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Abstract

We present an approach to searching genetic
DNA sequences using an adaptation of the suf-
�x tree data structure deployed on the gen-
eral purpose persistent Java platform, PJama.
Our implementation technique is novel, in
that it allows us to build su�x trees on disk
for arbitrarily large sequences, for instance for
the longest human chromosome consisting of
263 million letters. We propose to use such
indexes as an alternative to the current prac-
tice of serial scanning. We describe our tree
creation algorithm, analyse the performance
of our index, and discuss the interplay of the
data structure with object store architectures.
Early measurements are presented.

1 Introduction

DNA sequences, which hold the code of life for ev-
ery living organism, can be abstractly viewed as very
long strings over a four-letter alphabet of A, C, G
and T. Many projects to sequence the genome of some
species are well advanced or concluded. The very large
number of species (and their genetic variations) that
are of interest to man, suggest that many new se-
quences will be revealed as the improved sequencing
techniques are deployed. Consequently we are at a
technical threshold. Techniques that were capable of
exploiting the smaller collections of genetic data, for
example via serial search, may require radical revision,
or at least complementary techniques. As the geneti-
cists and medical researchers with whom we work seek
to search multiple genomes to �nd model organisms
for the gene functions they are studying, we have been
investigating the utility of indexes. The fundamental
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lack of structure in genetic sequences makes it di�cult
to construct e�cient and e�ective indexes.

The length of a DNA sequence can be measured in
terms of the number of base pairs (bp). Because of
their size, gigabase pairs (Gbp) is a more convenient
unit. For example, mammalian genomes are typically
3 Gbp in length. The largest public database of DNA1

which contains over 15 Gbp (June 2001), is an archive
which holds indexes to �elds associated with each DNA
entry but does not index the DNA itself. In the indus-
trial domain, Celera Genomics2 have sequenced several
small organisms, the human genome, and four di�er-
ent mouse strains. Their sequences are accessed as 
at
�les.

Searching DNA sequences is usually carried out by
sequentially scanning the data using a �ltering ap-
proach [46, 2, 1], and discarding areas of low string
similarity. Typically, this approach uses a large infras-
tructure of parallel computers. Its viability depends
on biologists being able to localise the searches to rel-
atively small sequences, on skill in providing appro-
priate search parameters, and on batching techniques.
Even under these circumstances it cannot always de-
liver fast and appropriate answers. Using BLAST on
the hardware con�guration described in section 6 (and
all 4 processors), we compared 99 queries3 (predicted
human genes of length between 429 and 5999 bp) to
a BLAST \database"4 for 3 human chromosomes (294
Mbp, 10% of the human genome). The search took
62 hours (average 37 minutes per query) with default
BLAST parameters, and delivered 6559 hits with an
average of 66.25 hits per query and a median of 34.
Some hits spanned only 18 characters but those had
very high similarity. 17 out of 99 queries came from
the chromosomes stored in the BLAST \database"
and they produced several exact hits each (correspond-
ing to the non-contiguous nature of DNA strings con-
tributing to human genes). As there is a rapid rise in

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucle
otide

2http://www.celera.com
3ftp://ftp.ensembl.org/current/data/fasta/cdna/ensembl.

cdna.gz
4BLAST package includes a command formatbd which com-

presses DNA and creates indexes of sequence names and occur-
rences of non-repetitive and repetitive DNA.



both the volume of data and the demand for searches
by researchers investigating functional genomics, it is
worth investigating the possibility of accelerating these
searches using indexes.

The appropriate indexes over large sequences can
take many hours to construct, hence it is infeasible to
construct them for each search5. On the other hand,
the sequences are relatively stable, so that it may be
possible to amortise this construction cost over many
thousand searches. That depends on developing tech-
niques for storing the indexes persistently, i.e. on disk.
As we will explain, that has not proved straightfor-
ward, but we believe that we now have the prototype
of a viable technology. We focus our attention on per-
sistent su�x trees for reasons given below.

To our knowledge, no existing database technol-
ogy can support indexed searches over large DNA
strings and the feasibility of indexed searches over
large strings is an open research question [42, 11]. In-
verted �les [57] are not suitable, because DNA cannot
be broken into words. For similar reasons the String
B-tree [22] may not be an appropriate choice. Ap-
proaches based on q-grams [15, 39] are fast, but cannot
deliver matches that have low similarity6 to the query
[42]. It appears that the su�x tree [56, 38, 53] is the
data structure of choice for this type of indexing, but
so far, su�x trees on disk could only be built for small
sequences, due to the so-called \memory bottleneck"
[21]. Baeza-Yates and Navarro [10] state that \suf-
�x trees are not practical except when the text size
to handle is so small that the su�x tree �ts in main
memory". We address exactly this question, and show
how to build large su�x trees, and how to deliver fast
query responses.

Our initial prototype was built using PJama [8,
31, 5] which provides orthogonal persistence for Java.
We are investigating other persistence mechanisms,
including an object-oriented database, Gemstone/J7,
and tailored mapping to �les. The latter may ulti-
mately be necessary, given the data volumes and per-
formance requirements. However, for the present, the
general purpose object-caching mechanisms of PJama
and Gemstone/J allow rapid experiments with a vari-
ety of index structures.

The rest of this paper is structured as follows: Sec-
tion 2 summarises previous work, Section 3 introduces
the su�x tree and Section 4 introduces the new algo-
rithm. Aspects of PJama, our experimental platform
are presented in Section 5. The test data and experi-
mental results are described in Section 6. A discussion
of these results and our research plans conclude the
paper.

5For example, the most space e�cient main-memory index
would take 9 hours and 45 Gbytes to index the human genome
[32].

6Low similarities are often biologically signi�cant.
7http://www.gemstone.com/products/j/

2 Previous work

We review three areas: persistent su�x tree construc-
tion, su�x tree storage optimisation, and alternative
data structures.

Persistent indexes to small sequences have been
built previously. Bieganski [13], built persistent su�x
trees up to 1 Mbp. Recently, Baeza-Yates and Navarro
[44, 10] built persistent su�x trees for sequences of 1
Mbp using a machine with small memory (64 MB) and
concluded that trees in excess of RAM size cannot be
built. Farach's theoretical work to remove the I/O
problem [21] reduces su�x tree creation complexity to
that of sorting and extends the computational model
to take into account disk access. The bottleneck is
considered to lie in random access to the string be-
ing indexed. In our opinion, it is not only the source
string itself but the tree data structure and the su�x
links which contribute to the bottleneck. An empiri-
cal evaluation of that method has not been reported.
The only recent accounts of large persistent su�x trees
representing sequences of 20.5 Mbp are in our previous
work [26, 27].

Optimisations of su�x tree structure were under-
taken by McCreight [38], and more recently by Kurtz
[32]. Kurtz reduced the RAM required to around 13
bytes per character indexed, for DNA (our measure-
ments using Kurtz's code), but his storage schemes
have not been tested on disk yet. We believe that some
extra space overhead will be inevitable. More recent
work on su�x tree storage optimisation [40] states that
compact su�x trees will require too many disk accesses
to make the structure viable for secondary memory
use.

Alternative data structures include: q-grams [51,
43, 45] the su�x array [36], LC-tries [3], the String B-
tree [22], the pre�x index [29] and su�x binary search
trees [28].

Two recent overviews of approximate text search-
ing methods [42, 11] show that �ltering approaches
are only suitable for high similarity matching. This
prohibits us from using the q-gram structure. Because
DNA has no word structure, we exclude the String B-
tree and pre�x indexes. Other researchers have used
su�x arrays [41, 10] to simulate the su�x tree, but
have shown results only for up to 10 Mbp. We made
an initial investigation of Irving's su�x binary search
trees (SBSTs) [27] but have not been able to build per-
sistent trees for large datasets (over 50 Mbp). Using
the technique of tree building presented in this paper
we may be able to build large SBSTs as well.

We decided to focus on su�x trees because ap-
proximate matching algorithms using these structures
are known [12, 52, 16, 44], because this data struc-
ture is used widely in biological sequence process-
ing [14, 33, 19, 37, 54], and because there is a well-
established range of biological methods using them
[23].



3 Su�x trees

Su�x trees are compressed digital tries. Given a
string, we index all su�xes, e.g. for a string of length
10, all substrings starting at index 0 through 9 and �n-
ishing at index 9 will be indexed. The root of the tree
is the entry point, and the starting index for each suf-
�x is stored in a tree leaf. Each su�x can be uniquely
traced from the root to the corresponding leaf. Con-
catenating all characters along the path from the root
to a leaf will produce the text of the su�x.
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Figure 1: An example trie on ACATCTTA.

An example digital trie representing ACATCTTA is
shown in Figure 1. The number of children per node
varies but is limited by the alphabet size. This trie can
be compressed to form a su�x tree, shown in Figure 2.
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Figure 2: An su�x tree on ACATCTTA.

To change a trie into a su�x tree, we conceptually
merge each node which has only one child with that
child, recursively, and annotate the nodes with the in-
dices of the start and end positions of a substring in-
dexed by that node. Commonly, a special terminator
character is also added, to ensure a one-to-one rela-
tionship between su�xes and leaves (otherwise a su�x
that is a proper pre�x of another su�x would not be
represented by a leaf | for instance node number 8
in Figure 2). The change from a trie to a su�x tree
reduces the storage requirement from O(n2) to O(n)
[56, 38, 53].

Most implementations of the su�x tree also use the
notion of the su�x link [53]. A su�x link exists for
each internal node, and it points from the tree node
indexing aw to the node indexing w, where aw and w
are traced from the root and a is of length 1. Suf-
�x links were introduced so that su�x trees could be
built in O(n) time. However, in our understanding,
they are also the cause of the so-called \memory bot-
tleneck" [21]. Su�x links, shown in Figure 3, traverse
the tree horizontally, and together with the downward
links of the tree graph, make for a graph with two dis-
tinct traversal patterns, both of which are used during
construction. Ineluctably, at least one of those traver-
sal patterns must be e�ectively random access of the
memory. At each level of the memory hierarchy this
induces cache misses. For example, it makes reliance
on virtual memory impractical.

As would be expected from this analysis, we have
observed very long tree construction times when us-
ing disk with the O(n) su�x-link based algorithms.
A �rst approach is to attempt to build the trees in-
crementally, checkpointing the tree after each portion
has been attempted. Here, the su�x-link based algo-
rithm exhibits another form of pathological behaviour.
The construction proceeds by splitting existing nodes,
adding siblings to nodes and �lling in su�x-link point-
ers. As a result of the dual-traversal structure, no mat-
ter how the tree is divided into portions, a large num-
ber of these updates apply to the tree already check-
pointed. This has the cost of installation reads and
logged writes, if the checkpointed structure is not to
be jeopardised. In addition, the checkpointed portions
of the tree are repeatedly faulted into main memory
by the construction traversals.

These e�ects combine to limit the size of tree that
can be constructed and stored on disk using su�x-
link based algorithms to approximately the size of the
available main memory. For example, in Java, using
1.8 Gbytes of available main memory we could build
transient trees for up to 26 Mbp sequences. Using the
su�x-link based algorithm under PJama, checkpoint-
ing trees indexing more than 21 Mbp has not been
possible [26, 27] (the reduction on using PJama is due
to two e�ects: (i) it increases the object header size,
and (ii) it competes for space, e.g. to accommodate



the disk bu�ers and resident object table [6, 34]). We
have therefore investigated incremental construction
algorithms in which we forego the guarantee of O(n)
complexity (see Section 4).
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3.1 Su�x tree representation

Though their space requirements are O(n), straight-
forward encodings of su�x trees require substantial
space per letter. A recent contribution by Kurtz [32]
presents the most e�cient main-memory representa-
tion to date. He discusses 4 di�erent data structures,
based on linked lists and hash tables. Kurtz's tree
is a RAM-only tree, coded in C, where every spare
bit is used optimally, and approximately 13 bytes are
needed per letter indexed. Kurtz's tree uses su�x
links, and may su�er from the same \memory bottle-
neck" if moved into the database world. This requires
investigation.

4 The new construction algorithm

The new incremental construction algorithm trades
ideal O(n) performance for locality of access on the
basis of two decisions:

1. to abandon the use of su�x links, and

2. to perform multiple passes over the sequence, con-
structing the su�x tree for a subrange of su�xes
at each pass.

These are both necessary. Removing the su�x links
means that the construction of a new partition cor-
responding to a di�erent subrange does not need to
modify previously checkpointed partitions of the tree.
Using multiple passes, each dealing with a disjoint sub-
range of the su�xes, means that it is not necessary

to access or update the previously checkpointed parti-
tions. Data structures for the complete partitions can
be evicted from main memory and will not be faulted
back in during the rest of the tree's construction. Thus
the main memory is available for the next partition and
its size is a determinant of the partition size and hence
the number of passes needed. An additional bene�t of
this partition structure is that the probable clustering
of contemporaneously checkpointed data will suit the
lookup and search algorithms. Further details of our
algorithm are now presented.

4.1 Su�x tree construction

Several O(n), su�x-link based, tree building algo-
rithms are known [56, 38, 53, 21, 35], but they have
not proved appropriate for large persistent tree con-
struction undertaken by Navarro [44] or ourselves. In
contrast, the algorithm we use is O(n2) in the worst
case, but due to the pseudo-random nature of DNA,
the average behaviour is O(nlogn) for this application
[50].

We base our partitions on the pre�xes of each suf-
�x, since the su�xes that have the pre�x AA fall in a
di�erent subtree from those starting with AC, AG or
AT. The number of partitions and hence the length of
the pre�x to be used is determined by the size of the
expected tree and the available main memory. It may
be the case that smaller partitions would be better be-
cause their impact on disk clustering would accelerate
lookups, but this has yet to be investigated.

The number of partitions required can be computed
by estimating the size of a main-memory instantiation
Smm, available for tree construction, and the number
of partitions, p, is

�
Smm

Amm

�
;

where Amm is the available main memory. The ac-
tual partitioning can be carried out using either of the
two approaches we outline. One way is to scan the
sequence once, for instance using a window of size 3
(su�cient for 263 Mbp and 2 GB RAM), count the
number of occurrences of each 3-letter pattern, and
then pack each partition with di�erent pre�xes, using
a bin-packing algorithm [18]. Alternatively, we can as-
sume that, given the pseudo-random nature of DNA,
the tree is uniformly populated. To uniformly parti-
tion, we calculate a pre�x code, Pi, for each pre�x of
su�cient length, l, using the formula:

Pi =

l�1X
j=0

ci+ja
l�j�1;

where ck is the code for letter k of the sequence, and



a is the number of characters in the alphabet8. The
code of a letter is its position in the alphabet, i.e. A
codes as 0, C codes as 1, etc. The minimum value for
Pi is 0 and its maximum is al � 1. So the range of
codes for each partition, r, is given by:

r =

�
al � 1

p

�
:

The su�xes that are indexed during the jth pass of the
sequence have jr � Pi < (j + 1)r. The structure of
the complete algorithm is given as pseudocode below:

for j in partitions do

for i in 0..totalLength do

if suffix i is in partition j

new Node(i);

insert node;

endif

endfor

checkpoint;

endfor

1. create root

2. new child
for ANA$

1

2

4 4

5

5. add $ as sibling

INSERTION ORDER
1. root
2. ANA$
3. NA$
4. A$
5. $

3. add NA$ as sibling

A$ as sibling
for ANA$ and add

3

1 32 54, split node

Tree growth

4. split node

letter with ANA$
because A$ shares the first

Figure 4: Tree creation for ANA$.

A node consists of three �elds: child node, sibling
node and an integer leftIndex. A new node repre-
sents a su�x stretching from position i to the end of
the string. It has null child and sibling, and its leftIn-
dex set to i (its su�x number). Insertion starts from
the root, and as the search for the insertion position
proceeds down the tree, the left index is updated. This
downward traversal matches the new su�x to su�xes
which are already in the tree, and which share a pre�x

8Combinations of * can be used to denote unknowns, se-
quence concatenation and end of sequence. Hence a can be
reduced to 5. In this case l set to 8 provides even division of
partitions for all likely sequence length to available memory ra-
tios.

with the new su�x. When the place of insertion is
determined, the node will either be added as a sibling
to an existing node, or will cause a split of an existing
node, see Figure 4.

4.2 Space requirements

Our new implementation disposes of su�x links. Fur-
ther to that, we reduce storage by not storing the
su�x number and the right index into the string for
each node. The su�x number is calculated during tree
traversal (during the search). The right pointer into
the string is looked up in the child node, or, in the
case of leaves, is equal to the size of the indexed string.
Each tree node consists of two object references cost-
ing 4 B each (child, sibling), one integer taking up 4 B
(leftIndex) and the object header (8 B for the header
in a typical implementation of the Java Virtual Ma-
chine). The observed space is some 28 B per node in
memory. The di�erence is due to PJama's housekeep-
ing structures, such as the resident object table [34].

PJama's structure on disk adds another 8 B per ob-
ject over Java, i.e. 36 B per node. The actual disk oc-
cupancy of our tree is around 65 B per letter indexed,
close to that expected. The observed number of nodes
for DNA remains between 1:6n and 1:8n, where n is
the length of the DNA, giving an expectation of be-
tween 58 and 65 bytes per node. Some of this space
may well be free space in partitions, and some is used
for housekeeping [47]. If we wanted to encode the tree
without making each node an object, we would require
12 B per node, that is around 21 B per character in-
dexed. But further compression could be obtained by
using techniques similar to those proposed by Kurtz
[32].

4.3 Using the index

Exact pattern matching in a su�x tree involves one
partial traversal per query. From the root we trace
the query until either a mismatch occurs, or the query
is fully traced. In the second case, we then traverse
all children and gather su�x numbers representing
matches. The complexity of a su�x tree search is
O(k+m) where k is the query length and m the num-
ber of matches in the index. This means that looking
for queries of length q may bring back a 1

aq
fraction of

the whole tree, where a is here the size of the active
alphabet, 4 in this application. For example, a query
of length 4 might retrieve 1

256
of the tree. Compos-

ite algorithms may be necessary, where short queries
are served by a serial scan of the sequence, and longer
queries use the index. The threshold at which index-
ing begins to show an advantage depends on the pre-
cise data structure used, on the query pattern, and on
the size of the sequence. We currently estimate this
threshold to be in the region of minimum query length
of 10 to 12 letters for human chromosomes.



5 The PJama platform

The �rst set of experimental trials of this new algo-
rithm has been conducted using the PJama9 platform
[6, 4, 7, 8, 5, 31, 48, 24, 47]. We selected PJama to
minimise the software engineering cost of providing
integrated software environments supporting a very
wide range of bioinformatics tasks. PJama enabled
easy transitions between di�erent underlying tree rep-
resentations, and immediate transparent store creation
from Java without any intermediate steps. Both tran-
sient and persistent trees can be produced using the
same compiled code, but a di�erent command-line pa-
rameter for PJama indicating whether a persistent
store is being used.

Although tuned, purpose-built mechanisms may be
appropriate for large-scale indexes, the cost of im-
plementing them and maintaining them would be an
impediment to rapid experimentation. In addition,
a great many index technologies are proposed and
tested, in this area of application, as well as many oth-
ers. Hence, if we can make the general purpose per-
sistence mechanism work for indexes, there could be
considerable pay o�s in reduced implementation times
and more rapid deployment.

We expect that applications of the su�x trees will
require much annotation and other data to make them
useful to the biologists. This data, at least, does not
have demanding processing and access performance re-
quirements. Consequently, there are advantages to de-
veloping as much of the application code as possible in
Java, for ease of multi-platform deployment. Here we
expect to utilise PJama's schema and object evolution
facilities [20, 25].

6 Test data and experimental results

In this section we report results for exact matching on
DNA strings. The test data consisted of 6 single chro-
mosomes of the worm C. elegans, of 20.5 Mbp maxi-
mum10 and of some 280 Mbp merged DNA fragments
from human chromosomes 21, 22 and 111. As queries
we used short worm and human sequences, from the
STS division of Entrez12, and from each sequence ini-
tial characters were taken to be used as query strings.
Similarly, for the worm queries, we used short se-
quences called cDNAs.

Our alphabet in this experiment consists of A, C,
G, T, a terminal symbol $, and * used as a delimiter
for merged sequences.

Tests were carried out using production Java 1.3 for
transient measurements, and PJama, which is derived
from Java 1.2 and uses JIT, for the persistence mea-
surements. All timing measurements were obtained

9http://www.dcs.gla.ac.uk/pjama
10ftp://ftp.sanger.ac.uk/pub/C.elegans sequences/-

CHROMOSOMES/
11ftp://ncbi.nlm.nih.gov/genomes/H sapiens
12ftp://ncbi.nlm.nih.gov/repository/dbSTS/

using Solaris 7 on an Enterprise 450 SUN computer
with 2 GB RAM, and data residing on local disks.
In this experiment our algorithm did not use multi-
threading and therefore only one of the four 300 MHz
SPARC processors was used for the main algorithm.
Parts of the Java Virtual Machine, and PJama's ob-
ject store manager, will have made some use of another
processor for housekeeping tasks.

6.1 Trees with su�x links

We �rst investigated the optimal tree [53] which can
be built in O(n) time. A tree for 20.5 Mbp of DNA was
created in memory in 7 minutes on average. However,
on disk, the creation time was around 34 hours, and
checkpoints at 12 million and then every 0.5 million
nodes were required. For 20.5 Mbp of worm data we
used a 2 GB log, and one store �le of 2 GB. This was
the largest tree of this type that we could build.

A tree for 20.5 Mbp �tted mostly in memory (2 GB
RAM, 2 GB store). Table 1 shows the results obtained
for a batch of 10,000 queries run on a cold store.

query length avg time (ms) total hits
8 920 8,568,303
9 263 2,553,520

10 142 758,523
15 36 3,687
50 34 394

100 34 305
200 33 107

Table 1: Cold store queries over 20.5 Mbp using an
O(n) index.

6.2 Without su�x links

We then indexed 263 Mbp of DNA using the O(nlogn)
algorithm presented here. The store required a 2 GB
log and 18 GB in �les of 2 GB each. Store creation time
was 19 hours in our �rst run, and this could probably
be shortened. Queries of the same length were sent in
batches, without the use of multithreading13.
We ran experiments on a cold store, see Figure 5, and
on a warm store, see Figure 6. We observed that
large batches produced faster response times, due to
the bene�t of objects that had been faulted in for pre-
vious queries still being cached on the heap.

Table 2 shows why the cold store runs for short
queries take so long. The time taken, can be divided
into matching the query's text by descending the tree,
and faulting in and traversing the subtree below the
matched node to report the results. For short queries,

13In other experiments [27], we have demonstrated a signif-
icant speed up by using multiple threads to handle a batch of
queries.
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many results are reported and the reporting time dom-
inates. For longer queries, fewer results are found, and
the average query response improves.

7 Discussion

The new incremental algorithm for constructing disk-
resident su�x trees without su�x links appears to
have the potential to build arbitrarily large indexes
e�ciently. We are optimistic that this construction
and the subsequent index use behaviour can be made
su�ciently e�cient that it will be a useful component
of biological search systems. Some of the support for
this claim is now presented.

Theoretical investigations of su�x tree building in-
dicate that the use of su�x links to obtain an O(n)
algorithm is worthwhile. However, su�x links require
space, and generate a di�cult load on memory, with
scattered updates and reads. In Figure 7 we show in-
memory performance comparison of su�x trees with
and without su�x links. We use a modi�ed version

batch size query length avg time (ms) total hits
100 10 1070 155,007

1000 10 444 1,289,800
10000 10 620 10,217,838

100 50 197 18
1000 50 87 221

10000 50 76 660
50000 50 87 25376

Table 2: Cold store query behaviour.
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of Ukkonen's algorithm [53] which does not perform a
�nal tree scan to update the right text pointer in the
leaves, and compare it to our tree without su�x links.
We are limited here by 2 GB RAM, and carry out
the tests using Java 1.3 with 
ags -server -Xmx1900m.
The largest su�x-link tree we can build in this space is
for 25 Mbp. Up to that value, no signi�cant di�erence
in tree construction speed can be observed (times are
best times observed over several tree builds).

The incremental partitioned construction algorithm
uses a partition size which we select. So far our experi-
ments suggest that this should correspond to about 20
Mbp. This means that we are using the tree builder
in a region where the O(n) su�x-link algorithm o�ers
no advantage.

The comparison of unoptimised persistent tree
building times shows that our algorithm outperforms
the su�x-link tree both in terms of time and size, and
we believe that building times in the region of 5 hours
for the longest human chromosome will be possible.
Our algorithm is scalable and can be adjusted to run
on computers with di�erent memory characteristics.
More work is required to optimise the tree building,
and to investigate the object placement on disk and its
in
uence on query performance. Our algorithm opens
up the perspective of building su�x trees in parallel,
and the simplicity of our approach can make su�x
trees more popular. In the parallel context, maintain-
ing su�x links between di�erent tree partitions may



not be viable or necessary, as further characterisation
of the space-time tradeo� between su�x trees with
links and without is needed.

8 Future work

Future work can be divided into four interrelated
parts.

� Improvements to the tree representation and in-
cremental construction algorithm.

� Investigation of the interaction between approx-
imate matching algorithms and disk-based su�x
trees.

� Investigation of alternative persistent storage so-
lutions.

� Integration of the algorithms with biological re-
search tools and usability studies.

Improving the tree representation is amenable to sev-
eral strategies. We are investigating the replacement
of the top of each tree with a sparse array indexed by
Pi. We have also identi�ed signi�cant savings by spe-
cialising nodes (similar to some aspects of Kurtz's com-
pression) and we are measuring the gains from storing
summaries to accelerate reporting.

At the underlying object store level, we are looking
at compressions that remove the object headers, at
placement optimisations, and at improved cache man-
agement. We are experimenting with direct storage
strategies.

As the deployed system will need to be trustworthy
for biologists, we started �eld trials using Gemstone/J
rather than PJama which is no longer maintained at
the PEVM level [34, 8]. This will enable us to oper-
ate on other hardware and operating system platforms
and to verify that the phenomena so far observed are
not artefacts of PJama. Gemstone/J uses a similar im-
plementation strategy to PJama, modifying the JVM
to add read and write barriers. This provides compa-
rable speed for large applications and nearly the same
programming convenience. We plan to return to re-
search into optimised persistent virtual machines once
an optimised open source VM is available.

We are currently testing approximate matching al-
gorithms similar to that of Baeza-Yates and Navarro
[10]. Further work will include adopting biological
measures of sequence similarity [2, 49]. Our ulti-
mate aim is to enable comparisons of di�erent species
based on DNA and protein sequence similarity. Future
matching methods will be accompanied by statistical
measures of sequence similarity, and will be presented
in the context of other biological knowledge. We see
that future to lie in a uniform database approach to
all types of biological data, including sequence, protein
structure and expression data.

We plan to investigate several applications of suf-
�x trees to biological problems. One of them is the
identi�cation of repeating sequence patterns on a ge-
nomic scale. Some of those patterns, positioned out-
side gene sequences, point to regulatory sequences con-
trolling gene activity. We will also use our trees in gene
comparison within and across species. Because of the
RAM limit on su�x tree size, all-against-all BLAST is
traditionally used in this context [17, 55], and it would
necessitate up to

2

�
40000
2

�

gene alignments to perform full gene comparison
within the human genome which has around 40,000
genes14. The use of large su�x trees in this context
is likely to be bene�cial. Finally, assembly of genomes
can be speeded up using su�x trees [23].

9 Conclusions

An algorithm has been developed that promises to
overcome a long standing problem in the use of suf-
�x trees. It enables arbitrarily large sequences to be
indexed and the su�x tree built incrementally on disk.
Surprisingly, there seems to be no measurable disad-
vantage to abandoning the su�x-links that have been
introduced to achieve linear-time construction algo-
rithms. Much further experimentation and analysis
is required to develop con�dence in these early, but
intriguing results.
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