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User-Optimizer Communication using Abstract Plans in Sybase ASE

Abstract
Query optimizers are error prone, due to both
their nature and the increased search space that
modern query processing requires them to
manage. This paper introduces the Sybase
Adaptive Server Enterprise (ASE) Abstract
Plan (AP) language, a novel technology that
puts together a set of proven techniques to
palliate optimizer mistaken decisions. The AP
language is a 2-way user-optimizer
communication mechanism based on a
physical level relational algebra. AP
expressions are used both by the optimizer to
describe the plan that it selected and by the
user to direct the optimizer choices. APs are
not textually part of the query. They are
persistent objects stored in the system
catalogs. APs yield important performance
gains by eliminating all optimizer errors.

1. Introduction
Modern database systems use sophisticated

query-processing techniques, both in terms of the rich set
of relational operators and algorithms implementing them,
and in terms of the wide space of legal plans that bind
those operators together.  As a consequence, the task of
the optimizer has become very hard. Also, optimizers
handle models of query execution – and there’s a
conceptual difference between models and reality. The
best model in the world tautologically leaves parts of the
reality uncovered. In trivial terms, for any real life
optimizer, no matter how sophisticated, there will always

be a query, a database state and a system state where the
optimizer takes the wrong decision. There is not such a
thing as the perfect optimizer. If we agree that making
occasionally errors is in the nature of query optimizers,
then we need to find a way to cope with that. Out of the
many solutions for such scenarios, a pragmatic one is to
provide external hints to the optimizer.

Abstract Plans (APs) is a technology that relies
on the same language for both the user to constrain or
direct the optimizer’s choices and the optimizer to inform
the user of its decisions. The APs are not part of the SQL
text of the queries that they refer to, hence giving or
modifying the AP of a query never requires any
application program changes.

The AP language implements a physical level
relational algebra. It does not provide a semantically
complete description of the query. The optimizer can not
ignore the parsed SQL query and build the QEP solely
based on its AP. For instance, the predicates are not
described. All optimizers will push down predicates as far
as possible. Rather, an AP expression provides a
description of the QEP, at the level where the optimizer
takes decisions. The optimizer is then expected to create a
QEP that is valid with respect to the SQL query and that
complies with the AP. This AP description of a QEP is
independent of any actual data structure implementing the
QEP, hence the abstract nature of APs.

Let us introduce the AP language with an
example. Consider the query:

select r1, s1 from R, S
where r2 = 0 
  and s2 = 100
  and r3 = s3

This query illustrates the join of 2 tables, with a search
clause on each and a join clause. The optimizer could
select for this query a QEP involving direct index access
paths to each table and the Nested Loops Join (NLJ)
algorithm. The following AP describes this QEP:

(nl_join
(i_scan i_s2 S)
(i_scan i_r3 R)

)
The user can then decide to force another plan that she
estimates better, for instance directing the optimizer to
keep the same join order but to use a Merge Join (MJ) and
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letting the optimizer choose the access methods. To
achieve this, she will give to the optimizer the following
AP:

(m_join
(scan S)
(scan R)

)
The AP technology puts together a set of proven

techniques in an innovative manner. Most commercial
RDBMSs already have means to influence the behavior of
the optimizer. Some have syntax for hints that force the
selection of the access methods and to some extent of the
join algorithms and of other optimizer decisions. Some
RDBMSs have optimization levels, which globally limit
the set of techniques that the optimizer may use. All
RDBMSs’ optimizers have means to inform the user of
their decisions and some of them use precisely an
enriched relational algebra notation. Some RDBMSs have
means to associate optimization hints with a query
without any modification of the query text. But, to our
best knowledge, no commercial RDBMS covers all major
aspects of the AP technology.

This brief scenario gives the intuition of the AP
technology. The rest of this paper will try to build
compelling evidence of the advantages brought by the AP
system.

The paper is organized as follows. Section 2
exposes the problem of dealing with optimizer errors. The
underlying concepts of the AP language are described in
Section 3. Section 4 introduces the syntax and semantics
of the language. High level directions for the
implementation of this feature are given in Section 5.
Section 6 discusses related work. Section 7 concludes.

2. Problem definition
The first question that springs to mind is: is it a

valid direction to work on optimizer hints, rather than
focusing the efforts on enhancing the optimizers up to the
level of quality where they are error-free? To answer, let
us explore at a high level the optimizer technology and
what drives them to make errors.

The typical examples of proven state of the art
RDBMs query processing technology is the iterators
based execution model implemented by Starburst [Loh88,
HaaFLP89, Haa...90] and then by Volcano [Gra90,
GraD93, Gra94, GraCMD94] and its industrial
derivatives. The Volcano model is of a nice conceptual
economy, as it only handles iterators. An
open()/next()/close() interface allows any iterator to be the
child of any other one. This encapsulation greatly
simplifies the task of implementing and integrating novel
query processing technology into the execution engine.
An incomplete list of commercially available modern
query processing technology (see the excellent overview
in [Gra93]) contains sub-query flattening and
decorrelation techniques [Kim82, Gav87, Day87,
SesPC96], join indices and materialized views [Val87,

GupM95, AgrCN2000], eager/lazy aggregation [ChaS96,
YanL95, GupHQ95], parallel execution [OzsV96], rich
set of inner/outer/semi join algorithms [MisE92], rich set
of index structures, etc., etc.

Ironically, these query execution technology
enhancements had an opposite impact on the optimizer.
There’s a long history of RDBMS optimizer technology
research, starting with the seminal system R
[SelACLP79]. An overview of optimizer research is out
of the scope of this paper. Let us only cite 2 Ph.D. theses
that are almost 20 years apart [Koo80, Pel97] and a recent
overview [Cha98]. Despite a very active and fruitful
research, while most execution engine limitations have
been removed and a rich set of algorithms and
combinations have become available to the optimizer, the
expectations lain on the optimizer itself have continuously
overcome its actual capacity. The optimizer is expected to
find the best plan, or at least a decently good plan, but
definitely to avoid any bad plan. In addition, it is
supposed to be as fast as possible, which reduces to
traversing the minimal portion of the search space.

Ideally from an optimizer user’s perspective, the
optimizer should directly guess the best plan without
building any useless plan fragment. Cost-based
optimization being a NP problem, this is clearly an
unreachable ideal. On deterministic machines, the ideal
optimizer would enumerate then execute all possible
plans and state post factum “This is the cheapest plan!”.
Given that such an algorithm would be slower than the
slowest plan (the slowest plan being one of the many
enumerated and executed ones), it is equally clearly
unacceptable. Even this caricatural implementation fails
to meet the stated ideal optimizer requirement of always
producing the best plan. First, enumerating all possible
execution plans is a hard problem per se, similar to
generating all theorems in a formal system. Then, the
system load has an important impact on the relative merit
of 2 plans. For instance, the sorting of a derived table is
O(ct) in physical IOs when the whole tuples set fits in
main memory, but gets up to O(NlogN) on the number of
tuples N, when the same memory is shared by several
queries and none of them can get enough for a memory
resident sort. Now, real life shows that there is no
guarantee that at run-time the system load would be the
same as at optimization time. The honest post factum
statement would be “This was the cheapest plan!”,
together with a disclaimer on any guarantee that a second
run would behave precisely the same.

The clear mismatch in the above considerations
is between an ideal optimizer and real life database usage
scenarios. The expectation that the former can act in the
latter is not realistic. This takes us back to real life
optimizers.

Real life optimizers implement models of query
execution. They are actually very close to the ideal
optimizer, with only two differences. First, they try to
reach the right tradeoff between skipping the maximum



number of bad plans and not missing the best plan, by
using heuristic based and cost-based pruning. Second,
instead of executing the plans in this restricted subset,
they actually simulate their execution by using a cost
model. But both differences bring a fair amount of risk.

The risk of pruning is indeed to miss some or all
of the good plans. To avoid pruning is not a viable
alternative. The huge search space of complex queries
would timeout the search engine, pruning de facto the
area still to be inspected. Some optimizers solve this by
sampling through the search space, i.e. by either randomly
or evenly inspecting a limited given number of plans.
However, the pruning done by these algorithms also
caries the risk of missing a good plan.

Furthermore, the most accurate the cost, the most
effective the pruning. Now, the heaviest weight in the cost
is the physical IO. And estimating the physical IO is not
trivial. It actually relies on modeling the disk pages
behavior in the buffer cache. Even for top-down search
engines, logical and physical IO costing is still performed
bottom-up, as one needs to know the algorithms first.
Top-down costing (as in the Columbia optimizer, [Bil97,
Xu98]) generally uses very conservative costs, with little
pruning power. Even with bottom-up costing, the real
execution physical IO behavior is hard to model. The
physical IO is determined by the buffer cache that mainly
uses a LRU policy. However, for the left deep NLJ trees,
it’s hard to cost accurately the physical IO of a sub-plan,
as it’s the innermost tables, that are not yet included in the
sub-plan, who give the LRU behavior.

This overview of accurate costing and right
pruning is not a complete tour of the hard problems met
by the optimization technology. Let us briefly mention the
complexity added by parallel query processing [HasFV96,
LanVZ93], object extensions [LanVZ92], recursion
[DusG97], concurrency and low level IO behavior
[Moh92], host variables as search arguments, columns
values correlation, etc. Dynamic query plans, parametric
and dynamic optimization [GrW89, Ant93, ColG94,
Gang98, Gra2000, BouFMV2000] are promising
technologies used to reduce the optimizer errors. They are
more accurate models, but still only models and can not
guarantee an error less behavior.

The optimization is thus an error-prone
technology. Although some errors of a specific optimizer
are indeed due to its intrinsic weakness, it is in general
impossible to have the perfect optimizer – the one that is
error-free. It is indeed important to invest effort in
enhancing the optimizer technology and attempt to
eliminate all imperfections. However, this attempt will
always hit scenarios where it fails. Coping with optimizer
errors, rather than ignoring their fatality, is a valid parallel
direction, from both a technological and a research
perspective.

The problem that emerges from these
considerations can be stated as follows: create the

technology that palliates to any optimizer error and that
involves minimal user effort.

The AP technology addresses this problem. APs
give the user the means to describe the QEP that the
optimizer should have created, but failed.

3. The Abstract Plan Language
To start with, let us go back to the query given in

Chapter 1. Depending on the available indices, there are
many possible legal plans for this query. The AP
descriptions for some of them are listed below.

a. Use index i_s2(S.s2) to scan S as the outer
table of a NLJ and index i_r3(R.r3) to scan R as the inner
one. This is the AP created by the optimizer in Chapter 1.

(nl_join
(i_scan i_s2 S)
(i_scan i_r3 R)

)
Note that the index choice indicates that the

search clause is used to position the scan on S and the join
clause on R. The AP does not describe predicates
placement.

b. Merge join R and S, using the indices that
provide the ordering needed by the merge predicate. This
AP is the full description of a QEP that’s compatible with
the AP given by the user in Chapter 1.

(m_join
(i_scan i_r3 R)
(i_scan i_s3 S)

)
Here, the search clauses filter the tuples but

cannot limit the scanned pages, as they are not on the
indexed attributes.

c. Merge join R and S, using the indices limiting
the scan, then sorting to obtain the needed ordering.

(m_join
(sort

(i_scan i_r2 R)
)
(sort

(i_scan i_s2 S)
)

)
d. Use the appropriate indices on both S and R to

limit the scans with the search clauses, then join using
nested loops by dynamically building an index (a.k.a.
reformatting) on the inner derived table.

(nl_join
(i_scan i_s2 S)
(store_index

(i_scan i_r2 R)
)

)
These brief examples give a flavor of the

strength and flexibility of the AP language. Let us now
describe the underlying concepts of the AP technology.

The AP language is based on the derived table
and stored tables concepts. Both concepts refer to their
usual meaning in a RDBMS. But whereas an execution
engine implements these concepts with QEP objects that
will actually produce relational expression results and the
optimizer implements them with objects that simulate (i.e.



cost) the execution of such QEPs, the AP language uses
them solely to describe a relational expression.

A stored table is a named and fully materialized
collection of tuples, either a base table or a work table,
and is described by an AP stored table. A derived table is
the result of a QEP node. Both the node and its result are
described by an AP operator.

The AP operators describe the relational
algorithms handled by an optimizer, not the relational
operators; they are at a physical and not at a logical level.
For instance, for the typical implementations of the join
operator, the AP contains the nl_join, m_join and h_join
AP operators. The AP language can also give partial plans
where some algorithms are not imposed and the choice is
left open for the optimizer, so the AP language also
contains the join AP operator.

The AP operators, as their QEP counterparts,
have an arity, i.e. a number of arguments. These
arguments are derived tables, i.e. other AP operators.
Hence, the AP operator trees form a closed set with
respect to composition.

A relational expression can be represented by a
tree, having a node for each operator and an edge below
that node for each operand of the operator. An AP is a
textual representation of a relational expression tree. The

notation is inspired by [Frey87] and by the Lisp S-
expressions.

Consider, for instance, 4 tables S-T-U-V and the
relational expression that merge joins the 2 pairs of tables
S-T and U-V sorting the outer, then nested loops joins
these 2 results by reformatting the inner. The operator tree
and the AP representing this expression are given in
Figure 1. Note that the APs are isomorphic with relational
expressions.

In an AP, worktables are hidden, whenever
possible, as implementation details. For instance, the sort
operator involves the usage of a worktable. If the
worktable were exposed, it would involve 2 relational
sub-trees (and 2 AP fragments), as shown in Figure 2. The
AP of a query involving worktables would need means to
associate several such AP fragments within the total AP
of the query. The AP language approach was to hide such
worktables as part of opaque AP operators (Figure 3).

Unfortunately, it is not always possible to hide
the worktables. Take, for instance, shared relational sub-
expressions, as self-joined views that are materialized. In
such a case the QEPs contains two scan nodes that share
the same worktable. A textual AP can not represent
sharing without naming, and the most straightforward
naming convention involves exposing the worktables.
Hence, the AP language has the expressive power to name
work tables and bind together AP fragments in a total AP,
but this feature is used only for shared expressions.

The APs do not describe predicate placement,
some non-ambiguous optimizer policy is assumed, as the
deepest possible predicate pushdown. Likewise, the AP
relies on the optimizer to place all scalar expression
evaluation. The only expensive predicates and scalar
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expressions currently described in the AP language are
the subqueries:
select r1, s1 from r, s
where r3 = s3
  and r2 = (select t2 from t where t1 = r1)
(m_join

(nest
(i_scan i_r3 r)
(subq

(i_scan i_t1 t)
)

)
(i_scan i_s3 s)

)
The absence of scalars brings a lot of simplicity to the AP
language, without reducing its expressive power: guiding
an optimizer’s search space traversal.

4. Syntax and Semantics
Let us use these underlying concepts to introduce

the syntax and semantics of the AP language. The full AP
language is not described in this paper. Such and
undertaking would imply including most of the User
Guide of a commercial product feature. Rather than being
exhaustive at the risk of getting lost in language details,
the focus will be lain on the relevance and conceptual
integrity of a carefully selected subset of the AP language
- the part that models joins and access methods. The
grammar is given using Yacc [LevMB92] like rules.

The root non-terminal of the AP grammar,
abstract_plan, is a derived table that describes the root
relational operator of the QEP.
abstract_plan:

derived_tab
;

The derived_tab describes all the AP operators.
Within the limits of this paper we will focus on (inner)
joins, scans and enforcers.
derived_tab: join

| sort
| xchg
| store_index
| scan

;
The join is a binary operator describing a join

algorithm and the join structure. The term join order was
introduced by the left deep tree limited QP engines.
Modern QP engines can execute bushy tree plans. Some
optimizers keep a preference for the left deep tree area of
the search space, to decrease its size. But APs don’t have
this constraint, they describe any bushy tree, i.e. a join
structure.
join: nl_join

| m_join
| h_join
| any_join

;
nl_join: ( NL_JOIN derived_tab derived_tab )
;
m_join:  ( M_JOIN derived_tab derived_tab )
;
h_join:  ( H_JOIN derived_tab derived_tab )
;
any_join: ( JOIN derived_tab derived_tab )
;

The any_join syntax gives only a join structure,
but leaves the optimizer free to choose the join algorithm.

Enforcers are unary operators that preserve
unchanged in their output the relational contents of their
input, but enforce on it a physical property, as ordering,
partitioning, etc. The term physical property is found in
[GraD87, GraCMD94, Gra95].

The optimizer could deduce the placement of
some enforcers. This leads to the question: should the AP
language describe them?

For instance, consider ordering, that is enforced
by the sort operator. There’s no doubt about the ordering
available form a child, starting with the leaves (i.e. the
access methods, where a B-tree index scan provides an
ordering).  Neither about the ordering needed by an
algorithm (as a merge join, needing both children to be
ordered on the merge predicate attributes). Hence, the
optimizer could deduce the placement of the sort
operator. But this would mean imposing a policy, as lazy
enforcement – i.e. enforcing just below the point that
needs the ordering. Other policies are possible, as some
operators preserve the ordering of their children.

Hence, it is useful to describe with the AP
language the placement of the sort enforcer.
sort: ( SORT derived_tab )

sort

sort: WkT1

scan: WkT1

consumer

producer

(... the consumer
derived table
...
(sort

( ... the producer
derived table ...

)
)

)

Figure 3



;
The sort AP operator does not describe what attributes to
sort on. Unlike the sort placement that allows several
policies impacting the cost, for a given placement of a
sort operator the optimizer can deduce the minimal set of
attributes to sort on.

The partitioning is the physical property of a
derived table that describes it being split up in several
partitions (and, in a cluster environment, the node that
contains each such partition), so that an independent clone
of an operator can work on each in parallel. The Volcano
model introduces in [Gra90, GraD93] the operator Xchg
(read exchange) as the sole partitioning enforcer for all of
the horizontal/vertical and SMP/cluster scenarios. The AP
language implements it using the xchg operator.
xchg: ( XCHG degree derived_tab )
;
The degree is an integer that gives the number of
partitions. The optimizer could have deduced, as for the
ordering, the minimal partitioning semantically needed at
a node. However, the partitioning degree has an impact on
the cost of a plan. It might be cheaper to split a derived
table in more partitions than the minimum required by the
semantics. Hence the presence of the degree in the AP
xchg operator.

The direct accessibility is the physical property
of an operator to provide a direct access to a subset of its
tuples, as restricted by a predicate. The cost of a direct
access operator is proportional to the size of its result set
after the predicate was applied and not to the number of
available tuples before the restriction.

The store_index AP operator is the enforcer that
describes the materialization of its argument in an indexed
work table (that is not exposed).
store_index: ( STORE_INDEX derived_tab )
;

The leaves of the AP expressions are the scans,
either one of the index direct access path or full table scan
access path.
scan: table_scan

| index_scan
| covered_index_scan
| any_scan

;
table_scan: ( T_SCAN stored_tab )
;
index_scan: ( I_SACN index_desc stored_tab )
;
covered_index_scan: ( I_SCAN stored_index )
;
any_scan: ( SACN stored_tab )
;

As for joins, the any_scan syntax leaves the
optimizer choose the access method.

The full implementation allows disambiguating
between several occurrences of the same table in a query,
either in the same FROM clause or in the different FROM
clauses of the unions, views and subqueries contained
therein. This is based on annotating, in the AP, the name
of the stored table with its syntactic containment in views

and/or subqueries, unions, etc. – according to its
occurrences in the query, as in the example:
create view v(v1, v2) as
select * from t where t1 > 0

select * from t, v where t1 = v2
  and t2 = any (select t1 from t where t3 = 0)

(nl_join
(m_join

(i_scan i_t2 (table t (in
(view v))))

(i_scan i_t1 t)
)
(i_scan i_t1t3 (table t (in (subq 1))))

)
Here ends the join structure and access methods tour of
the AP language, that we hoped brief but relevant.

5. Implementation
Before the AP interaction with the optimization

process per se, let us start with the mechanism of
associating a query with its corresponding AP. The AP of
a query is not part of the SQL text. APs are stored in a
persistent associative memory, where the lookup key is
the SQL text of the query. Before the search space
traversal, if the AP usage mode is active, a lookup is
made and an AP text is potentially found – in which case
it will influence the optimization process. Likewise, at the
end of the optimization process, if the AP capture mode is
active, then the AP describing the generated QEP is
created – and stored, together with the SQL text of the
query as an association key, in the associative memory.
The persistent associative memory is implemented by an
indexed system catalog. Hashing is used to speedup the
search.

Let us focus now on the actual interaction
between an AP and the internal workings of an optimizer.
The main difficulty in implementing the AP technology is
to prove that the AP describes a QEP that is valid, i.e.
semantically equivalent to the query. Indeed, it is
unacceptable to get different (hence wrong!) results from
a query when an AP is used.

Let us give an example: inner joins permute with
each other but do not always permute with outer or semi
joins. Hence an AP could describe a join tree that is not
compatible with the inner/outer/semi joins as they are in
the SQL query.

For instance, the query below has an inner join
as the inner term of an outer join:
select * from t1 left outer join

(t2 inner join t3 on t2.c23 = t3.c32)
on t1.c13 = t3.c31

A possible QEP for this query and the AP describing it
are given in Figure 4. Now, the user could try to force a
t3-t1-t2 join order with the following AP:

(join
(scan t3)
(join

(scan t1)
(scan t2)

)
)



With this AP, the optimizer is expected to find the
appropriate algorithms for the join and scan operators, but
preserve the join tree. However, none of the join AP
operators can capture the outer join semantics of the
query, as none of them has t2 and t3 in its inner sub-plan.
Hence any QEP based on this AP would be wrong.

Actually, there are cases when such an AP would
be correct. If referential integrity constraints guarantee
that all t1 tuples qualify the ON clause, then the outer join
becomes an inner join. But, to accept such a legal AP, the
optimizer must be able to deduce that for this query and
this database schema the outer join can be legally
transformed to an inner join. And that reduces to building
a relational algebra proof.

Hence the optimizer must build a proof.
However, in its full generality this is a non-decidable
problem. It involves comparing a canonical relational
representation of the SQL query and the AP. The two
expressions are semantically equivalent if one can be
derived based on the other, within the limits of the
relational algebra. This comes down to relational algebra
theorem proving. But it is known that theorem proving is
in general a non-decidable problem. It is thus impossible
to prove the validity of all APs that have the same result
set as the SQL query. To make the problem decidable, we
must accept that some APs that are actually valid will be
rejected by the system. For the AP implementation, as
will be seen below, this statement will have a pragmatic
reach. On a conceptual level, that this is the case for all
non-decidable theorems: they are actually true, but that
can’t be proven.

More pragmatically, the AP implementation is
supposed to accept only the APs describing QEPs that the
optimizer could have built. Such QEPs might have been

rejected due to costing or pruning, hence the need of an
AP. But the optimizer had the logic to build that QEP,
provided it was the cheapest one. An AP won’t be able to
instruct an optimizer to use, for instance, the magic set de-
correlation strategy ([SesPC96]), if all that the optimizer
knows are the enhanced Kim transformations ([Kim82,
Gav87]). Note that this is far more restrictive that non-
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)
)
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decidable theorems. An optimizer can implement only a
limited subset of all relational algebra transformations
that are proven to be valid by some decidable theorem.
All APs that can not be based on the implemented
transformations will be rejected, even if a validity proof
exists in abstracto. This conservative and restrictive
choice makes the validity proof possible. It is also
coherent with the primary purpose of the AP technology:
palliate to the fatality of optimizer errors, rather than
artificially enhance an optimizer’s functionality.

This being said, let us give a high level view of
the implementation of the AP technology within a modern
Equivalence Class and plug-in search strategy based
optimizer.

The term Equivalence Class (Eqc) is used as
described in [GrCMD94]. An Eqc stands for a subset of
the tables to be joined and contains the set of optimal sub-
plans implementing the joins of that subset of tables.

A modern optimizer does a lot more than just left
deep trees join order permutations and access path
selection. It will attempt eager/lazy physical property
enforcement, eager/lazy dynamic index creation,
eager/lazy aggregation and delta-project, alternative
subquery flattening and decorrelation techniques, basing
access paths on complex AND/OR Boolean expressions,
etc. When the optimizer transformation set gets richer, the
task of proving the validity of all legal APs is more
complex. Let us see how the validity proof is handled.
The optimizer makes a strong distinction between policies
and mechanisms. All transformations are implemented in
the Eqc module, as mechanisms. These mechanisms are
used by the search engine, whose search strategies
implement the different policies. For instance, physical
properties propagation, availability, need and enforcement
is implemented in Eqc code, that is responsible to accept
or reject a combination of parent and children join
candidates, by checking the match between the available
and needed properties. This code is independent of any
costing decisions and makes no assumption on who will
call its services; it just implements a pre-condition of a
logical to physical transformation. When there is no AP,
the search engine will use these services during the search
space traversal – while attempting to join together the
tables, within the plans it enumerates. When there is an
AP, it replaces the invocation of the search engine for the
fragments that it describes. Its validity proof is based on
using the same Eqc methods to build plan fragments, as
the search engine would use. The ability to build such a
plan using the optimizer code that implements the known
valid relational transformations is a constructive proof of
the validity of the AP. If, in any Eqc, we obtain an empty
set of sub-plans, then the optimizer failed to prove the
validity of the AP. Such an AP is rejected.

A final note on AP performance enhancements
and AP effectiveness. APs yield very important
performance gains by eliminating all optimizer errors.
Experience shows that small optimizer errors can

propagate and cause huge performance degradations.
Hence, APs can yield orders of magnitude of performance
improvements. However, it is impossible to measure the
performance enhancements of the AP technology itself, as
they are actually equal to the performance losses caused
by the optimizer. With the ideal perfect optimizer, there
would be no performance enhancement at all, as the
optimizer will always build the optimal QEP. Actually,
such a perfect optimizer would not need the AP
technology altogether. Alas, such a perfect optimizer does
not exist. For a real life optimizer, we could define a
metric over a selected set of queries, as the old TPC-D or
the more recent TPC-H and TPC-R ones [TPC]. But such
performance improvement numbers would actually
measure the lack of quality of the optimizer rather than
the quality of the AP technology.

The effectiveness of the AP can be measured,
though. By effectiveness we mean the ability of the AP
system to influence the optimizer to produce another QEP
than the one that the optimizer would generate. To be able
to measure that, we need an optimizer that makes errors.
We have added a special optimizer status where the cost
model will compute a cost that’s opposite to the actual
merit and the optimizer systematically generates the
worse plan, making the wrong decisions at all levels.

This framework was used to test the AP system
effectiveness in the following manner. The normal
optimizer regression tests were used, that comes down to
about 1200 queries exercising most optimizer features: 2
to 32 tables joins with several indices per table,
aggregation, views, subqueries, unions, etc. A first run
was made with the optimizer in its normal mode,
capturing all the APs. The APs in this first set are
describing the best QEPs for each query. Then, the error
optimization level is enabled and a second run of the
regression tests is made. During this second run, the
optimizer would generate only bad QEPs. But it’s not
allowed to, as the set of best APs generated during the
first run is used to force the QEPs. Also, during this
second run all APs are again captured, in a second set of
APs. If some optimizer decisions can’t be constrained by
the AP, and then the wrong costing model will generate a
different QEP, hence a different AP. Hence, by
comparing the two AP sets we get a measure of the AP
system’s effectiveness.

The measurement gave very encouraging results.
Of the 1200 queries, only 15 had different APs – and the
reason was outside the AP system itself. Those were the
15 queries that used random values in their search clauses.
To the AP system, the two occurrences of such a query
were two distinct queries, as their SQL texts differed.

6. Related Work
The authors are not aware of any related

research, except for the effort of getting always better
optimizers. To date, fallback solutions when the model



reaches its limits are not considered a research topic, but a
pragmatic problem addressed by ad-hoc means in
commercial RDBMSs.
To start with, the AP technology should not be confused
with an “explain plan” feature. All commercial RDBMSs
have means to describe the plans estimated by the
optimizer, including costs, logical and physical properties,
predicates placement, etc. Sybase ASE has such means,
different from the AP system. Such an explain plan
feature is meant to be as informative as possible for the
user. The AP has an opposite aim. It’s meant to be
concise and support the bare minimum needed by the
optimizer.

The means to influence the optimizer that are
available in commercial RDBMSs are either optimization
levels, or optimizer hints. The optimization levels have a
coarse granularity and are far from the flexibility of the
AP technology. Let us compare the latter with the two
optimizer hints systems that come closest to it: the DB2
“reverse explain” and the Oracle “stored outlines”.

The DB2 EXPLAIN system has, only for the
System R based OS390/DB2 codeline, a reverse
EXPLAIN feature. For all DB2 versions, the optimizer
stores in an EXPLAIN table rows describing the selected
plan. On the OS390/DB2 version, the optimizer can be
instructed to use the plan captured in the EXPLAIN table,
potentially modified by the user: the reverse explain.

The Oracle “stored outlines” are very similar to
APs. They implement an optimizer hints language. The
hints of a query are stored and retrieved, as the APs are,
using the text of the SQL statement as association key.

The main difference between the AP technology
and both the reverse explain and the stored outlines is the
AP derived table concept. Both DB2 and Oracle features
are based on stored tables. With each new table added to
the join order, the hints can give the method to access that
table, the algorithm to join these resulting tuples with the
outer flow of tuples and whether any sort is needed at this
level.  This mechanism allows influencing only the
portion of the plan from scan leaf nodes up to the first join
nodes immediately above the scans, including any
enforcers (as sorts) in between. Left deep trees can be
fully described this way, as these are the only possible
nodes. For bushy trees, the whole upper structure of the
plan is out of reach, as illustrated in Figure 5. For
instance, only the AP can force a complex bushy tree
QEP, as the one in Figure 1. To our best knowledge, APs
are the only commercially available technology to give
optimizer hints, including enforcers, for any tree shape.

Note that the Starburst based UDB codeline of
DB2 has an advanced EXPLAIN feature that can describe
to the user any tree shape selected by the optimizer.
However, it has no reverse EXPLAIN feature allowing
the user to give optimizer hints.

7. Conclusion
The AP technology has proven its practical

utility by providing a fallback solution for the cases when
the selection of a sub-optimal plan was not considered as
an optimizer bug but as an optimizer model limitation.
The past experience in such cases was that trying to
address an optimizer model limitation with a local fix, as
changing a cost formula or a magic number, induces more
problems than it solves.

The fundamental limitation of the AP technology
is the mirror image of its strength: being static. When the
data distribution changes, re-optimizing the queries at
each invocation has the advantage that the QEPs adapt to
the data changes – provided the optimizer takes the right
decision. When the compilation of a QEP is based on a
given AP, it does not follow the data changes, neither for
the best nor for the worse. A citation from [Gra2000] is
relevant here: “Predictability versus risk is a more
important dimension than fast versus slow, within the
limits of common sense.”
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