High Performance and Scalability through Application-Tier,
In-Memory Data M anagement

The TimesTen Team
TimesTen Performance Software
1991 Landings Drive
Mountain View, CA 94043
Info@timesten.com

Abstract

TimesTen Performance Software's Front-Tier
product is an application-tier data cache that in-
ter-operates with disk-based relationa database
management systems (RDBMSs) to achieve
breakthrough response time and throughput,
scalability in transaction load, high availability,
and ease of administration and deployment.
Front-Tier caches frequently used subsets of the
corporate database on multiple servers in the go-
plication tier and supports SQL queries and yp-
dates to the caches. The caches may or may not
be overlapping, are kept synchronized with the
corporate database and with each other, and may
be dynamically reconfigured to contain different
subsets of the corporate database. Front-Tier
provides the fundamental bridge between the
corporate database and high-performance, scd-
able application servers. It eliminates the main
barrier to application server scalability and high
performance, namely the sole reliance on a cen-
tralized corporate database server for data man-
agement.

1. Introduction

Three-tier and multi-tier computing architectures have
been popular for several years, having first been accepted
as the standard architectures for enterprise computing, and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th International Conference on Very
L arge Databases, Cairo, Egypt, 2000

more recently as the standard architectures for Internet
computing. These architectures separate the presentation
logic, hosted in the tier closest to the end user, from the
application tier where all the business logic is impk-

mented, and finally from the data management tier where
the corporate database is centrally managed and adminis-

tered. While these architectures have been suitable for
enterprise computing, they are not as suitable for data-
intensive, high-performance Internet applications. With
the former, the number of usersis limited and the intera-

tions are well defined while with the latter, the number of
users keeps increasing and low and predictable response
times are a competitive differentiator. The separation of
data management from the application tier imposes a pe-

formance overhead in accessing the required data, and a

scalability barrier in forcing all queries and updates
through the database tier.

This paper examines these traditional architectures,
their advantages and drawbacks, and describes a new ap-
proach to data management that greatly improves the pe-
formance of data-intensive Internet applications.

2. Internet Computing Systems

Computing systems that service Internet requests consist
of multiple tiers of systems that include web servers, 8-
plication servers, and backend corporate DBMS server(s).
The web servers handle incoming requests, routing them
to the appropriate application server. Application servers
implement the logic required to service requests. They
execute the business logic and periodically query or p-
date the corporate database. Finaly, the database server
hosts one of the popular disk-based RDBM Ss and handles
requests to the corporate database. Web servers and appli-
cation servers may be scattered around the corporate
Intranet, while the database server is typically consoii-
dated in a centralized server(s).

These architectures have the benefit of providing
somewhat scalable architectures since increasing the

677

number of web servers and application servers can a-
commodate increases in number of users. They also have
the benefit of consolidating all data management in the
database server; thus simplifying the management and
administration of the corporate database and avoiding
issues of replicated or partitioned data management.
Even in geographically dispersed and heavily accessed
Intranets, it is seldom the case that the corporate database
is either replicated or partitioned at multiple sites because
of the complexity of synchronizing, managing, backing
up and archiving multiple copies of the corporate dab-
base. But, the centralization of data management poses
scalability problems. As the number of users increases,
the number of requests to the database server increases.
Eventually, the throughput of the database server is -
duced thus degrading performance or requiring the -
grade of the database server to a faster, larger, more ex-
pensive multi-processor machine. Even if throughput
problems are resolved, response time remains a problem
because each access to the database server requires net-
work messages.

Application developers and application server vendors
have recognized these problems and have used a number
of approaches to reduce contention on the database server
and improve performance. These approaches are de-
scribed in section 3.1. Each of these approaches has some
drawbacks as described in sections 3.1 and 3.2. What
application servers need is a lightweight, high-
performance DBMS that is easy to install and maintain,
has a small-enough footprint to reside in the application
tier, and provides the bridge between the application tier
and the backend database server.

TimesTen's Front-Tier™ product [3,4] is an applica-
tion tier data cache that provides the following functian-
ality and advantages:

1. It caches frequently-used subsets of the corporate
database in the application tier. This improves e
sponse time by reducing network overhead to the db-
tabase server, and increases throughput by reducing
contention on the database server.

2. It services data management requests in the applia
tion tier in an in-memory DBMS that deliversun-
precedently low response time and high throughput.

3. It supports declarative SQL queries and updates
through the standard ODBC and JDBC APIs [3,4,5].
This reduces development time as it offers the same
familiar APIs as the database server.

4. It synchronizes updates to the cache with the corpo-
rate database.

5. It supports caching in multiple application servers
with potentially overlapping caches. Overlapping
caches provide high availability and enable load ba-
ancing. Non-overlapping caches are used to partition
the workload among application servers.

6. It provides an infrastructure for detection and notif-
cation of failed replication components to support
fail-over and auto-restart.

7. It does not modify the corporate database schema
thus preserving the advantages of centralized corpo-
rate data management and administration.

3. Data Caching with Front-Tier
3.1 Reducing Contention on the Database server

Application developers and application server vendors
have used a number of approaches to reduce contention
on the database server, and improve response time. These
approachesinclude:

- Result Set Caching. This approach consists of cach-
ing some of the results obtained from the database
server in the application tier, and reusing them if they
happen to process requests identical to the ones
whose results have aready been cached. This cach-
ing technique is severely limited because:

« It lacks query processing capability. The only
gueries that can be answered from the cache are
gueries whose results were previously cached.

++ The caches cannot be shared or updated. They
are typically read-only caches with no
concurrency control. Furthermore, multiple g-
plication servers running on the same machine
do not typically share caches among themselves.
The result is duplicate data that consumes re-
sources unnecessarily on the application server.

Disk-Based RDBMS Replication. With this ap-
proach, subsets of the corporate database are repli-
cated in the application tier. While this approach
does provide transaction management and complex
query processing in the application tier, it is too
heavy weight, because disk-based RDBM Ss are fairly
demanding in their resource requirements. Furthe-
more, they do not provide the performance advan-
tages of in-memory data management.

Disk-Based RDBMS Partitioning. This approach

consists of partitioning the corporate database into

several databases; each managed by a disk-based

RDBMS that resides in the database tier. This ap-

proach reduces contention over a single database

server by distributing it over several database servers,
but presents severa disadvantages:

+ Response time remains an issue, as each data-
base access requires network messages.

« The advantage of a consolidated repository of
corporate data for analysis and report generation
islost.

+«+ The corporate database is harder to administer,
as it becomes spread over several servers. Fur-
thermore, scaling by adding more database sev-
ers poses the challenge of having to repartition
the corporate database.

+«+ Some transactions may require distributed trars-
action management support and will suffer from
its accompanying performance overhead.

678

3.2 Front-Tier: In-Memory Data Management in the
Application Tier

Front-Tier manages anorganization'sfrequently-used data
in the application tier, using TimesTen'sin-memory data-
base technology. Unlike disk-optimized RDBMSs that
have been designed to reduce disk 1/O through the buff-
ering of disk data in main memory, Front-Tier relies on
the memory residence of data to eliminate much of the
overhead associated with disk-based RDBMSs. For ex-
ample, Front-Tier does not have to maintain, manage, or
search a buffer pool since al data is always in memory.
Similarly, Front-Tier usesindex structures optimized to
reduce CPU processing and memory consumption. The
result is a system that is an order of magnitude faster than
fully cached disk-based RDBMSs. In addition to high
performance, Front-Tier offers the standard capabilities
found in disk-based RDBM Ss such as data sharing, trans-
action management and SQL functionality. Front-Tier's
architecture is lightweight, easy to embed, and can be
deployed on a range of application tiers and computing
platforms. TimesTen Performance Software'sin-memory
database technology has been described in [1,2].

Managing frequently-accessed data in the application
tier reduces contention on the backend database server
thus improving overall throughput, and brings data close
to the application, thus improving response time by
avoiding network overhead These advantages, coupled
with the inherent performance advantages of in-memory
data management, provide a powerful boost to response
time, throughput, and overall system scalability. Front-
Tier's approach has the added benefit of not modifying the
schema of the corporate database, which can remain cen-
tralized and whole, thus permitting global data analysis
and ease of administration.

The approaches described in section 3.1 and the Front-
Tier approach are summarized in the following table, b-
gether with their advantages:

Approach
Result set Disk-Based Disk-based Front-Tier
caching RDBMS RDBMS
repl. part.
. SQL support No Yes Yes Yes
E | Transaction
A | mgmtsup- | Ng Yes Yes Yes
U port
Fé Lightweight | Yes No NA Yes
Ease of

! ladminofcorp| yeg Yes No Yes
B DB
E Reducedresp| Yes Somewhat No Yes
E time
F
i Improved Yes Yes Yes Yes
T | Throughput

3.3 Defining the Content of a Cache

To define what is to be cached, Front-Tier provides a
Web-based easy-to-use tool called the Front-Tier Admin-
istrator. Through the Front-Tier Administrator, the appl-
cation designer may view the schema of a chosen corp-
rate database. From that schema, the user chooses the
sub-schema that should be cached using the concept of
Cache Groups. A Cache Group is a set of Front-Tier ta-
bles that corresponds to a set of related and frequently
used tables in the corporate database. SQL syntax is used
to define Cache Groups and may be used to further qud-
ify which columns and rows from a set of related tables
belong to a cache. The Front-Tier Administrator assists
the user in defining Cache Groups and automatically ga-
erates the appropriate SQL syntax. Users may aso define
Cache Groups programmatically using SQL syntax.

Example
Assume that the following tables exist in the corporate

database:
Customer (Custld, Name, Age, Gender,
StreetAddress, State, ZipCode, PhoneNo)
Order (Custld, Orderld, PurchaseDate, Amount)
Custinterest (Custld, Interest)

An application may want to cache the profiles of
customers who have placed one or more purchase a-
ders worth more than $500 since January 1, 2000. To
that end, it may define the following two cache
groups:

CREATE CACHE GROUP PacificCustomers
SELECT Custld, Name, Age, Gender, Interest
FROM Customer, Order, Custinterest

WHERE Customer.Custld = Custinterest.Custld
AND Customer.Custld = Order.Custld
AND Customer.State IN (WA', OR;, ‘CA',
AND Order.PurchaseDate >="JAN 1 2000'

NV’)

CREATE CACHE GROUP MountainCustomers
SELECT Custld, Name, Age, Gender, Interest
FROM Customer, Order, Custlnterest
WHERE Customer.Custld = CustInterest.Custld
AND Customer.Custld = Order.Custld
AND Customer.State IN

(MT}, 1D, UT’, 'AZ', WY, ‘CO’, NM))
AND Order.PurchaseDate >= 'JAN 1 2000'

where the Cache Groups PacificCustomers and
MountainCustomers are to be cached on different g-
plication servers.

Two tableswill be cached in Front-Tier. They are:
Customer (Custld, Name, Age, Gender)
Custinterest (Custld, Interest)

They can be used to answer any queries over these

tables for the columns listed above. (Note that thereis
no need to cache the Order table.)

679

An additional concept used by Front-Tier is that of a
Cache Instance. A Cache Instance is a complex object or
a collection of related records that are uniquely identif-
able. Cache Instances form the unit of cache loading and
cache aging as will be described in section 3.4. In the
example above, all records in the Customer and Custin-
terest tables that belong to a given customer id belong to
the same Cache Instance.

When data is cached into Front-Tier, types must be
converted from the corporate database types to Front-
Tier'sdatatypes. The Front-Tier Administrator assists the
user in recommending the Front-Tier data types that most
closely match the corporate database types.

3.4 Caching Data and Managing the Cache

Once a Cache Group has been defined, the data that it
describes can be loaded al at once from the corporate
database into Front-Tier for processing. Alternatively,
Cache Instances may be faulted into Front-Tier, or loaded,
on demand, from the corporate database. Data that has
been loaded into Front-Tier is available for SQL proces-
ing through JDBC or ODBC. The user may choose to
periodically refresh Cache Groups from the corporate
database, unload Cache Groups, and/or load different
Cache Groups. This may be accomplished programmai-
cally while the application is running.

Note that Front-Tier enables developers to create in-
dexes on cached data. Front-Tier indexes may match the
indexes in the corporate database or may be different.
The application designer can use the flexibility of Front-
Tier to create multiple indexes on the same table and may
define indexes over multiple columns.

Cache Instances are automatically aged out of the
cache when the cache capacity is exceeded. Aging is
based on last time of access, and uses an LRU scheme by
default. In addition, Front-Tier provides applications with
a number of cache-aging options. An application may set
up different durations for different Cache Groups as well
as for different Cache Instances. Furthermore, the appi-
cation may specify that certain Cache Groups should
never be aged out. For example, the application may
want to keep catalog information in the cache all the time,
while a user’s profile is only relevant while the user is
connected to the application.

3.4 Synchronization

During normal processing, applications read and update
data cached in Front-Tier. Applications residing on the
same machine can share caches. Furthermore, different
caches of the same corporate database may reside on the
same machine or on different machines. These caches
may be identical or may contain different subsets of the
corporate database. For example, an application tier may
consist of several servers each dedicated to serve a subset
of subscribers. The subscribers may be partitioned ac-
cording to zip code, area code, user identifier, etc. With

such a scheme, the data cached on each server will con-
tain adifferent subset of the corporate database.

Read-only transactions do not require communication
with the corporate database. However, when the applica-
tion completes a transaction that has modified the dai-
base, Front-Tier first commits the transaction in the co-
porate database, and then in Front-Tier. This technique
allows the corporate database to apply any required logic
related to the data before it is committed in Front-Tier.
As a result, the corporate RDBMS aways reflects the
latest image of the data.

Similarly, if the content of caches overlap in different
application servers, Front-Tier's replication keeps the
content of the caches consistent.

4. Conclusion

TimesTen Performance Software's Front-Tier product is
an in-memory application-tier data cache targeted at high-
performance, data-intensive Internet applications. In
contrast to simple result cache mechanisms, Front-Tier
can process new SQL queries over cached data. Front-

Tier caches can be shared among different applications.
Updates can be applied to the caches, and the caches are
kept consistent with the backend corporate database.

Front-Tier is also superior to disk-based RDBMS replica

tion schemes that replicate parts of a corporate database in
the application tier because it provides better performance
and because it is lightweight and therefore requires fewer
resources on the application server. Finaly, Front-Tier is
superior to schemes that partition the corporate database
into multiple disk-based databases because it preserves
the centralized management and administration of the
corporate database.

By bringing data closer to the application, and by
processing queries in an in-memory RDBMS, Front-Tier
reduces response time significantly. By offloading some
of the data processing work from the database server,
Front-Tier improves overall throughput without interfe-
ing with the centralized management and administration
of the corporate database.

4. References

[1] The TimesTen Team. In-Memory Data Manage-
ment for Consumer Transactions The TimesTen
Approach. Proc. of the Int. Conf. on Management
of Data, June 1999.

[2] The TimesTen Team. In-Memory Data Manage-
ment in the Application Tier Proc. of the 16™ Int.
Conf. on Data Engineering, February 2000.

[3] Front-Tier JDBC Developer's Guide TimesTen
Performance Software. http://www.timesten.com

[4] Front-Tier ODBC Developer's Guide TimesTen
Performance Software. http://www.timesten.com

[5] Front-Tier SQL Reference Manual. TimesTen Per-
formance Software. http://www.timesten.com

680

