

Evolution of Groupware for Business Applications:
A Database Perspective on Lotus Domino/Notes

C. Mohan, R. Barber, S. Watts, A. Somani, M. Zaharioudakis

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
{mohan, barber, somani, markos}@almaden.ibm.com, swatts@us.ibm.com

www.almaden.ibm.com/u/mohan/, www.almaden.ibm.com/u/barber/

Abstract

In this paper, we first introduce the database
aspects of the groupware product Lotus
Domino/Notes and then describe, in some more
detail, many of the logging and recovery
enhancements that were introduced in R5. We
discuss briefly some of the changes that had to be
made to the ARIES recovery method to
accommodate the unique storage management
characteristics of Notes. We also outline some of
the on-going logging and locking work in the
Dominotes project at the IBM Almaden Research
Center.

1. Introduction

Over a decade ago, Iris Associates, now a subsidiary of
IBM’s Lotus, pioneered the concept of groupware and
released the product Lotus Notes in 1989. It was based on
a research prototype, called PLATO Notes, which was
built by some of the Iris founders while they were students
at the University of Illinois in Urbana Champaign (a
lengthier description of the product’s historical evolution
can be found in http://www.notes.net/history.nsf/). Notes
provides a feature-rich application development and
deployment environment [Moore95]. Over the years, more
and more of the functionality that used to be in other
products complementary to Notes have been folded into
Notes itself (e.g., calendaring, scheduling, high-level
workflow process definition capabilities). Notes lets
program scripts be defined by users and be stored in the

Notes DB. Triggers, which are valuable for implementing
workflow applications, are supported via the notion of
agents. While Notes was initially designed as a workgroup
product for use by a small number of users working
collaboratively, subsequently it has been enhanced
extensively with functionality and infrastructure
improvements, allowing it to be successfully deployed as
a platform for business applications in numerous large
enterprises. Currently, it has an install base of over 55
million seats. Without relying on a DBMS, Notes does its
own persistent storage management. Our aim here is to
provide a database (DB) perspective on this product.

Since the time Notes was enabled for the internet a few
years ago, the name Domino has been used to refer to the
server and the name Notes to the client. Because the DB
functionality supported in the client and the server is
almost identical, we use the two names interchangeably.

2. Semi-Structured Data Management

Since its first release in 1989, long before the topic
became fashionable in the DB and web research
communities, Lotus Notes had been targeted at the
management of semi-structured data. Notes supports the
storage and manipulation of documents (notes) that
contain structured as well as unstructured data (e.g.,
audio, video). Views can be used for the presentation of a
subset of the data in the documents of a DB in a structured
way. View columns can have collation options associated
with them. From the GUI, forms can be used to create,
view and update documents. The Notes API can be used
by programs for performing these and other operations.
Document sizes could vary widely. Every document in a
Notes DB could potentially be structured differently (e.g.,
with respect to number and types of fields) compared to
every other document in the same DB. Document
structure could evolve easily over time. At anytime,
existing fields in a document could be deleted or their
types could be modified, and new fields could be added.
A document can point to another document, in the same or
different DB, via a DocLink. Parent-child relationships

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.
Proceedings of the 26th VLDB Conference, Cairo,
Egypt, September 2000.

684

could exist between documents. In addition, documents
could be classified along category hierarchies. Querying
of a DB’s contents can be done using a fairly high-level
query language, although the latter is not as sophisticated
as the recently proposed query languages for semi-
structured DBs and XML data. Since Notes does not have
an RDBMS-style query optimizer, choice of an access
path to process a query needs to be made by the user.

3. Storage Architecture

All user data and metadata belonging to a Notes DB is
stored in a single file dedicated to that DB. A server or a
client can manage any number of DBs. Data is stored on
disk in a machine-independent format so that binary
copying of a DB file across dissimilar machine
architectures (e.g., PC and RISC) does not require any
conversions to be performed before the DB becomes
accessible on the target system. Because of the
unstructured nature of the supported data model, DBs as
well as individual documents within them are stored in a
completely location independent and self-describing
format. Storage management is done differently for
structured fields versus multimedia or rich text fields (e.g.,
attachments). Within a DB (e.g., when an index entry
points to a document), a document is identified using a
short NoteID and across DBs (e.g., for replication
purposes) it is identified using a longer UNID (Universal
Note ID).

Sophisticated (hierarchical and ranked) B+-trees are used
for managing views. The latter are like the indexes or
materialized views of RDBMSs. With each view, an
expression can be associated to determine which
documents in the DB qualify to be included in the view.
Unlike RDBMS indexes, Notes views are not maintained
synchronously as the underlying documents are updated.
Timestamps contained in documents and in tombstones of
deleted documents are exploited to efficiently update the
views. Not using a log for this purpose poses an
interesting problem since the old values of a modified
document’s fields are not available to compute and
remove the old key. This has been resolved by
maintaining for each view an inverse NoteID to key
mapping.

Full text indexes are managed differently from view
indexes and are maintained in files external to a Notes DB
file. A single so-called Domain Index can be used to index
multiple Notes DBs to allow uniform searching across
those DBs.

4. Replication

From its first release, support for replication and
disconnected operation has been one of the most
significant and innovative features of Notes. The
replication mechanism is very flexible with respect to with

which server(s) and when to synchronize. With each
replica of a DB, an expression can be specified to
determine which documents should be included in that
replica, thereby supporting selective replication. One can
also restrict only a subset of the qualifying documents’
fields to be replicated. Initially, concurrent updates to the
same document were checked for conflicts at document
granularity [KBHOG92]. Subsequent enhancements have
made it possible to do conflict checking at field
granularity. As in the case of views, document timestamps
are relied upon to identify changed documents. Sequence
numbers associated with individual fields are used to
support the optional field-level conflict checking
functionality. Notes DB can also be replicated with PDAs
like the Palm Pilot.

5. High Availability

In order to provide high availability in the event of server
failures, Domino allows the clustering of a collection of
servers for supporting automatic failover. The clustered
servers manage replicated DBs that are synchronized
more often and differently than in the case of normal
replication. The switchover of a client from one server in
the cluster to another can be made to happen even if the
first server is not responsive enough, thereby providing
load balancing functionality.

6. Security

Sophisticated access control features and very early
support of RSA public key technology for authentication
have been the hallmarks of the product. Field level
encryption of documents is also supported. These security
features are exploited in business applications, especially
when role-based workflows are involved. In the web
context, Domino’s features can be exploited to
dynamically create highly personalized web pages.

7. Heterogeneous Data Access

Through companion products like NotesPump and DECS
(Domino Enterprise Connection Services), it is possible to
integrate data from Notes and other sources (e.g.,
RDBMSs, SAP R/3). Notes applications can be written as
if all the data comes from a Notes DB itself when in fact
some of the data may be dynamically or periodically
materialized from other sources. This is one way to
integrate backend enterprise data using Notes on the
desktop. Domino can be accessed from not only Notes but
also web browsers and CORBA clients. Similarly, Notes
can be used to access not only Domino but also CORBA,
SMTP and POP3 servers.

685

8. ARIES for Semi-Structured Data

Through the joint efforts of Iris Associates and IBM
Almaden's Dominotes project, one of the major features
that was introduced in the latest release (R5) of Lotus
Domino is a traditional DBMS-style, write-ahead logging-
based recovery scheme [Mohan99]. This optional feature
can be enabled at the granularity of a DB. At anytime,
logging can be turned on or off by an administrator. When
logging is on, each Notes API call is implicitly treated as
an ACID transaction. Even with this restriction, a single
transaction could run for a long time by manipulating
multiple documents and/or multiple DBs in a single API
call. Since Notes had not been originally designed with
log-based recovery in mind, adding this sophisticated
technology required significant design work. This is
because enhancements had to be made to our ARIES
recovery method [MHLPS92] to deal with the fact that
storage management in Notes is done in very
unconventional ways. We call this version of our recovery
method ARIES/SSD (ARIES for Semi-Structured Data).

Notes stores persistently in a DB file numerous kinds of
data structures - different kinds of hash-based search
structures, lists of NoteIDs, B-trees, bit vectors, objects,
tables, ... Some of these structures are paginated while
others are not. Different page sizes are used by different
structures. Over time, these data structures might also be
moved around within the file in arbitrary ways. Since
some of the data structures might contain attachments like
audio, video, etc., internally logging had to be made
optional at the data structure level also.

File Caching Some of the recovery complications also
come from the fact that Notes relies on fil e caching being
done by the file system of the operating system. In other
words, Notes does not provide raw device support. Under
certain conditions (e.g., when some metadata is changed),
Notes issues a file sync call to the operating system to
force the file cache contents to be written to disk
immediately. This is an expensive operation and with our
logging enhancement in R5 we have been able to improve
performance by reducing the number of times such a call
needs to be issued.

Recover_LSN Tracking Until R5, Notes did not have a
full -blown buffer manager (BM). Unlike an RDBMS BM,
the Notes BM has to manage variable sized pages in a
single buffer pool (BP) since the Notes DB contains
structures with many different page sizes. Even with the
new BM in place, the non-paginated data structures are
managed outside of the buffer pool. This fact, coupled
with the existence of the file cache in the operating system
that might contain some recently written data means that
the Recover_LSN information tracked by BM in ARIES
for checkpointing and restart redo recovery purposes
needs to be supplemented with additional such

information relating to the data not in BP. We now have a
table in virtual storage which tracks Recover_LSNs for
non-paginated structures of a DB which are manipulated
outside BP. We also track a global Recover_LSN for the
file cache on a per DB basis. This value is computed
based on the Recover_LSNs of the recently written pages
and other non-paginated structures. File sync calls cause
this value to be reset. This resetting has to be done
carefully since writes to the file cache may occur while a
sync is in progress.

Analysis and Redo Passes Accommodating the storage
management characteristics of Notes has required changes
to the analysis and redo passes of ARIES. We could not
rely on an LSN (Log Sequence Number) field that was
created at a certain offset in the DB file continuing to be
at that same offset after a while. This is because pages
might be migrated (within a DB) or deallocated and later
some user data might be stored at that LSN location. For
such reasons, in ARIES/SSD, the analysis pass gathers
information about space allocations. The latter is used
during the redo pass to skip processing some log records
whose LSNs, in ARIES, might have been compared with
LSNs on corresponding DB pages. Whenever possible,
ARIES/SSD does logical logging and LSN-based
recovery. Otherwise, it does physical logging and non-
LSN-based recovery.

DB Migrations Notes users frequently move or replicate
DBs by doing fil e copying via the operating system. This
can cause a logged version of a DB to be overlaid with an
older or newer replica of that DB from another system.
Attempting to apply the log records to the wrong version
of a DB can cause major problems. We track extra
information in the DB header to deal with such situations.
When we detect that a DB had been migrated from one
system to another, we reset the LSN fields in that DB
since the logs at the 2 systems may be growing at different
rates. In particular, the LSNs being assigned in the new
system may be lower than the LSNs already assigned by
the old system. For a number of reasons, we did not adopt
the solution of [MoNa94] where a similar problem arose
because DB pages could migrate from client to client and
the logger was at the server but an LSN had to be assigned
locally in a client machine, while producing a log record,
without communicating with the server.

Backup and Restore Prior to R5, backup and restore of a
Notes DB were not supported directly in the product
itself. Notes administrators had to rely on file system
utilities for accomplishing those functions. Starting with
R5, APIs are provided for backup vendors to use to get a
transaction-consistent copy of a DB, while still permitting
concurrent updates to the DB as the copying is done. This
approach is very different from the one implemented in
DB2 [MoNa93].

686

Methods to deal with partial writes to disk have been
added [Mohan95a]. Due to lack of time, in R5, we did not
enhance the view index manager with support for logging.
Just as we exploited the Nested Top Actions feature of
ARIES extensively in ARIES/IM [Mohan95b, MoLe92],
ARIES/LHS [Mohan93] and ARIES for MQSeries
[MoDi94], in ARIES/SSD also we have benefited
tremendously from it. It has permitted us to improve
performance and increase concurrency. By using a single
log for logging the changes made to all the DBs managed
by a server, we have been able to gain performance
advantages even if no single DB encounters significant
update activity.

9. Current Work and Conclusions

We are currently enhancing Notes to expose the
transaction API calls (Begin, Commit, Rollback) to users,
thereby allowing a transaction to span multiple Notes API
calls. We are also improving the granularity of locking.
This is requiring significant work to be done since the
earlier coarse granularity of locking had been taken
advantage of in many unobvious ways. The new
enhancements are now forcing us to address space
reservation problems to handle rollbacks correctly
[MoHa94]. We are exploiting the Commit_LSN technique
[Mohan90] in a number of places to improve pathlengths.
By exploiting some of the logical logging techniques of
[MoLe92, Mohan95b], we are in the process of adding
logging to the view index manager.

In R5, with the changes made to some of its core storage
structures, scalability of the product has been enhanced
significantly. Without logging support, recovering from a
failure took time that was proportional to the size of an
affected DB. Implementing logging-based recovery has
enabled restart from a failure to be much faster. Apart
from the introduction of such industrial-strength features,
Notes, which has been much more than merely a
messaging system from its very beginning, is now
evolving more and more with knowledge management
capabilities also.

Acknowledgements: We would like to thank our past
colleagues in the Dominotes project at IBM Almaden
Research Center and our partners in Iris Associates. Our
joint work gave us deep insights into the internals of the
product and led to significant enhancements to its DB
infrastructure/functionality.

10. References
[KBHOG92] Kawell, L., Beckhardt, S., Halvorsen, T., Ozzie,
R., Greif, I. Replicated Document Management in a Group
Communication System, In Groupware: Software for
Computer-Supported Cooperative Work, IEEE Computer
Press, 1992.

[MHLPS92] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz, P. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging, ACM Transactions on Database
Systems, Vol. 17, No. 1, March 1992.

[MoDi94] Mohan, C., Dievendorff, R. Recent Work on
Distributed Commit Protocols, and Recoverable Messaging and
Queuing, Data Engineering, Vol. 17, No. 1, March 1994.

[MoHa94] Mohan, C., Haderle, D. Algorithms for Flexible
Space Management in Transaction Systems Supporting Fine-
Granularity Locking, Proc. 4th International Conference on
Extending Database Technology, Cambridge, March 1994.

[Mohan90] Mohan, C. Commit_LSN: A Novel and Simple
Method for Reducing Locking and Latching in Transaction
Processing Systems, Proc. 16th International Conference on
Very Large Data Bases, Brisbane, August 1990.

[Mohan93] Mohan, C. ARIES/LHS: A Concurrency Control and
Recovery Method Using Write-Ahead Logging for Linear
Hashing with Separators, Proc. 9th International Conference
on Data Engineering, Vienna, April 1993.

[Mohan95a] Mohan, C. Disk Read-Write Optimizations and
Data Integrity in Transaction Systems Using Write-Ahead
Logging, Proc. 11th International Conference on Data
Engineering, Taipei, March 1995.

[Mohan95b] Mohan, C. Concurrency Control and Recovery
Methods for B+-Tree Indexes: ARIES/KVL and ARIES/IM, In
Performance of Concurrency Control Mechanisms in
Centralized Database Systems, V. Kumar (Ed.), Prentice Hall,
1995.

[Mohan99] Mohan, C. Repeating History Beyond ARIES, Proc.
25th International Conference on Very Large Data Bases,
Edinburgh, September 1999.

[MoLe92] Mohan, C., Levine, F. ARIES/IM: An Efficient and
High Concurrency Index Management Method Using Write-
Ahead Logging, Proc. ACM SIGMOD International
Conference on Management of Data, San Diego, June 1992.

[MoNa93] Mohan, C., Narang, I. An Efficient and Flexible
Method for Archiving a Data Base, Proc. ACM SIGMOD
International Conference on Management of Data,
Washington, D.C., May 1993. A corrected version of this paper
is available as IBM Research Report RJ9733, IBM Almaden
Research Center, March 1993.

[MoNa94] Mohan, C., Narang, I. ARIES/CSA: A Method for
Database Recovery in Client-Server Architectures, Proc. ACM
SIGMOD International Conference on Management of Data,
Minneapolis, May 1994.

[Moore95] Moore, K. The Lotus Notes Storage System, Proc.
ACM SIGMOD International Conference on Management of
Data, San Jose, May 1995.

687

