
Visual Web Information Extraction with Lixto∗

Robert Baumgartner Sergio Flesca Georg Gottlob

DBAI, TU Wien DEIS, Università della Calabria DBAI, TU Wien

Favoritenstr. 9 Via Pietro Bucci, 41C-42C Favoritenstr. 9

1040 Vienna 87030 Rende (CS) 1040 Vienna

Austria Italy Austria

baumgart@dbai.tuwien.ac.at flesca@deis.unical.it gottlob@dbai.tuwien.ac.at

Abstract

We present new techniques for supervised
wrapper generation and automated web infor-
mation extraction, and a system called Lixto
implementing these techniques. Our system
can generate wrappers which translate rele-
vant pieces of HTML pages into XML. Lixto,
of which a working prototype has been imple-
mented, assists the user to semi-automatically
create wrapper programs by providing a fully
visual and interactive user interface. In this
convenient user-interface very expressive ex-
traction programs can be created. Internally,
this functionality is reflected by the new logic-
based declarative language Elog. Users never
have to deal with Elog and even familiarity
with HTML is not required. Lixto can be used
to create an “XML-Companion” for an HTML
web page with changing content, containing
the continually updated XML translation of
the relevant information.

1 Introduction and Motivation

Nowadays web content is mainly formatted in HTML.
This is not expected to change soon, even if more
flexible languages such as XML are attracting a lot
of attention. While both HTML and XML are lan-
guages for representing semistructured data, the first
is mainly presentation-oriented and is not really suited

∗All new methods and algorithms presented in this paper
are covered by a pending patent. Future developments of Lixto
will be reported at www.lixto.com.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

for database applications. XML, on the other hand,
separates data structure from layout and provides
a much more suitable data representation (cf. e.g.
[1, 16]). A set of XML documents can be regarded as a
database and can be directly processed by a database
application or queried via one of the new query lan-
guages for XML, such as XML-GL [7], XML-QL [10]
and XQuery [8]. As the following example shows, the
lack of accessibility of HTML data for querying has
dramatic consequences on the time and cost spent to
retrieve relevant information from web pages.

Imagine you would like to monitor interesting eBay
offers (www.ebay.com) of notebooks, where an inter-
esting offer is, for example, defined by an auction item
which contains the word “notebook”, has current value
between gbp 1500 and 3000 and which has received at
least three bids so far. The eBay site does not offer the
possibility to formulate such complex queries. Similar
sites do not even give restricted query possibilities and
leave you with a large number of result records organ-
ised in a huge table split over many web pages. You
have to wade through all these records manually, be-
cause of no possibility to further restrict the result.
Another drawback is that you cannot directly collect
information of different auction sites (e.g. onetwosold
and ebay items together) into a single structured file,
a difficult task of web information integration due to
very different presentation on each site.

The solution is thus to use wrapper technology to
extract the relevant information from HTML docu-
ments and translate it into XML which can be easily
queried or further processed. Based on a new method
of identifying and extracting relevant parts of HTML
documents and translating them to XML format, we
designed and implemented the efficient wrapper gen-
eration tool Lixto, which is particularly well-suited for
building HTML/XML wrappers and introduces new
ideas and programming language concepts for wrap-
per generation. Once a wrapper is built, it can be
applied automatically to continually extract relevant
information from a permanently changing web page.

The Lixto method and system fulfills the require-

ELOG
Program

Pattern
Instance

Base

(hierarchically
ordered)

Interactive
Pattern Builder

Extractor

(continual)

user

web
set of structural
similar pages

example set
(usually a single page)

Pattern
Instance

Base

(hierarchically
ordered)

lo
gi

c
co

nt
ro

l Controllerevents

Transformer

XML

work on XML

XML Generator /
Simple Query

System

Figure 1: Overview of the implemented Lixto System

ments specified in a very recent paper on e-commerce
tools [23]: “These tools must be targeted at typical,
non-technical content managers. In order to be us-
able, the tools must be graphical and interactive, so
that content managers see data as it is being mapped.”
Lixto’s distinctive features are summarised in the fol-
lowing. Lixto is easy to learn and use because a fully
visual and interactive user interface is provided. Nei-
ther manual fine-tuning nor knowledge of the inter-
nal language is necessary. Lixto uses straightforward
region marking and selection procedures that allow
even those users not familiar with HTML to work with
the wrapper generator. Lixto lets a wrapper designer
work directly and solely on browser-displayed example
pages, unlike other tools (see Section 6), that force the
designer to work with other document views such as,
e.g., table-views of the document or displayed HTML
parse trees, or even HTML sources. After selecting ex-
ample targets in the browser display, Lixto responds
with highlighted targets in the same display (see Sec-
tion 3). With Lixto, very expressive visual wrapper
generation is possible: It allows for extraction of tar-
get patterns based on surrounding landmarks, on the
contents itself, on HTML attributes, on the order of
appearance and on semantic and syntactic concepts.
Extraction is not limited to tokens of some document
object model, but also possible from flat strings. Mul-
tiple and single targets are treated in a uniform way.
Lixto even allows for more advanced features such as
disjunctive pattern definitions, crawling to other pages
during extraction, recursive wrapping. Moreover, the
extracted data structures do not have to strictly obey
the input HTML structure. Preliminary results on
representative web pages with using the current Lixto
prototype show a good performance (see Section 5).

The above mentioned features are internally re-
flected by a declarative extraction language called Elog
(see Section 4), which uses a datalog-like logical syn-
tax and semantics. Elog is invisible to the user. It is
ideally suited for representing and successively incre-

menting the knowledge about patterns described by
users. This knowledge is generated in an interactive
process consisting of successive narrowing (logical and)
and broadening (logical or) steps. An Elog program
is a collection of datalog-like rules containing special
extraction conditions in their bodies. Elog is flexible,
intuitive and easily extensible.

This paper is structured as follows. In the next
section the system architecture is described, in Section
3 we give an overview of the the interactive pattern
generation and visual UI, whereas Section 4 is devoted
to the theory of the Elog extraction language. Section
5 presents empirical results of using the Lixto wrapper
generator, Section 6 discusses related approaches and
Section 7 highlights future research directions.

2 Architecture and Implementation

A working prototype of Lixto already has been imple-
mented with Java using Swing, OroMatcher [22] and
JDOM [19]. The Lixto Toolkit (Figure 1) consists of
the following modules:

The Interactive Pattern Builder provides the visual
UI that allows a user to specify the desired extraction
patterns and the basic algorithm for creating a corre-
sponding Elog wrapper as output.

The Extractor is the Elog program interpreter that
performs the actual extraction based on a given Elog
program. The extractor, provided with an HTML
document and a previously constructed program, gen-
erates as its output a pattern instance base, a data
structure encoding the extracted instances as hierar-
chically ordered trees and strings. One program as
input of the extractor can be used for continual ex-
traction on changing pages, or to extract from several
HTML pages of similar structure.

With the controller of the XML Generator, the user
chooses how to map extracted information to XML.
Its transformer module performs the actual translation
from the extracted pattern instance base to XML.

3 Interactive Wrapper Generation

3.1 Creating Wrappers

A Lixto wrapper is created interactively by creating
patterns in a hierarchical order. For example, one can
first define a pattern <item> and then define a sub-
pattern <price>. The subpattern relationship in this
case expresses that each extracted instance of <price>
must occur within one instance of <item>. Pattern
names act as default XML element names. Each pat-
tern characterises one kind of information. The set
of extracted instances of a pattern, which are either
HTML elements, list of elements, or strings, depends
on the current page. Each pattern is defined by one
or more filters. A filter e.g. allows the system to iden-
tify a set of similar nodes of the HTML parse tree, for
instance a set of items internally represented as <td>.

current example target

selected
after element

current
example
source

Figure 2: The Lixto Browser

A filter is created as follows: First, the user high-
lights with the mouse a representative instance of the
desired target pattern directly on the example page.
Internally, the system associates to this instance a gen-
eralised tree path in the HTML parse tree identifying
similar instances and incorporates this as main goal of
a Elog rule representing the filter (see Section 4). Sec-
ond, the user adds restrictive conditions to the filter.
These are reflected by the system as additional goals
in the rule body describing this filter. The possible
conditions, which will be explained in more detail, in-
clude: (a) before/after conditions that express that
the target pattern instance must appear before or after
some specific element. (b) notbefore/notafter con-
ditions that express that some specific element must
not be close to the target pattern. (c) internal con-
ditions that express that some specific element must
(not) appear inside the target pattern. (d) range con-
ditions which, in case of multiple matchings, restrict
the set of matched instances to a subinterval.

Adding a filter to a pattern extends the set of ex-
tracted targets, whereas imposing a condition to a fil-
ter restricts the set of targets. Alternately imposing
conditions and adding new filters can perfectly char-
acterise the desired information. The system creates
Elog rules based on user-defined filters. The user is
never concerned with the internal language Elog. The
user interface is extremely simple and the entire wrap-
per construction process can be learned by an average
user in very short time. The user is guided through
a supervised pattern generation, and by simply mark-
ing relevant information items on-screen and visually
setting constraints, filters and patterns are created. In
[5], we describe an example program construction.

3.2 Pattern Creation Algorithm

The generation of a pattern is described in Fig. 3. The
user can hierarchically define and refine patterns. She
enters a pattern name, specifies the parent pattern S,
selects by mouse clicks one example instance s of the
parent pattern and marks (with the mouse) an element
(e.g. one price) inside this instance on the sample page.

At the beginning, i.e. when facing a new HTML
document (which is loaded into an internal browser;
see Fig. 2) and having created a new program, the

New Pattern
Generation

Input:
Parent pattern S
Output:
Child pattern T defined
as a set of rules d

Select a suitable in-
stance s of the parent

 pattern S containing an
instance of the desired

target pattern T. (I)

Highlight an instance t
 of T within s. (I) Select
characteristic attributes
of t. (I/A) System cre-
ates main rule goal of
 the desired filter. (A)

User is shown currently
 matched instances of T
within all instances of S
and asked if satisfied
(= no unwanted target

 matched).(A)

Extend filter by adding
a constraint condition
(I/A). See Condition
Builder Figure for

details.

Let d be the set of filters
so far constructed for
pattern T. Add current

filter to d. System
 adds a corresponding

rule to program. (A)

Test whether d extracts
exactly the desired set
of instances of T. (I/A)

Add d to the program
and remember all
instances of T for

future pattern
generation steps. (A)

no

yes

yes

no

pattern

filter
condition

condition

condition

∧
∨

filter ∧

Figure 3: Generation of a new Pattern

Select type of condition.
(I)

Select an element
before/after the example
instance and within the
parent instance; user is
guided by wizards. (I)

Choose attributes of selected element
to be considered (e.g. content, font-type
etc.). A wizard automatically proposes
particularly relevant attributes. (I/A).

Set the
distance
tolerance

in percent to
 left/right. (I)

Select a range by indicating the first
and last relevant target instance to be

extracted (I)

Characterise
element that is
not allowed to
appear before/

after target. (I/A)

before

after

Condition Builder

internal

range notbf notaf

adds one condit ion to a f i l ter

Select an element
inside the instance and

within the parent
instance; user is

guided by wizards. (I)

Figure 4: Adding Conditions

only pattern is <document> with a unique instance,
the current example document. Fig. 3 distinguishes
interactive (I) and automatic (A) steps and gives the
logical pattern structure in its top-left corner. A pat-
tern may consist of multiple filters. Each filter contains
a number of conditions. An extracted instance must
satisfy all conditions of at least one filter. Two con-
secutive mouse clicks on different parts of the current
parent instance are interpreted in the best possible way
to mark an HTML element of the document parse tree
(cf. Fig. 7) or if not possible a list of elements.

The system generates a basic filter without condi-
tions, but the user can already state some attribute re-
quirements (the system constructs a suitable element
path definition, see Section 4). Then it highlights all
objects on the current example page that match these
initial filter criteria (not only in the current pattern
instance, but in all pattern instances). Sometimes a
user wants a single match within one source, some-
times multiple matches – this makes no difference in
the algorithm – it just depends on the definition of fil-
ters and conditions. E.g., if the user marks a table row,
the system recognises the entity <tr> and highlights
all table rows occurring at a comparable level in the
document. At the same time the system constructs a
general Elog rule for extracting table rows.

Create the new
pattern and select
highlighted instance as
example target of first filter

open an url
used for creating
patterns

create a new pattern (naming;
enables adding of filters)

test and save the current
patterns (all its filters)

current program name or
“new program” if program
is not yet saved (hidden)

current document which is
used for program creation

current
status

Currently constructed
hierarchy of patterns

Return to
menu

navigate through
pattern instances
to select example
parent instance

A leaf node
of the pattern
tree

Choose another
pattern instead

Select
parent
pattern

pattern and
filter deletion
option menu

currently
constructed
pattern

Highlighting
Option

Figure 5: Main Menu and New Pattern Generation Menu of current prototype

If the user is satisfied with the elements identified
by the system, she can confirm the pattern definition.
Satisfaction, in this context, means that only desired
targets are matched. Otherwise, if the concept is too
general, then she can add restricting conditions (which
are reflected by Elog condition predicates); cf. Fig. 4.
For each such restriction, the system adds the corre-
sponding condition atom to the Elog rule defining the
filter at hand. Each filter is intended to extract a sub-
set of the desired target set. If the current pattern is
less general than intended by the user, another filter
can be added, internally reflected by an additional Elog
rule for the same pattern (several rules for the same
pattern are interpreted disjunctively, as usual in Data-
log). Different filters may be created based on labelling
in different example parent pattern instances. By it-
erating restricting and generalising steps, it is usually
possible to describe a desired pattern perfectly. Once
a pattern has been defined, the user may use this pat-
tern as parent for a new pattern. Recall that a detailed
creation of a simple example wrapper is given in [5].

3.3 The Visual Interface

The current implementation includes visual tree pat-
tern construction and the use of string patterns. All
filter conditions discussed in this paper are supported.
Moreover, the visual interface is assisted by an XML
visualisation tool which at each instant shows the user
the so far extracted XML code. A concept atom gen-
erator to create predefined concepts (such as “isCity”,
“isDate”) based both on regular expressions and on
reading some database tables is currently being added.
Such concepts are especially useful to allow users to
create string patterns without knowledge of regular
expressions. Fig. 5 shows the main menu of Lixto (left-
hand side). There, a new program can be created or
an existing one loaded, new patterns can be added, the
document for labelling can be chosen, etc. The same

figure shows on its right hand side the source selec-
tion dialogue which enables the user to select at which
node to create a new pattern. Fig. 2 shows the in-
ternal Lixto browser when selecting an after element.
For each condition, an own interface is provided which
uses the user-labelled information.

3.4 Translation into XML

The output by the extractor is well-suited for trans-
lation into XML. The interactive XML generator ex-
ploits the hierarchical structure of the pattern instance
base and uses pattern names as default XML element
names. The user can interactively choose the HTML
attributes that appear in the XML output. Even more
important is the possibility to decide which patterns
are written to XML, possibly using auxiliary patterns.
Fig. 9 displays the result of applying a (not illustrated)
wrapper program onto the web page of Fig. 6.

4 Extraction Language/Mechanisms

4.1 A first glance at Elog

Elog is the system-internal datalog-like rule based lan-
guage specifically designed for hierarchical and mod-
ular data extraction. A user of Lixto does not have
to learn Elog and never sees the Elog program. Elog
rules are the implementations of the visually defined
filters and define elements to be extracted from web
pages. Before we discuss the features of the language
in detail, have a look at Fig. 8, in particular at the
rule with head predicate record(S,X). Observe that
we use as in Prolog the same variables for each rule,
and denote with “ ” a variable in whose instantiations
we are not interested. This predicate identifies records
on an eBay page (each one is an own table). The first
atom in the rule body specifies that the context S of
the extraction, i.e. the so-called parent pattern, is an
instance of <tableseq>. The second atom in the rule

http://www.dbai.tuwien.ac.at/lixto.html

Figure 6: HTML Example Page

body looks for subelements that qualify as tables in-
side the unique <tableseq> instance and instantiates
X with them. Given that the same Elog program can
be applied to different web pages, the actual elements
that an Elog program defines and extracts depend on
the current web page. For this reason, we refer to the
head predicates defined by an Elog program as pat-
terns. Moreover, we denote a set of rules with the
same head as pattern, too. The syntax and seman-
tics of Elog and its predicates is explained below (only
informally due to space constraints).

4.2 Document Model

Consider the example web page lixto.html of Fig. 6
and its parse tree as displayed in Fig. 7 based on the
Java Swing parser. The values in brackets are the start
and end-offsets (in characters) of the corresponding el-
ements in the actual document. Additionally, we num-
ber nodes in a depth-first left-to-right fashion. Nodes
of the HTML tree refer to elements which are repre-
sented as sets. The set contains pairs describing the as-
sociation between attribute names and corresponding
attribute values. E.g., the <body> element node of Fig.
7 is associated with {(name,body), (bgcolor,FFFFFF),
(elementtext,Items for 137)} (whole document
text). Fig. 7 highlights two other such attribute sets.

Observe that in our chosen document object model,
several leaf elements are <content> elements – this
parser treats tags such as (bold-face) as attributes
of an imaginary <content> element. We introduced
a special attribute called “elementtext” for each ele-
ment. This attribute reflects the contents of the el-
ement, which is in case of an internal node the left-
to-right concatenation of the leaf elements below the
internal node. In the following, we distinguish tree re-
gions and subtrees of the HTML tree. A tree region is
a region rooted at an internal node of the HTML tree
where only the i-th up to the j-th child and their de-
scendants are considered. Observe that a tree region
is contiguous. A subtree is the tree rooted at one node
of the HTML tree, i.e. all descendants are considered.

4.3 Extraction Mechanisms

Lixto offers two basic mechanisms of data extraction
– tree and string extraction. For tree extraction, we
identify elements with their corresponding tree paths

(a, href = "mailto:steven@...")

 body
(6,277)

h4 p-implied p

table
(75,276)

pcontenthrcontent content

center
(23,276)

content

content tr tr tr

td

content content

p-implied

td td

2

43

5

6

1
(name, table)

(width,75%)

(border,1)
(elementtext,56 K Modem....)

(75,276)

td

content

(elementtext, Steven)

(href, "mailto:steven@...")

(name, content)

(257,263)

Figure 7: HTML Parse Tree of Example in Figure 6

and possibly some properties of the elements them-
selves. This does not necessarily identify a single ele-
ment. As an example, ?.table. ? .tr is a valid tree path.
In the sample page page of Fig. 6, three elements are
matched. The star acts as wildcard. The expression
. ? .x matches all paths to x which contain x as last
element only. A plain tree path is a sequence of con-
secutive nodes in a subtree of an HTML tree. In an
incompletely specified tree path stars may be used in-
stead of element names. For simplicity, incompletely
specified tree paths are referred to as tree paths. The
semantics of a tree path applied to a tree region of an
HTML page is defined as the set of matched elements.

Attribute Conditions are constraints reducing the
number of matched elements. They pose require-
ments on occurring attributes and their values. An
attribute condition is a triple specifying a required
name, a required value (a string, or in case the
third parameter is regvar, a regular expression possi-
bly containing some variables indicated by \var), and
a special parameter exact, substr or regvar, indicat-
ing that the attribute value is exactly the required
string, is a superstring of it, or matches the given
regular expression, respectively. Instead of giving a
formal definition, we illustrate this with an example:
(?.hr, [(size, [3 − 4]∗, regvar), (width,%, substr)]) iden-
tifies horizontal rules of size 3 or 4 with a width spec-
ified in percent. Each output variable, which is in-
cluded in the second parameter must be used as input
for a concept of the same rule (cf. Section 4.4).

An element path definition epd consists of a tree
path and a set of attribute conditions. It is called sim-
ple if it consists of one element name only. The seman-
tics of applying an element path definition to a tree
region of an HTML tree is given as the set of matched
elements of the corresponding tree path which more-
over satisfy all of the attribute conditions. Instead of
element path definitions, equivalently, XPath expres-

sions can be used (with some extensions, such as the
possibility to express that an attribute value is a con-
cept). To simplify presentation, however, we stick to
our introduced notation.

The second extraction method relies on strings. In
the HTML parse tree, strings are represented by the
text of content leaves. However, we associate a string
to every node of the parse tree available as the value of
the attribute elementtext. For instance when extract-
ing access codes of the phone-numbers of lixto.html,
string extraction has to be used. A substring of the ele-
menttext of an HTML tree is denoted as string source.
One can express that a string source must match a
given regular expression. A string path definition spd
is a regular expression possibly containing some vari-
ables (variable Y indicated by \var[Y]) which appear
in some concept predicate of the corresponding rule.
Regular expressions are powerful tools for text pro-
cessing and matching. Refer to [22] for a Java regular
expression library. Extraction generates minimal non-
overlapping substrings. The final two patterns of Fig. 8
give an example of string extraction. An attribute path
definition apd helps to extract values of attributes. It
is simply a string (expressing the attribute name).

4.4 Language Definition

Elog atoms correspond to special predicates with a
well-defined semantics. They operate on source ob-
jects (tree regions and string sources), path definition
objects and numerical arguments and obey binding
conventions. In a datalog-like language, the function
mapping a given source S to a set of elements match-
ing an epd is treated as relation subelem(S, epd,X).
subelem(s, epd, x) evaluates to true iff s is a tree re-
gion, epd is an element path definition and x is a tree
region contained in s where the root of x matches epd.
Note that the tree path specified in a tree extraction
definition predicate is always relative to the parent-
pattern instance.

Extraction definition predicates specify a set
of extraction instances. One of these is subelem.
As far as string extraction is concerned, the predi-
cate subtext(S, spd,X) is used. There, S is either
a tree region or a string source, and X a string
source. Two more extraction definition predicates
are built-in. (1) subsq(S, epd, fpd , lpd , X): If s and
x are tree regions, epd is an element path definition,
and fpd and lpd are simple element path definitions,
subsq(s, epd, fpd , lpd , x) evaluates to true iff the root
of x satisfies epd, its first child satisfies fpd and its last
one lpd . (2) subatt(S, apd,X): If s is a tree region, x
a string source and att is an attribute path definition
of the root element of s, then subatt(s, apd, x) evalu-
ates to true iff x is the value of apd. subatt gives the
possibility to extract the values of attributes.

Context condition predicates specify that some
other subtree or text must (not) appear before or af-

ter the desired extraction target. For example, on a
page with several tables, the final table could be iden-
tified by an external condition stating that no table
appears after the desired table. Before predicates are
explained here, after predicates work analogously. (1)
before(S,X, epd, b, e, Y, P): If s and x are tree regions,
then before(s, x, epd, b, e, y, p) evaluates to true iff y is a
subtree whose root node is matched by epd and the end
offset of y precedes the start offset of x within relative
distance p where b ≤ p ≤ e. (2) notbefore(S,X, epd, d):
If s and x are tree regions, then notbefore(s, x, epd, d)
evaluates to true iff no element satisfying epd precedes
x within relative distance d. The same predicates are
defined for string extraction: There, S is an arbitrary
source, X is required to be a string source, spd is used
instead of epd and instead of the root node simply the
string itself is used. The percentual distance values b
and e define the tolerance interval where the element
is allowed to occur inside the current parent-pattern
instance. Additionally, a condition predicate may con-
tain new variables Y and P , which can be referred by
other conditions. To express that an element occurs
anywhere within the parent instance and before the
target (or a condition output), the distance values are
set to 0 and 100, respectively.

Internal conditions predicates impose condi-
tions on the internal structure. Imagine, for instance,
one wants to extract all tables containing somewhere
a word typeset in italics. This can be obtained by
adding a contains condition. contains(X, epd, Y):
contains(x, epd, y) evaluates to true iff x is a tree
region (string source) containing a subtree (string
source) y where the root element of y matches epd
(where y matches spd). The firstsubtree condition is a
kind of “startswith” condition that states that the first
subtree of a tree region should contain a particular el-
ement. firstsubtree(X,Y): firstsubtree(x, y) evaluates
to true iff y is the subtree rooted at the first child of
the tree region x. lastsubtree is defined analogously.

Concept condition predicates are semantic con-
cepts like isCountry(X) or isCurrency(X) (see Fig.
8) or syntactic ones like isDate(X) (or isDate(X,Y)
where the output Y returns a standard date format),
stating that a string X represents a date, a country, or
a currency, respectively. Some predicates are built-in
to enrich the system, however more concepts can be in-
teractively added. Syntactic predicates are created as
regular expressions, whereas semantic ones refer to an
ontological database. Moreover, Comparison Con-
ditions such as< (X,Y) allow comparison of concepts
such as two standard format dates.

Pattern predicates indicate that a source belongs
to a particular pattern and refers to a particular parent
pattern-instance. They are used in the head, and in
the rule body for referring to a parent pattern and
for further pattern references. As an example, the
<price> pattern can be constructed by using the ele-

tablesq(S, X) ← document(“www.ebay.com/”, S), subsq(S, (.body, []), (.table, []), (.table, []), X),
before(S, X, (.table, [(elementtext, item, substr]), 0, 0, ,), after(S, X, .hr, 0, 0, ,)

record(S, X) ← tableseq(, S), subelem(S, .table, X)
itemnum(S, X) ← record(, S), subelem(S, ?.td, X), notbefore(S, X, .td, 100)
itemdes(S, X) ← record(, S), subelem(S, (?.td. ? .content, [(a, , substr)], X)
price(S, X) ← record(, S), subelem(S, (?.td, [(elementtext, \var[Y].∗, regvar)]), X), isCurrency(Y)
bids(S, X) ← record(, S), subelem(S, ?.td, X), before(S, X, .td, 0, 30, Y,), price(, Y)

currency(S, X) ← price(, S), subtext(S, \var[Y], X), isCurrency(Y)
pricewc(S, X) ← price(, S), subtext(S, [0− 9]+\.[0− 9]+, X)

Figure 8: Elog Extraction Program for Information on eBay

ment path definition .?.td, and imposing the constraint
that immediately before, a target of pattern <item>
needs to occur: before(S,X, .?.td, 0, 1, Y,), item(, Y).

Range Conditions restrict the matched targets
depending on their order of appearance. To any rule,
a range condition such as “[3,7]” can be added, indi-
cating that only the third up to the seventh matched
instance within each parent instance are matched.

4.5 Elog Extraction Programs

A standard extraction rule looks as follows:
New(S,X) ← Par(, S), Ex(S,X), Co(S,X, . . .)[a, b],
where S is the parent instance variable, X is the
pattern instance variable, Ex (S,X) is an extraction
definition atom, and the optional Co(S,X) are further
imposed conditions. A tree (string) extraction rule
uses a tree (string) extraction definition atom and
possibly some tree (string) conditions and general
conditions. The numbers a and b are optional and
serve as range parameters. New and Par are pat-
tern predicates referring to the parent pattern and
defining the new pattern, respectively. The above
standard rule reflects the principle of aggregation.
In an extended environment, we moreover allow
specialisation rules such as: greentable(S,X) ←
table(S,X), contains(X, (.td, [color, green, exact]),).
Additionally, an extended environment contains doc-
ument filters, using a getDocument(S,X) atom, where
S is a string source representing an URL, and X the
web page the URL points to. With such filters, one
can crawl to further documents. If document filters
are used, each program has an initial filter using the
getDocument atom with user-specified input.

The semantics of a rule is given as the set of
matched targets x: A substitution s, x for S and X
evaluates New(s, x) to true if all atoms of the body
are true for this substitution. Only those targets are
extracted for which the head of the rule resolves to
true. Moreover, if the extraction definition predicate
is a subsequence predicate, only minimal rule outputs
are matched (i.e. instances that do not contain any
other instances). Observe that range criteria are ap-
plied after non-minimal targets have been sorted out.

A pattern is a set of extraction rules defining the
same head and referring to the same parent pattern.
In the visual pattern generation the user first enters a
pattern name and to which parent pattern the pattern
belongs. All rules created inside the pattern use this
information. We distinguish tree and string patterns.
To the first, only tree extraction rules can be asserted,
to the second one only string extraction rules. The
root pattern <document> is a special pattern without
filters. If using document filters to crawl to further web
pages, document patterns are used as third pattern
type (and an initial document filter is used). Parents
of tree patterns are either tree or document patterns,
parent of string patterns are tree or string patterns,
and parent of document patterns are string patterns.
A pattern acts like a disjunction of rule bodies: To be
an extracted instance of a pattern, a target needs to
be in the solution set of at least one rule. The pat-
tern output additionally obeys a minimality criterion.
In patterns, even in those consisting of a single rule,
overlapping targets may occur.

An extraction program P is a set of patterns. Elog
program evaluation differs from Datalog evaluation in
the following three aspects: built-in predicates, vari-
ous kinds of minimisation, and use of range conditions.
Moreover, the atoms are not evaluated over an exten-
sional database of facts representing a web page, but
directly over the parse tree of the web page. Applying
a program to an HTML page creates a set of hierarchi-
cally ordered tree regions and string sources (called a
pattern instance base) by applying all patterns of the
program in their hierarchical order to this HTML doc-
ument (and possibly to further HTML documents if
document filters are used). Each pattern produces a
set of instances. Each pattern instance contains a ref-
erence to its parent instance. As patterns are ordered
in a strictly hierarchical way, the program is hierarchi-
cally stratified. In the final section we will relax the
definition of patterns to create recursive programs.

As example program consider a wrapper for eBay
pages (Fig. 8). On eBay pages, every offered item is
stored in its own table extracted by <record>; further
patterns are all defined within such a record. The pat-

<?xml version="1.0" encoding="UTF-8"?>
<document>
<heading>Items for Sale</heading>
<description>3 items found for "Notebooks".

Showing Item 1 to 3.</description>
<entry>

<article>56 K Modem PCMCIA Card for
Notebooks</article>

<price>$ 20</price>
<person href="mailto:itsme@bestseller.org">

Angie</person>
<phone>(01)-314 159</phone>
<picture/>

</entry>
[...]

Figure 9: XML translation of lixto.html

tern <price> uses a concept attribute, namely isCur-
rency – which matches strings like $, DM, Euro, etc.
The <bids> pattern uses a reference to the <price>
pattern. The final two patterns are string patterns.

5 Testing the Lixto Tool

We chose twelve example sites (Table 1), some of which
were already used for testing purposes by other wrap-
per generators. Several users of whom not all are fa-
miliar with details of HTML contributed to our test
results. Initially, we asked them to create a wrapper
based on a single example page. Table 2 summarises
answers to the following questions: (1) Is it possible to
wrap this page with Lixto? (2) How “complex” is the
constructed program for this site? (ratio of required
predicates to used output patterns) (3) What is the
percentage of correctly wrapped pattern instances of a
number of randomly chosen similarly structured test-
pages with a wrapper written on one example page
only. (4) How many example pages are necessary (due
to structural deviations) to get 100 percent of correctly
matched pattern instances? (5) Moreover, we specify
the time needed for constructing the initial wrapper
based on one example page. Additionally, the time for
constructing one output pattern is computed to gain
a measure how much “thinking time” was required for
each output pattern. (6) In the last row the depth of
the pattern tree is specified.

Let us describe some more details: On eBay, the
initial wrapper worked well on almost all test pages
like queries on cars, football, etc. However, one fil-
ter rule of <date> required that dates must contain a
colon and a dash. This matched one item description,
too, which used both. Hence, the pattern had to be
refined based upon the knowledge of this second page
to match 100% of the patterns of all example pages.
For the CIA Factbook, the user chose a bad example
page with only one bordering country. Even after im-
proving the wrapper to deal with comma-separated
counries, Albania had to be treated in a special way.
The wrapper for DBLP relies on a number of interme-
diate auxiliary patterns, indicated by the high nesting

depth of the document. For the CNN pages of the US
election results per state, a wrapper just extracting
names of president candidates and the received votes
was written in a few minutes; due to a very homo-
geneous structure, one example page was sufficient to
extract these data for all states. The Jobs Jobs Jobs
site is the only example where the number of needed
sample pages depends on the number of testpages due
to a wide variety of structures for job offers. For the
Perl Module List we are merely interested in writing
a wrapper for a single web page. This list uses mainly
preformatted text, hence the program heavily relies on
string extraction. In the current implementation some
auxiliary patterns are needed, and some clever con-
structions to obtain a 100% match for the five chosen
patterns (module group, leaf patterns name, DSLI, de-
scription, info). We conclude that almost all web pages
can be visually wrapped with Lixto. For none of the
test pages the user had to modify the Elog program
manually. Wrapper construction is usually very fast.
The program length measured in used predicates is
never unreasonably large compared to the output pat-
terns (ranging from 1.78 to 4.4). The user never had
to consider more than three example pages to get a
100% match for all testpages.

6 Related Work

First, we give an overview of approaches less related
to Lixto because they do not provide visual sup-
port. Stand-alone wrapper programming languages in-
clude Florid [18] (using a logic-programming formal-
ism), Pillow [6] (an HTML/XML programming library
for logic programming systems), Jedi [13] (using at-
tributed grammars), Tsimmis and Araneus. In Tsim-
mis [11], the extraction process is based on a procedu-
ral program which skips to the required information,
allows temporary storages, split and case statements,
and to follow links. However, the wrapper output has
to obey the document structure. In Araneus [3], a
user can create relational views from web pages by
computationally fast and advanced text extracting and
restructuring formalisms, in particular using procedu-
ral “Cut and Paste” exception handling inside regular
grammars. In general, all manual wrapper generation
languages are difficult to use by laypersons.

Machine learning approaches rely on learning from
examples and counterexamples of a large number of
web pages. Stalker [20] specialises general SkipTo
sequence patterns based on labelled HTML pages.
An approach to maximise specific patterns is intro-
duced by Davulcu et al. [9]. Other examples in-
clude Softmealy [12] (using finite-state transducers)
and MIA [24] (prolog-based wrappers using anti-
unification; neural networks to generalise and learn
texts). NoDoSe ([2]) extracts information from plain
string sources and provides a user interface for exam-
ple labelling. It has restricted capabilities to deal with

Name Website Used Example Page Testpages
Amazon http://www.amazon.com/ Lord of the Rings 10

CIA Factbook www.odci.gov/cia/publications/factbook/ United Kingdom 12
Cinemachine www.cinemachine.com/ The World is not enough 15

DBLP www.informatik.uni-trier.de/~ley/db/ Michael Ley 10
Election Res. / State www.cnn.com/ELECTION/2000/results/ Alabama 50

eBay www.ebay.com/ query on Notebooks 20
Excite Weather www.excite.com/weather/forecast London (UK) 12
Jobs-Jobs-Jobs www.jobsjobsjobs.com/ 23370 10

Perl Module List www.cpan.org/modules/00modlist.long.html single huge page ex.pg.
Travelnotes www.travelnotes.org/ query on Istanbul 10

Yahoo People Email people.yahoo.com/ query on Mayer 15
Yahoo Weather weather.yahoo.com/ Paris 15

Table 1: Some of the test-sites used for Lixto

Name wrapable? Complexity Correct for 100% Time/Pattern (mins) Depth
Amazon yes 16/9 = 1.78 95% 3 22/9 = 2.44 4

CIA Factbook yes 17/5 = 3.4 80% 3 18/5 = 3.6 3
Cinemachine yes 6/4 = 1.5 100% 1 16/4 = 4 2

DBLP yes 27/9 = 3 90% 2 54/9 = 6 8
Election Results / State yes 4/2 = 2 100% 1 6/2 = 3 2

eBay yes 19/8 = 2.38 99.9% 2 21/8 = 2.63 4
Excite Weather yes 22/7 = 3.14 100% 1 30/7 = 4.3 3
Jobs Jobs Jobs yes 21/12 = 1.75 90% 3 40/12 = 3.3 2

Perl Module List yes 22/5 = 4.4 (100 %) (1) 60/5 = 14 6
Travelnotes yes 11/4 = 2.75 95% 2 20/4 = 5 2

Yahoo People Email yes 10/3 = 3.3 100% 1 24/3 = 8 3
Yahoo Weather yes 22/10 = 2.2 100% 1 12/10 = 1.2 3

Table 2: Evaluation of wrapper generation

HTML. Kushmerick et al. [15] create robust wrappers
based on predefined extractors; their visual support
tool WIEN receives a set of training pages, where
the user can label relevant information and the system
tries to learn a wrapper. Their approach does not use
HTML parse trees. Kushmerick also contributed to
the wrapper verification problem [14], an issue worth
to explore w.r.t. Elog, too. In general, drawbacks
of machine-learning approaches are limited expressive
power and the large number of required example pages.

Supervised interactive wrapper generation tools in-
clude W4F [21] and XWrap [17]. W4F uses an SQL-
like query language called HEL. Parts of the query can
be generated using a visual extraction wizard which is
limited to returning the full DOM tree path of an el-
ement. However, the full query must be programmed
by the user manually. Hence, W4F requires exper-
tise with both HEL and HTML. HEL requires tricky
use of index variables and fork constructs to correctly
describe a complex pattern structure. XWrap uses a
procedural rule system and provides limited expressive
power for pattern definition. The user cannot label
regions in documents as flexible as in Lixto. XWrap
lacks visual facilities for imposing external or internal
conditions to a pattern, but instead is rather template-
based. The division into two description levels and

the automatic hierarchical structure extractor severely
limit the ways to define extraction patterns (e.g. it is
impossible to describe pattern disjunctions). Hence,
in general, other supervised wrapper generation tools
require manual postprocessing and do not offer the
browser-displayed document for labelling.

7 Current/Future Work

It is currently already possible to write and execute
Elog programs that can crawl to other pages, i.e. fol-
low links during extraction, and can recursively wrap
linked sequences of web pages. For such applications,
the pattern structure does no longer form a tree be-
cause filters of one pattern definition may refer to dif-
ferent parent patterns (in a similar fashion as recursive
data types). For example, recursive Elog programs
may follow a “next” button and navigate to further
pages during extracting, while extracting instances of
the same patterns. See Fig. 10 for extending the eBay
example of Fig. 8 to follow a “next” button, and ex-
tract for each page the same kind of information. In
this example, the pattern <document> has an initial
filter which uses the user-provided page ($1), and an
additional filter, which uses <nexturl> as parent pat-
tern (whose instances are strings representing URLs).

next(S, X) ← document(, S), subelem(S, (?.content, [(a, , substr), (elementtext, Next, exact)]), X)
nexturl(S, X) ← next(, S), subatt(S, href, X)
document(S, X) ← getDocument($1, X)
document(S, X) ← nexturl(, S), getDocument(S, X)

Figure 10: Recursive Extension of the Elog program of Figure 8

Web crawling and recursion in Lixto is described in
more detail in [4]. Currently we are extending the in-
teractive pattern builder to cover these aspects. Fur-
thermore, a server-based Lixto version is currently be-
ing implemented – it uses simple web interfaces and
works in the user’s favourite browser. Future work
focuses on automation heuristics for optional use, in-
cluding to work on multiple example targets at once.
Additionally, Lixto wrappers will be embedded into a
personalisable information channel system.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data
on the Web - From Relations to Semistructured
Data and XML. Morgan Kaufmann, 2000.

[2] B. Adelberg. NoDoSE - a tool for semi-
automatically extracting semi-structured data
from text documents. In Proc. SIGMOD, 1998.

[3] P. Atzeni and G. Mecca. Cut and paste. In Proc.
PODS, 1997.

[4] R. Baumgartner, S. Flesca, and G. Gottlob.
Declarative information extraction, web crawling
and recursive wrapping with Lixto. To appear in
Proc. LPNMR, 2001.

[5] R. Baumgartner, S. Flesca, and G. Gottlob. Su-
pervised wrapper generation with Lixto. To ap-
pear in Proc. VLDB Demo, 2001.

[6] D. Cabeza and M. Hermenegildo. Distributed
WWW programming using (Ciao-)Prolog and the
PiLLoW library. TPLP, 1(3), 2001.

[7] S. Ceri, S. Comai, E. Damiani, P. Fraternali,
S. Paraboschi, and L. Tanca. XML-GL: a graphi-
cal query language for querying and restructuring
XML documents. In Proc. WWW Conf., 1999.

[8] D. Chamberlin and al. (Eds.). XQuery: A query
language for XML. http://www.w3.org, 2001.

[9] H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakr-
ishnan. Computat. aspects of resilient data ex-
tract. from semistr. sources. In Proc. PODS, 2000.

[10] D. Florescu, A. Deutsch, A. Levy, D. Suciu, and
M. Fernández. A query language for XML. In
Proc. 8th Intern. WWW Conference, 1999.

[11] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting semistructured in-
formation from the web. In Proc. Workshop on
Mang. of Semistructured Data, 1997.

[12] C-N. Hsu and M.T. Dung. Generating finite-
state transducers for semistructured data extrac-
tion from the web. Information Syst., 23/8, 1998.

[13] G. Huck, P. Fankhauser, K. Aberer, and E.J.
Neuhold. JEDI: Extracting and synthesizing in-
formation from the web. In Proc. COOPIS, IEEE
CS Press, 1998.

[14] N. Kushmerick. Wrapper verification. World
Wide Web Journal, 2000.

[15] N. Kushmerick, D. Weld, and R. Doorenbos.
Wrapper induction for information extraction. In
Proc. IJCAI, 1997.

[16] A.Y. Levy and D.S. Weld. Intelligent internet
systems. Artificial Intelligence, 118(1-2), 2000.

[17] L. Liu, C. Pu, and W. Han. XWrap: An ex-
tensible wrapper construction system for internet
information. In Proc. ICDE, 2000.

[18] W. May, R. Himmeröder, G. Lausen, and
B. Ludäscher. A unified framework for wrapping,
mediating and restructuring information from the
web. In WWWCM. Sprg. LNCS 1727, 1999.

[19] B. McLaughlin and J. Hunter. jdom.org Package.
http://www.jdom.org/.

[20] I. Muslea, S. Minton, and C. Knoblock. A hier-
archical approach to wrapper induction. In Proc.
3rd Intern. Conf. on Autonomous Agents, 1999.

[21] A. Sahuguet and F. Azavant. Building light-
weight wrappers for legacy web data-sources using
W4F. In Proc. VLDB, 1999.

[22] D.F. Savarese. OROmatcher - Regular Expres-
sions for Java. http://www.savarese.org/oro/.

[23] M. Stonebraker and J. Hellerstein. Content inte-
gration for e-business. In Proc. Sigmod, 2001.

[24] B. Thomas. Anti-unification based learning of T-
wrappers for information extraction. In Workshop
on Machine Learning for IE, 1999.

