
Crawling the Hidden Web

Sriram Raghavan Hector Garcia-Molina

Computer Science Department
Stanford University

Stanford, CA 94305, USA
{rsram, hector}@cs.stanford.edu

Abstract

Current-day crawlers retrieve content only from
the publicly indexable Web, i.e., the set of Web
pages reachable purely by following hypertext
links, ignoring search forms and pages that require
authorization or prior registration. In particular,
they ignore the tremendous amount of high qual-
ity content “hidden” behind search forms, in large
searchable electronic databases. In this paper, we
address the problem of designing a crawler capa-
ble of extracting content from this hidden Web.
We introduce a generic operational model of a
hidden Web crawler and describe how this model
is realized in HiWE (Hidden Web Exposer), a
prototype crawler built at Stanford. We intro-
duce a newLayout-basedInformationExtraction
Technique (LITE) and demonstrate its use in au-
tomatically extracting semantic information from
search forms and response pages. We also present
results from experiments conducted to test and
validate our techniques.

1 Introduction
Crawlers are programs that automatically traverse the Web
graph, retrieving pages and building a local repository of
the portion of the Web that they visit. Depending on the ap-
plication at hand, the pages in the repository are either used
to build search indexes, or are subjected to various forms
of analysis (e.g., text mining). Traditionally, crawlers have
only targeted a portion of the Web called thepublicly index-
able Web (PIW)[13]. This refers to the set of pages reach-
able purely by following hypertext links, ignoring search
forms and pages that require authorization or prior regis-
tration.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

However, a number of recent studies [2, 13, 14] have ob-
served that a significant fraction of Web content in fact lies
outside the PIW. Specifically, large portions of the Web
are ‘hidden’ behind search forms, in searchable structured
and unstructured databases (called thehidden Web[8] or
deep Web[2]). Pages in the hidden Web aredynamically
generatedin response to queries submitted via the search
forms. The hidden Web continues to grow, as organizations
with large amounts ofhigh-quality information (e.g., the
Census Bureau, Patents and Trademarks Office, news me-
dia companies) are placing their content online, providing
Web-accessible search facilities over existing databases.
For instance, the websiteInvisibleWeb.com lists over
10000 such databases ranging from archives of job listings
to directories, news archives, and electronic catalogs. Re-
cent estimates [2] place the size of the hidden Web (in terms
of generated HTML pages) at around500 times the size of
the PIW.

In this paper, we address the problem of building a hid-
den Web crawler; one that can crawl and extract content
from these hidden databases. Such a crawler will enable
indexing, analysis, and mining of hidden Web content, akin
to what is currently being achieved with the PIW. In addi-
tion, the content extracted by such crawlers can be used to
categorize and classify the hidden databases.

Challenges. There are significant technical challenges
in designing a hidden Web crawler. First, the crawler
must be designed to automatically parse, process, and in-
teract with form-based search interfaces that are designed
primarily for human consumption. Second, unlike PIW
crawlers which merely submit requests for URLs, hidden
Web crawlers must also provide input in the form of search
queries (i.e., “fill out forms”). This raises the issue of how
best to equip crawlers with the necessary input values for
use in constructing search queries.

To address these challenges, we adopt atask-specific,
human-assistedapproach to crawling the hidden Web.

Task-specificity: We aim to selectively crawl portions
of the hidden Web, extracting content based on the re-
quirements of a particular application or task. For exam-
ple, consider a market analyst who is interested in build-
ing an archive of news articles, reports, press releases, and
white papers pertaining to the semiconductor industry, and

(a) User form interaction (b) Crawler form interaction

Figure 1: Interacting with forms

dated sometime in the last ten years. There are two steps
in building this archive:resource discovery, wherein we
identify sites and databases that are likely to be relevant to
the task; andcontent extraction, where the crawler actu-
ally visits the identified sites to submit queries and extract
hidden pages. In this paper, we do not directly address the
resource discovery problem (see Section 6 for citations to
relevant work). Rather, our work examines how best to au-
tomate content retrieval, given the results of the resource
discovery step.

Human-assistance:Human-assistance is critical to en-
sure that the crawler issues queries that are relevant to the
particular task. For instance, in the above example, the
market analyst may provide the crawler (see Section 3.4
for details) with lists of companies or products that are of
interest. This enables the crawler to use these values when
filling out forms that require a company or product name to
be provided. Furthermore, as we will see, the crawler will
be able to gather additional potential company and product
names as it visits and processes a number of pages.

At Stanford, we have built a prototype hidden Web
crawler calledHiWE (HiddenWeb Exposer). Based on
our experience with HiWE, we make the following contri-
butions in this paper:
• We develop a generic operational model of a hidden

Web crawler and illustrate how this model was put to
use in implementing HiWE. (Sections 2 and 3)
• We propose a new technique, called LITE (Layout-

basedInformation Extraction Technique), for infor-
mation extraction from Web pages. We illustrate how
LITE was employed in some parts of the HiWE design.
(Section 4)
• Finally, we present some experiments to demonstrate

the feasibility of hidden Web crawling and measure the
effectiveness of our approach and techniques. (Sec-
tion 5)

2 Hidden Web Crawlers

In this section, we first present a generic high-level opera-
tional model of a hidden Web crawler. Next, we propose

Figure 2: Sample labeled form

metrics for measuring the performance of such crawlers
and justify the rationale behind our choices. Finally, we
identify the key design issues in implementing the model.

2.1 Operational model

The fundamental difference between the actions of a hid-
den Web crawler, such as HiWE, and that of a traditional
crawler [3, 6], is with respect to pages containing search
forms. Figure 1(a) illustrates the sequence of steps (as in-
dicated by the numbers above each arrow) that take place,
when auser uses a search form to submit queries on a
hidden database. Figure 1(b) illustrates the same interac-
tion, with thecrawler now playing the role of the human-
browser combination.

Our model of a hidden Web crawler consists of the four
components described below (see Figure 1(b)). We shall
use the termform page, to denote the page containing a
search form, andresponse page, to denote the page re-
ceived in response to a form submission.

Internal Form Representation. On receiving a form
page, a crawler first builds an internal representation of
the search form. Abstractly, the internal representation
of a formF includes the following pieces of information:
F = ({E1, E2, . . . , En}, S, M}), where{E1, E2, . . . , En}
is a set ofn form elements,S is the submission informa-
tion associated with the form (e.g., submission URL, in-
ternal identifiers for each form element, etc.), andM is
meta-information about the form (e.g., URL of the form

page, web-site hosting the form, set of pages pointing to
this form page, other text on the page besides the form,
etc.). A form element can be any one of the standard input
elements: selection lists, text boxes, text areas, checkboxes,
or radio buttons.1 For example, Figure 2 shows a form with
three elements (ignorelabel(Ei) anddom(Ei) for now).
Details about the actual contents ofM and the information
associated with eachEi are specific to a particular crawler
implementation.

Task-specific database. A crawler is equipped, at
least conceptually, with a task-specific databaseD. This
database contains all the information that is necessary for
the crawler to formulate search queries relevant to the par-
ticular task. For example, in the ‘market analyst’ exam-
ple introduced in Section 1,D could contain lists of semi-
conductor company and product names that are of interest.
The actual format, structure, and organization ofD are spe-
cific to a particular crawler implementation. For example,
HiWE uses a set of labeled fuzzy sets (Section 3.2) to rep-
resent task-specific information. More complex represen-
tations are possible, depending on the kinds of information
used by the matching function (see below).

Matching function. A crawler’s matching algo-
rithm, Match, takes as input, an internal form rep-
resentation, and the current contents of the database
D. It produces as output, a set of value assignments.
Formally, Match(({E1, . . . , En}, S, M), D) = {[E1 ←
v1, . . . , En ← vn]}.

A value assignment[E1 ← v1, . . . , En ← vn] asso-
ciates valuevi with form elementEi (e.g., ifEi is a textbox
that takes a company name as input,vi could be ‘National
Semicondutor Corp.’). The crawler uses each value assign-
ment to ‘fill-out’ and submit the completed form. This pro-
cess is repeated until either the set of value assignments is
exhausted, or some other termination condition is satisfied.

Response Analysis.The response to a form submis-
sion is received by a response analysis module that stores
the page in the crawler’s repository. In addition, the re-
sponse module analysis attempts to distinguish between
pages containing search results and pages containing error
messages. This feedback can be used to tune the match-
ing function and update the set of value assignments (see
Section 3).

Notice that the above model lends itself to a number of
different implementations depending on the internal form
representation, the organization ofD, and the algorithm
that underliesMatch.

2.2 Performance Metric

Traditional PIW crawlers use metrics such as crawling
speed, scalability [10], page importance [6], and freshness
[5], to measure the effectiveness of their crawling activity.
Though all of these metrics are applicable and relevant to
hidden Web crawlers, none of these capture the fundamen-

1Note that submit and reset buttons are not included, as they are only
used to manipulate forms, not provide input.

tal challenges in dealing with the Hidden Web, namely, au-
tomatic form processing and submission.

The choice of a good performance metric for hidden
Web crawlers itself turns out to be an interesting issue. We
considered a number of options. For instance, we consid-
ered acoveragemetric that measures the ratio of the num-
ber of ‘relevant’ pages extracted by a crawler to the total
number of ‘relevant’ pages present in the targeted hidden
databases. Even though such a metric is conceptually ap-
pealing, there are two problems. First, without additional
information about the hidden databases, it is very difficult
to estimate how much of the their content is relevant to the
task. Second, the metric is significantly dependent on the
contents ofD, the crawler’s task-specific database. This in
turn is determined by how well the crawler is configured
for the task, by the human. All other things being equal,
a crawler that has access to a more comprehensive task-
specific database can extract more content and hence report
better coverage. However, we seek a metric that can mea-
sure the effectiveness of the crawler’s form representation
and matching function, independent of the actual contents
of D. Below, we define two versions of a metric that meet
this requirement.

Submission Efficiency.Let Ntotal be the total number
of forms that the crawler submits, during the course of its
crawling activity. LetNsuccess denote the number of sub-
missions which result in a response page containing one or
more search results.2 Then, we define thestrict submission
efficiency (SEstrict) metric as:SEstrict = Nsuccess

Ntotal

Note that this metric is ‘strict’, because it penalizes the
crawler even for submissions which are intrinsically ‘cor-
rect’ but which did not yield any search results because the
content in the database did not match the query parameters.
We also define alenient submission efficiency (SElenient)
metric that penalizes a crawler only if a form submission is
semantically incorrect (e.g., submitting a company name as
input to a form element that was intended to receive names
of company employees). Specifically, ifNvalid denotes
the number of semantically correct form submissions, then
SElenient = Nvalid

Ntotal

SElenient is more difficult to evaluate, since each form
submission must be comparedmanuallywith the actual
form, to decide whether it is a semantically correct. For
large experiments involving hundreds of form submissions,
computingSElenient becomes highly cumbersome.

Intuitively, the submission efficiency metrics estimate
how much useful work a crawler accomplishes, in a given
period of time. In particular, if two identically configured
crawlers are allowed to crawl for the same amount of time,
the crawler with the higher rating is expected to retrieve
more ‘useful’ content than the other.

2In our experiments, to obtain a precise value forNsuccess, we used
manual inspection of the pages, rather than using information from the
crawler’s response analysis module.

Figure 3: HiWE Architecture

2.3 Design Issues

Given the operational model and the performance metrics
described in the previous two sections, the following ques-
tions arise:
• What information about each form elementEi, should

the crawler collect? What meta-information about each
form is likely to be useful in designing better matching
functions?
• How should the task-specific database be organized,

updated, and accessed?
• What is the algorithm forMatch that is most likely to

maximize submission efficiency?
• Finally, how should the feedback from the response

analysis module be used to tuneMatch?
In the following section, we shall describe how these

issues are addressed in the HiWE prototype.

3 HiWE: Hidden Web Exposer

Based on the model outlined in Section 2, we have built
a prototype hidden Web crawler called HiWE. The basic
idea in HiWE is to extract some kind of descriptive infor-
mation, or label, for each element of a form. In addition,
the task-specific database is organized in terms of a finite
number of concepts or categories, each of which is also as-
sociated with labels. The matching algorithms attempts to
match form labels with database labels to compute a set of
candidate value assignments.

Figure 3 shows the architecture of HiWE. The basic
crawler data structure is theURL List. It contains all the
URLs that the crawler has discovered so far. TheCrawl
Managercontrols the entire crawling process. In our im-
plementation, the crawler was configured to operate within
a predetermined set of target sites provided to the Crawl
Manager at startup. TheParser extracts hypertext links
from the crawled pages and adds them to the URL List
structure. Pages that do not contain forms are handled
solely by the Parser and Crawl Manager modules. The
Form Analyzer, Form Processor, andResponse Analyzer
modules, together implement the form processing and sub-

mission operations of the crawler. TheLVS tableis HiWE’s
implementation of the task-specific database described in
Section 2.1. TheLVS Managermanages additions and ac-
cesses to the LVS table.

3.1 Form Representation

Given a formF = ({E1, E2, . . . , En}, S, φ})3, for each el-
ementEi, HiWE collects two pieces of information: a do-
mainDom(Ei) and a labellabel(Ei). The domain of an
element is the set of values which can be associated with
the corresponding form element. Some elements havefinite
domains, where the set of valid values are already embed-
ded in the page. For example, ifEj is a selection list, then
Dom(Ej) is the set of values that are contained in the list.
Other elements with free-form input, such as text boxes,
haveinfinite domains(e.g., set of all text strings).

The label of a form element is the descriptive infor-
mation associated with that element, if any. Most forms
are usually associated with some descriptive text to help
the user understand the semantics of the element. If such
descriptive information is not available, or cannot be ex-
tracted, the correspondinglabel(Ei) is set to an empty
string. Figure 2 shows a form with three elements and the
corresponding representation using our notation.

3.2 Task-specific Database

In HiWE, task-specific information is organized in terms of
a finite set of concepts or categories. Each concept has one
or more labels and an associated set of values. For example,
the label ‘Company Name’ could be associated with the set
of values{‘IBM’, ‘Microsoft’, ‘HP’, . . . }. The concepts
are organized in a table called theLabel Value Set (LVS)
table. Each entry (or row) in the LVS table is of the form
(L, V), L is a label andV = {v1, . . . vn} is a fuzzy/graded
set[23] of values. Fuzzy setV has an associatedmember-
ship functionMV that assigns weights/grades, in the range
[0, 1], to each member of the set. Intuitively, eachvi rep-
resents a value that could potentially be assigned to an ele-
mentE if label(E) “matches”L. MV (vi) is a measure of
the crawler’s confidence that the assignment ofvi to E is in
fact a semantically meaningful assignment. Labels can be
aliased, which means that two or more labels can share the
same fuzzy value set. Section 3.4 describes how the LVS
table is populated and Section 3.5 describes how weights
are computed.

3.3 Matching Function

For a form element with a finite domain, the set of possi-
ble values that can be assigned to the element is fixed, and
can be exhaustively enumerated. For example, since do-
main Dom(E1) in Figure 2 has only three elements, the
crawler can first retrieve all relevant articles, then all rele-
vant press releases, and finally all relevant reports. For in-

3The current implementation of HiWE does not collect any meta-
information about a search form. Therefore, the third component ofF
is an empty set.

finite domain elements, HiWE textually matches the labels
of these elements with labels in the LVS table. For exam-
ple, if a textbox element has the label “Enter state” which
best matches an LVS entry with the label “State”, the values
associated with that LVS entry (e.g., “California” or “New
York”) can be used to fill out the textbox.

Label Matching. There are two steps in matching form
labels with LVS labels. First, all labels are normalized; this
includes, among other things, conversion to a common case
and standard IR-style stemming and stop-word removal [9]
(see [20] for details). Next, an approximate string match-
ing algorithm is used to compute minimum edit distances,
taking into account not just typing errors but also word re-
orderings (e.g, we require that two labels ‘Company Type’
and ‘Type of Company’, which become “company type”
and “type company” after normalization, be identified as
being very similar, separated by a very small edit dis-
tance). HiWE employs a string matching algorithm from
[15] that meets these requirements. Given elementEi, let
LabelMatch(Ei) denote the entry in the LVS table whose
label has the minimum edit distance tolabel(Ei), subject to
a thresholdσ. If all entries in the LVS table are more than
σ edit operations away fromlabel(Ei), LabelMatch(Ei)
is set to nil.

Given a form F = ({E1, . . . , En}, S, φ), HiWE’s
matching function computes, for each elementEi, a fuzzy
setVi denoting the set of values that the crawler intends to
assign toEi. Specifically, ifEi is an infinite domain ele-
ment and(L, V) = LabelMatch(Ei) is the closest match-
ing LVS entry, thenVi = V and MVi = MV . However,
if Ei is a finite domain element, thenVi = Dom(Ei) and
MVi(x) = 1, ∀x ε Vi.

The set of value assignments is computed as the prod-
uct of all the Vi’s; i.e., Match(F, LV S) = {[E1 ←
v1, . . . , En ← vn] : vi ε Vi, i = 1 . . . n}

Ranking value assignments.HiWE employs an aggre-
gation function to compute a rank for each value assign-
ment, using the weights of the individual values in the as-
signment. In addition, HiWE accepts, as a configurable
parameter, a minimum acceptable value assignment rank
(ρmin). The intent is to improve submission efficiency
by only using relatively ‘high-quality’ value assignments.
Hence, to generate submissions, HiWE uses only value as-
signments whose rank is at leastρmin. We experimented
with the following aggregation functions:

1. Fuzzy ConjunctionThe rank of a value assignment
is the minimum of the weights of all the constituent val-
ues. This is equivalent to treating the value assignment as
a standard Boolean conjunction of the individual fuzzy sets
[23].

ρfuz([E1 ← v1, . . . , En ← vn]) = min
i=1...n

MVi(vi)

2. AverageThe rank of a value assignment is the aver-
age of the weights of the constituent values.

ρavg([E1 ← v1, . . . , En ← vn]) =
1
n

∑

i=1...n

MVi(vi)

3. Probabilistic This ranking function treats weights
as probabilities. HenceMVi(vi) is the likelihood that the
choice ofvi is useful and1−MVi(vi) is the likelihood that
it is not. Hence, the likelihood of a value assignment being
useful, is computed as:

ρprob([E1 ← v1, . . . , En ← vn]) = 1−
∏

i=1...n

(1−MVi(vi))

Note thatρfuz is very conservative in assigning ranks.
It assigns a high rank for a value assignment only if each
individual weight is high. The average is less conservative,
always assigning a rank which is at least as great as the rank
of the fuzzy conjunction for the same value assignment. In
contrast,ρprob is more aggressive and assigns a low rank
only if all the individual weights are very low.

3.4 Populating the LVS Table

HiWE supports a variety of mechanisms for adding entries
to the LVS table.

Explicit Initialization. HiWE can be supplied with
labels and associated value sets at startup time. These
are loaded into the LVS table during crawler initialization.
Explicit initialization is particularly useful to equip the
crawler with values for the labels that the crawler is most
likely to encounter. For example, when configuring HiWE
for the task described in Section 1, we supplied HiWE with
a list of relevant company names from the semiconductor
industry and associated that list with labels such as “Com-
pany”, “Company Name”, “Organization”, etc.

Built-in entries. HiWE has built-in entries in the LVS
table for certain commonly used categories, such as dates,
times, names of months, days of the week, etc., which are
likely to be useful for a variety of tasks.

Wrapped data sources.The LVS Manager (Figure 3)
can communicate and receive entries for the LVS table by
querying various data sources (on the Web or elsewhere),
through a well-defined interface. These data sources can ei-
ther be task-specific (for example, Table 4 lists some of the
task-specific Web sources that we used for the task outlined
in Section 1), or correspond to relevant portions of generic
directories, such as the Yahoo directory [22] and the Open
Directory [18]. Each data source must be ‘wrapped’ by a
program to export an interface that supports one or both of
the following two kinds of queries:
• Type 1: Given a set of labels, return a fuzzy value set

that can be associated with these labels.
• Type 2:Given a set of values, return other values that

belong to the same value set.
Type1 queries are used to add new entries to the LVS

table whereas Type2 queries are used to expand existing
entries. In [20], we describe in some detail, how the Yahoo
directory was wrapped to export the above interface.

Crawling experience.Finite domain form elements are
a useful source of labels and associated value sets. When-
ever HiWE encounters a finite domain form element, it
extracts the label and domain values of that element and
add the information to the LVS table. As we demonstrate
in Section 5, this technique is particularly effective if the

same/similar label is associated with a finite domain ele-
ment in one form and with an infinite domain element in
another. For example, we observed that when experiment-
ing with the crawling task described in Section 1, some
forms contained a predefined set of subject categories (as
a select list) dealing with semiconductor technology. Other
forms had a text box with the label “Categories”, expecting
the user to come up with the category names on their own.
By using the above technique, the crawler was able to use
values from the first set of forms to more effectively fill out
the second set of forms.

3.5 Computing weights

Since value sets in the LVS table are modeled as fuzzy sets
(Section 3.2), whenever a new value is added to the LVS
table, it must be assigned a suitable weight. Typically, val-
ues obtained through explicit initialization and built-in cat-
egories have fixed predefined weights that do not vary with
time (usually the weight is1, representing maximum con-
fidence in these human-supplied values). Values obtained
either from external data sources or through the crawler’s
own activity, are assigned weights that vary with time. The
weight of a value gets a positive (negative) boost ever time
it is used in a successful (unsuccessful) form submission.
The success or otherwise, of a form submission, is reported
by the response analysis module. In [20], we describe how
feedback from the response analysis module is used to tune
the weights.

The initial weights for values obtained from external
data sources are usually computed by the respective wrap-
pers. However, for values directly gathered by the crawler,
the following strategy is used:

Suppose HiWE encounters a finite domain form element
E with Dom(E) = {v1, . . . , vn}. Even thoughDom(E)
is a crisp set, it can be treated as a fuzzy set with mem-
bership functionMDom(E), such thatMDom(E)(x) = 1 if
x ε {v1, . . . , vn}, andMDom(E)(x) = 0, otherwise. The
following cases arise, when incorporatingDom(E) into
the LVS table:

Case 1. Crawler successfully extractslabel(E) and
computesLabelMatch(E) = (L, V). We replace the
(L, V) entry in the LVS table by the entry(L, V ∪
Dom(E)). Here,∪ is the standard fuzzy set union op-
erator [23] which defines the new membership function
asMV ∪Dom(E)(x) = max(MV (x), MDom(E)(x)). Intu-
itively, Dom(E) not only provides new elements to the
value set but also ‘boosts’ the weights/confidence of ex-
isting elements.

Case 2. Crawler successfully extractslabel(E) but
LabelMatch(E) = nil. A new row/entry (label(E),
Dom(E)) is created in the LVS table.

Case 3. Crawler cannot extractlabel(E). This can
happen either because the label is absent, or because there
is a problem in label extraction. We identify an entry
in the LVS table whose value set most closely resembles
Dom(E). Once such an entry is located, we shall add
the values inDom(E) to the value set of that entry. For-

1 Set of sites to crawl
2 Explicit initialization entries for the LVS table
3 Set of data sources, wrapped if necessary
4 Label matching threshold (σ)
5 Minimum acceptable value assignment rank (ρmin)
6 Minimum form size (α)
7 Value assignment aggregation function

Table 1: Configuring a crawler

mally, for each entry(L, V) in the table, we compute a

score,4 defined by the expression

∑
x ε Dom(E)

MV (x)

|Dom(E)| . In-
tuitively, the numerator of the score measures how much
of Dom(E) is already contained inV and the denomina-
tor normalizes the score by the size ofDom(E). Next, we
identify the entry with the maximum score(Lmax, Vmax)
and also the value of the maximum scoresmax. We derive a
new fuzzy setD′ from Dom(E) by using the membership
functionMD′(x) = smaxMDom(E)(x). We replace entry
(Lmax, Vmax) by the new entry(Lmax, Vmax ∪ D′).

3.6 Configuring HiWE

In the previous sections, we described different aspects of
HiWE that require explicit customization or tuning to meet
the needs of a particular task. In addition, we also intro-
duced a few configurable parameters that control the ac-
tions of the crawler. Table 1 summarizes all the inputs that
the user must provide, before initiating the crawling activ-
ity.

4 LITE

Recall that as part of its operations, HiWE must extract var-
ious pieces of information out of forms and response pages.
A number of other Web applications are also faced with the
same problem of ‘scraping’ information from pages. For
example, Web-based information integration applications
such as online comparison shopping engines or process au-
tomation systems usewrappers[19] to provide structured
interfaces to Web sites. As one of its functions, a wrap-
per for a website is required to scrape the Web pages on
that site to extract data elements (e.g., names, addresses,
zip-codes, prices, etc.) of interest. Traditionally, wrappers
scrape pages by using a suite of (regular expression) pat-
terns that are constructed using a variety of automatic and
semi-automatic techniques [19, 21]. However, such tech-
niques operate purely on the underlying HTML text of Web
pages.

In this section, we introduce a new technique called
LITE (Layout-based Information Extraction), where, in ad-
dition to the text, thephysical layoutof a page is also used
to aid in extraction. LITE is based on the observation that
the physical layout of different elements of a Web page
contains significant semantic information. For example, a
piece of text that is physically adjacent to a table or a form

4In fuzzy set terminology, this score is thedegree of subsethoodof

Dom(E) in V , defined byS(Dom(E), V) = |Dom(E)∩V |
|Dom(E)| .

Figure 4: Pruning before partial layout

widget (such as a text box) is very likely a description of the
contents of that table or the purpose of that form widget.

Unfortunately, this semantic association between ele-
ments is not always directly reflected in the underlying
HTML markup of the Web page. There are two reasons for
this. First, elements of a page that are visually very close
to each other when displayed on a screen, may in fact be
separated arbitrarily, in the actual text of the page. Second,
even when the HTML specification provides a facility for
semantic relationships to be reflected in the markup, such
facilities are not used in a majority of Web pages. For ex-
ample, many Web pages do not use theCAPTIONelement
to specify the title of a table, relying instead on the physical
placement of the title text relative to the table, to convey the
same information. Similarly, recent HTML standards pro-
vide aLABELelement to associate descriptive information
with individual form elements. However, almost none of
the Web pages that HiWE visited during its experimental
runs used this facility.

Note that accurate page layout is a relatively complex
process, since it must take into account factors such as zip
codes, font metrics, images, etc. However, for the purposes
of information extraction, our experience (see succeeding
sections) has been that even a crude and approximate lay-
out of portions of a page, can yield very useful semantic
information.

LITE is used in HiWE to extract information from both
form and response pages. In the next section, we briefly
describe how LITE is used for form analysis and refer the
reader to [20] for a similar description of response analysis.

4.1 Form Analysis in HiWE

Recall that the aim of form analysis is to process a form
page and extract all the information necessary to build
the internal representation (Section 3.1) of the form. For
HiWE, the main challenge in form analysis is the accurate
extraction of the labels and domains of form elements.

Label extraction is a hard problem, since the nesting re-
lationship between forms and labels in the HTML markup
is not fixed. For example, some pages layout form elements
and labels within the cells of a table whereas others con-
trol alignment through explicit spaces and line breaks. To
achieve high-accuracy label extraction, in HiWE, we em-
ploy the following LITE-based heuristic:
• Prune the form page and isolate only those elements

that directly influence the layout of the form elements

and the labels. For instance, consider Figure 4, which
shows the tree-structured representation of two differ-
ent Web pages, one in which the FORM is directly em-
bedded in the main body and another in which it is em-
bedded within a table. The pruned tree is constructed
by using only the subtree below the FORM element and
the nodes on the path from the FORM to the root.
• Approximately layout the pruned page using a custom

layout engine that discards images, and ignores styling
information such as font sizes, font styles, and style
sheets.
• Using the layout engine, identify the pieces of text, if

any, that are physically closest to the form element, in
the horizontal and vertical directions. These pieces of
text are thecandidates.5

• Rank each candidate using a variety of measures that
take into account the its position, font size, font style,
number of words, etc. (see [20] for details).
• Choose the highest ranked candidate as the label as-

sociated with the form element. Perform any post-
processing on the label as necessary (e.g., removing
stop words and non alphanumeric characters, stem-
ming, etc.)

Reference [20] describes a similar heuristic for extract-
ing the domains of form elements.

5 Experiments

We conducted a number of experiments to study and mea-
sure the performance of HiWE. In this section, we report
on some of the more significant results from these experi-
ments.

Parameter Value

Number of sites visited 50
Number of forms encountered 218
Number of forms chosen for submission 94
Label matching threshold (σ) 0.75
Minimum form size (α) 3
Value assignment ranking function ρfuz

Minimum acceptable value assignment rank (ρmin) 0.6

Table 3: Parameter values for Task 1

Site Name URL

Semiconductor Research Corporationwww.src.org
The Semiconductor Reference Site www.semiref.com
Hoover Online Business Network www.hoovers.com
Lycos Companies Online companies.lycos.com

Table 4: Sample data sources for Task 1

Table 2 describes the three tasks that we undertook to
accomplish using HiWE. Due to space constraints, we
provide configuration details and other related information
only for Task 1. Table 3 lists the default values of some
of the parameters that we used for experiments involving
Task 1. The parameterα represents the minimum size of a

5For form elements involving groups of items, such as a set of check-
boxes, distances are measured relative to the ‘center’ of the group.

No. Task Description - Collect Web pages containing:
1 News articles, reports, press releases, and white papers relating to the semiconductor industry, dated sometime in the last ten years
2 Reviews, synopses, articles, and historical information about movies directed by Oscar-winning directors in the last 30 years
3 Database technical reports from 30 CS departments, published in the last 5 years

Table 2: Description of the three experimental tasks

form (in terms of number of elements) that HiWE will at-
tempt to process. Sinceα was set to3, all forms containing
less than 3 elements were ignored by HiWE. This helped to
eliminate most of the forms that dealt with simple keyword
searches within a site (‘local site-search’), not relevant to
extracting content from hidden databases. As indicated in
Table 3, the crawler encountered218 forms when crawling
the50 sites, of which124 were ignored, either because they
were too small (less than 3 elements) or because HiWE was
unable to generate valid value assignments for them.

Site Name URL

IEEE Spectrum spectrum.ieee.org
Semiconductor Online semiconductoronline.com
Semiconductor Business News semibiznews.com
Yahoo News news.yahoo.com
Total News totalnews.com
Semiconductor Intl. semiconductor-intl.com
Solid State Technology Intl. Magazine solid-state.com
CNN Financial News cnnfn.com
TMCnet.com Technology News tcmnet.com
SemiSeekNews semiseeknews.com

Table 5: Sample target sites crawled for Task 1

Table 4 lists some of the online sources we used to gen-
erate LVS entries for Task 1. These entries included partial
lists of names of semiconductor manufacturing companies
as well as list of sub-sectors (or areas) within the semi-
conductor industry. The first two sources listed in Table 4
were (manually) used only once, to extract information for
explicit initialization. The remaining two sources in Ta-
ble 4, as well as the Yahoo [22] and Open [18] directo-
ries, were wrapped by custom wrappers to interface with
the LVS manager and provide values at run-time. Table 5
presents a sample of some of the50 sites that were targeted
by HiWE for Task 1.

Effect of Value Assignment ranking function. To
study the effect of the value assignment ranking function
(Section 3.3), the crawler was executed three times, with
the same parameters, same initialization values, and same
set of data sources, but using a different ranking function on
each occasion. Table 6 shows the result of these executions,
for all three tasks. Notice that when usingρfuz andρavg,
the crawler’s submission efficiency is mostly above 80%,
even reaching 90% on one occasion. This indicates that
the label extraction and matching algorithms used in HiWE
are highly effective in automating form processing and sub-
mission. Table 6 also illustrates an interesting trade-off be-
tweenρfuz andρavg. Ranking functionρfuz consistently
provides the best submission efficiency, but being conser-
vative, causes less forms to be submitted, when compared
with ρavg. The latter submits more forms but also generates
more successful submissions without significantly compro-
mising crawler efficiency (at least for Tasks 1 and 2). This

Figure 5: Variation of performance withα, for Task 1

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

Number of forms processed

N
um

be
r

of
 s

uc
ce

ss
fu

l f
or

m
 s

ub
m

is
si

on
s

Crawler input enabled
Crawler input disabled

Figure 6: Effect of crawler input to LVS table, for Task 1

indicates that if maximum content extraction with ‘reason-
able’ crawler efficiency were to be the goal, at least for our
tasks,ρavg might be a better choice. In comparison, rank-
ing functionρprob performs poorly. For instance, in the
case of Task 1, even thoughρprob causes 35% more forms
to be submitted when compared withρfuz, it still achieves
lesser number of successful form submissions, resulting in
an overall success ratio of only 65%.

Effect of α. Figure 5 illustrates the effect of changing
α, the minimum form size. For each value ofα, the fig-
ure indicates the values of bothNtotal andNsuccess, for
Task 1. The percentage figure represents the corresponding
value ofSEstrict. Note that in general, the crawler per-
forms better on larger forms. Smaller forms tend to have
less descriptive labels, often consisting merely of an unla-
beled text box with an associated “Search” button. As ex-
pected, the crawler either ignores such forms or is unable to
find matches for element labels. On the other hand, larger
and more complicated forms tend to have more descriptive
labels as well as a significant number of finite domain ele-
ments, both of which contribute to improved performance.

Task 1 Task 2 Task 3
Ranking function

Ntotal Nsuccess SEstrict Ntotal Nsuccess SEstrict Ntotal Nsuccess SEstrict

ρfuz 3214 2853 88.8 2615 2354 90.0 1018 886 87.0
ρavg 3760 3126 83.1 3404 2622 77.0 1467 1243 84.7
ρprob 4316 2810 65.1 3648 2240 61.4 1789 1128 63.0

Table 6: Performance with different ranking functions

Effect of crawler input to LVS table. In Section 3.4,
we described the process by which a crawler can contribute
entries to the LVS table. Figure 6 studies the effect of this
technique on the performance of the crawler. To gener-
ate the data for Figure 6, the crawler was executed twice,
once with the crawler contributing LVS entries, and another
time, with such contributions disabled. Figure 6 shows that
in the initial stages of the crawl, the presence or absence of
the crawler contributions do not have a significant impact
on performance. However, as more forms are processed,
the crawler encounters a number of different finite domain
elements and is able to contribute new entries to the LVS
table. In addition, the LVS manager uses these new entries
to retrieve additional values from the data sources. As a re-
sult, by the end of the crawl, contributions from the crawler
are, directly or indirectly, responsible for almost a1000 ad-
ditional successful form submissions. We observed similar
trends for Tasks 2 and 3 (see [20] for corresponding plots).

5.1 Label extraction

We conducted a separate set of experiments to measure the
performance of our LITE-based heuristic for label extrac-
tion. Table 7 summarizes the relevant statistics of our test
set of forms. In choosing the test set, we ensured that a
variety of forms were included, ranging from the simplest
single element search box to more complex ones with10
or more elements. Each form in the test set was manually
analyzed to derive the correct label for each form element.

In addition to evaluating the LITE-based heuristic on
this set of forms, we also tested other label extraction meth-
ods [12] that we developed in the context of enabling form
support on small devices, such as PDAs. In [12], we de-
scribe two classes of label extraction heuristics; one class
based purely on textual analysis, and another based on ex-
tensive manual observations of the most common ways in
which forms are laid out. For comparison, we ran two
of the more effective heuristics from [12], one from each
class, on the same test set.

We treated an extracted label as accurate, if it matched
the one obtained through manual inspection. We observed
that the LITE-based heuristic consistently outperformed
the other two heuristics, achieving an overall accuracy of
93%, compared to72% and 83% respectively, for the
other two heuristics. In particular, we noted that the LITE-
based heuristic avoids two of the three common failure rea-
sons identified in [12], and also performs significantly bet-
ter on more complex forms. We believe that an effective la-
bel extraction technique was an important factor in HiWE’s
high submission efficiency, as reported in Table 6.

Total number of forms 100
Number of sites from which forms were picked 52
Total number of elements 460
Total number of finite domain elements 140
Average number of elements per form 4.6
Minimum number of elements per form 1
Maximum number of elements per form 12

Table 7: Forms used to test label extraction techniques

6 Related Work

In recent years, there has been significant interest in the
study of Web crawlers. These studies have addressed vari-
ous issues, such as performance, scalability, freshness, ex-
tensibility, and parallelism, in the design and implementa-
tion of crawlers [3, 4, 6, 10, 17]. However, all of this work
has focused solely on the PIW. To the best of our knowl-
edge, there has not been any previous report (at least none
that is publicly available) on techniques and architectures
for crawling the hidden Web.

The work on focused crawling[3, 7, 16] addresses
the resource discovery problem, (i.e., identifying sites and
pages relevant to a specific task or topic) and describes the
design of topic-specific PIW crawlers. This work is com-
plementary to ours, since these resource discovery tech-
niques can be used to identify target sites for a hidden Web
crawler.

The online service InvisibleWeb.com [11] provides easy
access to thousands of online databases, by organizing
pointers to these databases in a searchable topic hierarchy.
Their web page indicates that a ‘combination of automated
intelligent agents along with human experts’ are responsi-
ble for creating and maintaining this hierarchy. Similarly,
the online service BrightPlanet.com [1] claims to automat-
ically ‘identify, classify, and categorize’ content stored in
the hidden Web. In both cases, the techniques are propri-
etary and details are not publicly available.

7 Conclusion

Current-day crawlers are used to build repositories of Web
pages that provide the input for systems that index, mine,
and otherwise analyze pages (e.g., a Web search engine).
However, these crawlers are restricted to the set of pages in
the publicly indexable portion of the Web. In this paper, we
addressed the problem of extending current-day crawlers
to build repositories that include pages from the “hidden
Web”, the portion of the Web behind searchable HTML
forms.

We proposed an application/task specific approach to
hidden Web crawling. We argued that as with the PIW,
the tremendous size and heterogeneity of the hidden Web

makes comprehensive coverage very difficult, and possibly
less useful, than task-specific crawling. A narrow applica-
tion focus is also useful in designing a crawler that can ben-
efit from knowledge of the particular application domain.

We presented a simple operational model of a hid-
den Web crawler that succinctly describes the steps that
a crawler must take, to process and submit forms. We
described the architecture and design techniques used in
HiWE, a prototype crawler implementation based on this
model. The promising experimental results using HiWE
demonstrate the feasibility of hidden Web crawling and the
effectiveness of our form processing and matching tech-
niques. We believe that our operational model sets the
stage for designing a variety of hidden Web crawlers, rang-
ing in complexity from the simple label matching approach
of HiWE, to the use of sophisticated natural language and
knowledge representation techniques.

For the immediate future, we plan to address two lim-
itations of the HiWE design that if rectified, can signifi-
cantly improve HiWE’s performance. The first limitation
is HiWE’s inability to recognize and respond to simple de-
pendencies between form elements (e.g., given two form
elements corresponding to states and cities, the values as-
signed to the ‘city’ element must be cities that are located
in the state assigned to the ‘state’ element). The second
limitation is HiWE’s lack of support for partially filling out
forms; i.e., providing values only for some of the elements
in a form.

References
[1] BrightPlanet.com. http://www.brightplanet.com.

[2] The Deep Web: Surfacing Hidden Value.
http://www.completeplanet.com/Tutorials/DeepWeb/.

[3] S. Chakrabarti, M. van den Berg, and B. Dom. Fo-
cused crawling: A new approach to topic-specific web
resource discovery. InProc. of the8th Intl. WWW
Conf., 1999.

[4] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proc. of the26th Intl. Conf. on Very Large Databases,
2000.

[5] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. InProc. of the ACM
SIGMOD Conf. on Management of Data, 2000.

[6] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through url ordering. InProc. of the7th Intl.
WWW Conf., 1998.

[7] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles,
and M. Gori. Focused crawling using context graphs.
In Proc. of the 26th Intl. Conf. on Very Large
Databases, pages 527–534, Sept. 2000.

[8] D. Florescu, A. Y. Levy, and A. O. Mendelzon.
Database techniques for the world-wide web: A sur-
vey. SIGMOD Record, 27(3):59–74, 1998.

[9] W. B. Frakes and R. Baeza-Yates.Information Re-
trieval Data Structures & Algorithms. Prentice Hall,
Englewood Cliffs, N.J., 1992.

[10] A. Heydon and M. Najork. Mercator: A scalable,
extensible Web crawler.World Wide Web, 2(4):219–
229, Dec. 1999.

[11] InvisibleWeb.com. http://www.invisibleweb.com.

[12] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and
A. Paepcke. Efficient web form entry on pdas.Proc.
of the10th Intl. WWW Conf., May 2001.

[13] S. Lawrence and C. L. Giles. Searching the World
Wide Web.Science, 280(5360):98, 1998.

[14] S. Lawrence and C. L. Giles. Accessibility of infor-
mation on the web.Nature, 400:107–109, 1999.

[15] D. Lopresti and A. Tomkins. Block edit models for
approximate string matching.Theoretical Computer
Science, 181(1):159–179, July 1997.

[16] A. McCallum, K. Nigam, J. Rennie, and K. Sey-
more. Building domain-specific search engines
with machine learning techniques. InProc. of the
AAAI Spring Symposium on Intelligent Agents in Cy-
berspace, 1999.

[17] R. C. Miller and K. Bharat. Sphinx: a framework for
creating personal, site-specific web crawlers. InProc.
of the7th Intl. WWW Conf., 1998.

[18] Open directory. http://www.dmoz.org.

[19] Y. Papakonstantinou, H. Garcia-Molina, A. Gupta,
and J. Ullman. A query translation scheme for
rapid implementation of wrappers. InProc. of the
4th Intl. Conf. on Deductive and Object-Oriented
Databases, pages 161–186, National University of
Singapore(NUS), Singapore, 1995.

[20] S. Raghavan and H. Garcia-Molina. Crawling the hid-
den web. Technical Report 2000-36, Computer Sci-
ence Dept., Stanford University, Dec. 2000. Available
at http://dbpubs.stanford.edu/pub/2000-36.

[21] Whizbang! labs. http://www.whizbanglabs.com.

[22] Yahoo incorporated. http://www.yahoo.com.

[23] H.-J.Zimmermann.Fuzzy Set Theory. Kluwer Aca-
demic Publishers, 1996.

