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Abstract 
In recent years, new developments in genetics have 
generated a lot of interest in genomic and proteomic data, 
investing international significance (and competition) in 
the fledgling discipline of bioinformatics. Researchers in 
pharmaceutical and biotech companies have found that 
database products can bring a wide range of relevant 
technologies to bear on their problems. Benefiting from a 
number of new technology enhancements, Oracle has 
emerged as a popular platform for pharmaceutical 
knowledge management and bioinformatics.  
 
We look at four powerful technologies that show promise 
for solving hitherto intractable problems in 
bioinformatics: the extensibility architecture to store gene 
sequence data natively and perform high-dimensional 
structure-searches in the database; warehousing 
technologies and data mining on genetic patterns; data 
integration technologies to enable heterogeneous queries 
across distributed biological sources, and internet portal 
technologies that allow life sciences information to be 
published and managed across intranets and the internet.  

1.  Introduction 
As the mapping of the human genome draws to a close, 
there is increasing realization that the ‘life’ sciences are 
dependent, as never before, on computing. The atlas of 
the human genome promises to revolutionize medical 

practice and biological research for the next millennium: 
all human genes will eventually be found, accurate 
diagnostics will be developed for all heritable diseases, 
animal models for human disease research will be more 
easily developed, and cures developed for many diseases. 
Many of these developments will occur, not inside test-
tubes in biologists’ laboratories, but on high-performance 
computing platforms, with massive storage systems to 
store genomic data, databases to search through the data, 
identifying similarities and patterns, as well as integration 
software to unify the slices of knowledge developed at 
globally distributed institutions.  
 
The primary goal of the public and private genomic 
projects is to make a series of descriptive diagrams maps 
of each human chromosome at increasingly finer 
resolutions [1]. This involves dividing the chromosomes 
into smaller fragments that can be isolated, and ordering 
these fragments to correspond to their respective locations 
on the chromosomes. After ordering is completed, the 
next step is to determine the sequence of bases A,T, C & 
G in each fragment. Then, various regions of the 
sequenced chromosomes are to be annotated with what is 
known of their function. Finally differences in sequences 
between individuals may be catalogued on a global scale. 
Correlating sequence information with genetic linkage 
data and disease gene research will reveal the molecular 
basis for human variation. Any two individuals differ in 
about one-thousandth of their genetic material, i.e. about 
3 million base pairs [1]. The global population is now 
about 6 billion. A catalogue of all sequence differences, 
which will be necessary in the future to find all rare and 
complex diseases, would run to 18x1015 entries.   

2. Database Support for Sequence Data 
As the sequencing community sharply increases its 
activities to pile up As, Ts, Cs and Gs, it is clear that the 
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goals above need industrial-strength database products as 
well as innovations in underlying database technologies.  
Databases have, so far, been used largely for managing 
simple business data – numbers, characters or dates. Few 
databases have had a native ability to deal with complex 
data -- whether multimedia, text, spatial data, or gene 
sequence data.  Most databases find it hard to handle 
high-dimensional data, such as performing similarity 
queries on gene sequences, spatial queries on locations, or 
‘looks-like’ queries on images.  For the specific case of 
genomic data, we should be able to search for: 

• Properties: What are the human sequences that 
are longer than 10 Kb, and have a specific 
annotation associated with them?  

• Structural similarity: Given a particular 
sequence, what other sequences resembling this 
sequence exist in the database – for this 
organism and for other organisms?  (The 
‘resemble’ operation must be able to find 
sequences that share, say, only isolated regions 
of similarity, and also score the returned results.) 

• Location: Given a gene or a sequence, what are 
the neighbouring genes/sequences? 

 
Unless databases can treat complex data natively, 
specialized applications have to be used as custom 
middle-tiers to perform sequence searches or spatial 
searches.  BLAST (Basic Local Alignment Search Tool) 
[2] is a set of similarity search programs that can apply a 
heuristic algorithm to detect relationships between 
sequences, and rank the ‘hits’ statistically. However, such 
loosely integrated specialty middle-tiers have several 
disadvantages: applications become too large, too 
complex, and far too custom-built. Even though these 
mid-tier products can exploit special algorithms to 
manipulate complex data, they run outside the database 
server, causing performance to degrade as interactions 
with the database increase.  
 
Further, optimizations across data sources cannot be 
performed efficiently. Since BLAST-like servers know 
nothing about textual annotations, one cannot search for 
similarity AND annotation efficiently. For example, given 
a (pseudo) query ‘Find the names of all sequences where           
GappedSearch(‘IKDLLDTTLVLVNAI++LSS D’) returns 
a score less than 2, AND any annotation associated with 
the sequence contains the keyword ‘Swiss Protein’’, we 
do not know which of the two clauses in the predicate is 
more restrictive, and therefore important to evaluate first 
during query execution.  
 
Finally, each specialty server comes with its own utilities 
and practices for administering data, making the overall 
system hard to manage. Since processing for complex 
data is beset with problems when done outside the 
database, we have to ask what the best way is to support 

specific types of complex data inside databases. As it is 
not clear what constitutes a full set of such types, it seems 
inefficient to provide, on an ad hoc basis, support for each 
new type that comes along. In other words, unless all 
possible complex types can be accommodated in some 
comprehensive architecture, they will continue to be 
devilled by issues in re-engineering, cross-type query 
optimization, uniform programmatic access and so on. 

3. Extending Databases 
We approached the complex data problem from the 
standpoint of creating such an architecture. Databases 
must be made inherently extensible to be able to 
efficiently handle various rich, application-domain-
specific complex data types. Extensibility is the ability to 
provide support for any user-defined datatype (structured 
or unstructured) efficiently without having to re-architect 
the DBMS.  Such types – which can be plugged into the 
database to extend its capabilities for specific domains – 
are also called data cartridges [3]. 
 
An extensible database system needs support for: 

• user-defined types --  the ability to define new 
datatypes corresponding to domain entities like 
sequence,  

• user-defined operators  -- like Resembles() 
or Distance() to add domain-specific 
operators that can be called from SQL, 

• domain-specific indexing - support for indexes 
specific to genomic data , spatial data etc., which 
can be used to speed the query, and 

• optimizer extensibility - intelligent ordering of 
query predicates involving user-defined types, 
especially for multi-domain queries. 

3.1  User-defined Types 

The Oracle Type System (OTS) [4] provides a high-level 
SQL-based interface for defining types. The behaviour for 
these types can be implemented in Java, C/C++ or PL/ 
SQL. The DBMS automatically provides the low-level 
infrastructure services needed for input-output, 
heterogeneous client-side access for new data types, and 
optimisations for data transfers between the application 
and the database and on. Two central constructs in OTS 
are object types, whose structure is fully known to the 
database, and opaque types whose structure is not. 
 
An object type, distinct from native SQL data types such 
as NUMBER, VARCHAR or DATE, is user-defined. It 
specifies both the underlying persistent data (called 
‘attributes’ of the object type) and the related behaviour 
(‘methods’ of the object type). Object types are used to 
extend the server’s modelling capabilities. You can use 
object types to make better models of complex entities in 
the real world by binding data attributes to semantic 
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behaviour.  There can be one or more attributes in an 
object type. The attributes of an object type can be the 
native data types, other object types, ‘large objects’ or 
LOBs, or reference types. We also provide collections of 
native types, objects types, LOBs or references. Object 
types can have methods to access and manipulate their 
attributes, and these methods can be run within the 
execution environment of the database server.  In 
addition, methods can be dispatched to run outside the 
database. With OTS, it is possible to (i) create database 
abstractions for sequence, gene, annotation etc.,  (ii) 
program behaviour for these abstractions – say Size() 
for a sequence, (iii) create collections of sequence to yield 
aggregations like chromosome and so on. 
 
The opaque type mechanism provides a way to create new 
fundamental types in the database whose internal 
structure is not known to the DBMS. The internal 
structure is modelled in some 3GL language (such as C). 
The database provides storage for the type instances. 
Type methods or functions that access the internal 
structure are external methods or external procedures in 
the same 3GL language used to model the structure.  
 
The benefit of opaque types arises in cases where there is 
an external data model and behaviour available to store or 
manipulate sequences – say as a C library. For instance, 
object models for genomic use have been devised as part 
of the Life Sciences Research Domain Special Interest 
Group (LSR-SIG) under the Object Management Group 
(OMG) umbrella [5].  Implementing these objects as 
opaque types enables them to store genomic data 
persistently in the database, but at the same time call on 
behaviour implemented external to the database for 
purposes of insert, updates, deletes or queries on the data. 

3.2  User-defined operators 

Typically, databases provide a set of pre-defined 
operators to operate on built-in data types. Operators can 
be related to arithmetic (+, -, *, /), comparison  
(=, >, <), Boolean logic (NOT, AND, OR), string 
comparison (LIKE) and so on. We have also found it 
useful to add to Oracle the capability to define domain-
specific operators. For example, it is possible to define a 
Resembles() operator for comparing sequences. The 
actual implementation of the operator is left to the user, 
and he can choose to bind them to functions, type 
methods, packages, external library routines and so on. 
User-defined operators can be invoked anywhere built-in 
operators can be used — i.e., wherever expressions can 
occur.  User-defined operators can be used in the select 
list of a SELECT command, the condition of a WHERE 
clause, the ORDER BY clause, and the GROUP BY 
clause. After a user has defined a new operator, it can be 
used in SQL statements like any other built-in operator. 
For example, if the user defines a new operator 

Contains() which takes as input a decoded DNA 
fragment and a particular sequence, returning TRUE if the 
fragment contains the specified sequence, then we can 
write a SQL query as 

SELECT ID FROM DNATABLE WHERE
Contains(fragment,

‘GCCATAGACTACA’);
This ability to increase the semantics of the query 
language by adding domain-specific operators is akin to 
extending the query service of the database. 
 
When an operator is invoked, the evaluation of the 
operator is transformed to the execution of one of the 
functions bound to it.  Just as databases use indexes to 
efficiently evaluate some built-in operators (a B+Tree 
index is typically used to evaluate comparison operators), 
in Oracle user-defined domain indexes (see below) can be 
used to efficiently evaluate user-defined operators. 

3.3  Extensible Indexing 

Typically, databases have supported a few standard access 
methods (B+Trees, Hash Indexes) on the set of built-in 
data types. As we add the ability to store complex domain 
data, there arises a need for indexing such data using 
domain-specific indexing techniques. For simple data 
types such as integers and small strings, all aspects of 
indexing can be easily handled by the base database.  For 
gene sequences, however, we would need special indexes 
to efficiently perform 3-D structural comparison, 
similarity or substructure search, ‘distance’ evaluation 
and so on. 
 
The framework to develop new index types is based on 
the concept of cooperative indexing where a user-supplied 
implementations and the Oracle server cooperate to build 
and maintain indexes for complex types such as genetic, 
text or spatial data. The user is responsible for defining 
the index structure, maintaining the index content during 
load and update operations, and searching the index 
during query processing.  The index structure itself can 
either be stored in the Oracle database, or externally (e.g. 
in operating system files), though most implementers find 
it desirable to have the physical storage of domain 
indexes within the database for reasons of concurrency 
control and recovery.  
 
To this end, Oracle introduces the concept of an 
Indextype.  The purpose of an Indextype is to enable 
efficient search and retrieval functions for complex 
domains such as text, spatial, image, and genomics.  An 
Indextype is analogous to the sorted or bit-mapped index 
types that can be found built into the Oracle server, with 
the exception that the former depends on user 
implementation. 
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With such ‘extensible’ indexing, the user: 
• Defines the structure of the domain index as a 

new Indextype 
• Stores the index data either inside the Oracle 

database (in the form of tables) or outside the 
Oracle database 

• Manages, retrieves, and uses the index data to 
evaluate user queries. 

 
In the absence of such user-defined domain index 
capabilities, many applications  -- such as the 
aforementioned BLAST -- maintain separate memory- or 
file-based indexes for complex data.  A considerable 
amount of code and effort is required to: 

• maintain consistency between external indexes 
and the related database data 

• support compound or multi-domain queries 
(involving tabular values, or data from other 
domains) 

• manage the system (backup, recovery, allocate 
storage, etc.) with multiple forms of persistent 
storage (files and databases) 

 
By supporting extensible indexes, the Oracle server 
significantly reduces the level of effort needed to develop 
solutions involving high-performance access to complex 
data types.  

3.4  Extensible Optimizer 

A typical optimizer generates an execution plan for a SQL 
statement. Consider a SELECT statement. The execution 
plans for such a statement includes  (i) an access method 
for each table in the FROM clause, and  (ii) an ordering 
(called the join order) of the various tables in the FROM 
clause.  System-defined access methods include indexes, 
hash clusters, and table scans.  The optimizer chooses a 
plan by generating a set of join orders or permutations, 
computing the cost of each, and selecting the one with the 
lowest cost.   
 
For each table in the join order, the optimizer estimates 
the cost of each possible access method using built-in 
algorithms. Databases collect and maintain statistics about 
the data in tables – such as the number of distinct values, 
the minimum and the maximum, histograms of 
distribution and so on, to help the optimizer in its 
estimations. 
 
As discussed earlier, extensible indexing functionality 
enables users to define new operators, index types, and 
domain indexes.  For such user-defined operators and 
domain indexes, the extensible optimizer gives developers 
control over the three main inputs used by the optimizer: 
statistics, selectivity, and cost.  The extensibility of the 
optimiser lies in the user’s ability to collect domain-

specific statistics, and, based on such statistics, predict the 
selectivity and cost of each domain-specific operation.  
The user’s inputs are ‘rolled up’ with the rest of the 
optimizer’s heuristics to generate the optimal execution 
plan. 
 
Whenever a domain index is to be ‘analysed’, a call is 
made to a user-specified statistics collection function.  
The representation and meaning of these user-collected 
statistics is not known to the database, but are to be used 
later by the user in estimating the cost or selectivity of a 
domain operation. In addition to domain indexes, user-
defined statistics collection functions are also supported 
for individual columns of a table and data types (whether 
built-in or user-defined).   
 
The selectivity of a predicate or a clause is the fraction of 
rows in a table that will be chosen by the clause or 
predicate; it is used to determine the optimal join order.  
By default, the optimizer uses a built-in algorithm to 
estimate the selectivity of selection and join predicates.  
However, since algorithm has no intelligence about 
functions, type methods, or user-defined operators, the 
presence of these may result in a poor choice of join order 
– i.e. a very expensive execution plan. So, if we were to 
build a domain index for sequences and implement a 
Contains()  operator based on this index, we would also 
specify the selectivity of the operator. This could be based 
on the arguments it receives (a very long sequence is 
likely quite selective, whereas a short sequence like 
‘GCT’ is not selective at all), or on the actual distribution 
of sequence data based on analysed statistics. Thereafter, 
if a user executed a query of the form 

SELECT * FROM DNATABLE WHERE

Contains(fragment,

‘GCCATAGACTACA’) AND id > 100;
then the  selectivity of the first clause of predicate could 
computed by invoking the user supplied implementation, 
and an execution plan generated to determine whether the 
Contains operator  should be applied before the  > 
operator or vice-versa. 

A similar consideration applies to cost. The optimizer also 
estimates the cost of various access paths while choosing 
an  optimal plan.  For example, it may compute the cost of 
using an index as well as a full table scan in order to be 
able choose between the two.  However, for user-defined 
domain indexes with user-specified internal structre, cost 
cannot be estimated easily. For proper optimization, the 
cost model  in Oracle has  been extended to enable users 
to define costs for domain indexes, user-defined 
functions, type methods etc.  The user-defined costs can 
be in the form of default costs that the optimizer simply 
looks up, or can be full-blown cost functions based on 
user-collected statistics, which the optimizer calls at run 
time. 
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4.  Mining Sequence Data 
The current approach for finding genes has a large 
experimental component. Any small increase in the 
accuracy of computer classification of genes can result in 
substantial time and cost savings. Oracle has developed a 
suite of software tools that analyse large collections of 
data to discover new patterns and forecast relationships 
[6]. This process of sifting through enormous databases to 
extract hidden information is called ‘data mining’. Mining 
sequence data can help discover relationships between 
genes, discover gene expression, discover drugs based on 
functional information and so on. Oracle’s data-mining 
tool -- Darwin  -- has been utilized for bioinformatics. 
Darwin was built to address the terabyte databases found 
in genomics databases.  In fact, various parallelism 
technologies built into Darwin ensure that there is no limit 
to the size of data it can mine.  Darwin currently provides 
classification and regression Trees (C&RT), neural 
networks, and k-nearest neighbours algorithms, k-means 
Naïve-Bayes and enhanced clustering (self-organizing 
maps or SOM) algorithms. 
 
A simple case of mining genetic data could be to classify 
cancers based solely on gene expression. Classifiers are 
first trained on the genes in a training set, and then 
applied to the remaining genes to assign them to specific 
clusters. Thence, Darwin’s algorithms can be used to help 
identify new clusters. This suggests a general stratagem 
for predicting cancer classes for other types of cancer, 
creating new biological knowledge [7]. 
 
Another use of mining relates to predicting which sections 
of a piece of DNA are ‘active’ and which are not. 
Chromosomes have coding sequences (exons), 
interspersed with non-coding sequences (introns.) It has 
recently been discovered through mining that a non-linear 
correlation statistic for DNA sequences, called the 
Average Mutual Information  (AMI) [8], is very effective 
at distinguishing exons from introns. The AMI is a non-
linear function based on a vector of 12 frequencies each 
dependent on the positions of the bases A, C, T & G. The 
inductive process of mining helps us arrive at such 
complex insights, which deductive analyses have little 
hope of unearthing. 
 
When terabytes of data are involved, traditional data 
mining relies on analysts trying to guess which small 
subset of the information in a database is relevant. 
Because of their limited capacity for data, traditional 
methods often operate on only 1-2% of the data available 
in every record. Yet discarded variables often contain key 
information: correlations that aren't obvious, patterns one 
wouldn't expect, or significant fluctuations that are 
normally overshadowed by larger trends. Darwin, on the 
other hand, can afford to look at every bit of data in each 

record because of its parallel architecture.  This 
architecture is shown in Fig 1. 
 
Darwin’s architecture is based on a distributed-memory 
SPMD (single program multiple data) paradigm. This 
shared-nothing approach facilitates scalability in 
performance by reducing inter-processor communications 
and making optimal use of local memory and disk 
resources. The processors work on their local section of 
the dataset and all inter-processor communication is 
achieved by the use of a message-passing library called 
MPI, which provides the basic programming and process 
model. The main architectural component of the server is 
a unified data access and manipulation library: StarData, 
which provides most of the data access and 
transformation infrastructure that supports the machine 
learning modules StarTree, StarNet, StarMatch etc. A 
 

 
Figure 1:  Darwin Data Mining Architecture 

 
toolset provides a client/API to support general or 
application specific graphical user interfaces (GUIs). The 
API also allows the toolset to be integrated with, or 
embedded into, other products. This API can also be 
called from the member functions of object- or opaque-
types, making it possible to integrating the data mining 
functionality with the data modelling aspects. 
 
Mining of sequence data is still in its infancy because the 
methodologies are much more involved, and because a 
large number of tools have to be integrated before 
progress can be made. However, this area has a potential 
of yielding rich dividends in the years to come. 

5. Integrating Heterogeneous Data  
Not all bioinformatics data will exist in the same 
database. Sequence data for the human genome is likely 
to end up spread across a handful of public or private 
databases. Sequence data for other organisms will also be 
distributed, across hundreds of institutions. Annotations to 
this data will make it change and grow all the time. 
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Pharmaceutical companies will have their own private 
data. Researchers everywhere will like to integrate all 
sorts of heterogeneous data sources. 
 
Oracle’s ‘gateway’ technologies make it possible for 
informatics applications to access and manipulate non-
Oracle system data. Researchers can query any number of 
non-Oracle systems from an Oracle database in a 
heterogeneously distributed environment. Generic 
connectivity enables connectivity using industry standards 
such as ODBC and OLEDB. Gateways extend distributed 
capabilities to a heterogeneous environment – so 
distributed transactions as well as distributed queries, 
joins, inserts, deletes can be performed easily. Gateways 
make the data's location, SQL dialect, network and 
operating system transparent to the end user, making it 
easy to implement in a heterogeneous environment. 

6. Portal Technologies 
While it is important to query on sequences, mine 
sequence data and so on, it is also important for database 
platforms to support the dispersion of information over 
the Internet and intranets. Oracle has emerged as a crucial 
‘back-end’ for commercial web sites – because of new 
features that enable records to be published directly to 
browsers as dynamic HTML or XML, server-based Java 
execution, support for web-based secure transactions, 
connection pooling etc., coupled with traditional high-
availability, scalability and reliability features.  While 
portals related to genomics and bioinformatics need many 
of the features that commercial horizontal or vertical 
industry portals do, there are some additional 
requirements in this domain that are worth discussing. 

6.1 ‘Soft Goods’ Sales 

Bioinformatics marketplaces buy and sell information 
rather than ‘hard goods’.  Portals in this area must be able 
to measure the usage of soft goods (e.g. the number and 
complexity of queries against a sequence database, or 
amount of data downloaded by a subscriber.) Oracle 
provides a wide array of server-based features as well as 
application packages to enable soft goods transactions 
over the Internet. 

6.2  Visualization  

It is not only important for a bioinformatics portal to serve 
sequence, aggregate or annotation data, but it is also 
important for the user to be able to visualize such data. 
Oracle enables the publishing of graphical data in formats 
such as the Vector Markup Language (VML) that can be 
used to display sequences.  It is possible to generate XML 
from the database, and transform this to VML using XSL 
transformation capabilities. It is also possible to display 
aggregated or processed data – say scatter plots resulting 

from mining – as charts or plots using a number of 
popular charting packages. 

6.3 Security & Access Control 

Organizations searching against sequence stores want to 
protect not only the results of their queries, but also the 
nature of queries themselves.  To this end, Oracle 
provides comprehensive PKI-based security to protect 
information on data as well as user-sessions. 
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