
Concurrency in the Data Warehouse

Dr. Richard Taylor

Informix Software Inc.
485 Alberto Way

Los Gatos
USA

richard.taylor@informix.com

Abstract
When a data warehouse is loaded at night and
queried during the day, there is no requirement
for concurrent update and querying. However
there are a number of situations where
concurrency is needed: trickle feed applications,
correcting exception data from the nightly load,
the narrowing load window. The end point of the
narrowing load window is a data warehouse that
is available 7x24. Query Priority Concurrency is
the concurrency mechanism implemented by the
Informix Red Brick Decision Server. It is called
Query Priority Concurrency because it uses
versioning to achieve the goal that query
performance is unaffected by concurrent loads.
The paper discusses the differing requirements
for concurrency in a data warehouse, explains
why versioning is appropriate, gives a sketch of
the implementation and discusses the 6 lock
modes that are needed to achieve concurrency
and serialised execution. Finally, the frozen
query feature is described. This allows users to
query the current published version of the data
warehouse while the administrators go through
all the steps of loading and verifying new data to
create the next issue of the warehouse for
publication.

1. Introduction
The common data warehouse cycle is to load the data
warehouse at night with a day's worth of transactions, and
to query the data warehouse during the day. In this
regime, there is no need for concurrent querying and
update. However, the increasing demands on data
warehousing creates situations where concurrency is
needed.

One situation is a trickle feed application that has a
small amount of critical data that needs to be continuously
loaded during the day. Trickle feed is commonly found in
financial applications where stock prices or currency
exchange rates that change during the day are loaded as
they change. Another situation where concurrency is
convenient is to allow corrections and exception data
from the nightly load to be reloaded during the day. Also,
it may be convenient to update dimensional data as soon
as a new version of the customer or product master file
becomes available.

Companies spread across many time zones, stores and
offices that stay open late, increased business volume and
other similar causes are causing the nightly load window
to narrow. The narrowing load window means that the
data warehouse may not be completely loaded by the time
it is needed for querying. At the end point of the
narrowing load window are the global companies and e-
commerce enterprises that never sleep. These companies
want their data warehouse to be available 7x24.

2. Concurrency Requirements
The requirements for concurrency in a data warehouse are
very different from those of an OLTP system. As most
database systems have been designed to support OLTP,
they do not match the requirements of a data warehouse.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

724

mailto:Email@small.medium.large

Consider the transaction. An OLTP transaction
typically uses indexes to directly select a small number
rows and perhaps update some of them. In a data
warehouse a typical query may access multiple tables
through several indexes, join the results, hopefully with
the aid of a multi-table join index and then perform some
aggregation to produce a result. The other type of
transaction in a date warehouse is a bulk load, which
needs to build several indexes including join indexes and
may need to check referential integrity and if necessary
automatically generate rows to maintain referential
integrity.

In an OLTP system, having a transaction lock
individual rows works most of the time, and where there
are hot spots that prevents locking from working, special
techniques can be used. One special technique is
versioning where the unit of data being versioned can be a
row or even a data item. In a data warehouse, locking
individual rows is not useful for either queries that roam
over large amounts of data or for the bulk loader.
Versioning is a useful technique for allowing bulk loads
to proceed in parallel with queries, but the versioning
system has to be able to handle versioned data on a far
larger scale than is ever envisioned by the implementers
of an OLTP system.

2. Query Priority Concurrency
The Informix Red Brick Decision Server implements
concurrency using versioning. This concurrency
mechanism is called Query Priority Concurrency
because it is specifically designed for data warehousing
with the goal that query performance is unaffected by
concurrent modifications of the database. A query sees a
consistent snapshot of the database. This snapshot is
called a revision. A transaction that modifies the database
makes a new revision of the database. Each new revision
is assigned a monotonically incrementing number.

The implementation of Query Priority Concurrency is
straightforward. When a data block is modified, the new
version of the block is written to a special segment called
the version log. Whenever a block is fetched from disk,
the transaction checks an in-memory index called the
version log index to see whether the block should be
fetched from the database or from the version log. There
may be multiple versions of a block in the version log
associated with different revisions. The version log index
ensures that the correct block is selected. Finally, when it
is safe to do so, blocks from the version log are merged
back into the database by a vacuum cleaner daemon.

The transaction manager keeps a table of active
revisions that is used to determine when the vacuum
cleaner daemon should clean a revision. When a query
starts, it is assigned a revision R to read. R is always the
latest committed revision, except in the case of the frozen

query revision feature, which is described later. When the
transaction finishes and the transaction manager
determines that no other transaction is accessing R or any
previous revision, the vacuum cleaner is alerted that it can
start cleaning. The vacuum cleaner cleans all revisions in
the version log up to and including the latest active
revision. This protocol means that when modifications to
the database have completed and the queries that access
older revisions finish, the vacuum cleaner daemon can
clean out the entire version log.

A transaction that updates the database reads the
current revision of the database when it starts. Modified
blocks are written to the version log, but the blocks are
not assigned a revision number until the transaction
commits. This means that many transactions can be
modifying different tables the database concurrently and
the order in which they can commit is not predetermined.

Another important optimisation is that new blocks are
written to the database directly. The only blocks that are
written to the version log are blocks that are modifications
of existing blocks. Thus in a load of new data, we expect
the data blocks to be written to directly to the database
while most of the changes to indexes will be
modifications of existing blocks, and therefore go to the
version log. The flip side of this optimisation is that bulk
deletes create new versions of blocks that are completely
empty. Users are suggested to use non-versioning deletes
when they roll-off data to create space.

3. Locking
As has been discussed, fine granularity locking is not
appropriate for data warehousing. The Red Brick server
only implements table locks, and these locks are used to
ensure that there is only one transaction that is modifying
a table at one time. While a transaction is creating a new
revision of a table, other transactions can read the
previously created revisions of the table. However, there
is a potential for problems if these other transactions are
also modifying other tables in the database system.

For example, a transaction could be reading a fact
table to create an aggregate table, while at the same time,
another transaction could be loading new data into the
fact table. If this were allowed, when both of these
transactions commit, the aggregate table will not reflect
the contents of the fact table. Another example is that a
transaction could be loading a fact table and checking
referential integrity by reading a dimension table while at
the same time another transaction could be deleting rows
from the dimension table. If this were allowed, when both
transactions committed, referential integrity of the fact
table would be broken.

To overcome these problems, new lock modes are
required. The Red Brick server implements 6 lock modes
as shown in Table 1.

725

Table 1. Lock Modes

RO Read Only Normal read lock, used by queries. Compatible with versioned writes.
RK Read Key Indicates that the key should not change. Used for referential integrity checking
RD Read Data Not compatible with versioned writes, used by a transaction that read existing tables to

modify another table.
WD Write Data Used by versioning operations that do not change the existing key column in a table:

versioned inserts and non-key column updates.
WK Write Key Used by versioning operations that change the key column: versioned deletes and updates

to key columns.
WB Write Only Non-versioned modifications to the table. Not compatible with any other lock.

The lock compatibility matrix is shown below.

The compatibility matrix shows that a RK lock is

compatible with a WD lock but not a WK lock. Thus, a
transaction can insert rows into a table that is being used
for referential integrity checking, but the transaction
cannot delete rows from the table.

By default, a transaction that does an INSERT �
SELECT � gets a RD lock because it is both reading
tables and writing a table. The RD lock is not compatible
with any versioning write locks. This behaviour can be
overridden by setting the transaction isolation level to
repeatable read, in which case an RO lock is used.

The RK lock and its associated WK lock can be
thought of as a special case of the RD lock that allows
greater freedom while checking referential integrity. In
practice this is important in the Red Brick server, which
relies heavily on referential integrity for maintaining the
coherence of its join indexes and algorithms.

4. Periodic Commit
Query Priority Concurrency provides a simple transaction
atomicity mechanism. When a transaction aborts, all that

is needed to rollback the transaction is to throw away the
blocks in the version log that have been created by the
transaction. Similarly, crash recovery is just a matter of
restoring the version log metadata and then restarting the
vacuum cleaner, which will proceed to clean all the
committed blocks in the version log.

Statement atomicity is an essential characteristic of a
transaction. However it is sometimes convenient to have
sub-statement atomicity. Periodic Commit is a feature in
the Red Brick loader that implements sub-statement
atomicity. The concept is that a load statement can be
specified to commit after a number of rows have been
loaded, or that the commit occurs after a specified time
interval or either depending on which comes first.

The time interval is used to implement trickle feed
applications. In a trickle feed application, a low volume
stream of data is loaded continuously while the data
warehouse is being queried. To implement trickle feed,
the periodic commit timer is set to a suitable interval, for
example 15 minutes. Then, every 15 minutes, the date
loaded since during the interval is committed and
immediately becomes visible to any new queries that
access the database.

Another use of periodic commit is to save having to
restart a bulk load from the beginning when the load
aborts. In this case the loader is set to commit after
loading a specific number of rows, say for example, every
10 million rows in a 100 million row bulk load. If the load
does abort, at most 10 million rows needs to be reloaded,
rather than an average of 50 million rows that would have
to be reloaded without using periodic commit.

5. Frozen Query Revision
The process for creating a data warehouse involves a
number of steps. Data is extracted from operational
systems transformed into a suitable form and loaded into
the data warehouse. First the dimension tables are loaded
and then the fact tables. If there are load problems such as
referential integrity failures, these need to be fixed up.
Next aggregate tables and their indexes need to be loaded.
Finally a few test queries may be run to verify that the
data warehouse is complete and consistent. When the data
warehouse is ready, it is published to the user community

RO RK RD WD WK WB

RO

RK

RD

WD

WK

WB

726

for querying. Creating the next version of the data
warehouse repeats the cycle.

Frozen Query Revision allows the administrator to
create the next version of the data warehouse while users
are querying the published version. A frozen query
revision is created with an alter database statement that
specifies the current revision as the frozen revision.
Normally with versioning, when a query starts it is
assigned to access the current revision of the database.
When a frozen revision exists, a query is accesses the
frozen revision by default.

After publishing the data warehouse by creating a
frozen query revision, the administrator uses versioning
operations to create the next version of the database for
publication. While the frozen query revision exists, all
modifications of the database must be versioned, because
non-versioned operation would modify the underlying
database and change the frozen revision. The frozen query
revision is read only, it cannot be modified.

Modifications to the database must be made in the
context of the latest revision. For example, a query that
creates an aggregate table must see the latest version of
the base table. A flag is set in the administrator session so
that transactions in that session access the latest revision.
Each versioned operation such as a load creates a new
revision when it commits. If the load fails, only that
statement is rolled back. When the next version of the
data warehouse is ready to be published, the administrator
issues an alter database statement to remove the frozen
revision, and all new queries access the latest revision
which is the newly published revision.

6. Conclusions
Query Priority Concurrency is a versioning mechanism
that is designed specifically for data warehousing. For
that reason it is different from versioning that has been
implemented in other database systems. In the Red Brick
server, the unit of versioning is the block. Other
versioning schemes version pages, rows or even the
individual data item. This aspect of the design matches
the data warehouse regime where database modifications
are almost always bulk operations.

In the Red Brick server, the new data is written to the
log, from where it may be accessed, and the database
retains the old version of the data. In other database
systems, the new version of the data typically is written to
the database and older versions of the data may be
accessed from the database, or from an exception file or
from the pre-image log. This aspect of the design comes
from the requirement that query performance is
unaffected by modifications to the database.

Finally, most versioning systems have a tight limit on
the number of versions that are kept around. In Red Brick,
the default is to allow for 5000 active revisions, and much
larger numbers have been used.

727

