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Abstract

We present techniques for computing small space
representations of massive data streams. These
are inspired by traditional wavelet-based approx-
imations that consist of specific linear projec-
tions of the underlying data. We present general
“sketch” based methods for capturing various lin-
ear projections of the data and use them to pro-
vide pointwise and rangesum estimation of data
streams. These methods use small amounts of
space and per-item time while streaming through
the data, and provide accurate representation as
our experiments with real data streams show.

Introduction

handles, a switch dumps a record (known as a Call Detail
Record or CDR). These get written when calls complete
and, when buffers get full, switches dump them into a cen-
tral or distributed data processing facility. Eventually, these
records flow through the system and get channeled into
centers for billing, network operations etc. However, for
many mission-critical tasks such as fraud, security and per-
formance monitoring, telecommunications companies need
rapid access to the CDRs to perform trend-related analysis:
what is the total number of outgoing calls from a telephone
number? what is the total traffic at an npa-nxx (the first 6
digits of a telephone number) in the past two hours? Is the
outgoing calling pattern of a telephone number unusual?
Can a signature be maintained of user profiles? etc. All
of these queries need to be answered on the stream since
trend analyses are urgent (the sooner a fraud is detected,
the sooner it gets stopped). Similar issues arise in monitor-

Situations abound in which data arrive_s and is processed 'mg Internet Network elements such as routers, web servers
a stream. For example, network service providers coIIecEtC. where traffic is potentially far more voluminous.

logs of network usage (telephone calls, IP flows, etc) in ) ) o
great detail from switches and routers into data processing | "€ need for processing data streams is beginning to
e understood, and, consequently, there is effort under-

centers, and use them for trend-related analysis. In mo . o
cases, not all past history can be accumulated and stord¢Y in the data mining [8, 10], database [32] and algo-
in databases; in cases when data is archived, access to {H@MS [21] communities to address the outstanding prob-
data is often expensive. Hence it is highly desirable tod€MS that arise. W'th',” the database community, it is un-
have approximate, but reasonably accurate, representati@§rstood that “.Joday’s database systems and data pro-
of the data stream that can be stored in small amount dgf€SSing algorithmse(g, data mining) are ill-equipped to
space. However, unlike typical selectivity estimation sce-1@ndle data streams effectively, and many aspects of data
narios where such summary data structures are used, it f@@nagementand processing need to be reconsidered in the
not realistic to make several passes over the data in thgéSence of data streamig32]. In this paper, we address a
streaming setting. It is crucial that the summary representundamental problem that arises in data streaming scenar-
tation be computed on the stream diredtly, in one pass. 195 namely, to what extent can the data streams be summa-

Consider the following application scenario that arises'2€d in small amount of space so accurate estimates can be
in telecommunications network monitoring. Switches in Provided for basic aggregate queries on the underlying sig-
telecommunications networks handle a tremendous nunfl@l- While small space data summarization has been stud-
ber of connections every minute. Typically, for each call it '€d in the database community recently, data streaming ap-
plications present novel issues, chiefly, first, the ability to
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data models and formats in data streaming context, and as-
sociated aggregate queries that are prevalent. We present a
general approach for building small-space, one pass sum-



mary of the signal to enable answering point, range andlirectly yield any performance bounds for linear projec-
“aged aggregate” queries of one or more data streams. Otipbns that generate wavelet coefficients.
approach is inspired by wavelet transformation methods Some amount of work has been done previously on dy-
which are certain linear projections of the signal. If the namic maintenance of histograms. In [18], the authors
underlying signal has a small, highly accurate, transformshow techniques for maintaining an equidepth histogram
based representation (as natural signals tend to have), oan the signal. In [1], the authors adopt a learning approach
methods provably provide a high quality approximation.to self-tune any histogram procedure to be more accurate.
To the best of our knowledge, no such provable results wer&hese techniques maintain a partition of the signal and the
known before. Our method relies on keeping a “sketch”central technical difficulty lies in adjusting bucket bound-
of the signal so that any linear projection of it can be es-aries, over time. Recently, the problem of maintaining
timated, and the large projections get estimated provablwavelet transforms as data dynamically changes was con-
accurately. Our methods are likely to have further applicasidered in [27]; in contrast to the problem of maintaining
tions for data stream processimgg, mining streams using traditional histograms, maintaining wavelet transforms re-
cluster analysis, processing multidimensional streams, etquires tracking significant wavelet coefficients over time,
We perform an experimental study of our methods for ba-a nontrivial task as the authors argue. When a data item
sic and aged aggregate estimation with Call Detail Recordshanges in value, many coefficients may get affected and
drawn from a data stream within AT&T. These results showthe set of significant coefficients could change rather dra-
that our methods capture the underlying signal with a smalimatically (as is revealed from our experiments). Another
amount of space very accurately over several hundred miktransform, namely, the Discrete Cosine Transform, was
lion data points. used in [23] where the authors again attempted to maintain
In Section 2 we discuss related work, while in Sec-the significant transform values over time.
tion 3 we present different data models and formats for data Conceptually, maintaining the set of significant trans-
stream applications and provide the necessary backgrouridrm values is somewhat similar to the problem of main-
on wavelet computations. In Section 4 we address some dhining bestseller items where the goal is to maintain the
the theoretical issues in designing algorithms for waveletop-k selling items as sales continue, but could be signif-
transform computation in stream models. In Section 5 wdcantly harder depending upon the transformation. The
present our approach, together with provable results andhain difficulty in the hot lists (a special case of what is
address the implementation issues that arise in our sketclknown asiceberg querie$l1]) is in detecting which infre-
based methods. In Section 6, we present experiments withuent values become significantly frequent as data items
real data while in Section 7 we present concluding remarksaccumulate, using small amount of space. The authors
The proofs of many of our formal claims will be available in [23] propose maintaining fixed set of transform coef-

in the full version of this paper. ficients over time. The authors in [27] propose a sophisti-
cated probabilistic counting technique. In either case, no
2 Related Work provable results are known on how effective these methods

are in tracking the significant coefficients.
Streaming or one pass algorithms have been studied in dif- There is an effort to study the general principles behind
ferent areas. In the area of theoretical algorithms, streanmdata streaming [32, 33] in database community. To the best
ing models have been studied in [21, 3, 12, 13, 22, 20]of our knowledge, a study of different kinds of data stream
where methods have been developed for comparing datdodels and queries such as aged aggregate queries that we
streams under various” distances, or clustering them. perform in this paper has not previously appeared.
Within the database community, one-pass algorithms have
been designed for getting median, quantiles and other ordg Data Streams and Query Processing
statistics [25, 17], correlated aggregate queries [15], min-
ing [14], etc. We focus on summarizing a data stream sdn this section, we formally define data streams and differ-
that we can accurately estimate individual point and rangent data stream models.
estimates, a problem not directly considered in the streal

ing context previously within databases. mStreammg Data Models.Our input, that we refer to as the

Since our work involves small space representation Oistream arrl_ves.sequennally, |_tem by item, an.d describes
an underlyingsignal In the simplest case which we use

a data, it relates to selectivity estimation, a well studled% develop the notions, the signalis a one-dimensional

topic in databases. Many approaches have been_ dev'sedgunctiona . [0...(N —1)] — 2+, that is, the domain
databases for small space approximation of a given func- ! .
tion for quick, approximate estimates for point and range”> assumed to be discrete and ordérexhd the function

q » app P 9 maps it to non-negative integers. For example, a signal is

queries: sampling techniques [19, 29], histograms [28]the number of employees in different ages (the domain is

wavelet methods [26], etc. A lot of this work is for static the set of ages and the ranae is the number of emplovees
data sets where the signal is analyzed off-line to generate 9 9 ploy

: ; i r the number of outgoing call minutes
summary representation. This does not apply to our datglc particular age), o going
stream scenario. _Samp.“ng methOdS'dO work for the dy-  1gignals over continuous domains are assumed to be discretized in a
namic case when input is read over time, but they do nosensible fashion, for the purposes of this paper.




from a telephone number (domain is the set of all telephon&a Siream
numbers and the range is the total number of outgoing min-
utes).

The stream may describe the underlying signal in one

» @ <] @

of many ways, yielding different data models as a result. glé)r('e“ ay Sceth
There are two distinct models for rendering the signatkh | Query
register, or aggregate modelsin the cash register model, Processing

the items that arrive over time are domain values in no par-
ticular order, and the function is represented by implicitly
aggregating the number of items with a particular domain
value. For example, in the telephone calls case, the stream
could be: Figure 1: Stream Processing

(8008001111, 10), (8008002222, 15), (8008003333, 13),
(8008001111, 23), (8008001111, 3) .. .

data processing algorithms. We will present results appli-
cable to all these renditions. For the most part, we focus
The underlying signal, namely(3008001111,36),  On the most general one for our upper bounds, and the least
(8008002222, 15), (8008003333, 13) has to be constructed general one for the lower bounds, so our results are broadly
by aggregating the total number of minutes outgoing fromapplicable.
numbers’008001111, 8008002222, 8008003333 etc? In All of the above discussion on data stream models and
the aggregate modelthe items arrive over time are the renditions generalize to multiple signals. For example, a
range values in no particular order, and the signal is thereeconcatenated strearnis one in which the stream for each
fore explicitly rendered. For example, in the telephone callssignal arrives concatenated one after another. For example,
case above the stream could be: the signal could be the traffic on a telecommunications net-
(8008001111, 36), (3008003333, 13), (8008002222, 15) work from_a particular IF_’ address over time for the_whole
day, and signals for multiple number of days may arrive one
There are also two distinct formats for the streamtered after another. Also, the signal may baultidimensional
or unordered In the ordered case, the items arrive oversay the (source IP address, destination IP address) aggre-
time in the increasing (or decreasing) order of the domaiyation of traffic in networks. As long as all queries are on
values. For example, in the telephone calls case above: gne of the dimensions, or on all dimensions, or on a sub-

(8008001111, 10), (8008001111, 23), (8008001111, 3), set of Qimensions specifia:l priori, the one-dimensional
(8008002222, 15), (8008003333, 13) streaming techniques w_|II_work.. Although our resu_lts_ can
be extended to the multidimensional case when this is not
is an example of ordered format in the cash register modethe case, additional techniques will be needed, and will not
In the unorderedcase, the items that arrive over time are be a subject of this paper.

not necessarily directly in the order of the domain valuesStream Processing Model. Now we focus how data

zgr?t;rtli% in fact be an arbitrary permutation of the P streams may be processed. We will present the basic one-

The two data models and the two data formats jointlyP2SS ver_sion of data stream processing. EaCh.data item, as it
give us four possible stream renditions of the underlying@TVes, is read and processed. No backtracking is allowed
signal: ordered/unordered cash register/aggregated rend@n the data stream, and explicit access to arbitrary past
tions. In the cash register model, there is yet another varitems is not permitted. We are allowed a certain amount
ation depending on whether all the items with a given do-of additional memory. This may be used, for example, to
main value iscontiguous Data streams in the cash register store a recent window of items we have read or some arbi-
model can be contiguous but not ordered, for example:  trary subset of items in the past, or other summary informa-

tion about the past data stream. The size of this auxiliary

(8008002222, 15), (8008001111, 10), (8008001111, 23), store crucially determines what computations can be per-

(8008001111, 3), (8008003333, 13) e

formed on the data stream. For applications that we con-
Contiguous cash register rendition is equivalent to un-sider here, the auxiliary store is significantly smaller than
ordered aggregate rendition under aggregation of the ranggven the signal domain size. Hence, the signal can only
value for the “running” domain value. Therefore, this ren- be partially represented in the auxiliary store as data items
dition is not considered henceforth. continue to arrive, see Figure 1.

Natural data streams in different application domains Two performance parameters of our interest are the time
may be in different renditions, for example, a time seriesneeded to process each item on the stream and the auxil-
data is likely to be in ordered aggregate rendition whileiary storage used; our goal would be keep both as small as
network volume data is likely to be in the unordered cashpossible.

register rendition. The unordered cash regist_er mo_del_ i)'iggregate Queries on Streamsin data stream scenarios,
the most general, posing the most challenges in designingeries are motivated by trend-related analyses. In what

2This model is called the cash register model because the flow of sa|eEO||0\{VS, we give examples of diff(_arent types of aggregate
through a cash register in a store generates a stream in this model. gueries that tend to be asked, all in the context of telecom-




munications data. The domain is the telephone number -
(npa-nxx-line§ and the range is the total number of min-
utes per day of outgoing calls. There is a natural numerical | L

ordering of the domain. Consider the concatenated streams Level -0

case wherein the signal for each day is concatenated to the n -

previous one but each signal is in unordered cash register N

model.In how many minutes of outgoing calls was partic- Level-1 s

ular telephone number involvedrhis is a typical “point”

guery on the signalHow many total minutes of call were -

handled by a telephone exchange which is given by partic- N

ular npa-nxx combinationThis is a typical “range” query. Level-2 B

An interesting aggregate query in the concatenated data

stream scenario is theged aggregate queryfrom a con- — [

catenated data stream. ,a(=2?), a1, a(® wherea(® is _

a stream of the most recent data (say, today’s data}, Figure 2: Wavelet-vectors\(=8)

is the data from one period before (yesterday’s data), etc. _ i

define a\-agingdata sF;ream to be: v ¢ ) {1/v2,1/v/2} and the high pass filtef—1/v2,1/v2},
followed by down-sampling by two. In the discrete case if

Aa® + A1 — )\)a(—n FA(1— )\)2a(—2) Tl there areV values in the array, this process yielig2 “av-

erages” andV/2 “differences” (these are averages and dif-
Thus, recent data contributes to theaging data stream ferences respectively, but scaled by a suitable scaling fac-
with exponentially more weight than old data. Aggregatetor)- _We store the differences as the wavelet coefficients
queries are posed on the current aged version. Note th&f this level. We then repeat this procedure on the “aver-
aging is not done at the time the data is read, but rathef9€S’, computing “averages” and “differences” again, until

over time, so one can not simply replace the read data itey© are leftwith only one “average” and—1 “differences”
by the final aged data-item. overlog N scales or resolutions. The total collection of all

the “differences” over thébg IV scales together with the fi-

General Issues. We present techniques to accurately ap-nal “average” gives the Haar wavelet transform of the input
proximate the underlying signal from a stream in the modekignal. The entire computation can be quite naturally rep-
in Figure 1 that will apply to all aggregate queries aboveresented by a binary tree over the signal array, each node
In evaluating solutions, two parameters of interest are thin the tree representing the “average” of the nodes under it
time it takes to answer a query as well as the accuracy cind the “difference” between the left and right child of that
the answers. We will also assume that we know in advanceode.

the size of the domain afs and a maximum bound forthe  The description above of Haar wavelet transforms is il-
a(i)'s. Our techniques can be extended easily to the cas@strative, but not conducive to streaming computations di-
when neither is known in advance. rectly, especially when the signal is rendered in unordered
cash register model. We will unravel the computation

. . - . and visualize Haar wavelet transforms in terms of vec-
forms [6] (like Discrete Cosine and Fourier transforms)tor computations. Let us number the levels of the binary

are special mathematical transforms, that attempt to CaRFee as shown in Table 1 with the bottommost level be.-
ture the trend in numerical functions. Often, very few ofin 0. and the topmost bei N — 3in this case. For
the wavelet coefficients of empirical data sets are signifi-. g_ 1 loa N P dk = 0 ngs o - 1 define the vect
cant and a majority are small or insignificant. In practice,’, ~ P fogk J\afm2i Plast iy 13 ';‘f 1e vegoor
a small number of significant coefficients is needed to Capfcz))ghke(rgvge \%e 1£urt/he2d_efin_9 (_/_(b),jL /+(; an
ture the trends in numerical functions. While the theoryf 0< <'1 N — 1 andk i’ko_ 2Jj+i21k Thf+1,2k|{r1
of wavelets is extensive, we will only use the rudimentary ' > =J = 108 andr = 0,...,2/ — 1. The scaling
wavelet transforms in this paper. factor at levelj is s; = /N/27,forallj = 0,...,log N.

: ; ; Now we can define wavelet vectors to bgp; ;. for each
We will develop the wavelet background as is typically ', k. giving N — 1 in all. These respectively yield thé — 1

done using an example computation; see [26] for similaf’ let ficient dina to the diff .
background. Consider the signal of lerfyi¥i = 8 given by \éva\zig € Soe ‘|C|en S corrﬁspon mg_othe dl erenceds gltven
arrayA = [1,3,5,11,12,13,0, 1]; its Haar wavelet trans- 12/ M‘t = 5 <Cé|’ 1[1,7%1_>hwf_ertle‘(‘x,y) IS the |tr;]ner prgl F‘Ct
form computation is shown in Table 1. The transform is?h \;ec orsz andy.t the é?g avterage.t;]s el_coef |ct|en
computed by convolving the signal with the low pass filter '3+ Orresponads to the 4dlis vectory with scaling tactor
so = VN, that is,co0 = so (a,v); vectorsyv together

3Under the North American Numbering Plan, npa is the three digitwith the N' — 1 wavelet vector form theéV wavelet basis

area code, nxx is the three digit exchange code, and line gives the fOUVeCtorS, see Figure 2.

digit specific numbering to a telephone in that npa-nxx. s 9 aigear
4Throughout the exposition, we will assume théts a power or two. Forma”y’ we refer to the coeff|C|ent§V( 1 “differ

This simplifies notations and discussions without affecting the generaliy€NCeS” and one “average”) agavelet basis coefficients
of the results. and denote them by, so{w, : £ =0,1,...,N — 1} =

Background on Wavelet Tranforms. Wavelet trans-




1 3 5 11 12 13 0 1
2.8284 | 11.3137 | 17.6777| 0.7071 | 1.4142| 4.2426| 0.7071| 0.7071
10.0000| 13.0000| 6.0000 | -12.0000
16.2635| 2.1213

Level=3 ai as as aq as ag a7 as
2 a1+as aztag as+ae ar+tas az—a; ag—as as—as ag—ar
V2 V2 V2 V2 V2 V2 V2 V2
1 a1+a2J2ra3+a4 a5+a6;a7+a8 (astas)—(ai+taz) (artas)—(as+as)
P 2 2
0 ai+as+tastastastastartas (astaetartas)—(aitaztaz+as)
2v/2 2v2

Table 1: The table shows Haar wavelet decomposition of atray|[1, 3,5,11,12, 13,0, 1] and the general formula, with
entries in the latter shifted horizontally to fit. The wavelet coefficiengs ¢he local differences) are in bold at each level.
The final average (16.2635) plus the wavelet coefficients represent the Haar wavelet transformation of the original array.

{co0} U {d,r}. Similarly, we refer to the corresponding rate, then we can generate a possibly different and approx-
vectors asvavelet basis vectoand denote them by, so  imate B-term representation which is nearly as accurate.

that{¢,: £ =0,1,...,N — 1} = {sov} U {s;9;1}. That We are able to do this in a provable manner. This is the

is, wy = (a, ;). Hence, informally, wavelet transforma- basis for our work.

tion is the inner product of the signal with a specific (rather

special) set ofV vectors, or equivalently, specific linear 4 Some Foundational Issues

projections of the signal. This is the view of wavelet trans- ] ) . o
formations that we adopt henceforth. In this section, we will address some of the theoretical is-

Ourfocus is not on keeping aV coefficients, but rather SU€S in designing algorithms for wavelet transform compu-

a much smaller number. In the process, some informatioflion in stream models. This section will serve to show
about the underlying signal will be lost. Suppose we sort"€ theoretical challenges in designing such algorithms and
the coefficients, so thatwy, | > |we,| > ---. Thehigh- show the intuition for our approach in the next section.

’ 1l = 2| Z .

Let us recall that our goal is to compute the highest
(best) B-term approximation to a signal of domain siXe
We are working on the data stream that renders this sig-
pal. The data stream could be possibly much larger ffian
depending on the data stream model and the range of the
signal.

First, let us consider the ordered aggregate model. Our
5 2 first theoretical result is a positive one, showing that for the
2 fail” = 32 fwel®. ordered aggregate model, the high&sterm representa-

General Comments. One of the reasons wavelet trans- tion can be computed exactly.
formations are popular in engineering, science and finan- Consider the tree representation of the Haar wavelet
cial app”cations is that most Signa|s that arise in naturéranSformation Specified in Section 3. Recall also that in the
have highest (bestB-term approximation with small er- ordered aggregate model, we get the signal values specified
ror for very small values of3, that is, there tends to be a as(i,a(i)) in the increasing order afs. Our algorithm is
rapidly decaying behavior by which increasiBgeyonda ~ as follows. Consider reading the data stream and say we
small “threshold” does not significantly decrease the sumare at some positioii in it, that is, we have seen aili)’s
squares-error. As an example, Figure 3 plots the sse/enerdQ' ¢ < ', for somei’. We maintain the following two sets
as a function of3 (1 < B < 40) for a day’s worth of call  Of items:
detail data. The graph reveals a fast decay in the reduction
of the sse as more coefficients are used.

This smallB approximation property motivated the

use of wavelets in databases, for similarity search [5] as 2. 1og V straddlingcoefficients, one for each level of the
well as approximate query answering for point and range  Haar wavelet transform tree. At levgl the wavelet
queries [26, 9, 16]. We were also motivated by this small- basis vector thattraddles’ is ¢, ; wherek(N/27) <

B approximation property of wavelets to choose them for ;1 < (N/24) 4+ N/27 — 1, and there is at most one
data stream processing. However, we are able to exploit  gych vector per level.

this property in two quite distinct ways. First, we use small

B to represent the underlying signal to a reasonable apA’hen the following data itenti’ + 1,a(i’ + 1)) is read,
proximation. Second, we are able to show how to maintairwe update each of the straddling coefficients at each level
a small “sketch” of the signal on the stream so that if theif they get affected. Some of the straddling coefficients
original signal had a smalB representation which is accu- may no longer remain straddling. When that happens, we

est B-term approximation is defined to bEle we,, Cep s
It is easy to derive and it is well known that the highest
B-term approximation is in fact thiestB-term approxi-
mation, that is, it minimizes the sum squared error (sse) fo
a givenB.

Theenergyof signala is defined to be the square of its
L, norm and is preserved under the wavelet transficgm

1. Highest B-wavelet basis coefficients for the signal
seen thus far.



compare them against the highéstoefficients and retain  sketch is much smaller than the signal; for a signal over do-
the B highest ones and discard the remaining. At levels inmain of sizelV, the sketch is of sizig®Y)(N).5 As data
which a straddling coefficient is no longer straddling, a newitems get read, the sketch gets updated. The sketch has the
straddling coefficient is initiated. There will be only one property that we can generate the linear projections (inner
such new straddling coefficient for each level. In this man-products) of the signal with a small (polynomial) number of
ner, at every position on the data stream, we maintain th@ectors quite easily and accurately, provided the dot prod-
highestB-wavelet basis coefficients exactly. This gives, uct of the corresponding unit vectors (tbesing is large.
This can be used in several ways. First, since any point
gueryi on the signal can be viewed as merely the inner
roduct of the signal with a vector that had an its ith
omponent and® elsewhere, we can use the sketch to di-
rectly estimate the point query; likewise for range queries.

In contrast, computing the higheBtterm approxima- Since there are only pointqueries andV(N —1)/2range
tion seems to be hard in any other streaming model. Intudu€ries which is a small polynomial number, sketches will
itively, keeping track of the highes? numbers in a stream suﬁ!ce. Second', smce_wavelet t_re}nsforms are linear pro-
is trivial with the unordered aggregate streaming model€ctions of the signal with a specific set 8f vectors, we
(and therefore, the contiguous cash register model), bufan generate Wav_elet coefficient approximations from the
keeping track of the highe values of(c; —d;) wherec;’s skgtch yvh|ch canin t_urn be used for point or range query
andd,’s appear any which way seems to be difficult (ande§t|mat|ons on the signal. .We will explore both mecha-
likewise for more complex linear projections like wavelet NiSMS, although the latter will prove to be more accurate as
coefficients). In the unordered cash register model, eveRUr experiments will show.
keeping track of highed® a(7)’s is difficult in general; this .
is the top# queries in [11, 4, 2]. We are able to formal- -2 Details of Our Approach
ize all these intuitions in rigorous mathematical frameworkNow we will provide the various details, specifically, what
andprovethat computing the highed?-term approxima- s a sketch of a signal, how to compute it on a data stream,
tion for a signal in any of these data streaming models issnd how to use it for estimations.
difficult, i.e., would require storing too much data, nearly . . .
equal to the size of the signal, and even that of the streami<€ich and its Computation. Recall that a sketch will

itselfl We state our result formally below, but the proof is P& Used to estimate the inner product of certain vectors
beyond the scope of this paper. with the signal. We need the following parameters to for-

mally define a sketch and present our claimsdistortion
Theorem 2 Any streaming algorithm that correctly calcu- parameter—we seek inner products correct to within the
lates the highest wavelet basis coefficient (excluding théactor (1 + €) approximationy, afailure probability—our
overall average) of the signal rendered by unordered ag-guarantees will hold with high probability,being the fail-
gregate stream data (and hence cash register streams) usege probability of our claimsy, afailure threshold—if the
Q(N/polylog(N)) space. cosine between two vectors is greater thyamve estimate
_ the desired quantity within approximation factdr + ¢)
The strong result above shows that nearly all of the sigwith probability at least — §, but we make no guarantees
nal must be in the auxiliary store in order to calculate (orif the cosine is smaller tham
even estimate) the highest-term approximation in data An atomic sketctof signala is the dot producta, r),
streaming models. This seems to indicate that there igherer is a {1,—1} random vector to be defined later.
no hope for providing provably good data streaming algo-Thjs is the standard random projection approach found,
rithms for constructing wavelet approximations to the sig-e g, in [3]. A sketchof the signal isO(log(N/48)/e*n?)

nal. In the next section, we provide an algorithm that getsndependent atomic sketches, each with a different random
around this bottleneck by using the smBHterm property  vectorr.

Theorem 1 With at mostO(B + log V) storage, we can
compute the highest (bedBrterm approximation to a sig-
nal exactly in the ordered aggregate model. Each new dat
item need®)(B + log N) time to be processed.

of wavelet coefficients. Since this sketch size is rather small compared to the
) ) signal size, we explicitly store the sketch in the auxiliary
5 Our Data Streaming Algorithms store. As data stream is read, it is straightforward to up-

date the sketch: when we see an item the cash register
) _ format, we add-/ to the atomic sketch with random vector
We present general techniques for computing wavelet ap-; j

imations f ioanal in data st dels. In wh 7. In an aggregate format, if we seéi), we adda(i)r!
proximalions Ior a signal in data stream models. In whatq,icp may be rational-valued) to the atomic sketch with
follows, we will describe our overall approach before pro-

- : . ) ) random vector/. Thus, it is easy to maintain the sketch
viding details. All our discussion will be for the most chal- over a data stream
lenging case, namely, the unordered cash register rendition An important detail arises, namely, how do we store the

of the signal. :
. random vector’’s. Notice that ther’’s are of length/V
We see the data stream, one item after the other. We g

maintain asketchof the signal we have seen thus far. The 5inwhat follows,log® N will suffice.

5.1 Overall Description




each, and explicitly storing them will defeat the purpose of3. Given a sketchA, consisting of atomic sketched,;,
designing small-space sketch on data streams. The semirfal streama, we can estimate the norm squargd|3 to
idea in [3] is that~/’s can be generated from a seed of size(1 + ) [3]: take the median o) (log(NN/4)) copies of av-
roughly O(log N') provided ther{f’s be only4-wise inde-  erages ofO(1/€*) copies of squares of atomic sketches,

pendent random variables (eachis not generated inde- mediano(iog(v/s))meano(i e2) A7 Similarly, we can es-
pendently randomly which would make theWrwise in-  timate||b||3. By linearity of the sketching technique [3],
dependent). Such random vectors are easy to generate f@sm A/|all» and B/||b]|>, which are sketches far and
shown in [3]. (. Next, estimate the squared distanéa, 8) to (1 +

We adopt this approach, but our requirements on the ran=\/en/B) between these two unit vectors by taking the me-
dom vectors-;'s are somewhat more stringent. This is be-dian of O(log(NN/4)) copies of averages aP(B/(ne*))
cause, later, we will need to estimate the inner product o€opies of(4;/||all> — B;/|b|2)*, whereA; and B; are
the signal with the wavelet basis vectors. Each such vecsorresponding atomic sketches farand b. Compute
tor is lengthN and some of them hav&/c 1’s for some  the cosine ad — d*(«, 3)/2, and, finally, multiply by
constant. Explicitly generating” for eachi with nonzero  llall2 - [|b]|> to scale the inner product back from unit vec-
wavelet basis vector component will thus prove time conors to the original. By [3], we estimat, b) as(a,b) +
suming. What we need is a method to compute these inner/ne/B||al|2||bll2. Thus, if (a,b)> > (ne/B)|lal2||b||2,
products much faster than considering eadh the basis  our estimate of(a, b>2 is good to within the factof1 +
vectors. Inthis paper, we are able to provide such a method)(¢)).

Our construction ofV random variables is novel. It is
based_ on the secon_d order Reed-Muller codes [24]. Wg 3 Answering Queries from the sketch.
describe random variables that take the values 0 or 1; from
this construction, simply map — 1 and1 — —1. Pick  We consider two variations of query processing: batched
log N symbols,a,b,c,.... The N random variables are and adhoc. In théatchedmodel, queries may only be
indexed by subsets of the symbols. A seed for the randomosed at periodic intervals, for example, after the end of
variable is a polynomial over the symbols of degree at mosthe day; hence, queries need not be answered mid-stream.
2, modulo2, such that each possible term is chosen or no¥Ve can perform some time-consuming additional process-
with uniform probability. For exampléd,+b+ac+bcisa  ing during the batching period, since it can be amortized
possible seed. Thus there dre- log N + (IOgZN) possible agegnstdtﬂe enti(rje ilnput stream anbd the co(ljlection ofque(:jries.

1-+log N+(*5) . . In theadhocmodel, queries may be posed at any time dur-

:ﬁg?/saligdgf the random vgrci);;:gl%jgfgs.byusslgg éﬁzg ing the stream processing and rapid response is desirable.

the value ofs regarded as a polynomial when the symbolsgatched Query Processing.We can use the techniques
in A are set to 1 and the symbols notdnare setto 0. For  of section 5.2 to compute an approximation to the high-
example, ifA = {b,c}, then, under seetl+ b + ac + be,  estB-term representation using the sketch. We proceed by

the A’th random variable takes the vallet 1 +0-1+1-  estimating each wavelet coefficient as describeald se-
1 =1mod2, and is mapped te-1 as at1-valued random |ecting up toB of the largest coefficients, but only those
variable. whose square is greater thage/B)||a||3 (in practice, we

The construction above has the property that (1) the rantake theB largest coefficient estimates). We use the esti-
dom variables arg-wise independent, (2) from seedor  mates as coefficients in an at-mdstierm approximation
random vector/ and indexi, we can generate/ quickly,  to the signal. When a point or range query arrives, us-
and (3) from seed for r/, one can find the dot product ing standard wavelet techniques, answer the query in time
(rj, () quickly for any wavelet basis vectgr In both (2)  O(Blog N) [26]. To summarize, we define the energy of a
and (3) above, quickly means in time polylogarithmidNn  representatiot® to be||a||3 — ||a — R]|3, and get
Property (1) will be used in proving our main claim about
wavelet approximations using a sketch. All of the aboveTheorem 3 There is a streaming algorithm, such that,
will form part of the full version of this paper. given a signalk[1..N] with energy||a||3, if there is aB-
term representation with energy at leagla||3, then, with

robability at leastl — §, A finds a representation of at
ostB terms with energy at leagt — ¢)n||a||3; otherwise,
A reports “no good representation.” In any casd,uses

Using a Sketch to Compute Signal EstimatesA sketch
can be used to estimate the signal in two ways describe
earlier, namely, direct estimation of point queries or esti-
mation of highesB-coefficients. We describe each method
below.

For both methods, we need a technical primitive,

namely, estimating the inner product of two vectors givenSpace and per-item time while processing the stream. This
their sketches. Given two vectors, and b, let a =

) ; ) holds in both the aggregate and cash register formats.
a/|lall2 and 8 = b/||b||> be their unit vectors. The in- ! ggreq g

2
ner prOdUCK%m can be. expresged ds— d*(a, 3)/2, 5Note that a wavelet basis vector is already normalized, so one does
whered(a, 8) is the Euclidean distance betweenand  not need to normalize it explicitly.

O (log®(N) log(N/8)B/ (1¢°))
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Table 2: Dataset sizes
Figure 3: Ratio sse/energy v.B.for day O

Ad_hoc ngry Rrocessm_g.Now we show how 'to estimate number of calls made in the last day is not useful, since
point queries directly using the sketch. We give two meth-

the last day may be unusual; on the other hand, the average

ods_; which methqd to use may d‘?pe”d on _the data dIStrIﬁumber of calls made over the last year may contain other
bution. For a point query, associate with it the vector

- . o i than “recent” behavior.
e; consisting of a 1 in positiom and zeros elsewhere; an One approach to this problem is to keep a sliding win-
atomic sketch o#; with random vector? is simplyr;. We 4oy of, say, the calls made in the last 30 days; queries are
compute the sket2ch af; and2 the sketch od to estimate 5 4e against this data set. When a new day’s data arrives,
(ei;a) = a;. If a7 > nllalf;, then our estimate will be  yne oidest day's data is discarded. Thus, this technique re-
ai(l £ ¢) except with probabl_lltyS/N. If we mak_e a total uires 30 times more storage than storing a single day’s
of N such queries (not counting repeated queries about thg. .~
samei) then all of them will be approximately correct ex-  Angther approach [7], used in practice at AT&T, is to
cept with probabilityy. Notice that the procedure above use)-aging data. We (inductively) maintain
works for not only point queries, but also for any range

query or wavelet coefficient since they correspond to comd = Aa'™" + A(1 — A)a™ + -+ X1 = A)ial"D ...,
i he i i ith . Anoth . . .
puting the inner product distance with a vector. Another, = ) oo replacé with Aa(® + (1 — A)b. This

way to answer point querydirectly from the sketch is to data f ; iod ffech with tiall
estimate allog N wavelet basis coefficients, that involve way, dala Irory periods ago altedt with exponentiaily-
small relative weight of1 —\)7, so queries againateflect

a;, and sum the’th components, from each of the corre- ; S . .

sponding vectorsu,(; such thatw? > pljall?. Use the recent” activity, byt the.storage ,requwement is rou,ghly

techniques described above to estimate large coef“ficien'[s.comparable to storing a_smgl_e days_ data, not 30 days’ data.
Note that the foregoing discussion applies to full data

Details of our Implementation. A caveat of finding an es- sets. We now show that our sketching techniques support

timate for the besB-term approximation (for batch query queries from\-aging data sets.

processing) is that the above implementation takes time Our sketches arknear, that is, from sketches(a(®))

Q(N log N') which may be prohibitive in applications with andh(b) of a?) andb respectivelly, we can forrh(Aa(®) +

large N. In practice, we implement our query processing(1 — A\)b) = Ah(al®) + (1 — \)A(b). Note that the weight

engine as follows. We maintain the sketch of the signal asiltimately assigned to a data point depends on the time of

well as apool of B coefficients. When a new data item a query and may be different for several queries. Thus, it is

is read, we update the sketch as well as the pool of coeffinot (obviously) possible to modify data as it enters a data

cients. Periodically, we cycle through the setdfvavelet  structure to simulate &-aging data set.

basis vectors and estimate a batch of their coefficients and

update the pool to contain the highdstcoefficient esti- 6 Experiments

mates in all. This way we amortize the cost of computing . L . .

the estimates against that of reading new data items. Thléor the experiments presented in this section we obtained

entire implementation need3(B + log®*) N) space for

traces from AT&Ts call detail data for a period of one
the sketch, the pool as well as all requisite seeds of rando week. The dataset describes a certain type of long-distance
vectors.

rE‘alls, aggregated at the npa-nxx level. The stream was in
an unordered cash-register format, being an unordered se-
guence of npa-nxx values, one for each phone-call of that
particular type made, where the npa-nxx value corresponds
to the originating number. Table 2 shows the number of
Suppose a new stream arrives daily on the same domain, foecords for each one of the 7 days of the week as well the
example, in the domain of phone numbers, the start timetotal aggregate.

and originating phone number of all phone calls made on For the first experiment we used the data-feed for day-
that day arrives. A data analyst may want to learn approx® (45M records) and computed off-line the highést-
imately the average number of phone calls per day madeavelet coefficients for < B < 40. For the streaming set-
“recently” by a particular phone number. In practice, theup, the distortiorz and failure thresholg where both set to

5.4 Extending Our Approach to Concatenated
Streams
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Figure 4: Ratio sse/energy v.B.at the end of day 6 Figure 5: Performance akraged aggregate queries

0.3; thus, we were expecting to compute coefficients addiputed at the end of day-6 after all data had been processed.
tively to within £9% of the energy of the signal. The sketch Again, streaming wavelets are very close to the error ob-
size for these parameters was 3,952 words long. In the endined by an off-line processing of the stream.
of the day, we used the sketch to compute a higieap-
proximate set of wavelet coefficients fBrbetween 1 and ; i ;
40. We then reconstructed the signal from both higligst- 6.2 Updating Wavelet Coefficients in the Background
sets (varyingB) and computed the point-wise sum-squareTo find the highesB coefficients from the sketch, alV
error (sse) of each approximation; that is, the cumulativecoefficients need to be estimated, which may be prohibitive
sum-square error of all point-queries on the npa-nxx doin applications were adhoc queries are expected during the
main. Figure 3 plots the sse of both representations ovestreaming process. In an additional experiment, we used
the energy of the signal, varying. The highest-7 wavelet a pool of B = 40 coefficients and amortized the cost of es-
coefficients are accurately picked by the sketch as they corimating the wavelet coefficients by computib@, 000 co-
tain (cumulatively) roughly 91% of the energy. FBr> 7 efficients in the background evety, 000, 000 items €.g.
additional wavelet coefficients contain too little informa- we amortize the cost of a coefficient over 1,000 data items).
tion to be reliably identified by the sketch. This is seen inFigure 6 shows the performance of all methods for exe-
the fact that the ratio for the off-line case flattens-out aftercuting all possible point queries, at the end of each day
that point. (starting from day-1). For this set-up, each wavelet coef-
For the next experiment we used data from all 7 daysficient was estimated about 7 times during the 6-day run
We compare the highedt-set of coefficients obtained from of the experiment. As more and more wavelet coefficients
the sketch with (i) the highes# selection obtained from are updated, the background computation catches up—and
an off-line algorithm and (ii) a static highe&-set that is sometimes even surpasses—the batch computation of all
obtained by picking the bedt-coefficients after looking at  coefficients. This is a result of different levels of “noise”
day-0 and dynamically maintaining these coefficients in antroduced from the sketch at the time of the wavelet com-
streaming fashion, as described in [26]. The latter methogputation.
is denoted aStreaming (fixed-setfigure 4 plots the ratio During these runs, we also computed the sse of answer-
of the sse (for point-queries) over the energy of the signalng a point aggregate query directly from the sketch, with-
for all three algorithms varyin@. The queries were ran out using the wavelet coefficients. However, this method
after the end of day-6(g.after all 511M records had been repeatedly produced the worst approximation and is not in-
processed). This time the sketch managed to pick out mosfuded in the graphs.
of the good highest-40 wavelet coefficients. Again there is
a decrease in the accuracy fBr > 26 as the remaining 7
coefficients are too small to be computed from the sketch
with good accuracy. This streaming model, however, byin this paper, we addressed a fundamental question in the
far outperforms the case when the highBsselection of  data streaming context, namely, how to summarize the sig-
coefficients is fixed. nal represented by the stream in small space so that aggre-
In order to check whether the static selection of coeffi-gates queries on the signal can be answered with reason-
cients was hindered because of a poor choice of the initiahble accuracy. We present general methods for solving this
data (day-0) we re-run the experiment starting from day-Iproblem based on storing a sketch of the signal from which

Conclusions

with similar results. many linear projections of the signal can be generated. In
particular, we are able to obtain high quality approxima-
6.1 Processing\-aging Streams tions for the wavelet transform of the signal. Using real

data from AT&T call detail records, we show our methods

We futher tested\-aged aggregate querigsarying A be- to be very effective.

tween 0.3 and 0.9. Higher values)oémphasize the recent
h'Stor}’ more _Strongly- Figure 5 shows the ratio of the sse of 7k this dataset, computing a single wavelet coefficient from the
all point queries over the energy of theaged signal, com-  sketch takes about 22msecs in a 700Mhz Pentium |1l PC.
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Our methods are more general than the context in which
we have explored them. For example, one of the attractive16]
features of wavelet based methods is that (1) they scale well
for multi-dimensions unlike traditional selectivity estima-
tion methods [30], and (2) they have been found to work
for data-cube approximations as well [31]. Our methods[17]
can be extended quite naturally to those contexts. Also, re-
cently, the notion of correlated or continuous queries hag18]
been explored for data streams [15]; we believe that our
methods would supplement those results and enhance them
to include generalized correlations. Finally, there is some[19]
focus on developing data mining algorithms for streams.
Such algorithms would need to be able to compare parts of
the stream with others repeatedly; hence, they would neeg0]
small space methods to approximate the distance between
“substreams” and “subsignals” efficiently. Our methods [21]
may prove useful there.
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