
LEO – DB2’s LEarning Optimizer

Michael Stillger3*, Guy Lohman1, Volker Markl1, Mokhtar Kandil2

 1IBM Almaden Research Center 2IBM Canada Ltd. 3*Siebel Systems, Inc.
 650 Harry Road, K55/B1 1150 Eglinton Ave. E. 2207 Bridgepointe Parkway
 San Jose, CA, 95139 Toronto, ON M3C 1H7 San Mateo, CA 94404
 USA Canada USA

mstilger@siebel.com, {lohman, marklv}@almaden.ibm.com, mkandil@ca.ibm.com

Abstract
Most modern DBMS optimizers rely upon a cost model
to choose the best query execution plan (QEP) for any
given query. Cost estimates are heavily dependent
upon the optimizer’s estimates for the number of rows
that will result at each step of the QEP for complex
queries involving many predicates and/or operations.
These estimates rely upon statistics on the database and
modeling assumptions that may or may not be true for a
given database. In this paper we introduce LEO, DB2's
LEarning Optimizer, as a comprehensive way to repair
incorrect statistics and cardinality estimates of a query
execution plan. By monitoring previously executed
queries, LEO compares the optimizer’s estimates with
actuals at each step in a QEP, and computes
adjustments to cost estimates and statistics that may be
used during future query optimizations. This analysis
can be done either on-line or off-line on a separate
system, and either incrementally or in batches. In this
way, LEO introduces a feedback loop to query
optimization that enhances the available information on
the database where the most queries have occurred,
allowing the optimizer to actually learn from its past
mistakes. Our technique is general and can be applied
to any operation in a QEP, including joins, derived
results after several predicates have been applied, and
even to DISTINCT and GROUP-BY operators. As
shown by performance measurements on a 10 GB TPC-
H data set, the runtime overhead of LEO’s monitoring
is insignificant, whereas the potential benefit to
response time from more accurate cardinality and cost
estimates can be orders of magnitude.

1. Introduction
Most modern query optimizers for relational database
management systems (DBMSs) determine the best query
execution plan (QEP) for executing an SQL query by
mathematically modeling the execution cost for each plan
and choosing the cheapest QEP. This execution cost is
largely dependent upon the number of rows that will be
processed by each operator in the QEP. Estimating the
number of rows – or cardinality – after one or more
predicates have been applied has been the subject of much
research for over 20 years [SAC+79, Gel93, SS94,
ARM89, Lyn88]. Typically this estimate relies on
statistics of database characteristics, beginning with the
number of rows for each table, multiplied by a filter factor
– or selectivity – for each predicate, derived from the
number of distinct values and other statistics on columns.
The selectivity of a predicate P effectively represents the
probability that any row in the database will satisfy P.

While query optimizers do a remarkably good job of
estimating both the cost and the cardinality of most
queries, many assumptions underlie this mathematical
model. Examples of these assumptions include:

Currency of information: The statistics are assumed
to reflect the current state of the database, i.e. that the
database characteristics are relatively stable.

Uniformity: Although histograms deal with skew in
values for “local” selection predicates (to a single table),
we are unaware of any available product that exploits
them for joins.

Independence of predicates: Selectivities for each
predicate are calculated individually and multiplied
together, even though the underlying columns may be
related, e.g. by a functional dependency. While multi-
dimensional histograms address this problem for local
predicates, again they have never been applied to join
predicates, aggregation, etc. Applications common today
have hundreds of columns in each table and thousands of
tables, making it impossible to know on which subset(s)
of columns to maintain multi-dimensional histograms.

* Work performed while the author was a post-doc at IBM ARC.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Principle of inclusion: The selectivity for a join
predicate X.a = Y.b is typically defined to be 1/max{|a|,
|b|}, where |b| denotes the number of distinct values of
column b. This implicitly assumes the “principle of
inclusion”, i.e. that each value of the smaller domain has a
match in the larger domain (which is frequently true for
joins between foreign keys and primary keys).

When these assumptions are invalid, significant errors
in the cardinality – and hence cost -- estimates result,
causing sub-optimal plans to be chosen. From the
authors’ experience, the primary cause of major modeling
errors is the cardinality estimate on which costs depend.
Cost estimates might be off by 10 or 15 percent, at most,
for a given cardinality, but cardinality estimates can be off
by orders of magnitude when their underlying
assumptions are invalid. Although there has been
considerable success in using histograms to detect and
correct for data skew [IC91, PIHS96, PI97], and in using
sampling to gather up-to-date statistics [HS93, UFA98],
there has to date been no comprehensive approach to
correcting all modeling errors, regardless of origin.

This paper introduces LEO, the LEarning Optimizer,
which incorporates an effective and comprehensive
technique for a query optimizer actually to learn from any
modeling mistake at any point in a QEP, by automatically
validating its estimates against actuals for a query after it
finishes executing, determining at what point in the plan
the significant errors occurred, and adjusting its model
dynamically to better optimize future queries. Over time,
LEO amasses experiential information that augments and
adjusts the database statistics for the part of the database
that enjoys the most user activity. Not only does this
information enhance the quality of the optimizer’s
estimates, but it also can suggest where statistics
gathering should be concentrated or even can supplant the
need for statistics collection. LEO has been prototyped
on IBM’s DB2 Universal Data Base (UDB) on the
Windows, Unix, and OS/2 platforms (hereafter referred to
simply as “DB2”), and has proven to be very effective at
correcting cardinality estimation errors.

This paper is organized as follows. Section 2 explores
the previous literature in relation to LEO. We give an
overview of LEO and an example of its execution in
Section 3. Section 4 details how LEO works, including
the four major components of capturing the optimizer’s
plan, monitoring the execution, analyzing the actuals vs.
estimates, and exploiting what is learned in the optimizer
for subsequent queries. In Section 5, we evaluate LEO’s
performance – both its overhead and benefit. Section 6
discusses advanced topics and Section 7 contains our
conclusions and future work.

2. Related Work
Much of the prior literature on cardinality estimates has
utilized histograms to summarize the data distribution of
columns in stored tables, for estimating the selectivity of

predicates against those tables. Recent work has extended
one-dimensional equi-depth histograms to more
sophisticated and accurate versions [PIHS96] and to
multiple dimensions [PI97]. This classical work on
histograms concentrated on the accuracy of histograms in
the presence of skewed data and correlations by scanning
the base tables completely, at the price of high run-time
cost. The work in [GMP97] deals with the necessity of
keeping histograms up-to-date at very low cost. Instead of
computing a histogram on the base table, it is
incrementally derived and updated from a backing sample
of the table, which is always kept up-to-date. Updates of
the base table are propagated to the sample and can
trigger a partial re-computation of the histogram, but there
is no attempt to validate the estimates from these
histograms against run-time actuals.

The work of [CR94] and [AC99] are the first to
monitor cardinalities in query executions and exploit this
information in future compilations. In [CR94] the result
cardinalities of simple predicates after the execution of a
query are used to adapt the coefficients of a curve-fitting
formula. The formula approximates the value distribution
of a column instead of employing histograms for
selectivity estimates. In [AC99] the authors present a
query feedback loop, in which actual cardinalities gleaned
from executing a query are used to correct histograms.
Multiple predicates can be used to detect correlation and
update multi-dimensional histograms. This approach
effectively deals with single-table predicates applied
while accessing a base table, but the paper does not deal
with join predicates, aggregation, and other operators, nor
does it specify how the user is supposed to know on
which columns multi-dimensional histograms should be
created. LEO’s approach extends and generalizes this
pioneering work. It can learn from any modeling error at
any point in a QEP, including errors due to local
predicates, expressions of base columns involving user-
defined functions, predicates involving parameter markers
or host variables, join predicates, keys created by the
DISTINCT or GROUP BY clauses, derived tables, and
any correlation between any of the above. Most of these
operations that change cardinality in some way cannot be
addressed by histograms. LEO can even adjust estimates
of other parameters such as buffer utilization, sort heap
consumption, I/Os, or the actual running time -- the only
real limitation to LEO’s approach is the overhead of
collecting the actuals for those estimates.

Another research direction focuses on dynamically
adjusting a QEP after the execution has begun, by
monitoring data statistics during the execution (dynamic
optimization). In [KDeW98] the authors introduce a new
statistic collector operator that is compiled into the plan.
The operator collects the row stream cardinality and size
and decides whether to continue or to stop the execution
and re-optimize the remainder of the plan. Query
scrambling in [UFA98] is geared towards the problem of
distributed query execution in wide area networks with

uncertain data delivery. Here the time-out of a data-
shipping site is detected and the remaining data-
independent parts of the plan are re-scheduled until the
problem is solved. Both solutions deal with dynamic re-
optimization of (parts of) a single query, but they do not
save and exploit this knowledge for the next query
optimization run. LEO is aimed primarily at using
information gleaned from one or more query executions
to discern trends that will benefit the optimization of
future queries. This benefit is not limited to just the same
query, because the exact same query is seldom re-
executed in modern data warehouses, data marts, and
business intelligence applications. Any query with
predicates or aggregation on the same column(s) can
exploit LEO’s learning. LEO does not (yet) address the
issue of changing in mid-stream the QEP of a running
query, as did [KDeW98] and [UFA98], although it could.
Doing this correctly in a real product needs to resolve
many hard issues not addressed by that work, such as
determining points where such changes produce correct
results (i.e., where data is fully materialized, before any
results are returned to the user), and reliably predicting
the times to re-optimize and execute a new plan so that
they can be traded off against the time to complete the
original plan.

3. A Learning Optimizer
This section gives an overview of LEO’s design, a
simplified example of how it learns, and some of the
practical issues that it must deal with.

3.1 An Overview of LEO
LEO exploits empirical results from actual executions of
queries to validate the optimizer’s model incrementally,
deduce what part of the optimizer’s model is in error, and
compute adjustments to the optimizer’s model.

LEO is comprised of four components: a component
to save the optimizer’s plan, a monitoring component, an
analysis component, and a feedback exploitation
component. The analysis component is a standalone
process that may be run separately from the DB2 server,
and even on another system. The remaining three
components are modifications to the DB2 server: plans
are captured at compile time by an addition to the code
generator, monitoring is part of the run-time system, and
feedback exploitation is integrated into the optimizer.

The four components can operate independently, but
form a consecutive sequence that constitutes a continuous
learning mechanism by incrementally capturing plans,
monitoring their execution, analyzing the monitor output,
and computing adjustments to be used for future query
compilations.

Figure 1 shows how LEO is integrated into the

architecture of DB2. The left part of the figure shows the
usual query processing flow with query compilation, QEP

generation and optimization, code generation, and code
execution. The gray shaded boxes show the changes made
to regular query processing to enable LEO’s feedback
loop: for any query, the code generator dumps essential
information about the chosen QEP (a plan “skeleton”)
into a special file that is later used by the LEO analysis
daemon. In the same way, the runtime system provides
monitored information about cardinalities for each
operator in the QEP. Analyzing the plan skeletons and the
runtime monitoring information, the LEO analysis
daemon computes adjustments that are stored in the
system catalog. The exploitation component closes the
feedback loop by using the adjustments in the system
catalog to provide adjustments to the query optimizer’s
cardinality estimates.

1. Preparation Phase
�compute filter factors

2. Planning Phase
�estimate cardinalities

Optimizer

Opt.
Plan
Opt.
Plan

��������	�	
����������	�	
����������	�	
����������	�	
��

SQL Compiler

LEO
Skeleton

LEO
Skeleton

LEO
Monitor

LEO
Monitor

LEO Feedback
Exploitation

LEO Feedback
Exploitation

Code Generator

Runtime System

����������	

��������

��	
������	������	
������	������	
������	������	
������	����

1. analyze plan skeletons
and monitor file

2. compute adjustments
3. update/append

system catalog

AdjustmentsAdjustments

QEP Skeleton File

Execution Monitor File

���
���

���������

Figure 1: LEO Architecture

3.2 Monitoring and Learning: An Example
In the following we use as an example the SQL query:

SELECT * FROM X, Y, Z
WHERE X.Price >= 100 AND Z.City = ‘Denver’
AND Y.Month = ‘Dec’ AND X.ID = Y.ID
AND Y.NR = Z.NR
GROUP BY A

Figure 2 shows the skeleton of a QEP for this statement,
including the statistical information and the optimizer’s
cardinality estimates. In addition, the figure also shows
the actual cardinalities that the monitoring component of
LEO determined during query execution.

In the Figure, cylinders indicate base table access
operators such as index scan (IXSCAN) or table scan
(TBSCAN), ellipses indicate other operators, such as
nested loop joins (NLJOIN) and grouping (GROUP BY).
“Stat” denotes the base table cardinality, as stored in the
system catalog, and “Est:” denotes the optimizer’s
estimate for the result cardinality of each table access
operator. after application of any predicates (e.g., X.Price
>= 100), as well as for each of the nested-loop join
operators. During query execution, the LEO monitoring
component measures the comparable actual cardinality
(“Act”) for each operator.

NL-JOIN

Est: 1149
Act: 2283

Est: 290
Act: 500

Est: 1120
Act: 2112

Est: 513
Act: 1007

Est: 149
Act: 133

Stat: 7200
Act: 7623

Stat: 2100
Act: 5949

Stat: 23410
Act: 23599

X.Price > 100
TBSCAN X

Y.Month = “Dec”
��������������������������������

Z.City = "Denver“
IXSCAN Z

NL-JOIN

Est: 10
Act: 117

GROUP
BY

Figure 2: Optimal QEP (Skeleton)

Comparing actual and estimated cardinalities enables
LEO to give feedback to the statistics that were used for
obtaining the base table cardinalities, as well as to the
cardinality model that was used for computing the
estimates. This feedback may be a positive reinforcement,
e.g., for the table statistics of Z, where the table access
operator returned an actual cardinality for Z that is very
close to that stored in the system catalog statistics. The
same holds for the output cardinalities of each operator,
such as a positive feedback for the estimate of the
restriction on Z that also very closely matches the actual
number. However, it may also be a negative feedback – as
for the table access operator of Y, where the statistics
suggest a number almost three times lower than the actual
cardinality – or for the join estimates of the nested-loop
join between X and Y. In addition, correlations can be
detected, if the estimates for the individual predicates are
known to be accurate but some combination of them is
not. In all of the above, “predicates” can actually be
generalized to any operation that changes the cardinality
of the result. For example, the creation of keys by a
DISTINCT or GROUP BY clause reduces the number of
rows. LEO uses this feedback to help the optimizer to
learn to better estimate cardinalities the next time a query
involving these tables, predicates, joins, or other operators
is issued against the database.

3.3 Practical Considerations
In the process of implementing LEO, several practical
considerations became evident that prior work had not
addressed. We now discuss some of these general
considerations, and how they affected LEO’s design.

Modifying Statistics vs. Adjusting Selectivities
A key design decision is that LEO never updates the
original catalog statistics. Instead, it constructs a second
set of statistics that will be used to adjust (i.e. repair) the
first, original layer. The adjustments are stored as special
tables in the system catalog. The compilation of new
queries reads these adjustments, as well as the base
statistics, and adjusts the optimizer’s estimates

appropriately. This two-layered approach has several
advantages. First, we have the option of disabling
learning, by simply ignoring the adjustments. This may be
needed for debugging purposes or as a fallback strategy in
case the system generated wrong adjustments or the new
optimal plan shows undesired side effects. Second, we
can store the specific adjustment value with any plan that
uses it, so that we know by how much selectivities have
already been adjusted and avoid incorrect re-adjustments
(no “deltas of deltas”). Lastly, since we keep the
adjustments as catalog tables, we introduce an easily
accessible mechanism for tuning the selectivities of query
predicates that could be updated manually by experienced
users, if necessary.

Consistency between Statistics
DB2 collects statistics for base tables, columns, indexes,
functions, and tablespaces, many of which are mutually
interdependent. DB2 allows for incremental generation of
statistics and checks inconsistencies for user-updateable
statistics. LEO also must ensure the consistency of these
interdependent statistics. For example, the number of
rows of a table determines the number of disk pages used
for storing these rows. When adjusting the number of
rows of a table, LEO consequently also has to ensure
consistency with the number of pages of that table -- e.g.,
by adjusting this figure as well -- or else plan choices will
be biased. Similarly, the consistency between index and
table statistics has to be preserved: If the cardinality of a
column that is (a prefix of) an index key is adjusted in the
table statistics, this may also affect the corresponding
index statistics.

Currency vs. Accuracy
Creating statistics is a costly process, since it requires
scanning an entire table or even the entire database. For
this reason, database statistics are often not existent or not
accurate enough to help the optimizer to pick the best
access plan. If statistics are expected to be outdated due to
later changes of the database or if no statistics are present,
DB2 fabricates statistics from the base parameters of the
table (file size from the operating system and individual
column sizes). The presence of adjustments and fabricated
statistics creates a decision problem for the optimizer -- it
must decide whether to believe possibly outdated
adjustments and statistics, or fuzzy but current fabricated
statistics.

When statistics are updated, many of the adjustments
calculated by LEO no longer remain valid. Since the set
of adjustments that LEO maintains is not just a subset of
the statistics provided by RUNSTATS, removing all
adjustments during an update of the statistics might result
in a loss of information. Therefore any update of the
statistics should re-adjust the adjustments appropriately,
in order to not loose information like actual join
selectivities and retain consistency with the new statistics.

LEO vs. Database Statistics
LEO is not a replacement for statistics, but a rather a
complement: LEO gives the most improvement to the
modeling of queries that are either repetitive or are similar
to earlier queries, i.e., queries for which the optimizer’s
model exploits the same statistical information. LEO
extends the capabilities of the RUNSTATS utility by
gathering information on derived tables (e.g., the result of
several joins) and gathering more detailed information
than RUNSTATS might. Over time, the optimizer’s
estimates will improve most in regions of the database
that are queried most (as compared to statistics, which are
collected uniformly across the database, to be ready for
any possible query). However, for correctly costing
previously unanticipated queries, the statistics collected
by RUNSTATS are necessary even in the presence of
LEO.

4. The LEO Feedback Loop
The following sections describe the details of how LEO
performs the four steps of capturing the plan for a query
and its cardinality estimates, monitoring queries during
execution, analyzing the estimates versus the actuals, and
the exploitation of the adjustments in the optimization of
subsequent queries.

4.1 Retaining the Plan and its Estimates
During query compilation in DB2, a code generator
component derives an executable program from the
optimal QEP. This program, called a section, can be
executed immediately (dynamic SQL) or stored in the
database for later, repetitive execution of the same query
(static SQL). The optimal QEP is not retained with the
section; only the section is available at run-time. The
section contains one or more threads, which are
sequences of operators that are interpreted at run-time.
Some of the section’s operators, such as a table access,
closely resemble similar operators in the QEP. Others,
such as those performing predicate evaluation, are much
more detailed. Though in principle it is possible to
“reverse engineer” a section to obtain the QEP from
which it was derived, in practice that is quite complicated.
To facilitate the interpretation of the monitor output for
LEO, we chose to save at compile-time a “skeleton”
subset of the optimal QEP for each query, as an analysis
“road map”. This plan skeleton is a subset of the much
more complete QEP information that may optionally be
obtained by a user through an EXPLAIN of the query, and
contains only the basic information needed by LEO’s
analysis, including the cumulative cardinality estimates
for each QEP operator, as shown in Figure 2.

4.2 Monitoring Query Execution
LEO captures the actual number of rows processed by
each operator in the section by carefully instrumenting the
section with run-time counters. These counters are

incremented each time an operator processes a row, and
saved after the query completes. LEO can be most
effective if this monitoring is on all the time, analyzing
the execution of every query in the workload. For this to
be practical, LEO’s monitoring component must impose
minimal overhead on regular query execution
performance. The overhead for incrementing these
counters has been measured and shown to be minimal, as
discussed in Section 5.1.

4.3 Analyzing Actuals and Estimates
The analysis component of LEO may be run off-line as a
batch process, perhaps even on a completely separate
system, or on-line and incrementally as queries complete
execution. The latter provides more responsive feedback
to the optimizer, but is harder to engineer correctly. To
have minimal impact on query execution performance, the
analysis component is designed to be run as a low-priority
background process that opportunistically seizes “spare
cycles” to perform its work “post mortem”. Any
mechanism can be used to trigger or continue its
execution, preferably an automated scheduler that
supervises the workload of the system. Since this means
LEO can be interrupted by the scheduler at any point in
time, it is designed to analyze and to produce feedback
data on a per-query basis. It is not necessary to
accumulate the monitored data of a large set of queries to
produce feedback results.

To compare the actuals collected by monitoring with
the optimizer’s estimates for that query, the analysis
component of LEO must first find the corresponding plan
skeleton for that query. Each plan skeleton is hashed into
memory. Then for each entry in the monitor dump file
(representing a query execution), it finds the matching
skeleton by probing into the skeletons hash table. Once a
match is located, LEO needs to map the monitor counters
for each section operator back to the appropriate QEP
operator in the skeleton. This is not as straightforward as
it sounds, because there is not a one-to-one relationship
between the section’s operators and the QEP’s operators.
In addition, certain performance-oriented optimizations
will bypass operators in the section if possible, thus also
bypassing incrementing their counters. LEO must detect
and compensate for this.
analyze_main(skeleton root) {
preprocess (root); error = OK;
// construct global state and
// pushdown node properties
for (i = 0; i < children(root); i++)
// for each child
{error |= analyze_main(root->child[i]); }
// analyze

if (error) return error;
// if error in any child: return error
switch (root->opcode) // analyze operator
case IXSCAN: return analyze_ixscan(root)
case TBSCAN: return analyze_tbscan(root)
case …

Figure 3: LEO algorithm

The analysis of the skeleton tree is a recursive post-
order traversal (see Figure 3). Before actually descending
down the tree, a preprocessing of the node and its
immediate children is necessary to construct global state
information and to push down node properties. The
skeleton is analyzed bottom up, where the analysis of a
branch stops after an error occurred in the child. Upon
returning from all children, the analysis function of the
particular operator is called.

Calculating the Adjustments
Each operator type (TBSCAN, IXSCAN, FETCH, FILTER,
GROUP BY, NLJOIN, HSJOIN, etc.) can carry multiple
predicates of different kinds (start/stop keys, pushed
down, join). According to the processing order of the
predicates within the operator, LEO will find the actual
monitor data (input and output cardinalities of the data
stream for the predicate) and analyze the predicate. By
comparing the actual selectivity of the predicate with the
estimated selectivity that was stored with the skeleton,
LEO deduces an adjustment factor such that the DB2
optimizer can later compute the correct selectivity factor
from the old estimate and the new adjustment factor. This
adjustment factor is immediately stored in the database in
new LEO tables. Note that LEO does not need to re-scan
the DB2 catalog tables to get the original statistics,
because the estimates that are based on these statistics are
stored with the skeleton.

LEO computes an adjustment such that the product of
the adjustment factor and the estimated selectivity derived
from the DB2 statistics yields the correct selectivity. To
achieve that, LEO uses the following variables that were
saved in the skeleton or monitor result:

old_est: the estimated selectivity from the optimizer
old_adj: an old adjustment factor that was possibly

used to compute old_est
act: The actual selectivity that is computed from the

monitor data
After detecting an error (| old_est – act | / act > 0.05)

for the predicate col < X, LEO computes the adjustment
factor so that the new estimate equals the actual value
(act) computed from the monitor: est = actual = stats*adj;
where stats is the original selectivity as derived from the
catalog. The old estimate (old_est) is either equivalent to
the original statistic estimate (stats) or was computed with
an old adjustment factor (old_adj). Hence this old
adjustment factor needs to be factored out. (adj = act /
stats = act/(old_est/old_adj) = act*(old_adj/old_est).

Since the selectivity for the predicate (col >= X) is 1 –
selectivity(col < X), we invert the computation of the
estimate and the adjustment factor for this type of
predicate. Note that we derive an adjustment factor for the
< -operator from the results of the > -operator, and we
apply the adjustment factor of a < -operator for the
computation of the > -operator.

Using the example from Figure 2 and a TBSCAN on
table X with the predicate Price >= 100, we can compute

the adjustment factors for the table cardinality and the
predicate. The cardinality adjustment factor is 7632/7200
= 1.06. The estimated selectivity of the predicate was
1149/7200 = 0.1595 while the actual selectivity is
2283/7632 = 0.2994. The adjustment factor for the
corresponding Price < 100 -predicate is (1 - 0.2994) * 1.0
/ (1 -0.1595) = 0.8335. The optimizer will compute the
selectivity for this predicate in the future to be 1 – 0.8335
* (1 – 0.1595) = 0.2994. The adjusted table cardinality of
the TBSCAN (1.06*7200) times the adjusted predicate
selectivity 0.2994 computes the correct, new estimate of
the output cardinality of the TBSCAN operator (2283).

However, different types of section operators can be
used to execute a particular predicate such as ‘Price >=
100’. If the Price column is in the index key, the table
access method could be an IXSCAN-FETCH
combination. If Price is the leading column of the index
key, the predicate can be executed as a start/stop key in
the IXSCAN operator. Then IXSCAN delivers only those
rows (with its row identifier or RID) that fulfill the key
predicate. FETCH uses each RID to retrieve the row from
the base table. If the predicate on Price cannot be applied
as a start/stop key, it is executed as a push-down predicate
on every row returned from the start/stop key search.
When using a start/stop key predicate, we scan neither the
index nor the base table completely, and hence cannot
determine the actual base table cardinality. In order to
determine the real selectivity of an index start/stop key
predicate, we can only approximate the needed input
cardinality by using the old cardinality estimates, if a
previously computed table adjustment factor was used1

The merge-join algorithm demonstrates a similar
problem that we have named implicit early out. Recall
that both inputs of the merge join are sorted data streams.
Each row will be matched with the other side until a
higher-valued row or no row at all is found. Reaching the
end of the data stream on one side immediately stops the
algorithm. Thus any remaining rows from the other side
will never be asked for, and hence are not seen or counted
by the monitor. As a result, any monitor number for
merge-join input streams is unreliable unless we have
encountered a “dam” operator such as SORT or TEMP,
which by materializing all rows ensures the complete scan
and count of the data stream prior to the merge join.

Storing the Adjustments
For storing the adjustments, the new tables
LEO_TABLES, LEO_COLUMNS and LEO_JOINS have
been introduced into the DB2 system catalog.
Take as an example the column adjustment catalog as
stored in LEO_COLUMNS. The columns (tablespaceID,
tableID, columnID) uniquely identify a column (i.e.
X.Price), while the Adj_factor = 0.8335 and Col_Value =

1 The existence of an adjustment factor indicates that we have
seen a complete table scan earlier and successfully repaired an
older statistic.

‘100’. Timestamp is the compile time of the query and is
used to prohibit learning from old knowledge. Type
indicates the type of entry: ‘F’ for a frequent value or ‘Q’
for a quantile adjustment for the corresponding Col_Value
value. In LEO_JOINS, a join is sufficiently described by
two triplets for the two join columns. Introducing a simple
rule of (lexicographic) order on the columns’ triplets is
sufficient to store the adjustment factors only once: the
‘smaller’ column is stored with its join partner and the
adjustment factor. A simple index scan with a search key
on the “smaller” join column allows us to efficiently
update or retrieve the adjustment factor from the database.

4.4 Using Learned Knowledge
Before the DB2 Optimizer begins constructing candidate
plans, it first retrieves the schema and statistics for each
base table referenced in that query from the catalog cache.
From these statistics, the optimizer gets the base-table
cardinality and computes selectivity factors for each
predicate. At this point, if LEARNING is enabled by a
control flag, the optimizer will also search the catalog for
any adjustment factors that may be relevant to this query,
and adjust the base table statistics, predicate selectivities,
and other statistics accordingly. How this is done for each
type of adjustment is the subject of this section.

Base Table Cardinalities
We start first with adjusting the base table cardinalities,
since these are thebasis for all cardinality estimates of
plans. The statistics for the base-table’s cardinality need
only be multiplied by the adjustment factor, if any, for
that table.

As discussed earlier, the difficulty comes in
maintaining the consistency of this adjusted cardinality
with other statistics for that table. The number of pages in
the table, NPAGES, is collected during RUNSTATS and
is directly used in the cost model as a more accurate
measurement for the number of I/O operations during
TBSCAN operations than computing it from the table
cardinality, the row width, and the page size. As a result,
LEO must adjust NPAGES for base tables, as well as the
index statistics (the number of leaf and non-leaf pages)
accordingly. In addition, the column cardinalities for each
column obviously cannot exceed the table cardinality, but
increasing the number of rows may or may not increase
the cardinality of any column. For example, adding
employee rows doesn’t change the cardinality of the Sex
column, but probably changes the cardinality of the
EmployeeID column. Similarly, the consistency between
index and table statistics has to be preserved. If a column
that is in one or more index keys has its cardinality
adjusted in the table statistics, the corresponding index
cardinality statistics (FIRSTKEYCARD,
FIRST2KEYCARD, …, FULLKEYCARD) must also be
adjusted accordingly.

Single-Table Predicates
Next, we consider adjustments to the selectivity of a
simple, single-table predicate, illustrated by adjusting the
column X.Price for the predicate X.Price < 100. Figure 4
shows the actual cumulative distribution for X.Price.

0

500

1000

1500

2000

0 50 100 150 200

X.Price

cu
m

ul
at

iv
e

ca
rd

in
al

ity

Figure 4: Actual Data Distribution

Figure 5 shows the column statistics collected for X.Price
and Figure 6 the corresponding adjustments.

0

500

1000

1500

2000

2500

0 50 100 150 200

X.Price

cu
m

ul
at

iv
e

ca
rd

in
al

ity

Figure 5: Column Statistics

The optimizer computes the selectivity for X.Price <
100 from the statistics by cardinality(X < 100) /
Maximal_Cardinality = 500/2000 = 0.25. Applying the
adjustments results in adjusted_selecticity(X.Price < 100)
= cardinality(X.Price < 100) * adjustment(X.Price < 100)
= 0.25 * 2 = 0.5. If there is no exact match in the column
statistics for a column value (i.e. X.Price < 100), the
adjustment factor is computed by linearly interpolating
within the interval in which the value ‘100’ is found.

0

0.5

1

1.5

2

2.5

0 50 100 150 200

X.Price

ad
ju

st
m

en
t

Figure 6: Adjustments

In Figure 7, statistics do not exist (which is equivalent
to a default selectivity of 1/3, i.e., a uniformly distributed
cardinality of 667). The adjustment curve here shows
higher or lower amplitudes than the one for the statistics.
For our example: adjustment(X.Price < 100) = 1.5.

Suppose that the optimizer had used an earlier
adjustment factor of 2 to compute the estimate for the
predicate ‘X.Price < 100’. Suppose further that, due to
more updates, the real selectivity of the predicate is 0.6
instead of the newly estimated 0.5. LEO needs to be
aware of this older adjustment factor to undo its effects.

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

X.Price

ad
ju

st
m

en
t

Figure 7: Adjustments without Statistics

In our model, an adjustment factor is always based on
the systems statistics and never an adjustment of an older
adjustment. The new factor is computed by act_selectivity
* old_adj / est = 0.6 * 2 / 0.5 = 2.4. Thus any previously
used adjustment factor must be saved with the QEP
skeleton. Note that it is not sufficient to look up the
adjustment factor in the system table, since LEO cannot
know if it was actually used for that query or if it has
changed since the compile time of that query.

The LEO approach is not limited to simple relational
predicates on base columns, as is the histogram approach
of [AC99]. The “column” could be any expression of
columns (perhaps involving arithmetic or string
operations), the “type” could be LIKE or user-defined
functions, and the literal could even be “unknown”, as
with parameter markers and host variables.

Join Predicates
As indicated above, LEO can also compute adjustment
factors for equality join operators. The adjustment factor
is simply multiplied by the optimizer’s estimate. Note
that having the actuals and estimates for each operator
permits LEO to eliminate the effect of any earlier
estimation errors in the join’s input streams.

Other Operators
The GROUP BY and DISTINCT clauses effectively
define a key. An upper bound on the resulting cardinality
of such operations can be derived from the number of
distinct values for the underlying column(s): the
COLCARD statistic for individual columns, or the
FULLKEYCARD statistic for indexes, if any, on multiple

columns. However, predicates applied either before or
after these operations may reduce the real cardinalities
resulting. Similarly, set operations such as UNION
(DISTINCT), UNION ALL, and EXCEPT may combine
two or more sets of rows in ways that are difficult for the
optimizer to predict accurately. Although not
implemented in the current prototype, the analysis routine
can readily compute the adjustment factor as adj = act *
old_adj / old_est, and adjust the cardinality output by each
of these operators by multiplying its estimate by adj. It is
doubtful that the histogram approach of [AC99] could
provide adjustments for these types of operations in SQL.

Correlation between predicates
Optimizers usually assume independence of columns.
This allows for estimating the selectivity of a conjunctive
predicate as a product of the selectivity of the atomic
predicates. However, correlations sometimes exist
between columns, when the columns are not independent.
In this case, the independence assumption underestimates
the selectivity of a conjunctive predicate.

In practical applications, data is often highly
correlated. Types of correlations include functional
dependencies between columns and referential integrity,
but also more complex cases such as a constraint that a
part is supplied by at most 20 suppliers. Furthermore,
correlations may involve more than two columns, and
hence more than two predicates. Therefore, any set of
predicates may have varying degrees of correlation. How
are errors due to correlation discerned from errors in the
selectivities of the individual predicates? LEO’s approach
is to first correct individual predicate filter factors, using
queries that apply those predicates in isolation. Once
these are adjusted, any errors when they are combined
must be attributable to correlation. A single query can
provide evidence that two or more columns are correlated
for specific values; LEO must cautiously mine the
execution of multiple queries having predicates on the
same columns before it can safely conclude that the two
columns are, in general, correlated to some degree. The
multi-dimensional histogram approach of [AC99] could
be used here, but presumes that the user knows which
columns are correlated and predefines a multi-
dimensional histogram for each. LEO can automatically
detect good candidates for these multi-dimensional
histograms through its analysis.

In our current implementation of LEO, we only take
advantage of correlations between join columns. An
extension of LEO might take further advantage of
correlation in order to provide even better adjustments.

5. Performance

5.1 Overhead of LEO’s Monitoring
LEO requires monitoring query execution in order to

obtain the actual cardinalities for each operator of a QEP.

Our performance measurements on a 10 GB TPC-H
database [TPC00] show that for our prototype of LEO the
monitoring overhead is below 5% of the total query
execution time, and therefore may be neglected for most
applications.

0.00%

1.00%

2.00%

3.00%

4.00%

Q2 Q14

Serial
SMP

Figure 8: Monitoring Overhead for a 10 GB TPC-H

Database
Figure 8 shows the actual measurement results for the

overhead for TPC-H queries Q2 and Q14, measured both
on a single-CPU (serial) and on an SMP machine. These
overheads were measured on a LEO prototype. For the
product version, further optimizations of the monitoring
code will reduce the monitoring overhead even further.

Our architecture permits dynamically enabling and
disabling monitoring, on a per-query basis. If time-critical
applications cannot accept even this small overhead for
monitoring, and thus turn monitoring off, they can still
benefit from LEO, as long as other – uncritical –
applications monitor their query execution and thus
provide LEO with sufficient information.

5.2 Benefit of Learning
Adjusting outdated or incorrect information may allow the
optimizer to choose a better QEP for a given query.
Depending on the difference between the new and the old
QEP, LEO may drastically speed-up query execution

Suppose now that the database in our example has
changed significantly since the collection of statistics: the
Sales stored in table Y increased drastically in December
and the inventory stored in table X received many updates
and inserts, where most new items had a price greater than
100. This results in an overall cardinality of more than
21623 records for X and 17949 records for Y. Suppose
further that these changes also introduce a skew in the
data distribution, changing the selectivities of the
predicates X.Price > 100 and Y.Month = ‘Dec’. Finally,
suppose that a query referencing table X with the
predicate X.Price > 1502, and another query referencing Y
with the predicate Y.Month =’Dec’, have been executed,

2 Note that it is not necessary to run a query with exactly the
predicate X.Price > 100, since LEO performs interpolation for
histograms. Thus an adjustment for X.Price >150 is also be
useful for a query X.Price > 100.

providing LEO with some adjustments. Figure 9 shows
how LEO changes the query execution plan for the query
of Section 3.2 after these changes. The optimizer now
chooses to use a bulk method for joining X and Y for this
query, thus replacing the nested-loop join with a hash
join. Note that the index scan on Y was also replaced by a
table scan, due to the adjustments. This new plan resulted
in an actual execution speed-up of more than one order of
magnitude over the earlier plan executing on the same
data.

HS-JOIN
Est: 1149
Adj. Est: 12487
Act: 12487

Est: 290
Adj. Est: 11083
Act: 11083

Est: 2023
Act: 3295

Est: 528
Act: 1317

Est: 149
Act: 133

Stat: 7200
Act: 21623

Stat: 2100
Act: 17949

Stat: 23410
Act: 23599

X.Price > 100
TBSCAN X

Y.Month = “Dec”
��������������������������������

Z.City = "Denver“
IXSCAN Z

NL-JOIN

Est: 10
Act: 119

GROUP
BY

Figure 9: Optimal QEP after Learning

Our experiments on two highly dynamic test databases
(artificial and TPC-H) showed that the adjustments
enabled the optimizer to choose a QEP that performed up
to 14 times better than the QEP without adjustments,
while LEO consumed an insignificant runtime overhead,
as shown in Section 5.1. Of course, speed-ups can be even
more drastic, since LEO’s adjustments can cause virtually
any physical operator of a QEP to change, and may even
alter the structure of the QEP. The most prominent
changes are table access operators (IXSCAN, TBSCAN),
join method (NLJOIN, HSJOIN, MGJOIN), and changing
the join order for multi-way joins.

6. Advanced Topics

6.1 When to Re-Optimize
A static query is bound to a plan that the optimizer has
determined during query compilation. With LEO, the plan
for a static query may change over time, since the
adjustments might suggest an alternative plan to be better
than the plan that is currently used for that query. The
same holds for dynamic queries, since DB2 stores the
optimized plan for a dynamic query in a statement cache.

Currently we do not support rebinding of static queries
or flushing the statement cache because of learned
knowledge. It remains future work to investigate whether
and when re-optimization of a query should take place.
The trade-off between re-optimization and improved
runtime must be weighed in order to be sure that re-
optimization will result in improved query performance.

6.2 Learning Other Information
Learning and adapting to a dynamic environment is not
restricted to cardinalities and selectivities. Using a
feedback loop, many configuration parameters of a
DBMS can be made self-tuning. If, for instance, the
DBMS detects by query feedback that a sort operation
could not be performed in main memory, the sort heap
size could be adjusted in order to avoid external sorting
for future sort operations. In the same way, buffer pools
for indexes or tables could be increased or decreased
according to a previously seen workload. This is
especially interesting for resources that are assigned on a
per-user basis: Instead of assuming uniformity, buffer
pools or sort heaps could be maintained individually per
user. If dynamic adaptation is possible even during
connections, open but inactive connections could transfer
resources to highly active connections.

Another application of adjustments is to “debug” the
cost model of the query optimizer: If – despite correct
base statistics – the cost prediction for a query is way off,
analyzing the adjustment factors permits locating which
of the assumptions of the cost model are violated.

Physical parameters such as the network rate, disk
access time, or disk transfer rate are usually considered to
be constant after an initial set-up. However, monitoring
and adjusting the speed of disks and networks enables the
optimizer to adjust dynamically to the actual workload
and use the effective rate.

7 Conclusions
LEO provides a general mechanism for an optimizer

to actually learn from its mistakes by adjusting its
cardinality and other estimates using the actuals from the
execution of previous queries having similar predicates.
Regardless of the source of error – old statistics, invalid
assumptions, inadequate modeling, unknown literals, etc.
– LEO can detect and correct the mistake for any kind of
operation that changes the cardinality, at any point in a
plan. This is a far more general mechanism than multi-
dimensional histograms, which are limited to local
predicates on columns of a base table. Our performance
measurements have demonstrated that LEO can improve
cardinality estimates by orders of magnitude, changing
plans to improve performance by orders of magnitude,
while adding less than 5% overhead to execution time
when monitoring actuals. We feel that LEO provides a
major step forward in improving the quality of query
optimization and reducing the need for “tuning” of
problem queries, a major contributor to cost of ownership.

Our future work includes completing the
implementation of LEO’s adjustments for all types of
predicates, measuring the benefit on a realistic set of user
queries, finding conclusive ways to discern correlation
among predicates, applying LEO’s approach to
parameters other than cardinality, and possibly using

LEO’s adjustments to change a query’s plan dynamically
during its execution in a robust, industrial-strength way.

Acknowledgements
The authors thank Kwai Wong for her help with the
measurements of the LEO runtime overhead, and
Ashutosh Singh and Eric Louie for systems support.

Bibliography
AC99 A. Aboulnaga and S. Chaudhuri, Self-tuning

Histograms: Building Histograms Without Looking
at Data, SIGMOD, 1999

ARM89 R. Ahad, K.V.B. Rao, and D. McLeod, On
Estimating the Cardinality of the Projection of a
Database Relation, TODS 14(1), pp. 28-40.

CR94 C. M. Chen and N. Roussopoulos, Adaptive
Selectivity Estimation Using Query Feedback,
SIGMOD, 1994

Gel93 A. Van Gelder, Multiple Join Size Estimation by
Virtual Domains, PODS, pp. 180-189.

GMP97 P. B. Gibbon, Y. Matias and V. Poosala, Fast
Incremental Maintenance of Approximate
Histograms, VLDB, 1999

HS93 P. Haas and A. Swami, Sampling-Based Selectivity
Estimation for Joins - Using Augmented Frequent
Value Statistics, IBM Research Report, 1993

IBM00 DB2 Universal Data Base V7 Administration
Guide, IBM Corp., 2000

IC91 Y.E. Ioannidis and S. Christodoulakis. On the
Propagation of Errors in the Size of Join Results,
SIGMOD, 1991

KdeW98 N. Kabra and D. DeWitt, Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution
Plans, SIGMOD, 1998

Lyn88 C. Lynch, Selectivity Estimation and Query
Optimization in Large Databases with Highly
Skewed Distributions of Column Values, VLDB,
1988

PI97 V. Poosala and Y. Ioannidis, Selectivity Estimation
without the attribute value independence
assumption, VLDB, 1997

PIHS96 V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita,
Improved histograms for selectivity estimation of
range predicates, SIGMOD. 1996, pp. 294-305

SAC+79 P.G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, T. G. Price, Access Path Selection in a
Relational Database Management System,
SIGMOD 1979, pp. 23-34

SS94 A. N. Swami, K. B. Schiefer, On the Estimation of
Join Result Sizes, EDBT 1994, pp. 287-300

TPC00 Transaction Processing Council, TPC-H Rev. 1.2.1
specification, 2000

UFA98 T. Urhan, M.J. Franklin and L. Amsaleg, Cost-
based Query Scrambling for Initial Delays,
SIGMOD, 1998

