
A Database Platform for Bioinformatics

Sandeepan Banerjee

Oracle Corporation
500 Oracle Pkwy

Redwood Shores, CA
USA

sabanerj@us.oracle.com

Abstract
In recent years, new developments in genetics have
generated a lot of interest in genomic and proteomic data,
investing international significance (and competition) in
the fledgling discipline of bioinformatics. Researchers in
pharmaceutical and biotech companies have found that
database products can bring a wide range of relevant
technologies to bear on their problems. Benefiting from a
number of new technology enhancements, Oracle has
emerged as a popular platform for pharmaceutical
knowledge management and bioinformatics.

We look at four powerful technologies that show promise
for solving hitherto intractable problems in
bioinformatics: the extensibility architecture to store gene
sequence data natively and perform high-dimensional
structure-searches in the database; warehousing
technologies and data mining on genetic patterns; data
integration technologies to enable heterogeneous queries
across distributed biological sources, and internet portal
technologies that allow life sciences information to be
published and managed across intranets and the internet.

1. Introduction
As the mapping of the human genome draws to a close,
there is increasing realization that the ‘life’ sciences are
dependent, as never before, on computing. The atlas of
the human genome promises to revolutionize medical

practice and biological research for the next millennium:
all human genes will eventually be found, accurate
diagnostics will be developed for all heritable diseases,
animal models for human disease research will be more
easily developed, and cures developed for many diseases.
Many of these developments will occur, not inside test-
tubes in biologists’ laboratories, but on high-performance
computing platforms, with massive storage systems to
store genomic data, databases to search through the data,
identifying similarities and patterns, as well as integration
software to unify the slices of knowledge developed at
globally distributed institutions.

The primary goal of the public and private genomic
projects is to make a series of descriptive diagrams maps
of each human chromosome at increasingly finer
resolutions [1]. This involves dividing the chromosomes
into smaller fragments that can be isolated, and ordering
these fragments to correspond to their respective locations
on the chromosomes. After ordering is completed, the
next step is to determine the sequence of bases A,T, C &
G in each fragment. Then, various regions of the
sequenced chromosomes are to be annotated with what is
known of their function. Finally differences in sequences
between individuals may be catalogued on a global scale.
Correlating sequence information with genetic linkage
data and disease gene research will reveal the molecular
basis for human variation. Any two individuals differ in
about one-thousandth of their genetic material, i.e. about
3 million base pairs [1]. The global population is now
about 6 billion. A catalogue of all sequence differences,
which will be necessary in the future to find all rare and
complex diseases, would run to 18x1015 entries.

2. Database Support for Sequence Data
As the sequencing community sharply increases its
activities to pile up As, Ts, Cs and Gs, it is clear that the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

705

goals above need industrial-strength database products as
well as innovations in underlying database technologies.
Databases have, so far, been used largely for managing
simple business data – numbers, characters or dates. Few
databases have had a native ability to deal with complex
data -- whether multimedia, text, spatial data, or gene
sequence data. Most databases find it hard to handle
high-dimensional data, such as performing similarity
queries on gene sequences, spatial queries on locations, or
‘looks-like’ queries on images. For the specific case of
genomic data, we should be able to search for:

• Properties: What are the human sequences that
are longer than 10 Kb, and have a specific
annotation associated with them?

• Structural similarity: Given a particular
sequence, what other sequences resembling this
sequence exist in the database – for this
organism and for other organisms? (The
‘resemble’ operation must be able to find
sequences that share, say, only isolated regions
of similarity, and also score the returned results.)

• Location: Given a gene or a sequence, what are
the neighbouring genes/sequences?

Unless databases can treat complex data natively,
specialized applications have to be used as custom
middle-tiers to perform sequence searches or spatial
searches. BLAST (Basic Local Alignment Search Tool)
[2] is a set of similarity search programs that can apply a
heuristic algorithm to detect relationships between
sequences, and rank the ‘hits’ statistically. However, such
loosely integrated specialty middle-tiers have several
disadvantages: applications become too large, too
complex, and far too custom-built. Even though these
mid-tier products can exploit special algorithms to
manipulate complex data, they run outside the database
server, causing performance to degrade as interactions
with the database increase.

Further, optimizations across data sources cannot be
performed efficiently. Since BLAST-like servers know
nothing about textual annotations, one cannot search for
similarity AND annotation efficiently. For example, given
a (pseudo) query ‘Find the names of all sequences where
GappedSearch(‘IKDLLDTTLVLVNAI++LSS D’) returns
a score less than 2, AND any annotation associated with
the sequence contains the keyword ‘Swiss Protein’’, we
do not know which of the two clauses in the predicate is
more restrictive, and therefore important to evaluate first
during query execution.

Finally, each specialty server comes with its own utilities
and practices for administering data, making the overall
system hard to manage. Since processing for complex
data is beset with problems when done outside the
database, we have to ask what the best way is to support

specific types of complex data inside databases. As it is
not clear what constitutes a full set of such types, it seems
inefficient to provide, on an ad hoc basis, support for each
new type that comes along. In other words, unless all
possible complex types can be accommodated in some
comprehensive architecture, they will continue to be
devilled by issues in re-engineering, cross-type query
optimization, uniform programmatic access and so on.

3. Extending Databases
We approached the complex data problem from the
standpoint of creating such an architecture. Databases
must be made inherently extensible to be able to
efficiently handle various rich, application-domain-
specific complex data types. Extensibility is the ability to
provide support for any user-defined datatype (structured
or unstructured) efficiently without having to re-architect
the DBMS. Such types – which can be plugged into the
database to extend its capabilities for specific domains –
are also called data cartridges [3].

An extensible database system needs support for:

• user-defined types -- the ability to define new
datatypes corresponding to domain entities like
sequence,

• user-defined operators -- like Resembles()
or Distance() to add domain-specific
operators that can be called from SQL,

• domain-specific indexing - support for indexes
specific to genomic data , spatial data etc., which
can be used to speed the query, and

• optimizer extensibility - intelligent ordering of
query predicates involving user-defined types,
especially for multi-domain queries.

3.1 User-defined Types

The Oracle Type System (OTS) [4] provides a high-level
SQL-based interface for defining types. The behaviour for
these types can be implemented in Java, C/C++ or PL/
SQL. The DBMS automatically provides the low-level
infrastructure services needed for input-output,
heterogeneous client-side access for new data types, and
optimisations for data transfers between the application
and the database and on. Two central constructs in OTS
are object types, whose structure is fully known to the
database, and opaque types whose structure is not.

An object type, distinct from native SQL data types such
as NUMBER, VARCHAR or DATE, is user-defined. It
specifies both the underlying persistent data (called
‘attributes’ of the object type) and the related behaviour
(‘methods’ of the object type). Object types are used to
extend the server’s modelling capabilities. You can use
object types to make better models of complex entities in
the real world by binding data attributes to semantic

706

behaviour. There can be one or more attributes in an
object type. The attributes of an object type can be the
native data types, other object types, ‘large objects’ or
LOBs, or reference types. We also provide collections of
native types, objects types, LOBs or references. Object
types can have methods to access and manipulate their
attributes, and these methods can be run within the
execution environment of the database server. In
addition, methods can be dispatched to run outside the
database. With OTS, it is possible to (i) create database
abstractions for sequence, gene, annotation etc., (ii)
program behaviour for these abstractions – say Size()
for a sequence, (iii) create collections of sequence to yield
aggregations like chromosome and so on.

The opaque type mechanism provides a way to create new
fundamental types in the database whose internal
structure is not known to the DBMS. The internal
structure is modelled in some 3GL language (such as C).
The database provides storage for the type instances.
Type methods or functions that access the internal
structure are external methods or external procedures in
the same 3GL language used to model the structure.

The benefit of opaque types arises in cases where there is
an external data model and behaviour available to store or
manipulate sequences – say as a C library. For instance,
object models for genomic use have been devised as part
of the Life Sciences Research Domain Special Interest
Group (LSR-SIG) under the Object Management Group
(OMG) umbrella [5]. Implementing these objects as
opaque types enables them to store genomic data
persistently in the database, but at the same time call on
behaviour implemented external to the database for
purposes of insert, updates, deletes or queries on the data.

3.2 User-defined operators

Typically, databases provide a set of pre-defined
operators to operate on built-in data types. Operators can
be related to arithmetic (+, -, *, /), comparison
(=, >, <), Boolean logic (NOT, AND, OR), string
comparison (LIKE) and so on. We have also found it
useful to add to Oracle the capability to define domain-
specific operators. For example, it is possible to define a
Resembles() operator for comparing sequences. The
actual implementation of the operator is left to the user,
and he can choose to bind them to functions, type
methods, packages, external library routines and so on.
User-defined operators can be invoked anywhere built-in
operators can be used — i.e., wherever expressions can
occur. User-defined operators can be used in the select
list of a SELECT command, the condition of a WHERE
clause, the ORDER BY clause, and the GROUP BY
clause. After a user has defined a new operator, it can be
used in SQL statements like any other built-in operator.
For example, if the user defines a new operator

Contains() which takes as input a decoded DNA
fragment and a particular sequence, returning TRUE if the
fragment contains the specified sequence, then we can
write a SQL query as

SELECT ID FROM DNATABLE WHERE
Contains(fragment,

‘GCCATAGACTACA’);
This ability to increase the semantics of the query
language by adding domain-specific operators is akin to
extending the query service of the database.

When an operator is invoked, the evaluation of the
operator is transformed to the execution of one of the
functions bound to it. Just as databases use indexes to
efficiently evaluate some built-in operators (a B+Tree
index is typically used to evaluate comparison operators),
in Oracle user-defined domain indexes (see below) can be
used to efficiently evaluate user-defined operators.

3.3 Extensible Indexing

Typically, databases have supported a few standard access
methods (B+Trees, Hash Indexes) on the set of built-in
data types. As we add the ability to store complex domain
data, there arises a need for indexing such data using
domain-specific indexing techniques. For simple data
types such as integers and small strings, all aspects of
indexing can be easily handled by the base database. For
gene sequences, however, we would need special indexes
to efficiently perform 3-D structural comparison,
similarity or substructure search, ‘distance’ evaluation
and so on.

The framework to develop new index types is based on
the concept of cooperative indexing where a user-supplied
implementations and the Oracle server cooperate to build
and maintain indexes for complex types such as genetic,
text or spatial data. The user is responsible for defining
the index structure, maintaining the index content during
load and update operations, and searching the index
during query processing. The index structure itself can
either be stored in the Oracle database, or externally (e.g.
in operating system files), though most implementers find
it desirable to have the physical storage of domain
indexes within the database for reasons of concurrency
control and recovery.

To this end, Oracle introduces the concept of an
Indextype. The purpose of an Indextype is to enable
efficient search and retrieval functions for complex
domains such as text, spatial, image, and genomics. An
Indextype is analogous to the sorted or bit-mapped index
types that can be found built into the Oracle server, with
the exception that the former depends on user
implementation.

707

With such ‘extensible’ indexing, the user:
• Defines the structure of the domain index as a

new Indextype
• Stores the index data either inside the Oracle

database (in the form of tables) or outside the
Oracle database

• Manages, retrieves, and uses the index data to
evaluate user queries.

In the absence of such user-defined domain index
capabilities, many applications -- such as the
aforementioned BLAST -- maintain separate memory- or
file-based indexes for complex data. A considerable
amount of code and effort is required to:

• maintain consistency between external indexes
and the related database data

• support compound or multi-domain queries
(involving tabular values, or data from other
domains)

• manage the system (backup, recovery, allocate
storage, etc.) with multiple forms of persistent
storage (files and databases)

By supporting extensible indexes, the Oracle server
significantly reduces the level of effort needed to develop
solutions involving high-performance access to complex
data types.

3.4 Extensible Optimizer

A typical optimizer generates an execution plan for a SQL
statement. Consider a SELECT statement. The execution
plans for such a statement includes (i) an access method
for each table in the FROM clause, and (ii) an ordering
(called the join order) of the various tables in the FROM
clause. System-defined access methods include indexes,
hash clusters, and table scans. The optimizer chooses a
plan by generating a set of join orders or permutations,
computing the cost of each, and selecting the one with the
lowest cost.

For each table in the join order, the optimizer estimates
the cost of each possible access method using built-in
algorithms. Databases collect and maintain statistics about
the data in tables – such as the number of distinct values,
the minimum and the maximum, histograms of
distribution and so on, to help the optimizer in its
estimations.

As discussed earlier, extensible indexing functionality
enables users to define new operators, index types, and
domain indexes. For such user-defined operators and
domain indexes, the extensible optimizer gives developers
control over the three main inputs used by the optimizer:
statistics, selectivity, and cost. The extensibility of the
optimiser lies in the user’s ability to collect domain-

specific statistics, and, based on such statistics, predict the
selectivity and cost of each domain-specific operation.
The user’s inputs are ‘rolled up’ with the rest of the
optimizer’s heuristics to generate the optimal execution
plan.

Whenever a domain index is to be ‘analysed’, a call is
made to a user-specified statistics collection function.
The representation and meaning of these user-collected
statistics is not known to the database, but are to be used
later by the user in estimating the cost or selectivity of a
domain operation. In addition to domain indexes, user-
defined statistics collection functions are also supported
for individual columns of a table and data types (whether
built-in or user-defined).

The selectivity of a predicate or a clause is the fraction of
rows in a table that will be chosen by the clause or
predicate; it is used to determine the optimal join order.
By default, the optimizer uses a built-in algorithm to
estimate the selectivity of selection and join predicates.
However, since algorithm has no intelligence about
functions, type methods, or user-defined operators, the
presence of these may result in a poor choice of join order
– i.e. a very expensive execution plan. So, if we were to
build a domain index for sequences and implement a
Contains() operator based on this index, we would also
specify the selectivity of the operator. This could be based
on the arguments it receives (a very long sequence is
likely quite selective, whereas a short sequence like
‘GCT’ is not selective at all), or on the actual distribution
of sequence data based on analysed statistics. Thereafter,
if a user executed a query of the form

SELECT * FROM DNATABLE WHERE

Contains(fragment,

‘GCCATAGACTACA’) AND id > 100;
then the selectivity of the first clause of predicate could
computed by invoking the user supplied implementation,
and an execution plan generated to determine whether the
Contains operator should be applied before the >
operator or vice-versa.

A similar consideration applies to cost. The optimizer also
estimates the cost of various access paths while choosing
an optimal plan. For example, it may compute the cost of
using an index as well as a full table scan in order to be
able choose between the two. However, for user-defined
domain indexes with user-specified internal structre, cost
cannot be estimated easily. For proper optimization, the
cost model in Oracle has been extended to enable users
to define costs for domain indexes, user-defined
functions, type methods etc. The user-defined costs can
be in the form of default costs that the optimizer simply
looks up, or can be full-blown cost functions based on
user-collected statistics, which the optimizer calls at run
time.

708

4. Mining Sequence Data
The current approach for finding genes has a large
experimental component. Any small increase in the
accuracy of computer classification of genes can result in
substantial time and cost savings. Oracle has developed a
suite of software tools that analyse large collections of
data to discover new patterns and forecast relationships
[6]. This process of sifting through enormous databases to
extract hidden information is called ‘data mining’. Mining
sequence data can help discover relationships between
genes, discover gene expression, discover drugs based on
functional information and so on. Oracle’s data-mining
tool -- Darwin -- has been utilized for bioinformatics.
Darwin was built to address the terabyte databases found
in genomics databases. In fact, various parallelism
technologies built into Darwin ensure that there is no limit
to the size of data it can mine. Darwin currently provides
classification and regression Trees (C&RT), neural
networks, and k-nearest neighbours algorithms, k-means
Naïve-Bayes and enhanced clustering (self-organizing
maps or SOM) algorithms.

A simple case of mining genetic data could be to classify
cancers based solely on gene expression. Classifiers are
first trained on the genes in a training set, and then
applied to the remaining genes to assign them to specific
clusters. Thence, Darwin’s algorithms can be used to help
identify new clusters. This suggests a general stratagem
for predicting cancer classes for other types of cancer,
creating new biological knowledge [7].

Another use of mining relates to predicting which sections
of a piece of DNA are ‘active’ and which are not.
Chromosomes have coding sequences (exons),
interspersed with non-coding sequences (introns.) It has
recently been discovered through mining that a non-linear
correlation statistic for DNA sequences, called the
Average Mutual Information (AMI) [8], is very effective
at distinguishing exons from introns. The AMI is a non-
linear function based on a vector of 12 frequencies each
dependent on the positions of the bases A, C, T & G. The
inductive process of mining helps us arrive at such
complex insights, which deductive analyses have little
hope of unearthing.

When terabytes of data are involved, traditional data
mining relies on analysts trying to guess which small
subset of the information in a database is relevant.
Because of their limited capacity for data, traditional
methods often operate on only 1-2% of the data available
in every record. Yet discarded variables often contain key
information: correlations that aren't obvious, patterns one
wouldn't expect, or significant fluctuations that are
normally overshadowed by larger trends. Darwin, on the
other hand, can afford to look at every bit of data in each

record because of its parallel architecture. This
architecture is shown in Fig 1.

Darwin’s architecture is based on a distributed-memory
SPMD (single program multiple data) paradigm. This
shared-nothing approach facilitates scalability in
performance by reducing inter-processor communications
and making optimal use of local memory and disk
resources. The processors work on their local section of
the dataset and all inter-processor communication is
achieved by the use of a message-passing library called
MPI, which provides the basic programming and process
model. The main architectural component of the server is
a unified data access and manipulation library: StarData,
which provides most of the data access and
transformation infrastructure that supports the machine
learning modules StarTree, StarNet, StarMatch etc. A

Figure 1: Darwin Data Mining Architecture

toolset provides a client/API to support general or
application specific graphical user interfaces (GUIs). The
API also allows the toolset to be integrated with, or
embedded into, other products. This API can also be
called from the member functions of object- or opaque-
types, making it possible to integrating the data mining
functionality with the data modelling aspects.

Mining of sequence data is still in its infancy because the
methodologies are much more involved, and because a
large number of tools have to be integrated before
progress can be made. However, this area has a potential
of yielding rich dividends in the years to come.

5. Integrating Heterogeneous Data
Not all bioinformatics data will exist in the same
database. Sequence data for the human genome is likely
to end up spread across a handful of public or private
databases. Sequence data for other organisms will also be
distributed, across hundreds of institutions. Annotations to
this data will make it change and grow all the time.

709

Pharmaceutical companies will have their own private
data. Researchers everywhere will like to integrate all
sorts of heterogeneous data sources.

Oracle’s ‘gateway’ technologies make it possible for
informatics applications to access and manipulate non-
Oracle system data. Researchers can query any number of
non-Oracle systems from an Oracle database in a
heterogeneously distributed environment. Generic
connectivity enables connectivity using industry standards
such as ODBC and OLEDB. Gateways extend distributed
capabilities to a heterogeneous environment – so
distributed transactions as well as distributed queries,
joins, inserts, deletes can be performed easily. Gateways
make the data's location, SQL dialect, network and
operating system transparent to the end user, making it
easy to implement in a heterogeneous environment.

6. Portal Technologies
While it is important to query on sequences, mine
sequence data and so on, it is also important for database
platforms to support the dispersion of information over
the Internet and intranets. Oracle has emerged as a crucial
‘back-end’ for commercial web sites – because of new
features that enable records to be published directly to
browsers as dynamic HTML or XML, server-based Java
execution, support for web-based secure transactions,
connection pooling etc., coupled with traditional high-
availability, scalability and reliability features. While
portals related to genomics and bioinformatics need many
of the features that commercial horizontal or vertical
industry portals do, there are some additional
requirements in this domain that are worth discussing.

6.1 ‘Soft Goods’ Sales

Bioinformatics marketplaces buy and sell information
rather than ‘hard goods’. Portals in this area must be able
to measure the usage of soft goods (e.g. the number and
complexity of queries against a sequence database, or
amount of data downloaded by a subscriber.) Oracle
provides a wide array of server-based features as well as
application packages to enable soft goods transactions
over the Internet.

6.2 Visualization

It is not only important for a bioinformatics portal to serve
sequence, aggregate or annotation data, but it is also
important for the user to be able to visualize such data.
Oracle enables the publishing of graphical data in formats
such as the Vector Markup Language (VML) that can be
used to display sequences. It is possible to generate XML
from the database, and transform this to VML using XSL
transformation capabilities. It is also possible to display
aggregated or processed data – say scatter plots resulting

from mining – as charts or plots using a number of
popular charting packages.

6.3 Security & Access Control

Organizations searching against sequence stores want to
protect not only the results of their queries, but also the
nature of queries themselves. To this end, Oracle
provides comprehensive PKI-based security to protect
information on data as well as user-sessions.

7. Acknowledgements
Over the years a number of individuals at Oracle have
contributed to the gradual building of this platform. Anil
Nori, Vishu Krishnamurthy, Jayanta Banerjee, S.
Muralidhar, Jags Srinivasan, Ravi Murthy, Nipun
Agarwal, Seema Sundara and others have contributed to
database extensibility. Pablo Tamayo and others have set
the direction of mining sequences. Benny Souder and
others have created the ‘gateway’ and data integration
technologies.

8. References
[1] Human Genome Program, Primer on Molecular

Genetics, Washington D.C, U.S. Department of
Energy, 1992.

See http://www.ornl.gov/hgmis/publicat/primer/intro.html
[2] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. &

Lipman, D.J, Basic local alignment search tool, J.
Mol. Biol. 215:403-410, 1990.

See http://www.ncbi.nlm.nih.gov/BLAST/
[3] Oracle Corp., Oracle8i Data Cartridge Developer’s

Guide: Release 8.1.5 (Part No. A68002-01)
Redwood Shores, Oracle Corp., 1999.

[4] Oracle Corp., Oracle8i Concepts: Release 8.1.5
(Part No. A67781-01) Redwood Shores, Oracle
Corp., 1999.

[5] Life Sciences Research Group, Genomic Maps RFP,
Philadelphia, Object Management Group, 1999.

 See http://lsr.lbl.gov/
[6] Oracle Corp., Darwin: Release 3.6.1 (Part No.

A83710-01) Redwood Shores, Oracle Corp., 2000.
[7] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M.

Gaasenbeek, J.P. Mesirov, H. Coller, M. Loh, J.R.
Downing, Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression

 Monitoring, Science, Oct 15 1999:531-537, 1999.
 M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander.
[8] I. Grosse, K. Marx, S. Buldyrev, G. Grinstein, H.

Herzel, P. Hoffman, A. Li, C. Meneses, and H.E.
Stanley. Data Mining of Large Gene Datasets Using
the Mutual Information Function. to appear in
Journal of Biomolecular Structure and Dynamics.

710

