
RoadRunner: Towards Automatic Data Extraction from
Large Web Sites

Valter Crescenzi Giansalvatore Mecca Paolo Merialdo

Università di Roma Tre Università della Basilicata Università di Roma Tre
crescenz@dia.uniroma3.it mecca@unibas.it merialdo@dia.uniroma3.it

Abstract

The paper investigates techniques for extracting

data from HTML sites through the use of auto-

matically generated wrappers. To automate the

wrapper generation and the data extraction pro-

cess, the paper develops a novel technique to com-

pare HTML pages and generate a wrapper based

on their similarities and differences. Experimental

results on real-life data-intensive Web sites con-

firm the feasibility of the approach.

1 Introduction

The amount of information that is currently available
on the net in HTML format grows at a very fast pace,
so that we may consider the Web as the largest “knowl-
edge base” ever developed and made available to the
public. However HTML sites are in some sense modern
legacy systems, since such a large body of data can-
not be easily accessed and manipulated. The reason
is that Web data sources are intended to be browsed
by humans, and not computed over by applications.
XML, which was introduced to overcome some of the
limitations of HTML, has been so far of little help in
this respect. As a consequence, extracting data from
Web pages and making it available to computer appli-
cations remains a complex and relevant task.

Data extraction from HTML is usually performed
by software modules called wrappers. Early ap-
proaches to wrapping Web sites were based on man-
ual techniques [2, 9, 17, 4, 11]. A key problem with
manually coded wrappers is that writing them is usu-
ally a difficult and labor intensive task, and that by

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

their nature wrappers tend to be brittle and difficult
to maintain.

This paper develops a novel approach to the data
extraction problem: our goal is that of fully automat-
ing the wrapper generation process, in such a way that
it does not rely on any a priori knowledge about the
target pages and their contents. From this attempt
come the main elements of originality with respect to
other works in the field, as discussed in the following
section.

2 Overview and Contributions

Target of this research are the so-called data-intensive
Web sites, i.e., HTML-based sites with large amounts
of data and a fairly regular structure. Generating a
wrapper for a set of HTML pages corresponds to in-
ferring a grammar for the HTML code – usually a reg-
ular grammar – and then use this grammar to parse
the page and extract pieces of data. Grammar infer-
ence is a well known and extensively studied problem
(for a survey of the literature see, for example, [15]).
However, regular grammar inference is a hard prob-
lem: first, it is known from Gold’s works [6] that
regular grammars cannot be correctly identified from
positive examples alone; also, even in the presence of
both positive and negative examples, there exists no
efficient learning algorithm for identifying the mini-
mum state deterministic finite state automaton that
is consistent with an arbitrary set of examples [7]. As
a consequence, the large body of research that origi-
nated from Gold’s seminal works has concentrated on
the development of efficient algorithms that work in
the presence of additional information (typically a set
of labeled examples or a knowledgeable teacher’s re-
sponses to queries posed by the learner).

The fact that regular expressions cannot be learned
from positive examples alone, and the high com-
plexity of the learning even in the presence of ad-
ditional information have limited the applicability of
the traditional grammar inference techniques to Web
sites, and have recently motivated a number of prag-
matical approaches to wrapper generation for HTML

pages. These works have attacked the wrapper gener-
ation problem under various perspectives, going from
machine–learning [18, 12, 10, 14] to data mining [1, 16]
and conceptual modeling [5]. Although these propos-
als differ in the formalisms used for wrapper specifica-
tion, they share a number of common features:
1. First, the wrapper generator works by using addi-
tional information, typically a set of labeled samples
provided by the user or by some other external tool;
the wrapper is inferred by looking at these positive
examples and trying to generalize them.
2. Second, it is usually assumed that the wrapper
induction system has some a priori knowledge about
the page organization, i.e., about the schema of data
in the page; most works assume that the target pages
contain a collection of flat records; in other cases [1]
the system may also handle nested data, but it needs
to know what are the attributes to extract and how
they are nested.
3. Finally, these systems generate a wrapper by ex-
amining one HTML page at a time.

This paper investigates the wrapper generation
problem under a new perspective. In particular, we
aim at automating the wrapper generation process to
a larger extent and our approach clearly departs from
the ones in the literature in several respects:
1. Our system does not rely on user-specified exam-
ples, and does not require any interaction with the user
during the wrapper generation process; this means
that wrappers are generated and data are extracted
in a completely automatic way;
2. The wrapper generator has no a priori knowledge
about the page contents, i.e., it does not know the
schema according to which data are organized in the
HTML pages: this schema will be inferred along with
the wrapper; moreover, our system is not restricted to
flat records, but can handle arbitrarily nested struc-
tures;
3. We propose a novel approach to wrapper infer-
ence for HTML pages; in order to tell meaningful pat-
terns from meaningless ones, our system works with
two HTML pages at a time; pattern discovery is based
on the study of similarities and dissimilarities between
the pages; mismatches are used to identify relevant
structures.

2.1 Data Extraction in RoadRunner

Pages in data-intensive sites are usually automatically
generated: data are stored in a back-end DBMS, and
HTML pages are produced using scripts – i.e., pro-
grams – from the content of the database. To give a
simple but fairly faithful abstraction of the semantics
of such scripts, we can consider the page-generation
process as the result of two separated activities: (i)
first, the execution of a number of queries on the un-
derlying database to generate a source dataset, i.e. a

set of tuples of a possibly nested type that will be
published in the site pages; (ii) second, the serializa-
tion of the source dataset into HTML code to produce
the actual pages, possibly introducing URLs links, and
other material like banners or images. We call a class
of pages in a site a collection of pages that are gener-
ated by the same script.

We may formulate the problem studied in this paper
as follows: “given a set of sample HTML pages belong-
ing to the same class, find the nested type of the source
dataset and extract the source dataset from which the
pages have been generated.” These ideas are clarified
in Figures 1 and 2, which refers to a fictional bookstore
site. In that example, pages listing all books by one
author are generated by a script; the script first queries
the database to produce a nested dataset in which each
tuple contains data about one author, her/his list of
books, and for each book the list of editions; then, the
script serializes the resulting tuples into HTML pages
(Figure 1). When run on these pages, our system will
compare the HTML codes of the two pages, infer a
common structure and a wrapper, and use that to ex-
tract the source dataset. Figure 2 shows the actual
output of the system after it is run on the two HTML
pages in the example. The dataset extracted is pro-
duced in HTML format. As an alternative, it could be
stored in a database.

http://www.csbooks.com/author?John+Smith

http://www.csbooks.com/author?Paul+Jones

Figure 1: Input HTML Pages

As it can be seen from the figure, the system infers
a nested schema from the pages. Since the original
database field names are generally not encoded in the
pages and this schema is based purely on the content

Figure 2: Data Extraction Output

of the HTML code, it has anonymous fields (labeled
by A, B, C, D, etc. in our example), which must be
named manually after the dataset has been extracted;
one intriguing alternative is to try some form of post-
processing of the wrapper to automatically discover
attribute names. However, this is a separate research
problem; for space and simplicity reasons we don’t deal
with it in this work.

3 Theoretical Background

The theoretical roots of this study can be traced back
to a previous paper [8]; in the present work, we build
on that theoretical setting, and concentrate on the de-
velopment of actual algorithms for wrapper genera-
tion and data extraction from large HTML sites. The
main intuition behind our work is that the site genera-
tion process can be seen as an encoding of the original
database content into strings of HTML code; as a con-
sequence, we see data extraction as a decoding process.

We may summarize the theoretical grounds estab-
lished in [8] as follows. First, we concentrate on nested
types, built by arbitrarily nesting list and tuple con-
structors; due to the fact that data items in HTML
strings are inherently ordered, in the following we will
blur the distinction between ordered and unordered
collections. Null values are allowed in type instances.
In [8], the schema finding and data extraction problem
presented above was formalized as the problem of re-
discovering the nested type of a collection of instances
encoded as strings for storage purposes, and decoding
the original instances from their encoded versions.

To solve the problem, a lattice–theoretic approach is
proposed. This is based on a close correspondence be-
tween nested types and union–free regular expressions.
Given a special symbol #PCDATA, and an alphabet of
symbols Σ not containing #PCDATA, a union-free regu-
lar expression (UFRE) over Σ is a string over alphabet
Σ ∪ {#PCDATA, ·,+, ?, (,)} defined as follows. First, the
empty string, ε and all elements of Σ ∪ {#PCDATA} are

union-free regular expressions. If a and b are UFRE,
then a · b, (a)+, and (a)? are UFRE. The semantics of
these expressions is defined as usual, + being an iter-
ator and (a)? being a shortcut for (a|ε) (denotes op-
tional patterns). We shall also use (a)∗ as a shortcut
for ((a)+)?. The class of union-free regular expressions
fits well to this framework since it has a straightfor-
ward mapping to nested types (#PCDATA map to string
fields, + map to lists, possibly nested, ? map to nullable
fields). In the following, with an abuse of notation,
we will use (A, B, C, . . .)+ to refer to a type which
is a (non empty) list of tuples of the form (A:string,

B:string, C:string, . . .); (A, B, C, . . .)∗ will refer to
lists that may be empty. We show in [8] that, given a
UFRE σ, the corresponding nested type, τ = type(σ)
can be reconstructed in linear time.

Note that, although nested types and UFREs are far
from catching the full diversity of structures present in
HTML pages, they have been shown [3] to be a promis-
ing abstraction for describing the structure of pages
in fairly regular Web sites. One obvious alternative
could be that of enriching the type system and the
grammar formalism by introducing disjunctions, i.e.,
union operators. However, as discussed above, this
would strongly increase the complexity of the wrapper
inference process.

Based on the correspondence between nested types
and UFREs, it is possible to show that, given a set
of HTML strings s1, s2, . . . sk, corresponding to en-
codings of a source dataset, i.e., of a collection of
instances i1, i2, . . . ik of a nested type τ , we can dis-
cover the type τ by inferring the minimal union-free
regular expression σ whose language, L(σ), contains
the strings s1, s2, . . . sk, and then taking τ = type(σ).
Also, we can use σ as a wrapper to parse s1, s2, . . . sk

and reconstruct the source dataset i1, i2, . . . ik. There-
fore, solving the schema finding and data extraction
process amounts to finding the minimal UFRE (if
this exists) whose language contains the input HTML
strings, s1, s2, . . . sk. If we consider a lattice of UFRE
with a containment relationship, such that σ1 ≤ σ2

iff L(σ1) ⊆ L(σ2), then the UFRE we look for is
the least upper bound of the input strings, i.e., σ =
lub(s1, s2, . . . sk). Since it is known that operator lub
is associative, this in turn amounts to computing the
least upper bound of UFREs σ1 and σ2, lub(σ1, σ2).

Based on the these ideas, the overall schema find-
ing and data extraction process can be solved by itera-
tively computing least upper bounds on the RE lattice
to generate a common wrapper for the input HTML
pages. It should be apparent, at this point, that a
crucial problem in solving the data extraction prob-
lem consists in finding algorithms for computing the
least upper bound of two UFREs. In this paper, we
concentrate on this problem, and develop an algorithm
match(σ1, σ2) to compute the least upper bound of
UFREs σ1 and σ2, as described in the next section. A

number of experiments on real-life data-intensive Web
sites show the effectiveness of the proposed approach,
as discussed in Section 5.

4 The Matching Technique

This section is devoted to the presentation of algorithm
match. It is based on a matching technique called
ACME, for Align, Collapse under Mismatch, and Ex-
tract, which we describe in the following.

To avoid errors and missing tags in the sources, we
assume that the HTML code complies to the XHTML
specification, a restrictive variant of HTML in which
tags are required to be properly closed and nested
(there is no significant loss of generality in this hy-
pothesis, since several tools are available to turn an
HTML page into an XHTML one). We also assume
that sources have been pre-processed by a lexical ana-
lyzer to transform them into lists of tokens; each token
is either an HTML tag or a string value (see Figure 3,
in which the two HTML samples have been trans-
formed into lists of 20 and 27 tokens, respectively).

The matching algorithm works on two objects at
a time: (i) a list of tokens, called the sample, and
(ii) a wrapper, i.e., one union-free regular expression.
Given two HTML pages (called page 1 and page 2), to
start we take one of the two, for example page 1, as
an initial version of the wrapper; then, the wrapper is
progressively refined trying to find a common regular
expression for the two pages. This is done by solving
mismatches between the wrapper and the sample.

The matching algorithm consists in parsing the
sample using the wrapper. A mismatch happens when
some token in the sample does not comply to the gram-
mar specified by the wrapper. Mismatches are very
important, since they help to discover essential infor-
mation about the wrapper. Whenever one mismatch
is found, we try to solve the mismatch by generaliz-
ing the wrapper. The algorithm succeeds if a common
wrapper can be generated by solving all mismatches
encountered during the parsing.

4.1 Mismatches

There are essentially two kinds of mismatches that
can be generated during the parsing: (a) String mis-
matches, i.e., mismatches that happen when different
strings occur in corresponding positions of the wrap-
per and sample. (b) Tag mismatches, i.e., mismatches
between different tags on the wrapper and the sample,
or between one tag and one string. In the following
paragraphs we discuss how mismatches can be solved,
with the help of the simple example in Figure 3. At the
end of this section we will generalize the technique and
show how it can be applied to more complex examples
that are closer to real sites.

String Mismatches: Discovering Fields It can
be seen that, if the two pages belong to the same class,

string mismatches may be due only to different val-
ues of a database field. Therefore, these mismatches
are used to discover fields (i.e., #PCDATA). Figure 3
shows several examples of string mismatches during
the first steps of the parsing. Consider, for exam-
ple, strings ’John Smith’ and ’Paul Jones’ at token
4. To solve this string mismatch, we simply need to
generalize the wrapper to mark the newly discovered
field: in this case, the wrapper, which initially equals
page 1, is generalized by replacing string ’John Smith’

by #PCDATA. The same happens a few steps after for
’Database Primer’ and ’XML at Work’.

It is worth noting that constant strings in the two
pages, like ’Books of:’ at token 2, do not originate
fields in the wrapper. These are rather considered as
additional information added by the generating script
as part of the HTML layout.

Tag Mismatches: Discovering Optionals Tag
mismatches are used to discover iterators and option-
als. In the presence of such mismatches, our strategy
consists in looking for repeated patterns (i.e., patterns
under an iterator) as a first step, and then, if this at-
tempt fails, in trying to identify an optional pattern.
Let us first discuss how to look for optionals based
on tag mismatches (iterators are discussed in the next
section). Consider Figure 3. The first tag mismatch
occurs at token 6, due to the presence of an image in
the sample and not in the wrapper. This image should
therefore be considered as optional. To solve the mis-
match, suppose first a search for a possible iterator has
been done using the techniques that will be described
in the next paragraph, and that this search has failed.
We may therefore assume that the tag mismatch is due
to the presence of optionals. This means that, either
on the wrapper or on the sample we have a piece of
HTML code that is not present on the other side, and
that, by skipping this piece of code, we should be able
to resume the parsing. This is done in two main steps:
1. Optional Pattern Location by Cross–Search With
respect to the running example, given the mismatch-
ing tags at token 6 – and <IMG.../> – we know
that: (a) assuming the optional pattern is located on
the wrapper, after skipping it we should be able to
proceed by matching the image on the sample with
some successive <IMG.../> tag on the wrapper; (b) on
the contrary, assuming the pattern is located on the
sample, we should proceed by matching token 6 on
the wrapper with the first occurrence of tag on
the sample. A simple cross-search of the mismatching
tags allows to conclude that the optional pattern is
located on the sample (the wrapper does not contain
any images from which to resume the parsing).
2. Wrapper Generalization Once the optional pattern
has been identified, we may generalize the wrapper
accordingly and then resume the parsing. In this case,
the wrapper is generalized by introducing one pattern
of the form ()?, and the parsing is

- Wrapper (initially Page 1):

01: <HTML>

02: Books of:

03:

04: John Smith

05:

06:

07:

08-10: <I>Title:</I>

11: DB Primer

12:

13:

14-16: <I>Title:</I>

17: Comp. Sys.

18:

19:

20: </HTML>

- Sample (Page 2):

01: <HTML>

02: Books of:

03:

04: Paul Jones

05:

06:

07:

08:

09-11: <I>Title:</I>

12: XML at Work

13:

14:

15-17: <I>Title:</I>

18: HTML Scripts

19:

20:

21-23: <I>Title:</I>

24: Javascript

25:

26:

27: </HTML>

parsing

?

string mismatch (#PCDATA)

?
tag mismatch (?)

-

?
string mismatch (#PCDATA)

?
string mismatch (#PCDATA)

?
tag mismatch (+)

terminal tag search and

square matching

6

6�
�-

- Wrapper after solving mismatches:

<HTML>Books of:#PCDATA

()?

(<I>Title:</I>#PCDATA)+

</HTML>

Figure 3: One Simple Matching

resumed by comparing tokens 6 and 7 respectively.

Tag Mismatches: Discovering Iterators Let
us now concentrate on the task of discovering itera-
tors. Consider again Figure 3; it can be seen that the
two HTML sources contain, for each author, one list
of book titles. During the parsing, a tag mismatch
between tokens 19 and 20 is encountered; it is easy
to see that the mismatch comes from different car-
dinalities in the book lists (two books on the wrap-
per, three books on the sample), i.e., of the repeated
pattern <I>Title:</I>#PCDATA. To solve the
mismatch, we need to identify these repeated patterns
that we call squares, and generalize the wrapper ac-
cordingly; then, the parsing can be resumed. The
mismatch solving algorithm in this case goes through
three main steps:
1. Square Location by Terminal–Tag Search After
a tag mismatch, a key hint we have about the square
is that, since we are under an iterator (+), both the
wrapper and the sample contain at least one occur-
rence of the square. Let us call ow and os the number
of occurrences of the square in the wrapper and in the
sample, respectively (2 and 3 in our example). If we as-
sume that occurrences match each other, we may con-
clude that before encountering the mismatch the first
min(ow, os) square occurrences have been matched (2
in our example).

As a consequence, we can identify the last token of

the square by looking at the token immediately before
the mismatch position. This last token is called termi-
nal tag (in the running example, this corresponds to
tag). Also, since the mismatch corresponds to
the end of the list on one sample and the beginning
of a new occurrence of the square on the other one,
we also have a clue about how the square starts, i.e,
about its initial tag; however, we don’t know exactly
where the list with the higher cardinality is located,
i.e., if in the wrapper or in the sample; this means
that we don’t know which one of the mismatching to-
kens corresponds to the initial tag (or). We
therefore need to explore two possibilities: (i) candi-
date square of the form ... on the wrapper,
which is not a real square; or (ii) candidate square of
the form ... on the sample. We check both
possibilities by searching first the wrapper and then
the sample for occurrences of the terminal tag ;
in our example, the search fails on the wrapper; it
succeeds on the sample. We may therefore infer that
the sample contains one candidate occurrence of the
square at tokens 20 to 25.

2. Square Matching To check whether this candi-
date occurrence really identifies a square, we try to
match the candidate square occurrence (tokens 20–25)
against some upward portion of the sample. This is
done backwards, i.e., it starts by matching tokens 25
and 19, then moves to 24 and 18 and so on. The search

succeeds if we manage to find a match for the whole
square, as it happens in Figure 3.

3. Wrapper Generalization It is now possible to
generalize the wrapper; if we denote the newly found
square by s, we do that by searching the wrapper for
contiguous repeated occurrences of s around the mis-
match region, and by replacing them by (s)+, as it is
shown in Figure 3.

Once the mismatch has been solved, the parsing
can be resumed. In the running example, after solving
this last mismatch the parsing is completed. We can
therefore conclude that the parsing has been successful
and we have generated a common wrapper for the two
input HTML pages.

Based on this example, it should be apparent why,
in case of tag mismatches, we always look for iterators
first. In fact, with respect to the mismatch between
tokens 19 and 20, if we had first looked for an optional,
we could have successfully produced a common wrap-
per in which each page contained two books, with a
third optional book, and would have missed the list.

4.2 More Complex Examples

In Figure 3, the algorithm succeeds after solving sev-
eral string mismatches and two simple tag mismatches.
In general, the number of mismatches to solve may be
very high, and each may represent a more challenging
case than the ones discussed so far. In this section
we discuss some of these challenges. Since string mis-
matches are relatively straightforward to handle, we
will concentrate exclusively on tag mismatches.

– Recursion: Note, to start, that the mismatch solv-
ing algorithm is inherently recursive, since, when try-
ing to solve one mismatch, more mismatches can be
generated and have to be solved. To see this, consider
Figure 4. Here, we have reported a further variant
of the pages about authors: the pages have a nested
structure, with a list of books, and for each book a
list of editions. We start matching the sample (page
2) against the wrapper, which initially equals page 1.
The parsing stops at token 15, where a tag mismatch is
found. When trying to solve the mismatch looking for
a possible iterator, we do the following: (i) based on
the possible terminal tag (at token 14), we first
locate one candidate square occurrence on the wrapper
(tokens 15–28); then (ii) we try to match this candi-
date square against the upward portion of the wrap-
per. Remember that we match the square backwards,
i.e., we start by comparing the two occurrences of the
terminal tag (tokens 14 and 28), then move to tokens
13 and 27 and so on.

This comparison has been emphasized in Figure 4
by duplicating the wrapper portions that have to be
matched. Since they are matched backwards, tokens
are listed in reverse order. Differently from the previ-
ous example – in which the square had been matched

by a simple alignment – it can be seen that, in this
case, new mismatches are generated when trying to
match the two fragments. These mismatches are called
internal mismatches. The first internal mismatch in
our example involves tokens 23 and 9: it depends on
the nested structure of the page, and will lead us to
discover the list of editions inside the list of books.

We may deal with these internal mismatches exactly
in the same way as we do with external mismatches.
This means that the matching algorithm needs to be
recursive, since, when trying to solve some external
mismatch, new internal mismatches may be raised,
and each of these requires to start a new matching
procedure, based on the same ideas we have discussed
above, the only difference being that these recursive
matchings don’t work by comparing one wrapper and
one sample, but rather two different portions of the
same object.

With respect to the case in Figure 4, the external
mismatch will trigger two internal mismatches. The
first one, as discussed above, will lead to discover the
list of book editions; the second one will lead to iden-
tify the optional pattern <I>Special!</I>. The final
wrapper is also reported in the Figure.
– Backtracking: Another source of complexity in the
algorithm comes from the need to choose between sev-
eral alternatives which are not guaranteed to lead to
a correct solution. When, going ahead in the pars-
ing, these choices prove to be wrong, it is necessary to
backtrack them and resume the parsing from the next
alternative. To see why this happens, consider for ex-
ample the discovery of iterators after a tag mismatch
(the same ideas also hold for optionals). The first step
to solve the mismatch requires to locate, on either the
wrapper or the sample, one candidate square occur-
rence, and then try to match that internally. In this
process, we are forced to choose among several alter-
natives: first we need to search for squares both on the
wrapper and on the sample. Second, when we try to
locate the square by a search of the terminal tag, we
need to consider different occurrences of the terminal
tag, which identify different candidate squares.

4.3 Matching as an AND-OR Tree

Based on the ideas discussed above, we can now give
a more precise description of algorithm match. The
algorithm works on one wrapper, w, and one sample, s,
and tries to generalize the wrapper by matching it with
the sample; this is done by parsing the sample using
the wrapper, and by trying to solve all mismatches
that are encountered during the parsing.

Finding one solution to match(w, s) corresponds to
finding one visit for the AND-OR tree [19] shown in
Figure 5. In fact: (i) the solution to match(w, s) cor-
responds to the solution of all external mismatches
encountered during the parsing (AND node); solv-
ing each of these mismatches corresponds in turn to

- Wrapper (initially Page 1):

01-05: <HTML>Books of:John Smith

06:

07:

08: Computer Systems

09: <P>

10:

11: 1st Ed., 1995

12:

13: </P>

14:

15:

16: Database Primer

17: <P>

18:

19: 1st Ed., 1998

20-22: <I>Special!</I>

23:

24:

25: 2nd Ed., 2000

26:

27: </P>

28:

29-30: </HTML>

- Sample (Page 2):

01-05: <HTML>Books of:Paul Jones

06:

07:

08: XML at Work

09: <P>

10:

11: 1st Ed., 1999

12:

13: </P>

14:

15:

16: </HTML>

external mismatch

�

�-
28:

27: </P>

26:

25: 2nd Ed., 2000

24:

23:

20-22: <I>Special!</I>

19: 1st Ed., 1998

18:

17: <P>

16: Database Primer:

15:

14:

13: </P>

12:

11: 1st Ed., 1995

10:

09: <P>

08: Computer Systems:

07:

internal mismatch →

- Wrapper after solving mismatches:

<HTML>Books of:#PCDATA

(#PCDATA<P>

(#PCDATA

(<I>Special!</I>)?

)+ </P>)+

</HTML>

Figure 4: A More Complex Matching

finding one visit of an AND-OR subtree; in fact, (ii)
the mismatch may be solved either by introducing one
field, or one iterator, or one optional (OR node); (iii)
the search may be done either on the wrapper or on
the sample (OR); (iv) for both iterators and option-
als there are various alternative candidates to evaluate
(OR); (v) in order to discover iterators it may be nec-
essary to recursively solve several internal mismatches
(AND), each of which corresponding to a new AND-
OR subtree. Given a wrapper w and one sample s,
if we manage to solve the AND-OR tree, we return
the generalized wrapper w′ = match(w, s) as output;
otherwise the output is ε.

4.4 Lowering the Complexity

A formal argument (which we omit here for space rea-
sons) shows that algorithm match(w, s) has exponen-
tial time complexity with respect to the input lengths;
intuitively, this depends on the fact that the AND-OR
tree of a matching has in the worst case exponential
size due to the need to explore different alternatives
for each mismatch.

A primary goal of our implementation has been that

of limiting the complexity of the match; to do this, we
had to introduce several pruning techniques, in order
to skip subtrees that most likely don’t correspond to
meaningful solutions. Based on these techniques, we
were able to achieve a good compromise between ex-
pressibility and complexity, as shown by the running
times reported in our experimental results (see Fig-
ure 6 in Section 5).

1. Bounds on the fan–out of OR nodes We put a
constant bound k on the fan-out of OR nodes, i.e.,
on the maximum number of candidate square and op-
tional occurrences to evaluate. This is largely justi-
fied by our experiences with real sites, which tell that
both in cases of squares and optional, the right can-
didate is always very close to the mismatch point (in
our implementation k = 4, although the system very
seldom needs to evaluate more than one candidate oc-
currence). We therefore sort the children of each OR
node based on the length of the candidate patterns,
keep only the shortest k and discard the others.

2. Limited backtracking for external mismatches To
reduce the amount of memory used to store the tree,
we discard some portions of the tree for which a visit

rmatch(w,s) AND

?

�����)
PPPPPqrexternal

m1 ... rexternal
m2 OR

?
�����)

PPPPPq

r external
mn...r+

OR��
���� ?

r
pcdata

r
OR

?

?

HH
HHHjrsquare

on w OR

?

��
����

HH
HHHj

rsquareon s
...

roptional
on w

...
r optional
on sOR

?

��
����

HH
HHHjrcandidate

square1
... rcandidate

square2 AND

?

��
����

HH
HHHj

rcandidate
squarek

...

rcandidate
optional1

rcandidate
optional2

rcandidate
optionalh

rinternal
m1...

rinternal
m2

OR

...

rinternal
ml...

Figure 5: AND-OR Tree of the Wrapper Generation Problem

has been found. These subtrees correspond to exter-
nal mismatches that lead to discover an iterator: in
essence, since it is very unlikely that external mis-
matches lead to find out false iterators, we consider
each of these discoveries as a fixpoint in the matching
that will not be backtracked.
3. Delimiters Finally, in order to find a reason-
able compromise between expressiveness and complex-
ity of the matching process, we have decided to im-
pose some constraints on the position of optional pat-
terns in our wrappers; as a consequence, we further
prune the tree based on the respective position of
iterators and optionals in the wrapper: we discard
all visiting strategies corresponding to wrappers in
which a pattern (iterator or optional) is delimited on
either side by an optional pattern (like, for exam-
ple in ((<HR>)?#PCDATA)+, where the left de-
limiter of the pattern under + is (<HR>)?, or like in
(
)?(<HR>)?).

Although these choices slightly reduce the expres-
siveness of the formalism, they have the advantage of
preventing, in practical cases, the generation of expo-
nential searches, as it is confirmed by the low comput-
ing times and memory requirements exhibited by the
system in our experiments, as discussed in the follow-
ing section.

5 Experimental Results

Based on algorithm match(w,s) described above, we
have developed a prototype of the wrapper generation
system and used it to run a number of experiments
on real HTML sites. The system has been completely
written in Java. In order to clean HTML sources, fix
errors and make the code compliant with XHTML, and
also to build DOM trees, it uses JTidy, a Java port
of HTML Tidy (http://www.w3.org/People/Raggett/-
tidy/), a library for HTML cleaning. The prototype
has been used to conduct experiments on several sites.
All experiments have been conducted on a machine
equipped with an Intel Pentium III processor working

at 450MHz, with 128 MBytes of RAM, running Linux
(kernel 2.2) and Sun Java Development Kit 1.3.

When it is run on a collection of HTML pages, it
tries to iteratively apply algorithm match to generate
a common wrapper for the pages. The algorithm is ini-
tialized by taking any of the pages as an initial wrap-
per. Then, at each successive step, it tries to match
the wrapper generated at step before with a new sam-
ple. Since we are not in general guaranteed that the
pages can all be described using a single wrapper, the
algorithm may produce more than one wrapper. For
each wrapper, we also want to store the set of matching
samples, i.e., the list of pages from which the wrapper
was generated. In this way, the algorithm will generate
a collection of wrappers, and cluster the input HTML
pages with respect to the matching wrapper.

We report in Figure 6 a list of results relative to
several well known data-intensive Web sites. In each
site, we have selected a number of classes of fairly reg-
ular pages; for each class we have downloaded a num-
ber of samples (usually between 10 and 20). Figure 6
actually contains two tables; while Table A refers to
experiments we have conducted independently, in Ta-
ble B we compare for 5 page classes our results with
those of other data extraction systems for which exper-
imental results are available in the literature, namely
Wien [13, 12] and Stalker [14], two wrapper generation
systems based on a machine learning approach.

Table A in Figure 6 contains the following elements:
(i) class: a short description of each class, and the
number of samples considered for that class; (ii) re-
sults: results obtained from the matching, i.e., number
of wrappers (#w) created by the system, number of
samples matching each wrapper (#s), outcome of the
data extraction process (extr) – i.e., whether it was
possible to actually extract a dataset from the pages
or not – and overall computing time needed to ex-
amine the samples (the total time needed to compute
matchings between samples in a given class; it does not
include all times related to preprocessing the sources –
i.e., calls to JTidy and tokenization, neither the time

Table A

classes results schema
n. site description #s #w #s extr. time nest pcd opt lists

1 amazon.com cars by brand 21 1 21 yes 0”266ms 1 8 0 1
2 amazon.com music bestsellers by style 20 - 20 no - - - - -

3 buy.com product subcategories 20 1 20 yes 1”107ms 2 16 0 4
4 buy.com product information 10 1 10 yes 0”735ms 1 14 3 2

5 rpmfind.net packages by name 30 1 10 yes 4”827ms 3 5 2 3
6 rpmfind.net packages by distribution 20 1 20 yes 1”963ms 2 8 1 3
7 rpmfind.net single package 18 2 10 yes 0”299ms 1 26 3 5

8 yes 0”167ms 1 25 3 3
8 rpmfind.net package directory 20 - 20 no - - - - -

9 uefa.com clubs by country 20 1 20 yes 0”434ms 1 5 2 1
10 uefa.com players in the national team 20 1 20 yes 0”260ms 2 2 1 2

Table B

site schema comparative results
n. name (URL) #s pcd nest opt ord RoadRunner Wien Stalker

11 Okra (discontinued) 20 4 1 no no
√

0’0”700ms
√

5’2”
√

19’4”
12 BigBook (bigbook.com) 20 6 1 no no

√
0’0”781ms

√
1h23’50”

√
7’4”

13 La Weekly (laweekly.com) 28 5 1 yes no
√

0’0”391ms no
√

1h08’
14 Address Finder (iaf.net) 10 6 1 yes yes no no

√
3h22’1”

15 Pharmweb (pharmweb.net) 10 3 2 yes no
√

0’0”350ms no no

Figure 6: Experimental Results

needed for data extraction); (iii) schema: some ele-
ments about the structure of the dataset, namely: level
of nesting (nest), number of attributes (pcd), number
of optionals (opt) and number of lists.

As it can be seen from the table, for a large major-
ity of pages the system was able to generate a wrap-
per and use that to extract a dataset from the HTML
sources. This process was completely automatic and
required no human intervention. Computing times are
generally in the order of a few seconds; our experience
also shows that the matching usually converges after
examining a small number of samples (i.e., after the
first few matchings – usually less than 5 – the wrapper
remains unchanged). As it can be seen from the table,
in some cases the system was unable to extract any
data from the pages. There are two main sources for
these behaviors, namely: (i) limited expressive power
of union–free regular grammars; (ii) restrictions im-
posed in our implementation on the matching algo-
rithm. These are discussed in the following.
Expressive Power In some of the cases UFREs are not
sufficiently expressive to wrap the pages. This may
happen either because the samples in a class form a
non-regular language, or because they form a regular
language which requires the use of unions to be de-
scribed.

The first case – non-regular languages – is quite in-
frequent. The only case we have encountered in our
experiments are package directories on rpmfind.net:
these pages describe the folders in which a software
package is organized; the nesting of folders is repre-
sented on the screen by progressive indentations of
the folder names; as a consequence, tags in the cor-
responding pieces of HTML code form a language of
nested balanced parenthesis, which is a well known
context-free language and cannot be described using a

regular grammar; therefore, our system fails in finding
a common wrapper for the pages.

The second case – regular languages that require
unions – is more frequent. One example of this kind
are music bestsellers on amazon.com: these pages con-
tain a list of items, some of which have customer re-
views, some others don’t; the HTML code in the two
cases is different. As a consequence, our system is un-
able to discover repeated patterns in the list, and the
wrapper generator fails (being unable to factorize the
list, the system returns a number of wrappers in the
order of the number of samples examined).

Implementation Choices Some other classes have been
partitioned due to our choices in implementing the sys-
tem. As discussed above, we disallow adjacencies be-
tween iterators and optionals. In some cases, these
would be needed in order to generate a single wrapper
for the pages. This happens, for example, for pages
about single packages on rpmfind.net: the description
of these pages requires a UFRE with an iterator adja-
cent to an optional pattern.

5.1 Comparison with other works

To compare our results with those of Wien and Stal-
ker, Table B in Figure 6 reports a number of ele-
ments with respect to 5 page classes for which ex-
perimental results were known in the literature [12,
14]; the original test samples for classes 11 to 15
have been downloaded from RISE (http://www.isi.-
edu/~ muslea/RISE), a repository of information sources
from data extraction projects. Table B contains the
following elements: (i) site from which the pages were
taken, and number of samples; (ii) description of the
target schema, i.e., number of attributes (pcd), level
of nesting (nest), whether the pages contain optional

elements (opt), and whether attributes may occur in
different orders (ord); (iii) results: results obtained
by the three systems, with computing times; times for
Wien and Stalker refer to CPU times used during the
learning.1

A few things are worth noting here with respect to
the expressive power of the various systems. (i) While
Wien and Stalker generated their wrappers by exam-
ining a number of labeled examples, and therefore the
systems had a precise knowledge of the target schema,
roadRunner did not have any a priori knowledge
about the organization of the pages. (ii) Although
computing times refer to different machines, it can
still be seen that, in those cases in which all three sys-
tems are able to generate a wrapper (11 and 12), CPU
times used by roadRunner are orders of magnitude
lower than those needed to learn the wrapper both by
Wien and Stalker. (iii) Differently from roadRun-
ner and Stalker, Wien is unable to handle optional
fields, and therefore fails on samples 13, 14 and 15.
(iv) Stalker has more considerable expressive power
since it can handle disjunctive patterns; this allows for
treating attributes that appear in various orders, like
in Address Finder (14); being limited to union–free
patterns, roadRunner fails in cases like this. (v)
Both Wien and Stalker cannot handle nested struc-
tures, and therefore they fail on PharmaWeb, the only
class whose pages contain a list of lists (nest equals 2);
on the contrary, roadRunner correctly discovers the
nesting and generates the wrapper.

5.2 Quality of the Extracted Datasets

An important comment is related to the quality of the
data extracted by the wrappers. Although the dataset
usually corresponds to the one expected by inspecting
the pages, it is in some cases influenced by the physical
HTML layout imposed to data in the pages.

To give one simple example, consider the pages list-
ing clubs by country on uefa.com. From the logical
viewpoint, each of these pages contains a list of club
names, each with the relative city. However, for pre-
sentation purposes, this list is presented as a table with
four columns, so that each row in the table contains
data about two different clubs; in essence, we may say
that the HTML layout induces a “physical schema”
that can be interpreted as a list of quadruples (club-
Name, city, clubName, city). When the wrapper gen-
erator runs on these pages, it has no clue about the
fact that the four columns of the HTML table might
be collapsed to two, and therefore generates a dataset
of the form (#PCDATA, #PCDATA, #PCDATA, #PCDATA)+.

In essence, in these cases all relevant data are cor-
rectly extracted, but according to a schema that is not

1Since for some of the pages Wien and Stalker consider only
a portion of the HTML code, to have comparable results when
needed we have restricted our analysis to those portions only.

the one expected after looking at the logical organiza-
tion of the pages.

References

[1] B. Adelberg. NoDoSE – a tool for semi-automatically
extracting structured and semistructured data from
text documents. In SIGMOD’98.

[2] P. Atzeni and G. Mecca. Cut and Paste. In PODS’97.

[3] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the
Web. In VLDB’97.

[4] V. Crescenzi and G. Mecca. Grammars have excep-
tions. Information Systems, 23(8), 1998.

[5] D. W. Embley, D. M. Campbell, Y. S. Jiang, S.
W. Liddle, Y. Ng, D. Quass, and R. D. Smith
A conceptual-modeling approach to extracting data
from the web. In ER’98.

[6] E. M. Gold. Language identification in the limit. In-
formation and Control, 10(5), 1967.

[7] E. M. Gold. Complexity of automaton identification
from given data. Information and Control, 37(3),
1978.

[8] S. Grumbach and G. Mecca. In search of the lost
schema. In ICDT’99.

[9] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting semistructured informa-
tion from the Web. In Proc. of the Workshop on the
Management of Semistructured Data, 1997.

[10] C. Hsu and M. Dung. Generating finite-state trans-
ducers for semistructured data extraction from the
web. Information Systems, 23(8), 1998.

[11] G. Huck, P. Frankhauser, K. Aberer, and E. J.
Neuhold. Jedi: Extracting and synthesizing informa-
tion from the web. In CoopIS’98.

[12] N. Kushmerick. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118, 2000.

[13] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrap-
per induction for information extraction. In IJCAI’97.

[14] I. Muslea, S. Minton, and C. A. Knoblock. A hier-
archical approach to wrapper induction. In Proc. of
Autonomous Agents, 1999.

[15] L. Pitt. Inductive inference, DFAs and computational
complexity. In K. P. Jantke, editor, Analogical and In-
ductive Inference, Lecture Notes in AI 397. Springer-
Verlag, Berlin, 1989.

[16] B. A. Ribeiro-Neto, A. Laender, and A. Soares da
Silva. Extracting semistructured data through exam-
ples. In CIKM’99.

[17] A. Sahuguet and F. Azavant. Web ecology: Recy-
cling HTML pages as XML documents using W4F. In
WebDB’99.

[18] S. Soderland. Learning information extraction rules
for semistructured and free text. Machine Learning,
34(1–3), 1999.

[19] P. H. Winston. Artificial Intelligence. Addison-
Wesley, 1979.

