execution proceeds, since more
information about the instance becomes available. In
particular, very accurate predictions could be made right
after the execution of node Get Approver Decision. In
fact, this activity is the most time-consuming one, and
therefore after its execution it is possible to have more
information about the likelihood of the process exc eeding
the acceptable execution time. The decision tree for
predicting the duration exception at this stage of the
process (depicted in Figure 4) shows in fact that if the first
execution of node Get Approver Decision takes slightly
more than 5 and half days, then the instance can be
predicted as exceptional with 93% probability.

<5.6 >=5.6

Len_Approvers

=8 =16

T V
1 15.1% 15.8%
0 84.9% 84.2%
1 6390 2960
0 35920 15830

>16

Duration_GetApproverDecision

T V
1 9.4% 10.3%
0 90.6% 89.7%
1 3710 1800
0 35740 15750

T V
1 0% 0%
0 100% 100%
1 0 0
0 8040 3840

T V
1 6.5% 8.9%
0 93.5% 91.1%
1 860 520
0 12300 5320

T V
1 15.6% 16.3%
0 84.4% 83.7%
1 2850 1280
0 15400 6590

T V
1 93.7% 93.5%
0 6.3% 6.5%
1 2680 1160
0 180 80

<5.6 >=5.6

Len_Approvers

=8 =16

T V
1 15.1% 15.8%
0 84.9% 84.2%
1 6390 2960
0 35920 15830

>16

Duration_GetApproverDecision

T V
1 9.4% 10.3%
0 90.6% 89.7%
1 3710 1800
0 35740 15750

T V
1 0% 0%
0 100% 100%
1 0 0
0 8040 3840

T V
1 6.5% 8.9%
0 93.5% 91.1%
1 860 520
0 12300 5320

T V
1 15.6% 16.3%
0 84.4% 83.7%
1 2850 1280
0 15400 6590

T V
1 93.7% 93.5%
0 6.3% 6.5%
1 2680 1160
0 180 80

Figure 4 - Decision tree for exception prediction after the
execution of node Get Approver Decision

We observe here that the duration of this node also
appeared in the rules generated while analyzing this
exception. However, in that context, we had removed this
attribute from the input data set, since it was not
particularly helpful in identifying "interesting"
correlations and in understanding why the exception
occurs. In this case instead, our focus is on predictions,
and any correlation becomes useful.

In general, we experienced that there are only a few
stages in a process instance where the accuracy of the
prediction improves, typically after the execution of some
"critical" nodes. An interesting optimization of our
algorithms could therefore be based on the identification
of such stages, so that the various exception prediction
phases can be executed for these stages only.

4 Given that only 15% of the instances is exceptional, predicting
that exceptions with a 70% accuracy is a quite interesting result.

7. Concluding Remarks
This paper has presented an approach and a tool suite for
exception analysis, prediction, and prevention. We have
discussed the main challenges we had to face in
undertaking this effort, and we have described how we
have addressed them in our approach and implementation.

The experimental results have been (eventually) quite
encouraging. Therefore, we plan to put a considerable
effort in this research area and address the issues that still
lie ahead. In particular, our research agenda includes the
refinement of the exception prediction algorithms, to
better handle the problem of multiple executions of a node
within the same process instance. Eventually, as we gain
more knowledge about the problem, we aim at developing
new classification algorithms that are able to scan related
data scattered among multiple tuples in multiple tables
and extract classification rules, without the need of
aggregating data in a single table. Other research
objectives include a refined process data preparation
phase that selects attributes also based on the exception
being analyzed, the development of a complete
methodology for exception analysis, and improved
mechanisms for automated exception prevention.

The work presented in this paper is part of a larger,
long-term research effort aiming at developing a Business
Process Intelligence solution for WfMSs. Other research
objectives in the BPI context include process definition
discovery, execution path analysis and prediction, and
dynamic system, process, and resource optimization.

8. References
[Berry00] M. Berry, G. Linoff. Mastering Data Mining.
Wiley, 2000.

[Casati01] A. Bonifati, F. Casati, U. Dayal, M.C. Shan.
Warehousing Workflow Data: Challenges and
Opportunities. Procs. of VLDB'01. Rome, Italy. Sept.
2001.

[Eder99] J. Eder, E. Panagos, H. Pozewaunig, M.
Rabinovich: Time Management in Workflow Systems.
Proceedings of BIS'99. Poznan, Poland, 1999.

[HPPM-PD] Hewlett-Packard. HP Changengine Process
Design Guide. Edition 4.4. 2000

[HPPM-TR] Hewlett-Packard. HP Changengine
Technical Reference Guide. Edition 4.4. 2000

[Hwang99] S. Hwang, S. Ho, J. Tang. Mining Exception
Instances to Facilitate Workflow Exception Handling.
Proceedings of DASFAA'99, Taiwan, Apr. 1999.

[Leymann00] F. Leymann, D. Roller: Production
Workflow. Prentice-Hall, 2000.

[Panagos97] E. Panagos, M. Rabinovich: Escalations in
Workflow Management Systems. Procs. of DART'97,
Rockville, Maryland, Nov. 1997.

