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Abstract 
Most modern DBMS optimizers rely upon a cost model 
to choose the best query execution plan (QEP) for any 
given query.  Cost estimates are heavily dependent 
upon the optimizer’s estimates for the number of rows 
that will result at each step of the QEP for complex 
queries involving many predicates and/or operations.  
These estimates rely upon statistics on the database and 
modeling assumptions that may or may not be true for a 
given database. In this paper we introduce LEO, DB2's 
LEarning Optimizer, as a comprehensive way to repair 
incorrect statistics and cardinality estimates of a query 
execution plan. By monitoring previously executed 
queries, LEO compares the optimizer’s estimates with 
actuals at each step in a QEP, and computes 
adjustments to cost estimates and statistics that may be 
used during future query optimizations.  This analysis 
can be done either on-line or off-line on a separate 
system, and either incrementally or in batches.  In this 
way, LEO introduces a feedback loop to query 
optimization that enhances the available information on 
the database where the most queries have occurred, 
allowing the optimizer to actually learn from its past 
mistakes.  Our technique is general and can be applied 
to any operation in a QEP, including joins, derived 
results after several predicates have been applied, and 
even to DISTINCT and GROUP-BY operators. As 
shown by performance measurements on a 10 GB TPC-
H data set, the runtime overhead of LEO’s monitoring 
is insignificant, whereas the potential benefit to 
response time from more accurate cardinality and cost 
estimates can be orders of magnitude. 

1. Introduction 
Most modern query optimizers for relational database 
management systems (DBMSs) determine the best query 
execution plan (QEP) for executing an SQL query by 
mathematically modeling the execution cost for each plan 
and choosing the cheapest QEP.  This execution cost is 
largely dependent upon the number of rows that will be 
processed by each operator in the QEP.  Estimating the 
number of rows – or cardinality – after one or more 
predicates have been applied has been the subject of much 
research for over 20 years [SAC+79, Gel93, SS94, 
ARM89, Lyn88].  Typically this estimate relies on 
statistics of database characteristics, beginning with the 
number of rows for each table, multiplied by a filter factor 
– or selectivity – for each predicate, derived from the 
number of distinct values and other statistics on columns.  
The selectivity of a predicate P effectively represents the 
probability that any row in the database will satisfy P. 

While query optimizers do a remarkably good job of 
estimating both the cost and the cardinality of most 
queries, many assumptions underlie this mathematical 
model.  Examples of these assumptions include:  

Currency of information:  The statistics are assumed 
to reflect the current state of the database, i.e. that the 
database characteristics are relatively stable. 

Uniformity:  Although histograms deal with skew in 
values for “local” selection predicates (to a single table), 
we are unaware of any available product that exploits 
them for joins.   

Independence of predicates:  Selectivities for each 
predicate are calculated individually and multiplied 
together, even though the underlying columns may be 
related, e.g. by a functional dependency.  While multi-
dimensional histograms address this problem for local 
predicates, again they have never been applied to join 
predicates, aggregation, etc.  Applications common today 
have hundreds of columns in each table and thousands of 
tables, making it impossible to know  on which subset(s) 
of columns to maintain multi-dimensional histograms.  
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Principle of inclusion:  The selectivity for a join 
predicate X.a = Y.b is typically defined to be 1/max{|a|, 
|b|}, where |b| denotes the number of distinct values of 
column b.  This implicitly assumes the “principle of 
inclusion”, i.e. that each value of the smaller domain has a 
match in the larger domain (which is frequently true for 
joins between foreign keys and primary keys). 

When these assumptions are invalid, significant errors 
in the cardinality – and hence cost -- estimates result, 
causing sub-optimal plans to be chosen.  From the 
authors’ experience, the primary cause of major modeling 
errors is the cardinality estimate on which costs depend.  
Cost estimates might be off by 10 or 15 percent, at most, 
for a given cardinality, but cardinality estimates can be off 
by orders of magnitude when their underlying 
assumptions are invalid. Although there has been 
considerable success in using histograms to detect and 
correct for data skew [IC91, PIHS96, PI97], and in using 
sampling to gather up-to-date statistics [HS93, UFA98], 
there has to date been no comprehensive approach to 
correcting all modeling errors, regardless of origin. 

This paper introduces LEO, the LEarning Optimizer, 
which incorporates an effective and comprehensive 
technique for a query optimizer actually to learn from any 
modeling mistake at any point in a QEP, by automatically 
validating its estimates against actuals for a query after it 
finishes executing, determining at what point in the plan 
the significant errors occurred, and adjusting its model 
dynamically to better optimize future queries.  Over time, 
LEO amasses experiential information that augments and 
adjusts the database statistics for the part of the database 
that enjoys the most user activity.  Not only does this 
information enhance the quality of the optimizer’s 
estimates, but it also can suggest where statistics 
gathering should be concentrated or even can supplant the 
need for statistics collection.  LEO has been prototyped 
on IBM’s DB2 Universal Data Base (UDB) on the 
Windows, Unix, and OS/2 platforms (hereafter referred to 
simply as “DB2”), and has proven to be very effective at 
correcting cardinality estimation errors. 

This paper is organized as follows.  Section 2 explores 
the previous literature in relation to LEO.  We give an 
overview of LEO and an example of its execution in 
Section 3.  Section 4 details how LEO works, including 
the four major components of capturing the optimizer’s 
plan, monitoring the execution, analyzing the actuals vs. 
estimates, and exploiting what is learned in the optimizer 
for subsequent queries. In Section 5, we evaluate LEO’s 
performance – both its overhead and benefit.  Section 6 
discusses advanced topics and Section 7 contains our 
conclusions and future work. 

2.   Related Work 
Much of the prior literature on cardinality estimates has 
utilized histograms to summarize the data distribution of 
columns in stored tables, for estimating the selectivity of 

predicates against those tables. Recent work has extended 
one-dimensional equi-depth histograms to more 
sophisticated and accurate versions [PIHS96] and to 
multiple dimensions [PI97].  This classical work on 
histograms concentrated on the accuracy of histograms in 
the presence of skewed data and correlations by scanning 
the base tables completely, at the price of high run-time 
cost. The work in [GMP97] deals with the necessity of 
keeping histograms up-to-date at very low cost. Instead of 
computing a histogram on the base table, it is 
incrementally derived and updated from a backing sample 
of the table, which is always kept up-to-date. Updates of 
the base table are propagated to the sample and can 
trigger a partial re-computation of the histogram, but there 
is no attempt to validate the estimates from these 
histograms against run-time actuals.    

The work of [CR94] and [AC99] are the first to 
monitor cardinalities in query executions and exploit this 
information in future compilations. In [CR94] the result 
cardinalities of simple predicates after the execution of a 
query are used to adapt the coefficients of a curve-fitting 
formula.  The formula approximates the value distribution 
of a column instead of employing histograms for 
selectivity estimates. In [AC99] the authors present a 
query feedback loop, in which actual cardinalities gleaned 
from executing a query are used to correct histograms. 
Multiple predicates can be used to detect correlation and 
update multi-dimensional histograms. This approach 
effectively deals with single-table predicates applied 
while accessing a base table, but the paper does not deal 
with join predicates, aggregation, and other operators, nor 
does it specify how the user is supposed to know on 
which columns multi-dimensional histograms should be 
created. LEO’s approach extends and generalizes this 
pioneering work.  It can learn from any modeling error at 
any point in a QEP, including errors due to local 
predicates, expressions of base columns involving user-
defined functions, predicates involving parameter markers 
or host variables, join predicates, keys created by the 
DISTINCT or GROUP BY clauses, derived tables, and 
any correlation between any of the above.  Most of these 
operations that change cardinality in some way cannot be 
addressed by histograms. LEO can even adjust estimates 
of other parameters such as buffer utilization, sort heap 
consumption, I/Os, or the actual running time -- the only 
real limitation to LEO’s approach is the overhead of 
collecting the actuals for those estimates. 

Another research direction focuses on dynamically 
adjusting a QEP after the execution has begun, by 
monitoring data statistics during the execution (dynamic 
optimization). In [KDeW98] the authors introduce a new 
statistic collector operator that is compiled into the plan. 
The operator collects the row stream cardinality and size 
and decides whether to continue or to stop the execution 
and re-optimize the remainder of the plan. Query 
scrambling in [UFA98] is geared towards the problem of 
distributed query execution in wide area networks with 



uncertain data delivery. Here the time-out of a data-
shipping site is detected and the remaining data-
independent parts of the plan are re-scheduled until the 
problem is solved. Both solutions deal with dynamic re-
optimization of (parts of) a single query, but they do not 
save and exploit this knowledge for the next query 
optimization run.  LEO is aimed primarily at using 
information gleaned from one or more query executions 
to discern trends that will benefit the optimization of 
future queries.  This benefit is not limited to just the same 
query, because the exact same query is seldom re-
executed in modern data warehouses, data marts, and 
business intelligence applications.  Any query with 
predicates or aggregation on the same column(s) can 
exploit LEO’s learning.  LEO does not (yet) address the 
issue of changing in mid-stream the QEP of a running 
query, as did [KDeW98] and [UFA98], although it could.  
Doing this correctly in a real product needs to resolve 
many hard issues not addressed by that work, such as 
determining points where such changes produce correct 
results (i.e., where data is fully materialized, before any 
results are returned to the user), and reliably predicting 
the times to re-optimize and execute a new plan so that 
they can be traded off against the time to complete the 
original plan. 

3.   A Learning Optimizer 
This section gives an overview of LEO’s design, a 
simplified example of how it learns, and some of the 
practical issues that it must deal with. 

3.1   An Overview of LEO 
LEO exploits empirical results from actual executions of 
queries to validate the optimizer’s model incrementally, 
deduce what part of the optimizer’s model is in error, and 
compute adjustments to the optimizer’s model.  

LEO is comprised of four components: a component 
to save the optimizer’s plan, a monitoring component, an 
analysis component, and a feedback exploitation 
component.  The analysis component is a standalone 
process that may be run separately from the DB2 server, 
and even on another system. The remaining three 
components are modifications to the DB2 server: plans 
are captured at compile time by an addition to the code 
generator, monitoring is part of the run-time system, and 
feedback exploitation is integrated into the optimizer. 

The four components can operate independently, but 
form a consecutive sequence that constitutes a continuous 
learning mechanism by incrementally capturing plans, 
monitoring their execution, analyzing the monitor output, 
and computing adjustments to be used for future query 
compilations.  

 
Figure 1 shows how LEO is integrated into the 

architecture of DB2.  The left part of the figure shows the 
usual query processing flow with query compilation, QEP 

generation and optimization, code generation, and code 
execution. The gray shaded boxes show the changes made 
to regular query processing to enable LEO’s feedback 
loop: for any query, the code generator dumps essential 
information about the chosen QEP (a plan “skeleton”) 
into a special file that is later used by the LEO analysis 
daemon. In the same way, the runtime system provides 
monitored information about cardinalities for each 
operator in the QEP. Analyzing the plan skeletons and the 
runtime monitoring information, the LEO analysis 
daemon computes adjustments that are stored in the 
system catalog. The exploitation component closes the 
feedback loop by using the adjustments in the system 
catalog to provide adjustments to the query optimizer’s 
cardinality estimates.  
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Figure 1: LEO Architecture 

3.2   Monitoring and Learning: An Example 
In the following we use as an example the SQL query: 

SELECT * FROM X, Y, Z 
WHERE X.Price >= 100 AND Z.City = ‘Denver’ 
AND Y.Month = ‘Dec’ AND X.ID = Y.ID 
AND Y.NR = Z.NR 
GROUP BY A 

Figure 2 shows the skeleton of a QEP for this statement, 
including the statistical information and the optimizer’s 
cardinality estimates. In addition, the figure also shows 
the actual cardinalities that the monitoring component of 
LEO determined during query execution. 

In the Figure, cylinders indicate base table access 
operators such as index scan (IXSCAN) or table scan 
(TBSCAN), ellipses indicate other operators, such as 
nested loop joins (NLJOIN) and grouping (GROUP BY). 
“Stat” denotes the base table cardinality, as stored in the 
system catalog, and “Est:” denotes the optimizer’s 
estimate for the result cardinality of each table access 
operator. after application of any predicates (e.g., X.Price 
>= 100), as well as for each of the nested-loop join 
operators. During query execution, the LEO monitoring 
component measures the comparable actual cardinality 
(“Act”) for each operator.  
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Figure 2: Optimal QEP (Skeleton) 

Comparing actual and estimated cardinalities enables 
LEO to give feedback to the statistics that were used for 
obtaining the base table cardinalities, as well as to the 
cardinality model that was used for computing the 
estimates. This feedback may be a positive reinforcement, 
e.g., for the table statistics of Z, where the table access 
operator returned an actual cardinality for Z that is very 
close to that stored in the system catalog statistics. The 
same holds for the output cardinalities of each operator, 
such as a positive feedback for the estimate of the 
restriction on Z that also very closely matches the actual 
number. However, it may also be a negative feedback – as 
for the table access operator of Y, where the statistics 
suggest a number almost three times lower than the actual 
cardinality – or for the join estimates of the nested-loop 
join between X and Y. In addition, correlations can be 
detected, if the estimates for the individual predicates are 
known to be accurate but some combination of them is 
not.  In all of the above, “predicates” can actually be 
generalized to any operation that changes the cardinality 
of the result.  For example, the creation of keys by a 
DISTINCT or GROUP BY clause reduces the number of 
rows.  LEO uses this feedback to help the optimizer to 
learn to better estimate cardinalities the next time a query 
involving these tables, predicates, joins, or other operators 
is issued against the database. 

3.3   Practical Considerations 
In the process of implementing LEO, several practical 
considerations became evident that prior work had not 
addressed.  We now discuss some of these general 
considerations, and how they affected LEO’s design. 

Modifying Statistics vs. Adjusting Selectivities 
A key design decision is that LEO never updates the 
original catalog statistics.  Instead, it constructs a second 
set of statistics that will be used to adjust (i.e. repair) the 
first, original layer. The adjustments are stored as special 
tables in the system catalog. The compilation of new 
queries reads these adjustments, as well as the base 
statistics, and adjusts the optimizer’s estimates 

appropriately. This two-layered approach has several 
advantages. First, we have the option of disabling 
learning, by simply ignoring the adjustments. This may be 
needed for debugging purposes or as a fallback strategy in 
case the system generated wrong adjustments or the new 
optimal plan shows undesired side effects. Second, we 
can store the specific adjustment value with any plan that 
uses it, so that we know by how much selectivities have 
already been adjusted and avoid incorrect re-adjustments 
(no “deltas of deltas”). Lastly, since we keep the 
adjustments as catalog tables, we introduce an easily 
accessible mechanism for tuning the selectivities of query 
predicates that could be updated manually by experienced 
users, if necessary. 

Consistency between Statistics 
DB2 collects statistics for base tables, columns, indexes, 
functions, and tablespaces, many of which are mutually 
interdependent. DB2 allows for incremental generation of 
statistics and checks inconsistencies for user-updateable 
statistics. LEO also must ensure the consistency of these 
interdependent statistics. For example, the number of 
rows of a table determines the number of disk pages used 
for storing these rows. When adjusting the number of 
rows of a table, LEO consequently also has to ensure 
consistency with the number of pages of that table -- e.g., 
by adjusting this figure as well -- or else plan choices will 
be biased.  Similarly, the consistency between index and 
table statistics has to be preserved: If the cardinality of a 
column that is (a prefix of) an index key is adjusted in the 
table statistics, this may also affect the corresponding 
index statistics. 

Currency vs. Accuracy 
Creating statistics is a costly process, since it requires 
scanning an entire table or even the entire database. For 
this reason, database statistics are often not existent or not 
accurate enough to help the optimizer to pick the best 
access plan. If statistics are expected to be outdated due to 
later changes of the database or if no statistics are present, 
DB2 fabricates statistics from the base parameters of the 
table (file size from the operating system and individual 
column sizes). The presence of adjustments and fabricated 
statistics creates a decision problem for the optimizer -- it 
must decide whether to believe possibly outdated 
adjustments and statistics, or fuzzy but current fabricated 
statistics. 

When statistics are updated, many of the adjustments 
calculated by LEO no longer remain valid. Since the set 
of adjustments that LEO maintains is not just a subset of 
the statistics provided by RUNSTATS, removing all 
adjustments during an update of the statistics might result 
in a loss of information. Therefore any update of the 
statistics should re-adjust the adjustments appropriately, 
in order to not loose information like actual join 
selectivities and retain consistency with the new statistics. 



LEO vs. Database Statistics 
LEO is not a replacement for statistics, but a rather a 
complement: LEO gives the most improvement to the 
modeling of queries that are either repetitive or are similar 
to earlier queries, i.e., queries for which the optimizer’s 
model exploits the same statistical information. LEO 
extends the capabilities of the RUNSTATS utility by 
gathering information on derived tables (e.g., the result of 
several joins) and gathering more detailed information 
than RUNSTATS might. Over time, the optimizer’s 
estimates will improve most in regions of the database 
that are queried most (as compared to statistics, which are 
collected uniformly across the database, to be ready for 
any possible query). However, for correctly costing 
previously unanticipated queries, the statistics collected 
by RUNSTATS are necessary even in the presence of 
LEO. 

4.   The LEO Feedback Loop 
The following sections describe the details of how LEO 
performs the four steps of capturing the plan for a query 
and its cardinality estimates, monitoring queries during 
execution, analyzing the estimates versus the actuals, and 
the exploitation of the adjustments in the optimization of 
subsequent queries. 

4.1   Retaining the Plan and its Estimates 
During query compilation in DB2, a code generator 
component derives an executable program from the 
optimal QEP. This program, called a section, can be 
executed immediately (dynamic SQL) or stored in the 
database for later, repetitive execution of the same query 
(static SQL).  The optimal QEP is not retained with the 
section; only the section is available at run-time.  The 
section contains one or more threads, which are 
sequences of operators that are interpreted at run-time.  
Some of the section’s operators, such as a table access, 
closely resemble similar operators in the QEP.  Others, 
such as those performing predicate evaluation, are much 
more detailed.  Though in principle it is possible to 
“reverse engineer” a section to obtain the QEP from 
which it was derived, in practice that is quite complicated.  
To facilitate the interpretation of the monitor output for 
LEO, we chose to save at compile-time a “skeleton” 
subset of the optimal QEP for each query, as an analysis 
“road map”.  This plan skeleton is a subset of the much 
more complete QEP information that may optionally be 
obtained by a user through an EXPLAIN of the query, and 
contains only the basic information needed by LEO’s 
analysis, including the cumulative cardinality estimates 
for each QEP operator, as shown in Figure 2. 

4.2   Monitoring Query Execution 
LEO captures the actual number of rows processed by 
each operator in the section by carefully instrumenting the 
section with run-time counters.  These counters are 

incremented each time an operator processes a row, and 
saved after the query completes.  LEO can be most 
effective if this monitoring is on all the time, analyzing 
the execution of every query in the workload.  For this to 
be practical, LEO’s monitoring component must impose 
minimal overhead on regular query execution 
performance. The overhead for incrementing these 
counters has been measured and shown to be minimal, as 
discussed in Section 5.1. 

4.3   Analyzing Actuals and Estimates 
The analysis component of LEO may be run off-line as a 
batch process, perhaps even on a completely separate 
system, or on-line and incrementally as queries complete 
execution.  The latter provides more responsive feedback 
to the optimizer, but is harder to engineer correctly. To 
have minimal impact on query execution performance, the 
analysis component is designed to be run as a low-priority 
background process that opportunistically seizes “spare 
cycles” to perform its work “post mortem”. Any 
mechanism can be used to trigger or continue its 
execution, preferably an automated scheduler that 
supervises the workload of the system.  Since this means 
LEO can be interrupted by the scheduler at any point in 
time, it is designed to analyze and to produce feedback 
data on a per-query basis. It is not necessary to 
accumulate the monitored data of a large set of queries to 
produce feedback results. 

To compare the actuals collected by monitoring with 
the optimizer’s estimates for that query, the analysis 
component of LEO must first find the corresponding plan 
skeleton for that query.  Each plan skeleton is hashed into 
memory. Then for each entry in the monitor dump file 
(representing a query execution), it finds the matching 
skeleton by probing into the skeletons hash table. Once a 
match is located, LEO needs to map the monitor counters 
for each section operator back to the appropriate QEP 
operator in the skeleton. This is not as straightforward as 
it sounds, because there is not a one-to-one relationship 
between the section’s operators and the QEP’s operators.  
In addition, certain performance-oriented optimizations 
will bypass operators in the section if possible, thus also 
bypassing incrementing their counters.  LEO must detect 
and compensate for this. 
analyze_main(skeleton root) {
preprocess (root); error = OK;
// construct global state and
// pushdown node properties
for (i = 0; i < children(root); i++)
// for each child
{error |= analyze_main(root->child[i]); }
// analyze

if (error) return error;
// if error in any child: return error
switch (root->opcode) // analyze operator
case IXSCAN: return analyze_ixscan(root)
case TBSCAN: return analyze_tbscan(root)
case …

Figure 3: LEO algorithm 



The analysis of the skeleton tree is a recursive post-
order traversal (see Figure 3). Before actually descending 
down the tree, a preprocessing of the node and its 
immediate children is necessary to construct global state 
information and to push down node properties. The 
skeleton is analyzed bottom up, where the analysis of a 
branch stops after an error occurred in the child. Upon 
returning from all children, the analysis function of the 
particular operator is called. 

Calculating the Adjustments 
Each operator type (TBSCAN, IXSCAN, FETCH, FILTER, 
GROUP BY, NLJOIN, HSJOIN, etc.) can carry multiple 
predicates of different kinds (start/stop keys, pushed 
down, join). According to the processing order of the 
predicates within the operator, LEO will find the actual 
monitor data (input and output cardinalities of the data 
stream for the predicate) and analyze the predicate. By 
comparing the actual selectivity of the predicate with the 
estimated selectivity that was stored with the skeleton, 
LEO deduces an adjustment factor such that the DB2 
optimizer can later compute the correct selectivity factor 
from the old estimate and the new adjustment factor. This 
adjustment factor is immediately stored in the database in 
new LEO tables. Note that LEO does not need to re-scan 
the DB2 catalog tables to get the original statistics, 
because the estimates that are based on these statistics are 
stored with the skeleton.  

LEO computes an adjustment such that the product of 
the adjustment factor and the estimated selectivity derived 
from the DB2 statistics yields the correct selectivity. To 
achieve that, LEO uses the following variables that were 
saved in the skeleton or monitor result: 

old_est: the estimated selectivity from the optimizer 
old_adj: an old adjustment factor that was possibly 

used to compute old_est 
act: The actual selectivity that is computed from the 

monitor data 
After detecting an error ( | old_est – act | / act > 0.05 ) 

for the predicate col < X, LEO computes the adjustment 
factor so that the new estimate equals the actual value 
(act) computed from the monitor: est = actual = stats*adj; 
where stats is the original selectivity as derived from the 
catalog. The old estimate (old_est) is either equivalent to 
the original statistic estimate (stats) or was computed with 
an old adjustment factor (old_adj). Hence this old 
adjustment factor needs to be factored out. (adj = act / 
stats = act/(old_est/old_adj) = act*(old_adj/old_est). 

Since the selectivity for the predicate (col >= X) is 1 – 
selectivity(col < X), we invert the computation of the 
estimate and the adjustment factor for this type of 
predicate. Note that we derive an adjustment factor for the 
< -operator from the results of the > -operator, and we 
apply the adjustment factor of a < -operator for the 
computation of the > -operator. 

Using the example from Figure 2 and a TBSCAN on 
table X with the predicate Price >= 100, we can compute 

the adjustment factors for the table cardinality and the 
predicate. The cardinality adjustment factor is 7632/7200 
= 1.06. The estimated selectivity of the predicate was 
1149/7200 = 0.1595 while the actual selectivity is 
2283/7632 = 0.2994. The adjustment factor for the 
corresponding Price < 100 -predicate is (1 - 0.2994) * 1.0 
/ (1 -0.1595) = 0.8335. The optimizer will compute the 
selectivity for this predicate in the future to be 1 – 0.8335 
* (1 – 0.1595) = 0.2994. The adjusted table cardinality of 
the TBSCAN (1.06*7200) times the adjusted predicate 
selectivity 0.2994 computes the correct, new estimate of 
the output cardinality of the TBSCAN operator (2283). 

However, different types of section operators can be 
used to execute a particular predicate such as ‘Price >= 
100’. If the Price column is in the index key, the table 
access method could be an IXSCAN-FETCH 
combination. If Price is the leading column of the index 
key, the predicate can be executed as a start/stop key in 
the IXSCAN operator. Then IXSCAN delivers only those 
rows (with its row identifier or RID) that fulfill the key 
predicate. FETCH uses each RID to retrieve the row from 
the base table. If the predicate on Price cannot be applied 
as a start/stop key, it is executed as a push-down predicate 
on every row returned from the start/stop key search. 
When using a start/stop key predicate, we scan neither the 
index nor the base table completely, and hence cannot 
determine the actual base table cardinality. In order to 
determine the real selectivity of an index start/stop key 
predicate, we can only approximate the needed input 
cardinality by using the old cardinality estimates, if a 
previously computed table adjustment factor was used1  

The merge-join algorithm demonstrates a similar 
problem that we have named implicit early out.  Recall 
that both inputs of the merge join are sorted data streams.  
Each row will be matched with the other side until a 
higher-valued row or no row at all is found.  Reaching the 
end of the data stream on one side immediately stops the 
algorithm. Thus any remaining rows from the other side 
will never be asked for, and hence are not seen or counted 
by the monitor. As a result, any monitor number for 
merge-join input streams is unreliable unless we have 
encountered a “dam” operator such as SORT or TEMP, 
which by materializing all rows ensures the complete scan 
and count of the data stream prior to the merge join. 

Storing the Adjustments 
For storing the adjustments, the new tables 
LEO_TABLES, LEO_COLUMNS and LEO_JOINS have 
been introduced into the DB2 system catalog. 
Take as an example the column adjustment catalog as 
stored in LEO_COLUMNS. The columns (tablespaceID, 
tableID, columnID) uniquely identify a column (i.e. 
X.Price), while the Adj_factor = 0.8335 and Col_Value = 

                                                           
1 The existence of an adjustment factor indicates that we have 
seen a complete table scan earlier and successfully repaired an 
older statistic. 



‘100’. Timestamp is the compile time of the query and is 
used to prohibit learning from old knowledge. Type 
indicates the type of entry: ‘F’ for a frequent value or ‘Q’ 
for a quantile adjustment for the corresponding Col_Value 
value.  In LEO_JOINS, a join is sufficiently described by 
two triplets for the two join columns. Introducing a simple 
rule of (lexicographic) order on the columns’ triplets is 
sufficient to store the adjustment factors only once: the 
‘smaller’ column is stored with its join partner and the 
adjustment factor. A simple index scan with a search key 
on the “smaller” join column allows us to efficiently 
update or retrieve the adjustment factor from the database. 

4.4 Using Learned Knowledge  
Before the DB2 Optimizer begins constructing candidate 
plans, it first retrieves the schema and statistics for each 
base table referenced in that query from the catalog cache. 
From these statistics, the optimizer gets the base-table 
cardinality and computes selectivity factors for each 
predicate. At this point, if LEARNING is enabled by a 
control flag, the optimizer will also search the catalog for 
any adjustment factors that may be relevant to this query, 
and adjust the base table statistics, predicate selectivities, 
and other statistics accordingly.  How this is done for each 
type of adjustment is the subject of this section.  

Base Table Cardinalities 
We start first with adjusting the base table cardinalities, 
since these are thebasis for all cardinality estimates of 
plans.   The statistics for the base-table’s cardinality need 
only be multiplied by the adjustment factor, if any, for 
that table. 

As discussed earlier, the difficulty comes in 
maintaining the consistency of this adjusted cardinality 
with other statistics for that table.  The number of pages in 
the table, NPAGES, is collected during RUNSTATS and 
is directly used in the cost model as a more accurate 
measurement for the number of I/O operations during 
TBSCAN operations than computing it from the table 
cardinality, the row width, and the page size. As a result, 
LEO must adjust NPAGES for base tables, as well as the 
index statistics (the number of leaf and non-leaf pages) 
accordingly. In addition, the column cardinalities for each 
column obviously cannot exceed the table cardinality, but 
increasing the number of rows may or may not increase 
the cardinality of any column.  For example, adding 
employee rows doesn’t change the cardinality of the Sex 
column, but probably changes the cardinality of the 
EmployeeID column.  Similarly, the consistency between 
index and table statistics has to be preserved. If a column 
that is in one or more index keys has its cardinality 
adjusted in the table statistics, the corresponding index 
cardinality statistics (FIRSTKEYCARD, 
FIRST2KEYCARD, …, FULLKEYCARD) must also be 
adjusted accordingly. 

Single-Table Predicates 
Next, we consider adjustments to the selectivity of a 
simple, single-table predicate, illustrated by adjusting the 
column X.Price for the predicate X.Price < 100. Figure 4 
shows the actual cumulative distribution for X.Price. 
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Figure 4: Actual Data Distribution 

Figure 5 shows the column statistics collected for X.Price 
and Figure 6  the corresponding adjustments. 
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Figure 5: Column Statistics 

The optimizer computes the selectivity for X.Price < 
100 from the statistics by cardinality(X < 100) / 
Maximal_Cardinality = 500/2000 = 0.25. Applying the 
adjustments results in adjusted_selecticity(X.Price < 100) 
= cardinality(X.Price < 100) * adjustment(X.Price < 100) 
= 0.25 * 2 = 0.5. If there is no exact match in the column 
statistics for a column value (i.e. X.Price < 100), the 
adjustment factor is computed by linearly interpolating 
within the interval in which the value ‘100’ is found.  
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Figure 6: Adjustments  



In Figure 7, statistics do not exist (which is equivalent 
to a default selectivity of 1/3, i.e., a uniformly distributed 
cardinality of 667). The adjustment curve here shows 
higher or lower amplitudes than the one for the statistics. 
For our example: adjustment(X.Price < 100) = 1.5.  

Suppose that the optimizer had used an earlier 
adjustment factor of 2 to compute the estimate for the 
predicate ‘X.Price < 100’.  Suppose further that, due to 
more updates, the real selectivity of the predicate is 0.6 
instead of the newly estimated 0.5. LEO needs to be 
aware of this older adjustment factor to undo its effects. 
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Figure 7: Adjustments without Statistics 

In our model, an adjustment factor is always based on 
the systems statistics and never an adjustment of an older 
adjustment. The new factor is computed by act_selectivity 
* old_adj / est = 0.6 * 2 / 0.5 = 2.4. Thus any previously 
used adjustment factor must be saved with the QEP 
skeleton. Note that it is not sufficient to look up the 
adjustment factor in the system table, since LEO cannot 
know if it was actually used for that query or if it has 
changed since the compile time of that query.  

The LEO approach is not limited to simple relational 
predicates on base columns, as is the histogram approach 
of [AC99].  The “column” could be any expression of 
columns (perhaps involving arithmetic or string 
operations), the “type” could be LIKE or user-defined 
functions, and the literal could even be “unknown”, as 
with parameter markers and host variables. 

Join Predicates  
As indicated above, LEO can also compute adjustment 
factors for equality join operators.  The adjustment factor 
is simply multiplied by the optimizer’s estimate.  Note 
that having the actuals and estimates for each operator 
permits LEO to eliminate the effect of any earlier 
estimation errors in the join’s input streams. 

Other Operators 
The GROUP BY and DISTINCT clauses effectively 
define a key.  An upper bound on the resulting cardinality 
of such operations can be derived from the number of 
distinct values for the underlying column(s): the 
COLCARD statistic for individual columns, or the 
FULLKEYCARD statistic for indexes, if any, on multiple 

columns.  However, predicates applied either before or 
after these operations may reduce the real cardinalities 
resulting.  Similarly, set operations such as UNION 
(DISTINCT), UNION ALL, and EXCEPT may combine 
two or more sets of rows in ways that are difficult for the 
optimizer to predict accurately. Although not 
implemented in the current prototype, the analysis routine 
can readily compute the adjustment factor as adj = act * 
old_adj / old_est, and adjust the cardinality output by each 
of these operators by multiplying its estimate by adj.  It is 
doubtful that the histogram approach of [AC99] could 
provide adjustments for these types of operations in SQL. 

Correlation between predicates 
Optimizers usually assume independence of columns. 
This allows for estimating the selectivity of a conjunctive 
predicate as a product of the selectivity of the atomic 
predicates.  However, correlations sometimes exist 
between columns, when the columns are not independent. 
In this case, the independence assumption underestimates 
the selectivity of a conjunctive predicate. 

In practical applications, data is often highly 
correlated. Types of correlations include functional 
dependencies between columns and referential integrity, 
but also more complex cases such as a constraint that a 
part is supplied by at most 20 suppliers.  Furthermore, 
correlations may involve more than two columns, and 
hence more than two predicates.  Therefore, any set of 
predicates may have varying degrees of correlation.  How 
are errors due to correlation discerned from errors in the 
selectivities of the individual predicates?  LEO’s approach 
is to first correct individual predicate filter factors, using 
queries that apply those predicates in isolation.  Once 
these are adjusted, any errors when they are combined 
must be attributable to correlation.  A single query can 
provide evidence that two or more columns are correlated 
for specific values; LEO must cautiously mine the 
execution of multiple queries having predicates on the 
same columns before it can safely conclude that the two 
columns are, in general, correlated to some degree.  The 
multi-dimensional histogram approach of [AC99] could 
be used here, but presumes that the user knows which 
columns are correlated and predefines a multi-
dimensional histogram for each.  LEO can automatically 
detect good candidates for these multi-dimensional 
histograms through its analysis. 

In our current implementation of LEO, we only take 
advantage of correlations between join columns. An 
extension of LEO might take further advantage of 
correlation in order to provide even better adjustments.  

5.   Performance 

5.1   Overhead of LEO’s Monitoring 
LEO requires monitoring query execution in order to 

obtain the actual cardinalities for each operator of a QEP. 



Our performance measurements on a 10 GB TPC-H 
database [TPC00] show that for our prototype of LEO the 
monitoring overhead is below 5% of the total query 
execution time, and therefore may be neglected for most 
applications. 
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Figure 8: Monitoring Overhead for a 10 GB TPC-H 

Database 
Figure 8 shows the actual measurement results for the 

overhead for TPC-H queries Q2 and Q14, measured both 
on a single-CPU (serial) and on an SMP machine. These 
overheads were measured on a LEO prototype. For the 
product version, further optimizations of the monitoring 
code will reduce the monitoring overhead even further. 

Our architecture permits dynamically enabling and 
disabling monitoring, on a per-query basis. If time-critical 
applications cannot accept even this small overhead for 
monitoring, and thus turn monitoring off, they can still 
benefit from LEO, as long as other – uncritical – 
applications monitor their query execution and thus 
provide LEO with sufficient information.  

5.2   Benefit of Learning 
Adjusting outdated or incorrect information may allow the 
optimizer to choose a better QEP for a given query. 
Depending on the difference between the new and the old 
QEP, LEO may drastically speed-up query execution 

Suppose now that the database in our example has 
changed significantly since the collection of statistics: the 
Sales stored in table Y increased drastically in December 
and the inventory stored in table X received many updates 
and inserts, where most new items had a price greater than 
100. This results in an overall cardinality of more than 
21623 records for X and 17949 records for Y. Suppose 
further that these changes also introduce a skew in the 
data distribution, changing the selectivities of the 
predicates X.Price > 100 and Y.Month = ‘Dec’.  Finally, 
suppose that a query referencing table X with the 
predicate X.Price > 1502, and another query referencing Y 
with the predicate Y.Month =’Dec’, have been executed, 

                                                           
2 Note that it is not necessary to run a query with exactly the 
predicate X.Price > 100, since LEO performs interpolation for 
histograms. Thus an adjustment for X.Price >150 is also be 
useful for a query X.Price > 100.  

providing LEO with some adjustments.  Figure 9 shows 
how LEO changes the query execution plan for the query 
of Section 3.2 after these changes.  The optimizer now 
chooses to use a bulk method for joining X and Y for this 
query, thus replacing the nested-loop join with a hash 
join. Note that the index scan on Y was also replaced by a 
table scan, due to the adjustments. This new plan resulted 
in an actual execution speed-up of more than one order of 
magnitude over the earlier plan executing on the same 
data. 

HS-JOIN
Est: 1149 
Adj. Est: 12487
Act: 12487

Est: 290
Adj. Est: 11083
Act: 11083

Est: 2023
Act: 3295

Est: 528
Act: 1317

Est: 149
Act: 133

Stat: 7200
Act: 21623

Stat: 2100
Act: 17949

Stat: 23410
Act: 23599

X.Price > 100 
TBSCAN X

Y.Month = “Dec”
��������������������������������

Z.City = "Denver“
IXSCAN Z

NL-JOIN

Est: 10
Act: 119

GROUP
BY

 
Figure 9: Optimal QEP after Learning 

Our experiments on two highly dynamic test databases 
(artificial and TPC-H) showed that the adjustments 
enabled the optimizer to choose a QEP that performed up 
to 14 times better than the QEP without adjustments, 
while LEO consumed an insignificant runtime overhead, 
as shown in Section 5.1. Of course, speed-ups can be even 
more drastic, since LEO’s adjustments can cause virtually 
any physical operator of a QEP to change, and may even 
alter the structure of the QEP. The most prominent 
changes are table access operators (IXSCAN, TBSCAN), 
join method (NLJOIN, HSJOIN, MGJOIN), and changing 
the join order for multi-way joins. 

6.   Advanced Topics 

6.1   When to Re-Optimize 
A static query is bound to a plan that the optimizer has 
determined during query compilation. With LEO, the plan 
for a static query may change over time, since the 
adjustments might suggest an alternative plan to be better 
than the plan that is currently used for that query. The 
same holds for dynamic queries, since DB2 stores the 
optimized plan for a dynamic query in a statement cache. 

Currently we do not support rebinding of static queries 
or flushing the statement cache because of learned 
knowledge. It remains future work to investigate whether 
and when re-optimization of a query should take place. 
The trade-off between re-optimization and improved 
runtime must be weighed in order to be sure that re-
optimization will result in improved query performance. 



6.2   Learning Other Information 
Learning and adapting to a dynamic environment is not 
restricted to cardinalities and selectivities. Using a 
feedback loop, many configuration parameters of a 
DBMS can be made self-tuning. If, for instance, the 
DBMS detects by query feedback that a sort operation 
could not be performed in main memory, the sort heap 
size could be adjusted in order to avoid external sorting 
for future sort operations. In the same way, buffer pools 
for indexes or tables could be increased or decreased 
according to a previously seen workload. This is 
especially interesting for resources that are assigned on a 
per-user basis: Instead of assuming uniformity, buffer 
pools or sort heaps could be maintained individually per 
user. If dynamic adaptation is possible even during 
connections, open but inactive connections could transfer 
resources to highly active connections. 

Another application of adjustments is to “debug” the 
cost model of the query optimizer: If – despite correct 
base statistics – the cost prediction for a query is way off, 
analyzing the adjustment factors permits locating which 
of the assumptions of the cost model are violated. 

Physical parameters such as the network rate, disk 
access time, or disk transfer rate are usually considered to 
be constant after an initial set-up. However, monitoring 
and adjusting the speed of disks and networks enables the 
optimizer to adjust dynamically to the actual workload 
and use the effective rate. 

7   Conclusions 
LEO provides a general mechanism for an optimizer 

to actually learn from its mistakes by adjusting its 
cardinality and other estimates using the actuals from the 
execution of previous queries having similar predicates.  
Regardless of the source of error – old statistics, invalid 
assumptions, inadequate modeling, unknown literals, etc. 
– LEO can detect and correct the mistake for any kind of 
operation that changes the cardinality, at any point in a 
plan.  This is a far more general mechanism than multi-
dimensional histograms, which are limited to local 
predicates on columns of a base table.  Our performance 
measurements have demonstrated that LEO can improve 
cardinality estimates by orders of magnitude, changing 
plans to improve performance by orders of magnitude, 
while adding less than 5% overhead to execution time 
when monitoring actuals.  We feel that LEO provides a 
major step forward in improving the quality of query 
optimization and reducing the need for “tuning” of 
problem queries, a major contributor to cost of ownership. 

Our future work includes completing the 
implementation of LEO’s adjustments for all types of 
predicates, measuring the benefit on a realistic set of user 
queries, finding conclusive ways to discern correlation 
among predicates, applying LEO’s approach to 
parameters other than cardinality, and possibly using 

LEO’s adjustments to change a query’s plan dynamically 
during its execution in a robust, industrial-strength way. 

Acknowledgements 
The authors thank Kwai Wong for her help with the 
measurements of the LEO runtime overhead, and 
Ashutosh Singh and Eric Louie for systems support. 

Bibliography 
AC99 A. Aboulnaga and S. Chaudhuri, Self-tuning 

Histograms: Building Histograms Without Looking 
at Data, SIGMOD, 1999 

ARM89 R. Ahad, K.V.B. Rao, and D. McLeod, On 
Estimating the Cardinality of the Projection of a 
Database Relation, TODS 14(1), pp. 28-40. 

CR94 C. M. Chen and N. Roussopoulos, Adaptive 
Selectivity Estimation Using Query Feedback, 
SIGMOD, 1994 

Gel93 A. Van Gelder, Multiple Join Size Estimation by 
Virtual Domains, PODS, pp. 180-189. 

GMP97 P. B. Gibbon, Y. Matias and V. Poosala, Fast 
Incremental Maintenance of Approximate 
Histograms, VLDB, 1999 

HS93 P. Haas and A. Swami, Sampling-Based Selectivity 
Estimation for Joins - Using Augmented Frequent 
Value Statistics, IBM Research Report, 1993              

IBM00 DB2 Universal Data Base V7 Administration 
Guide, IBM Corp., 2000 

IC91 Y.E. Ioannidis and S. Christodoulakis. On the 
Propagation of Errors in the Size of Join Results, 
SIGMOD, 1991 

KdeW98 N. Kabra and D. DeWitt, Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution 
Plans, SIGMOD, 1998 

Lyn88 C. Lynch, Selectivity Estimation and Query 
Optimization in Large Databases with Highly 
Skewed Distributions of Column Values, VLDB, 
1988 

PI97 V. Poosala and Y. Ioannidis, Selectivity Estimation 
without the attribute value independence 
assumption, VLDB, 1997 

PIHS96 V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita, 
Improved histograms for selectivity estimation of 
range predicates, SIGMOD. 1996, pp. 294-305 

SAC+79 P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, 
R. A. Lorie, T. G. Price, Access Path Selection in a 
Relational Database Management System, 
SIGMOD 1979, pp. 23-34 

SS94 A. N. Swami, K. B. Schiefer, On the Estimation of 
Join Result Sizes, EDBT 1994, pp. 287-300 

TPC00 Transaction Processing Council, TPC-H Rev. 1.2.1 
specification, 2000 

UFA98 T. Urhan, M.J. Franklin and L. Amsaleg, Cost-
based Query Scrambling for Initial Delays, 
SIGMOD, 1998 

 


